TWI505350B - Increasing masking layer etch rate and selectivity - Google Patents

Increasing masking layer etch rate and selectivity Download PDF

Info

Publication number
TWI505350B
TWI505350B TW101111457A TW101111457A TWI505350B TW I505350 B TWI505350 B TW I505350B TW 101111457 A TW101111457 A TW 101111457A TW 101111457 A TW101111457 A TW 101111457A TW I505350 B TWI505350 B TW I505350B
Authority
TW
Taiwan
Prior art keywords
etching
etch
rate
mask layer
selectivity
Prior art date
Application number
TW101111457A
Other languages
Chinese (zh)
Other versions
TW201250817A (en
Inventor
Ian J Brown
Wallace P Printz
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW201250817A publication Critical patent/TW201250817A/en
Application granted granted Critical
Publication of TWI505350B publication Critical patent/TWI505350B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Description

遮罩層蝕刻速率與選擇性之增強Mask layer etch rate and selectivity enhancement

本申請案大體有關於使用批次蝕刻處理的蝕刻處理系統及方法之設計,其係用以增加對遮罩層蝕刻之蝕刻速率與選擇性。The present application generally relates to the design of an etching process system and method using batch etching to increase the etch rate and selectivity of the mask layer etch.

當前在生產互補式金屬氧化物半導體(CMOS)電晶體方面的方法需要遮罩層以分離及保護主動元件區域,例如介電質、金屬互連線、應變、源極/汲極、及類似物。由於氮化矽(Si3 N4 )或矽氧化物(SiOx,其中x大於0)與二氧化矽(SiO2 )在電性及形態上的相似性,以及因為氮化矽容易與SiO2 鍵結,故常將其用作遮罩層。一般而言,氮化矽被用作蝕刻中止層,但在特定情況下,例如在「雙鑲嵌」處理中,氮化矽必須在不改變二氧化矽底層之受到仔細控制的厚度之情況下加以蝕去。在此示例中,氮化矽對矽氧化物的蝕刻選擇性(計算為氮化矽之蝕刻速率除以矽氧化物之蝕刻速率)理想上為儘可能地高,以改善製程裕度(process margin)。隨著元件持續縮小,遮罩層及底層的厚度隨之縮小。極薄層的蝕刻選擇性將於未來變得更加具有挑戰性。Current methods for producing complementary metal oxide semiconductor (CMOS) transistors require a mask layer to separate and protect active device regions such as dielectrics, metal interconnects, strain, source/drain, and the like. . Due to the electrical and morphological similarity between tantalum nitride (Si 3 N 4 ) or tantalum oxide (SiOx, where x is greater than 0) and cerium oxide (SiO 2 ), and because tantalum nitride is easily bonded to SiO 2 It is often used as a mask layer. In general, tantalum nitride is used as an etch stop layer, but in certain cases, such as in a "dual damascene" process, tantalum nitride must be applied without changing the carefully controlled thickness of the ruthenium dioxide underlayer. Go eclipse. In this example, the etch selectivity of tantalum nitride to tantalum oxide (calculated as the tantalum nitride tantalum rate divided by the tantalum oxide etch rate) is desirably as high as possible to improve process margin (process margin) ). As the component continues to shrink, the thickness of the mask layer and the underlying layer shrinks. The etch selectivity of very thin layers will become even more challenging in the future.

用以選擇地蝕刻氮化矽之當前技術可使用不同的化學品及方法。乾式電漿蝕刻與水溶液化學蝕刻兩者係用於氮化矽之移除。水溶液化學材料可包含稀釋的氫氟酸(dHF)、氫氟酸/乙二醇、以及磷酸。使用不同化學品之決定受到氮化矽的蝕刻速率及對矽氧化物的選擇性之需求所控制。由於相較於乾式技術的減少之擁有成本,因此水溶液化學法較佳。眾所周知磷酸中的氮化矽蝕刻速率強烈受到溫度影響,其中蝕刻速率提升以回應溫度提升。在例如將基板浸於水相磷酸溶液之浸浴中的濕式工作台配置中,處理溫度受到水相磷酸溶液之沸點所限。溶液沸點為水相磷酸溶液中的水濃度以及大氣壓力之函數。用以維持溫度之一當前方法係藉由回饋循環控制器,其量測沸騰狀態之存在、同時對該浸浴調整水容積之添加及加熱器功率時序間距,以將此沸騰狀態 維持在目標溫度(目標溫度之典型範圍係自攝氏140度至攝氏160度)。當水相磷酸溶液在不加水的情況下加熱時,水相磷酸溶液之沸點隨著水自溶液蒸發而上升。Current techniques for selectively etching tantalum nitride can use different chemicals and methods. Both dry plasma etching and aqueous chemical etching are used for the removal of tantalum nitride. The aqueous chemical material may comprise diluted hydrofluoric acid (dHF), hydrofluoric acid/ethylene glycol, and phosphoric acid. The decision to use different chemicals is controlled by the etch rate of tantalum nitride and the need for bismuth oxide selectivity. Aqueous chemistry is preferred because of the reduced cost of ownership compared to dry technology. It is well known that the yttrium nitride etch rate in phosphoric acid is strongly affected by temperature, with the etch rate increasing in response to temperature rise. In a wet bench configuration such as immersing the substrate in a bath of aqueous phase phosphoric acid solution, the processing temperature is limited by the boiling point of the aqueous phase phosphoric acid solution. The boiling point of the solution is a function of the water concentration in the aqueous phosphoric acid solution and the atmospheric pressure. The current method for maintaining temperature is by a feedback loop controller that measures the presence of a boiling state, simultaneously adjusts the water volume of the bath and the heater power timing interval to boil this state. Maintained at the target temperature (typical range of target temperatures is from 140 degrees Celsius to 160 degrees Celsius). When the aqueous phosphoric acid solution is heated without the addition of water, the boiling point of the aqueous phosphoric acid solution rises as the water evaporates from the solution.

由於利用當前之磷酸再循環槽,因此以減少選擇性為代價而增加磷酸溫度有利於增加生產用氮化矽蝕刻速率與降低製造成本,而允許高沸點之結果為減少水濃度。水在控制氮化矽對矽氧化物或矽蝕刻之選擇性上具有關鍵性。實驗證據顯示高溫下之非沸騰狀態(即低含水量)並未導致適合的蝕刻選擇性。反之,為了改善選擇性,具有高濃度的水(亦即進一步稀釋酸)較佳,但這並不實際。增加浸浴中的水濃度降低酸混合物的沸點。在較低溫度下,由於氮化矽蝕刻速率與溫度的強阿瑞尼士(Arrhenius)關係,故氮化矽之蝕刻速率明顯下降。Since the current phosphoric acid recycle tank is utilized, increasing the phosphoric acid temperature at the expense of selectivity is advantageous for increasing the tantalum nitride etch rate and reducing the manufacturing cost for production, while allowing the high boiling point to result in a reduction in water concentration. Water is critical in controlling the selectivity of tantalum nitride for tantalum oxide or tantalum etching. Experimental evidence indicates that the non-boiling state at high temperatures (i.e., low water content) does not result in a suitable etch selectivity. Conversely, in order to improve the selectivity, it is preferred to have a high concentration of water (i.e., to further dilute the acid), but this is not practical. Increasing the water concentration in the bath reduces the boiling point of the acid mixture. At lower temperatures, the etch rate of tantalum nitride is significantly reduced due to the strong argon nitride etch rate and the temperature of the Arrhenius relationship.

在當前技術中,例如,Morris在美國專利第4,092,211號中揭露一種用以於沸騰水相磷酸溶液內控制矽氧化物絕緣層之蝕刻速率的方法,該矽氧化物絕緣層係用以遮蔽氮化矽絕緣層。該方法運用謹慎地將矽酸鹽材料加至沸騰水相磷酸溶液。此外,Bell等人在美國專利第5,332,145號中揭露一種用以連續監控及控制低固形物助焊劑之組成物的方法,其運用具有與助焊劑組成物之比重緊密匹配的比重之溶劑。本技術領域所期望的為可維持遮罩層的高蝕刻速率,且亦維持對遮罩層蝕刻超過矽或矽氧化物之高選擇性的方法及系統。對於可滿足蝕刻速率、蝕刻選擇性、蝕刻時間、及/或擁有成本之目標的批次蝕刻處理系統及方法與單一基板系統及方法具有需求。In the prior art, for example, a method for controlling the etching rate of a tantalum oxide insulating layer in a boiling aqueous phase phosphoric acid solution for masking nitridation is disclosed in U.S. Patent No. 4,092,211.矽Insulation. This method employs the careful addition of the phthalate material to the boiling aqueous phase phosphoric acid solution. In addition, a method for continuously monitoring and controlling the composition of a low solids flux is disclosed in U.S. Patent No. 5,332,145, which utilizes a solvent having a specific gravity that closely matches the specific gravity of the flux composition. What is desired in the art is a method and system that maintains a high etch rate of the mask layer and also maintains high selectivity to the mask layer over 矽 or 矽 oxide. There is a need for batch etch processing systems and methods and single substrate systems and methods that meet the goals of etch rate, etch selectivity, etch time, and/or cost of ownership.

本發明提供一種用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法及系統,該複數基板之各者具有一層矽或矽氧化物,其中該系統包含:配置成處理該複數基板的蝕刻處理腔室,處理腔室含有用以蝕刻遮罩層的處理液體;及煮沸設備,耦合至處理腔室並用以產生高壓下的蒸氣水汽混合物之供 應,其中,蒸氣水汽混合物係以受控速率引入處理腔室中,以維持所選定之目標蝕刻速率及遮罩層對矽或矽氧化物的目標蝕刻選擇性比例。The present invention provides a method and system for increasing the etch rate and etch selectivity of a mask layer on each of a plurality of substrates, each of which has a layer of germanium or germanium oxide, wherein the system includes: An etching processing chamber for processing the plurality of substrates, the processing chamber containing a processing liquid for etching the mask layer; and a boiling device coupled to the processing chamber for generating a vapor water vapor mixture under high pressure Where, the vapor water vapor mixture is introduced into the processing chamber at a controlled rate to maintain a selected target etch rate and a target etch selectivity ratio of the mask layer to the tantalum or niobium oxide.

為了協助描述本發明,故將半導體基板用來說明本概念之應用。該方法及處理同樣適用於如晶圓、碟片、或類似物的其他工件。相似地,將水相磷酸用來說明本發明中的處理液體。如以下所述,可選擇性地使用其他處理液體。To assist in the description of the invention, a semiconductor substrate is used to illustrate the application of the concept. The method and process are equally applicable to other workpieces such as wafers, discs, or the like. Similarly, aqueous phase phosphoric acid is used to illustrate the treatment liquid in the present invention. Other treatment liquids can be selectively used as described below.

參考圖1,架構圖10顯示批次蝕刻處理系統中蝕刻氮化矽之先前技術方法,其中蝕刻化學品(蝕刻劑)係使用一或更多輸入流34及38加以分配至設置複數基板26的蝕刻處理腔室44上。蝕刻劑可使用溢流槽42及溢流口18加以再利用或回收或處置。加熱器22可例如藉由使加熱器位於處理腔室44之側邊或底部而加以設置。加熱器22可為外部形式或管線上(inline)形式。Referring to FIG. 1, an architectural diagram 10 illustrates a prior art method of etching tantalum nitride in a batch etch processing system in which an etch chemistry (etchant) is distributed to a plurality of substrates 26 using one or more input streams 34 and 38. The processing chamber 44 is etched. The etchant can be reused or recycled or disposed using the overflow tank 42 and the overflow port 18. Heater 22 can be provided, for example, by having a heater located at the side or bottom of processing chamber 44. The heater 22 can be in an external form or in an inline form.

圖2描繪顯示用以蝕刻氮化矽的先前技術之批次蝕刻處理系統50的示範性架構圖,其包含蝕刻處理腔室66及溢流槽58。如上,可將加熱器70設置於蝕刻處理腔室66之正面、背面、及下方;該等加熱器70可在外部或管線上,且可提供流入熱通量46至處理腔室66中的水溶液94中。流出熱通量包含傳導62及水之蒸發90。若流入熱通量大於蒸發及傳導所致的流出熱通量,則水溶液之溫度將增加直到沸騰發生。沸點受到酸濃度及大氣壓力所決定。煮沸期間,熱的增加使水更快沸騰。為維持水溶液94的固定沸騰溫度,處理腔室控制器(未顯示)必須同時調節加熱器70及經由供應管線78所注入的給水74。若流入給水大於蒸發所致的水耗損,則水溶液溫度下降、稀釋酸、並降低沸點。反之,若流入給水小於蒸發所致的水耗損,則水溶液溫度增加、濃縮酸、並提升沸點。2 depicts an exemplary architectural diagram of a prior art batch etch processing system 50 for etching tantalum nitride, including an etch processing chamber 66 and an overflow trench 58. As above, the heaters 70 can be disposed on the front, back, and underside of the etching process chamber 66; the heaters 70 can be external or pipelined and can provide an aqueous solution of heat flux 46 into the processing chamber 66. 94. The effluent heat flux comprises conduction 62 and evaporation of water 90. If the inflow heat flux is greater than the outflow heat flux due to evaporation and conduction, the temperature of the aqueous solution will increase until boiling occurs. The boiling point is determined by the acid concentration and atmospheric pressure. During boiling, the increase in heat causes the water to boil faster. To maintain the fixed boiling temperature of the aqueous solution 94, the processing chamber controller (not shown) must simultaneously adjust the heater 70 and the feed water 74 injected via the supply line 78. If the influent feed water is greater than the water loss caused by evaporation, the temperature of the aqueous solution drops, the acid is diluted, and the boiling point is lowered. On the other hand, if the inflow water is smaller than the water loss caused by evaporation, the temperature of the aqueous solution increases, the acid is concentrated, and the boiling point is raised.

眾所周知磷酸中的氮化矽蝕刻速率強烈受到溫度影響,其中蝕刻速率回應溫度上升而上升。用以蝕刻氮化矽及用以蝕刻二 氧化矽的化學反應如下: It is well known that the cesium nitride etch rate in phosphoric acid is strongly affected by temperature, with the etch rate rising in response to temperature rise. The chemical reaction for etching tantalum nitride and etching ruthenium dioxide is as follows:

在濕式工作台配置中,當將基板浸入水相磷酸溶液(水溶液)之浸浴中時,例如在東京威力科創股份有限公司(TEL)的EXPEDIUS設備線中,處理溫度受限於水溶液之沸點。水溶液之沸點為酸中的水濃度與大氣壓力的函數,且可受到克勞修斯-克拉伯隆關係(Clausius-Clapeyron relation)及拉午耳定律(Raoult’s law)所描述。可將液汽邊界的Clausius-Clapeyron方程式表示為: In a wet bench configuration, when the substrate is immersed in a bath of a water phase phosphoric acid solution (aqueous solution), for example, in the EXPEDIUS line of Tokyo Power Co., Ltd. (TEL), the treatment temperature is limited to the aqueous solution. Boiling point. The boiling point of an aqueous solution is a function of the concentration of water in the acid as a function of atmospheric pressure and can be described by the Clausius-Clapeyron relation and the Raoult's law. The Clausius-Clapeyron equation for the liquid-vapor boundary can be expressed as:

其中ln為自然對數,T 1P 1 為對應之溫度(以凱氏溫標(Kelvins)或其他絕對溫度單位表示)及蒸氣壓,T 2P 2 為另一點的對應溫度及壓力,△H vap 為莫耳汽化焓,且R為氣體常數(8.314 J mol-1 K-1 )。Where ln is the natural logarithm, T 1 and P 1 are the corresponding temperatures (expressed in Kelvins or other absolute temperature units) and vapor pressure, T 2 and P 2 are the corresponding temperatures and pressures at another point, △ H Vap is a molar vaporization enthalpy, and R is a gas constant (8.314 J mol -1 K -1 ).

拉午耳定律說明理想溶液之蒸氣壓相依於各化學成分之蒸氣壓及溶液中存在的成分之莫耳分率。一旦溶液中的成分已抵達平衡,則溶液之總蒸氣壓p為: The law of pulling the ear indicates that the vapor pressure of the ideal solution depends on the vapor pressure of each chemical component and the molar fraction of the components present in the solution. Once the ingredients in the solution have reached equilibrium, the total vapor pressure p of the solution is:

且各成分之個別蒸氣壓為其中:p i 為混合物中的成分i 之分壓,p i 為純成分i 之蒸氣壓,且x i 為溶液中(混合物中)的成分i 之莫耳分率。And the individual vapor pressure of each component is Where: p i is the partial pressure of component i in the mixture, p * i is the vapor pressure of pure component i , and x i is the molar fraction of component i in the solution (in the mixture).

磷酸及水的平衡狀態之示例係於圖5A中提供。用以維持溫度的當前TEL EXPEDIUS法係利用回饋循環控制器,其量測沸騰 狀態之存在、同時對該浸浴調整水容積之添加及加熱器功率時序間距,以將此沸騰狀態維持在目標溫度(160℃)。當水溶液在不加水的情況下加熱時,水溶液之沸點隨著水自溶液蒸發而升高。An example of the equilibrium state of phosphoric acid and water is provided in Figure 5A. The current TEL EXPEDIUS system for maintaining temperature utilizes a feedback loop controller that measures boiling The presence of the state, the addition of the bath volume and the heater power timing interval are maintained to maintain the boiling state at the target temperature (160 ° C). When the aqueous solution is heated without adding water, the boiling point of the aqueous solution rises as the water evaporates from the solution.

由於利用當前之磷酸再循環槽,因此以減少選擇性為代價而增加磷酸溫度有利於增加生產用氮化矽蝕刻速率與降低製造成本,而允許高沸點之結果為減少水濃度。水在控制氮化矽對SiO2蝕刻之選擇性上具有關鍵性[方程式1、2中的化學反應]。如圖5B中所示,實驗證據顯示高溫下之非沸騰狀態(即低含水量)並未導致適合的蝕刻選擇性。反之,為了改善選擇性,具有高濃度的水(亦即進一步稀釋酸)較佳;然而這並不實際。增加浸浴中的水濃度降低水溶液的沸點。在較低溫度下,氮化矽之蝕刻速率因氮化矽蝕刻速率與溫度的強阿瑞尼士(Arrhenius)關係而明顯下降。Since the current phosphoric acid recycle tank is utilized, increasing the phosphoric acid temperature at the expense of selectivity is advantageous for increasing the tantalum nitride etch rate and reducing the manufacturing cost for production, while allowing the high boiling point to result in a reduction in water concentration. Water is critical in controlling the selectivity of tantalum nitride for SiO2 etching [chemical reactions in Equations 1, 2]. As shown in Figure 5B, experimental evidence indicates that the non-boiling state at high temperatures (i.e., low water content) does not result in a suitable etch selectivity. Conversely, in order to improve selectivity, it is preferred to have a high concentration of water (i.e., further dilute the acid); however, this is not practical. Increasing the water concentration in the bath reduces the boiling point of the aqueous solution. At lower temperatures, the etch rate of tantalum nitride is significantly reduced by the strong Arrhenius relationship between the tantalum nitride etch rate and temperature.

為了強調所使用之溶劑可為水或一些其他的溶劑,故用語「處理液體」將用於本說明書之剩餘部份。本發明係聚焦於一種新穎方法,其係用以增加朝向氮化矽處理液體之傳輸溫度以增加氮化矽蝕刻速率、同時亦維持高含水量以維持相對矽或二氧化矽之最佳氮化矽蝕刻選擇性。高溫係藉由以下方式而達成:在被分配於靜止或旋轉中之單一基板上之前將加壓蒸氣注入磷酸之流動中。蒸氣之凝結將潛在熱能釋放至磷酸中,此提供有效率傳送以加熱磷酸。額外利益為磷酸總是自動地充滿水。水是維持相對二氧化矽的高氮化矽蝕刻選擇性所必需的。對於單向處理而言,必須具備含有溶解態二氧化矽的磷酸,以協助選擇性控制。對於回收處理而言,溶解態二氧化矽於原生磷酸中供給、或藉由使氮化矽覆層基板循環通過蝕刻處理系統(此為用於批次蝕刻處理系統的常見處理,亦名為磷酸浴)而供給。在一實施例中,蒸氣噴流亦可用以預熱基板,來確保基板上自中心至邊緣的蝕刻均勻性。In order to emphasize that the solvent used may be water or some other solvent, the term "treatment liquid" will be used in the remainder of the specification. The present invention is directed to a novel method for increasing the transfer temperature of a liquid toward a tantalum nitride solution to increase the tantalum nitride etch rate while also maintaining a high water content to maintain optimum nitridation of germanium or germanium dioxide.矽 etch selectivity. The high temperature is achieved by injecting pressurized vapor into the flow of phosphoric acid prior to being dispensed onto a single substrate that is stationary or rotating. The condensation of vapor releases the latent thermal energy into the phosphoric acid, which provides efficient delivery to heat the phosphoric acid. The additional benefit for phosphoric acid is always automatically filled with water. Water is necessary to maintain high cerium nitride etch selectivity relative to cerium oxide. For unidirectional processing, phosphoric acid containing dissolved cerium oxide must be provided to aid in selective control. For recycling, dissolved cerium oxide is supplied in virgin phosphoric acid or by circulating a tantalum nitride cladding substrate through an etching process (this is a common treatment for batch etching systems, also known as phosphoric acid). Bath) and supply. In one embodiment, the vapor jet can also be used to preheat the substrate to ensure etch uniformity from the center to the edge on the substrate.

尤其,本發明所解決的問題為:使用如磷酸之處理液體改善氮化矽蝕刻速率處理,以使得單一基板處理變得實際且有成本效益。磷酸處理係典型地視為「髒處理」,且係典型地由標準清潔1(standard clean 1,SC1)步驟所接續之前,以移除殘留微粒。因為 可避免缺陷/微粒再沉積及/或背側至前側污染之機制,故單一基板蝕刻處理本質上比批次蝕刻處理乾淨。在160℃的熱磷酸中,氮化矽蝕刻處理緩慢(30-60埃/min,或A/min)。若可將氮化矽之蝕刻速率增加至超過180 A/min,則將使單一基板處理設備上的氮化矽處理可實行。在使用直接蒸氣注入來加熱氮化矽的情況下,可達成高處理溫度,同時維持相對矽或二氧化矽的高氮化矽蝕刻選擇性所需的飽和含水量。In particular, the problem addressed by the present invention is to improve the tantalum nitride etch rate process using a treatment liquid such as phosphoric acid to make single substrate processing practical and cost effective. Phosphoric acid treatment is typically considered a "dirty treatment" and is typically removed prior to the standard clean 1 (SC1) step to remove residual particulates. because The mechanism of defect/particle redeposition and/or backside to front side contamination can be avoided, so a single substrate etch process is essentially cleaner than batch etch. In the hot phosphoric acid at 160 ° C, the tantalum nitride etching treatment is slow (30-60 angstroms/min, or A/min). If the etch rate of tantalum nitride can be increased to more than 180 A/min, then the tantalum nitride treatment on a single substrate processing apparatus can be performed. In the case where direct vapor injection is used to heat the tantalum nitride, a high processing temperature can be achieved while maintaining the saturated water content required for the high tantalum nitride etch selectivity of tantalum or niobium dioxide.

在一實施例中,煮沸設備(供予周圍溫度之液態水)係用以產生高壓的蒸氣水汽混合物之供應。蒸氣水汽混合物之溫度可由鍋爐內部的所生壓力所控制。然後,將蒸氣水汽混合物輸送至熱磷酸之化學品輸送管線中而至單一基板處理腔室。蒸氣水汽混合物將對浸浴提供熱及濕氣的來源,因此使浸浴升高超過標準沸騰溫度,並引入同時呈現蒸氣相及液相的過量水汽,以維持相對二氧化矽及矽的氮化物蝕刻選擇性。In one embodiment, the boiling equipment (liquid water supplied to ambient temperature) is used to produce a supply of a high pressure vapor water vapor mixture. The temperature of the vapor water vapor mixture can be controlled by the pressure generated inside the boiler. The vaporous water vapor mixture is then transferred to a hot phosphoric acid chemical transfer line to a single substrate processing chamber. The vapor-vapor mixture will provide a source of heat and moisture to the bath, thereby raising the bath above the standard boiling temperature and introducing excess moisture that simultaneously exhibits a vapor phase and a liquid phase to maintain the relative cerium oxide and niobium nitride. Etching selectivity.

在另一實施例中,蒸氣水汽混合物於進入蝕刻處理腔室前在高壓下與處理液體結合。充足壓力必須加以維持,以避免在供應輸送管線中沸騰。而後,在進入周圍壓力的蝕刻處理腔室之時,處理液體即開始快速沸騰。在另一實施例中,可於基板上方使用複數噴嘴。第一噴嘴引入加熱磷酸;第二或更多噴嘴引入高溫蒸氣水汽混合物之噴流,以於引入磷酸前預熱基板表面來協助維持基板範圍的均勻溫度,且因此確保蝕刻均勻性。在本實施例中,可將噴嘴位置及噴嘴數量設置成使得自處理液體至基板的熱傳輸之效率達到最大。亦可將蒸氣水汽混合物噴注至基板之背側上以維持溫度均勻性。In another embodiment, the vapor water vapor mixture is combined with the treatment liquid under high pressure prior to entering the etching process chamber. Adequate pressure must be maintained to avoid boiling in the supply transfer line. Then, at the time of entering the etching process chamber of the surrounding pressure, the treatment liquid starts to boil rapidly. In another embodiment, a plurality of nozzles can be used above the substrate. The first nozzle introduces heated phosphoric acid; the second or more nozzles introduce a jet of high temperature vapor water vapor mixture to preheat the substrate surface prior to introduction of phosphoric acid to assist in maintaining a uniform temperature across the substrate, and thus ensure etch uniformity. In this embodiment, the nozzle position and the number of nozzles can be set to maximize the efficiency of heat transfer from the process liquid to the substrate. A vaporous water vapor mixture can also be injected onto the back side of the substrate to maintain temperature uniformity.

圖3描繪在一大氣壓下作為磷酸濃度及溫度之函數的磷酸之沸點的示範性圖表300。處理液體之溫度及濃度為決定蝕刻速率及相對矽或矽氧化物之氮化矽蝕刻選擇性的兩個關鍵因子。圖3描繪氮化矽之批次蝕刻處理的溫度對磷酸之濃度的沸點曲線304。參考沸點曲線304,假定處理液體在最初組的標為312之條件A,例如,處理液體具有在約攝氏120度下之重量百分比85的 磷酸濃度。將處理液體加熱直到抵達如點X所代表的標為308之沸點,此為亦代表示範性蝕刻處理系統之控制極限的沸點曲線304中之點。如上述,為了增加蝕刻速率,同時維持目標氮化矽蝕刻選擇性並維持蝕刻均勻性,故使處理液體之溫度增加。Figure 3 depicts an exemplary graph 300 of the boiling point of phosphoric acid as a function of phosphoric acid concentration and temperature at atmospheric pressure. The temperature and concentration of the treatment liquid are two key factors determining the etch rate and the cerium etch selectivity relative to the yttrium or lanthanum oxide. 3 depicts a boiling point curve 304 of the temperature of the batch etch process of tantalum nitride versus the concentration of phosphoric acid. Referring to boiling point curve 304, it is assumed that the treatment liquid is in condition A of the initial group labeled 312, for example, the treatment liquid has a weight percentage of 85 at about 120 degrees Celsius. Phosphoric acid concentration. The treatment liquid is heated until it reaches the boiling point, designated 308, as indicated by point X, which is the point in the boiling point curve 304 which also represents the control limit of the exemplary etch processing system. As described above, in order to increase the etching rate while maintaining the target tantalum nitride etch selectivity and maintaining the etching uniformity, the temperature of the processing liquid is increased.

圖4A為包含磷酸的沸點曲線404(示於左垂直軸上)及蒸氣壓曲線408(示於右垂直軸上)的示範性圖表400,沸點曲線404係作為一大氣壓下的磷酸濃度之函數,而蒸氣壓曲線408係作為蝕刻處理系統中之混合物平衡條件的溫度之函數。磷酸濃度係表示為水溶液中的磷酸之重量百分比。假定處理液體之一組最初條件在由圓點所示的點(1)上,對應至重量百分比85%磷酸之成份及攝氏(C)120度之溫度。處理液體受到加熱並抵達由沸點曲線404之虛線部所示的沸騰溫度。加熱可利用管線上或外部加熱器或藉由將蒸氣水汽混合物注射至蝕刻處理液體上。在一實施例中,蝕刻處理系統具有以如沸點曲線404上之點(2)的160℃之對應溫度所代表的極限高溫。蒸氣及水汽之結合(蒸氣水汽混合物)被泵送至蝕刻處理系統之底部中,直到處理液體抵達實質上對應至重量百分比92%磷酸之成份、180℃之溫度、及約1.0百萬帕斯卡(MPa)之蒸氣壓的點(3)。蒸氣水汽混合物與水相磷酸之其他結合可加以測試,來判定滿足應用目標的氮化矽之蝕刻速率及蝕刻選擇性。蒸氣水汽混合物之壓力可在自0.2至2.0 MPa的範圍中。4A is an exemplary graph 400 comprising a boiling point curve 404 for phosphoric acid (shown on the left vertical axis) and a vapor pressure curve 408 (shown on the right vertical axis), the boiling point curve 404 being a function of the concentration of phosphoric acid at atmospheric pressure, The vapor pressure curve 408 is a function of the temperature of the equilibrium condition of the mixture in the etching process system. The phosphoric acid concentration is expressed as a weight percentage of phosphoric acid in an aqueous solution. It is assumed that the initial condition of one of the treatment liquids is at a point (1) indicated by a dot corresponding to a temperature of 85% by weight of phosphoric acid and a temperature of 120 degrees Celsius (C). The treatment liquid is heated and reaches the boiling temperature indicated by the dashed line portion of the boiling point curve 404. Heating can be by using a line or external heater or by injecting a vaporous water vapor mixture onto the etch processing liquid. In one embodiment, the etch processing system has a limit high temperature represented by a corresponding temperature of 160 ° C as at point (2) on the boiling point curve 404. The combination of vapor and water vapor (vapor vapour mixture) is pumped into the bottom of the etching process until the treated liquid reaches a composition substantially corresponding to 92% by weight phosphoric acid, a temperature of 180 ° C, and about 1.0 MPa (MPa) ) The point of vapor pressure (3). Other combinations of vapor vapour mixture with aqueous phosphoric acid can be tested to determine the etch rate and etch selectivity of the tantalum nitride that meets the application target. The pressure of the vapor water vapor mixture can range from 0.2 to 2.0 MPa.

參考圖4B,假定將0.5 MPa之壓力擇定為蒸氣水汽混合物的目標壓力。混合物的對應溫度(蒸氣壓曲線408上的點A)為約152℃。當將蒸氣水汽混合物注射至浸浴或單一基板蝕刻處理系統中之處理液體上時,沸點係由連接點A至沸點曲線404之點A’的垂直線所決定,導致平衡時約86%之對應磷酸濃度。若所擇定之目標壓力為2.0 MPa,則混合物之對應溫度(蒸氣壓曲線408上的點B)為約214℃。使用相同方式,沸點係由連接點B至沸點曲線404之點B’的垂直線所決定,導致平衡時約96%之對應磷酸濃度。因此,可將蒸氣水汽混合物之流速及壓力用作控制處理液體之溫度的變數,此影響處理液體之沸點溫度,並進一步決定處 理液體中的磷酸之濃度。處理液體之平衡磷酸濃度及溫度影響蝕刻速率及蝕刻選擇性。Referring to Figure 4B, it is assumed that a pressure of 0.5 MPa is selected as the target pressure of the vapor-vapor mixture. The corresponding temperature of the mixture (point A on vapor pressure curve 408) was about 152 °C. When the vaporous water vapor mixture is injected onto the treatment liquid in the dip bath or single substrate etching processing system, the boiling point is determined by the vertical line connecting point A to point A' of boiling point curve 404, resulting in a corresponding 86% correspondence at equilibrium. Phosphoric acid concentration. If the selected target pressure is 2.0 MPa, the corresponding temperature of the mixture (point B on vapor pressure curve 408) is about 214 °C. In the same manner, the boiling point is determined by the vertical line connecting point B to point B' of boiling point curve 404, resulting in a corresponding phosphoric acid concentration of about 96% at equilibrium. Therefore, the flow rate and pressure of the vapor water vapor mixture can be used as a variable for controlling the temperature of the treatment liquid, which affects the boiling temperature of the treatment liquid, and further determines The concentration of phosphoric acid in the liquid. The equilibrium phosphoric acid concentration and temperature of the treatment liquid affect the etch rate and etch selectivity.

圖5A描繪包含磷酸溶液之成份的第一曲線504及水的第二曲線508的示範性圖表500,其中磷酸溶液之組成係表示為每立方公尺之水相莫耳(Aq.mols/m3 ),且水係作為以℃呈現的溫度之函數且表示為mols/m3 。當處理液體於160至220℃的範圍中受到加熱時,磷酸濃度基本上不變,然而水濃度由於隨溫度上升的蒸發而下降。為進一步顯示處理液體之蝕刻選擇性的變化,圖5B描繪磷酸溶液之蝕刻選擇性的示範性圖表550,磷酸溶液之蝕刻選擇性係作為蝕刻處理系統中的處理液體之時間及溫度的函數。在測試開始時,處理液體(水相磷酸)沸騰,且去離子水(deionized water,DIW)係用以摻入處理液體,氮化矽對二氧化矽的蝕刻選擇性554高。50分鐘之後,停止以DIW摻入,且處理液體之溫度在約220℃處達到頂點,達到與加熱器功率減少後、溫度降低前大致相同之溫度。如同可由蝕刻選擇性曲線564之向下斜率所見,蝕刻選擇性亦自高降至低(554至558)。在重新以DIW摻入處理液體之後,處理液體進入沸騰狀態,且蝕刻選擇性自低升至高(558至562)。發明人發現,處理液體在160至200℃之範圍有益於使用水相磷酸的處理液體,且較佳地為約180℃。Figure 5A depicts an exemplary graph 500 of a first curve 504 comprising a composition of a phosphoric acid solution and a second curve 508 of water, wherein the composition of the phosphoric acid solution is expressed as water phase molars per cubic meter (Aq. mols/m3 ). And the water system is a function of the temperature presented in °C and is expressed as mols/m 3 . When the treatment liquid is heated in the range of 160 to 220 ° C, the phosphoric acid concentration is substantially constant, whereas the water concentration is lowered due to evaporation with increasing temperature. To further illustrate the change in etch selectivity of the treatment liquid, FIG. 5B depicts an exemplary graph 550 of etch selectivity of the phosphoric acid solution as a function of time and temperature of the treatment liquid in the etch processing system. At the beginning of the test, the treatment liquid (aqueous phase phosphoric acid) boils, and deionized water (DIW) is used to incorporate the treatment liquid, and the etch selectivity of the tantalum nitride to the cerium oxide is 554. After 50 minutes, the DIW incorporation was stopped and the temperature of the treatment liquid reached its apex at about 220 ° C, reaching a temperature substantially the same as before the heater power was reduced and before the temperature was lowered. As can be seen from the downward slope of the etch selectivity curve 564, the etch selectivity also decreases from high to low (554 to 558). After reinjecting the treatment liquid with DIW, the treatment liquid enters a boiling state and the etch selectivity rises from low to high (558 to 562). The inventors have found that the treatment liquid is useful for treating liquids using aqueous phase phosphoric acid in the range of from 160 to 200 ° C, and is preferably about 180 ° C.

圖6A描繪依據本發明之一實施例的批次蝕刻處理系統600的示範性示意圖。複數基板632係設置於蝕刻處理腔室640中。處理液體628被引入蝕刻處理腔室640中,且過量處理液體進入溢流容器604中並可經由排出口608而棄置。蒸氣產生器614係經由輸送管線620加以供應輸入液體,且由產生蒸氣水汽混合物612的加熱器616所加熱。蒸氣水汽混合物612係藉由接管636而分配至蝕刻處理腔室640之底部上。在使用控制器(未顯示)的情況下,批次蝕刻處理系統600係配置成藉由控制處理液體628及蒸氣水汽混合物612(可加壓或可不加壓至高壓)之流速來滿足所擇定之蝕刻處理速率及所擇定之蝕刻選擇性比例。蒸氣水汽混合物之壓力可在自0.2至2.0 MPa的範圍中。FIG. 6A depicts an exemplary schematic diagram of a batch etch processing system 600 in accordance with an embodiment of the present invention. A plurality of substrates 632 are disposed in the etching process chamber 640. The treatment liquid 628 is introduced into the etching process chamber 640, and the excess process liquid enters the overflow container 604 and can be disposed via the discharge port 608. Vapor generator 614 supplies input liquid via transfer line 620 and is heated by heater 616 that produces vapor water vapor mixture 612. Vapor vapor mixture 612 is dispensed onto the bottom of etch processing chamber 640 by a via 636. In the case of a controller (not shown), the batch etch processing system 600 is configured to satisfy the selected flow rate by controlling the flow rate of the process liquid 628 and the vapor water vapor mixture 612 (either pressurized or not pressurized to high pressure). Etching process rate and selected etch selectivity ratio. The pressure of the vapor water vapor mixture can range from 0.2 to 2.0 MPa.

圖6B描繪依據本發明之一實施例的單一基板蝕刻處理系統650的示範性示意圖。單一基板654係裝設於平台662上,該平台662係配置成在處理液體678自供應管線682受分配、且蒸氣水汽混合物674自供應輸送管線670受分配時維持基板654靜止或使基板654旋轉。蒸氣水汽混合物674被輸送通過供應輸送管線670,經由排列成達到基板654範圍之均勻處理的噴嘴666橫越基板654。可將與單一基板處理系統650相似的複數蝕刻處理系統設置配置例如堆疊、正交、或圓形排列及可供一般基板傳送系統使用的類似者之若干排列。可經由蒸氣輸送管線658將蒸氣輸送至基板654之背側上,以預熱或維持基板654範圍的均勻溫度。FIG. 6B depicts an exemplary schematic diagram of a single substrate etch processing system 650 in accordance with an embodiment of the present invention. A single substrate 654 is mounted on a platform 662 that is configured to maintain substrate 654 stationary or rotate substrate 654 as processing liquid 678 is dispensed from supply line 682 and vapor water vapor mixture 674 is dispensed from supply transfer line 670. . Vapor vapor mixture 674 is conveyed through supply transfer line 670 across susceptor 654 via nozzles 666 arranged to achieve uniform processing over the range of substrate 654. A plurality of etch processing systems similar to single substrate processing system 650 can be configured, for example, in a stacked, orthogonal, or circular arrangement and in a number of similar arrangements for use with a general substrate transfer system. Vapor may be delivered to the back side of substrate 654 via vapor transfer line 658 to preheat or maintain a uniform temperature across the range of substrate 654.

圖7A為依據本發明之一實施例的使用噴嘴730以分配蒸氣水汽混合物的批次蝕刻處理系統700之示範性示意圖。處理液體738可由設置於蝕刻處理腔室742之正面及背面中的加熱器716所加熱。加熱器716可為外部形式或管線上形式,將流入熱通量720供至蝕刻處理腔室742中的處理液體738。再者,額外流入熱通量722係藉由處理液體738中的經由供應輸送管線726所輸送的蒸氣水汽混合物736之注入而提供。流出熱通量包含傳導708及水蒸發734。若流入熱通量大於蒸發及傳導所致的流出熱通量708、734,則處理液體738之溫度將增加直到沸騰發生。沸點係由處理液體738濃度及大氣壓力所決定。煮沸期間,熱的增加將使水更快沸騰。7A is an exemplary schematic diagram of a batch etch processing system 700 that uses a nozzle 730 to dispense a vaporous water vapor mixture, in accordance with an embodiment of the present invention. The treatment liquid 738 can be heated by a heater 716 disposed in the front and back of the etching process chamber 742. The heater 716 can be in an external form or in a pipeline form that supplies an inflow heat flux 720 to the process liquid 738 in the etch process chamber 742. Again, the additional inflow heat flux 722 is provided by the injection of vapor vapour mixture 736 in the process liquid 738 via the supply transfer line 726. The effluent heat flux comprises conduction 708 and water evaporation 734. If the inflow heat flux is greater than the outflow heat flux 708, 734 due to evaporation and conduction, the temperature of the treatment liquid 738 will increase until boiling occurs. The boiling point is determined by the concentration of the treatment liquid 738 and the atmospheric pressure. During boiling, the increase in heat will cause the water to boil faster.

為維持處理液體738的固定沸騰溫度,處理腔室控制器(未顯示)必須同時調節加熱器716及經由噴嘴730的蒸氣水汽混合物之注入。若蒸氣水汽混合物之供應大於蒸發所生的水耗損,則處理液體738之溫度減低、稀釋處理液體738、並降低沸點。反之,若流入給水小於蒸發所生的水耗損,則處理液體738之溫度增加、濃縮酸、並提高沸點。將噴嘴730置於蝕刻處理腔室742之底部提供混合作用,以於處理液體738中產生均勻溫度分佈。可經由第二供應輸送管線724將處理液體738引至噴嘴730。過量處理液 體738流至溢流槽704。批次蝕刻處理系統700係用以藉由提高處理液體738之溫度來增加如氮化矽的遮罩層之蝕刻速率。目標蝕刻選擇性、即氮化矽蝕刻對矽氧化物或矽之比例係亦藉由控制處理液體738之莫耳濃度來加以維持,例如藉由添加些許蒸氣水汽混合物、及/或增加或減少經由噴嘴730所分配的蒸氣水汽混合物之溫度。To maintain a fixed boiling temperature of the process liquid 738, the process chamber controller (not shown) must simultaneously adjust the injection of the heater 716 and the vapor water vapor mixture via the nozzle 730. If the supply of the vapor water vapor mixture is greater than the water loss due to evaporation, the temperature of the treatment liquid 738 is reduced, the treatment liquid 738 is diluted, and the boiling point is lowered. Conversely, if the influent feed water is less than the water loss due to evaporation, the temperature of the treatment liquid 738 increases, the acid is concentrated, and the boiling point is increased. Placement of nozzle 730 at the bottom of etch processing chamber 742 provides a mixing effect to produce a uniform temperature distribution in process liquid 738. Process liquid 738 can be directed to nozzle 730 via second supply delivery line 724. Excessive treatment solution Body 738 flows to overflow trough 704. The batch etch processing system 700 is used to increase the etch rate of a mask layer such as tantalum nitride by increasing the temperature of the processing liquid 738. The target etch selectivity, i.e., the ratio of tantalum nitride etch to tantalum oxide or tantalum, is also maintained by controlling the molar concentration of the treatment liquid 738, such as by adding a slight vapor vapor mixture, and/or increasing or decreasing via The temperature of the vapor vapour mixture dispensed by nozzle 730.

圖7B描繪依據本發明之一實施例的包含處理液體回收系統783的單一基板蝕刻處理系統760之示範性示意圖。如以下將進一步討論,藉由於處理液體中維持高濃度溶解態二氧化矽以將反應2之平衡維持於左側,回收處理液體774減少化學品用量並協助蝕刻選擇性。參考單一基板蝕刻處理系統760,單一基板796係設置於用以在蝕刻處理腔室762內使基板796靜止或旋轉的平台788上。蒸氣水汽混合物766係利用供應管線764加以輸送並利用噴嘴790分配至基板上。蒸氣769係使用蒸氣輸入管線768分配至基板796之背面上,以維持基板796之均勻溫度。蒸氣769可與蒸氣水汽混合物766相同。處理液體回收系統783包含耦合至蝕刻處理腔室762之底部並通過控制閥782的排出管線786,該控制閥782經由排除管線780排除一部份處理液體774、並經由回收管線784回收處理液體774之剩餘部份。可將選擇性之加熱器778設置於處理液體輸送管線776之前或之後,以維持回收的處理液體774的期望溫度。新處理液體774係使用處理液體輸送管線776引至回收管線784上。FIG. 7B depicts an exemplary schematic diagram of a single substrate etch processing system 760 including a process liquid recovery system 783, in accordance with an embodiment of the present invention. As will be discussed further below, by maintaining a high concentration of dissolved cerium oxide in the treatment liquid to maintain the equilibrium of reaction 2 to the left, recovery treatment liquid 774 reduces the amount of chemicals and assists in etch selectivity. Referring to a single substrate etch processing system 760, a single substrate 796 is disposed on a platform 788 for restoring or rotating the substrate 796 within the etch processing chamber 762. Vapor vapor mixture 766 is delivered using supply line 764 and dispensed onto the substrate using nozzle 790. Vapor 769 is dispensed onto the back side of substrate 796 using vapor input line 768 to maintain a uniform temperature of substrate 796. Vapor 769 can be the same as vapor vapour mixture 766. The process liquid recovery system 783 includes a discharge line 786 coupled to the bottom of the etch process chamber 762 and through a control valve 782 that excludes a portion of the process liquid 774 via the purge line 780 and recovers the process liquid 774 via the recovery line 784. The rest of the. A selective heater 778 can be placed before or after processing the liquid transfer line 776 to maintain the desired temperature of the recovered process liquid 774. The new process liquid 774 is directed to a recovery line 784 using a process liquid transfer line 776.

參考圖7B,溶解態二氧化矽藉由抑制反應2來協助維持目標氮化矽蝕刻速率。在一實施例中,溶解態二氧化矽(Si(OH)4 )770係使用二氧化矽注入管線772及使用輸送管線776而注入至處理液體774上,所注入的溶解態二氧化矽量足以將溶解態二氧化矽量維持在一定目標範圍,例如10至30 ppm之溶解態二氧化矽。在一實施方式中,溶解態二氧化矽可為20 ppm。在另一實施例中,數個含有氮化矽的基板796受到處理,以於所回收之處理液體774中獲得期望之溶解態二氧化矽量。使用單一基板處理系統的本發 明之一優點為對於處理液體中之較高濃度溶解態二氧化矽的耐受性。使用磷酸的先前技術批次蝕刻處理系統典型地顯示出隨著溶解態二氧化矽濃度上升的瑕疵率增加。除了協助維持遮罩層對矽氧化物的穩定選擇性比例的較高濃度二氧化矽的耐受性之外,由於對於相同應用較批次蝕刻處理系統為低的瑕疵率,故單一基板處理系統本質上具有優勢。Referring to FIG. 7B, the dissolved cerium oxide assists in maintaining the target cerium nitride etch rate by suppressing the reaction 2. In one embodiment, the dissolved cerium oxide (Si(OH) 4 ) 770 is injected into the treatment liquid 774 using a cerium oxide injection line 772 and using a transfer line 776, and the amount of dissolved cerium oxide injected is sufficient. The amount of dissolved cerium oxide is maintained within a certain target range, for example, 10 to 30 ppm of dissolved cerium oxide. In one embodiment, the dissolved cerium oxide can be 20 ppm. In another embodiment, a plurality of substrates 796 containing tantalum nitride are treated to obtain a desired amount of dissolved cerium oxide in the recovered treatment liquid 774. One of the advantages of the present invention using a single substrate processing system is the resistance to higher concentrations of dissolved cerium oxide in the treatment liquid. Prior art batch etch processing systems using phosphoric acid typically exhibit an increase in the rate of enthalpy as the dissolved cerium oxide concentration increases. In addition to assisting in maintaining the resistance of the mask layer to a higher concentration of cerium oxide in a stable selectivity ratio of cerium oxide, a single substrate processing system is low due to the low enthalpy rate of the batch etch processing system for the same application. Essentially has an advantage.

圖8A、8B、及8C為在本發明之數個實施例中用於蝕刻處理系統之傳送系統的示範性示意圖。依據一實施例,圖8A描繪用以於一基板或複數基板上執行非電漿清潔處理的處理系統800。處理系統800包含第一處理系統816、及耦合至第一處理系統816的第二處理系統812。例如,第一處理系統816可包含化學處理系統(或單一處理腔室之化學處理構件)、且第二處理系統812可包含熱處理系統(或單一處理腔室之熱處理構件)。8A, 8B, and 8C are exemplary schematic views of a transport system for an etch processing system in various embodiments of the present invention. In accordance with an embodiment, FIG. 8A depicts a processing system 800 for performing a non-plasma cleaning process on a substrate or a plurality of substrates. Processing system 800 includes a first processing system 816 and a second processing system 812 coupled to first processing system 816. For example, the first processing system 816 can include a chemical processing system (or a chemical processing component of a single processing chamber), and the second processing system 812 can include a thermal processing system (or a heat treatment component of a single processing chamber).

再者,如圖8A中所示,可將傳送系統808耦合至第一處理系統816,以便將一基板或複數基板傳送進出第一處理系統816及第二處理系統812,並與多元件製造系統804交換基板。第一及第二處理系統816、812及傳送系統808可例如包含多元件製造系統804內的處理元件。例如,多元件製造系統804可容許將一基板或複數基板傳送往返處理元件,包含如蝕刻處理系統、沉積系統、塗覆系統、圖案化系統、量測系統等裝置。為了隔離發生於第一及第二系統中的處理,可將隔離組件820用以耦合各系統。例如,隔離組件820可包含提供熱絕緣的絕熱組件及提供真空隔離的閘閥組件之至少一者。當然,處理系統816及812及傳送系統808可以任何順序加以設置。Furthermore, as shown in FIG. 8A, a transport system 808 can be coupled to the first processing system 816 for transporting a substrate or plurality of substrates into and out of the first processing system 816 and the second processing system 812, and with the multi-component manufacturing system. 804 exchange substrate. The first and second processing systems 816, 812 and the delivery system 808 can, for example, comprise processing elements within the multi-element manufacturing system 804. For example, multi-element fabrication system 804 can permit the transfer of a substrate or a plurality of substrates to and from processing elements, including devices such as etching processing systems, deposition systems, coating systems, patterning systems, metrology systems, and the like. In order to isolate the processing occurring in the first and second systems, isolation assembly 820 can be used to couple the various systems. For example, the isolation assembly 820 can include at least one of a thermal insulation assembly that provides thermal insulation and a gate valve assembly that provides vacuum isolation. Of course, processing systems 816 and 812 and delivery system 808 can be arranged in any order.

選擇性地,在另一實施例中,圖8B呈現用以在基板上執行非電漿清潔處理的處理系統850。處理系統850包含第一處理系統856及第二處理系統858。例如,第一處理系統856可包含化學處理系統,且第二處理系統858可包含熱處理系統。Alternatively, in another embodiment, FIG. 8B presents a processing system 850 to perform a non-plasma cleaning process on a substrate. Processing system 850 includes a first processing system 856 and a second processing system 858. For example, the first processing system 856 can include a chemical processing system and the second processing system 858 can include a thermal processing system.

再者,如圖8B中所示,可將傳送系統854耦合至第一處理系統856,以將一基板或複數基板傳送進出第一處理系統856、且 可加以耦合至第二處理系統858,以將一基板或複數基板傳送進出第二處理系統858。此外,傳送系統854可與一或更多基板匣(未顯示)交換一基板或複數基板。雖然圖8B中僅顯示兩處理系統,但其他處理系統仍可存取傳送系統854,包含如蝕刻處理系統、沉積系統、塗覆系統、圖案化系統、量測系統等裝置。為了隔離發生於第一及第二系統中的處理,可將隔離組件862用以耦合各系統。例如,隔離組件862可包含提供熱絕緣的絕熱組件及提供真空隔離的閘閥組件之至少一者。此外,例如,傳送系統854可作為隔離組件862之部分。Moreover, as shown in FIG. 8B, the transport system 854 can be coupled to the first processing system 856 to transport a substrate or plurality of substrates into and out of the first processing system 856, and A second processing system 858 can be coupled to transfer a substrate or plurality of substrates into and out of the second processing system 858. Additionally, transport system 854 can exchange one or more substrates with one or more substrate cassettes (not shown). Although only two processing systems are shown in FIG. 8B, other processing systems may still access the delivery system 854, including devices such as etching processing systems, deposition systems, coating systems, patterning systems, metrology systems, and the like. In order to isolate the processing occurring in the first and second systems, isolation assembly 862 can be used to couple the various systems. For example, the isolation component 862 can include at least one of a thermal insulation component that provides thermal insulation and a gate valve component that provides vacuum isolation. Further, for example, delivery system 854 can be part of isolation component 862.

選擇性地,在另一實施例中,圖8C呈現用以於一基板或複數基板上執行非電漿清潔處理的處理系統870。處理系統870包含第一處理系統886及第二處理系統882,其中第一處理系統886係如圖示在垂直方向上堆疊於第二處理系統882之頂上。例如,第一處理系統886可包含化學處理系統,且第二處理系統882可包含熱處理系統。Alternatively, in another embodiment, FIG. 8C presents a processing system 870 for performing a non-plasma cleaning process on a substrate or a plurality of substrates. Processing system 870 includes a first processing system 886 and a second processing system 882, wherein first processing system 886 is stacked on top of second processing system 882 as shown in the vertical direction. For example, the first processing system 886 can include a chemical processing system and the second processing system 882 can include a thermal processing system.

再者,如圖8C中所示,可將傳送系統878耦合至第一處理系統886,以將一基板或複數基板傳送進出第一處理系統886、並耦合至第二處理系統882,以將一基板或複數基板傳送進出第二處理系統882。此外,傳送系統878可與一或更多基板匣(未顯示)交換一基板或複數基板。雖然圖8C中僅顯示兩處理系統,但其他處理系統仍可存取傳送系統878,包含如蝕刻處理系統、沉積系統、塗覆系統、圖案化系統、量測系統等裝置。為了隔離發生於第一及第二系統中的處理,可將隔離組件874用以耦合各系統。例如,隔離組件874可包含提供熱絕緣的絕熱組件及提供真空隔離的閘閥組件之至少一者。此外,例如,傳送系統878可作為隔離組件874之部分。如上述,化學處理系統及熱處理系統可包含彼此耦合的個別處理腔室。選擇性地,化學處理系統及熱處理系統可為單一處理腔室之構件。Furthermore, as shown in FIG. 8C, a transport system 878 can be coupled to the first processing system 886 to transport a substrate or plurality of substrates into and out of the first processing system 886 and to the second processing system 882 to The substrate or plurality of substrates are transferred into and out of the second processing system 882. Additionally, transport system 878 can exchange one or more substrates with one or more substrates (not shown). Although only two processing systems are shown in FIG. 8C, other processing systems may still access the transport system 878, including devices such as etching processing systems, deposition systems, coating systems, patterning systems, metrology systems, and the like. In order to isolate the processing occurring in the first and second systems, isolation component 874 can be used to couple the various systems. For example, the isolation assembly 874 can include at least one of a thermal insulation assembly that provides thermal insulation and a gate valve assembly that provides vacuum isolation. Further, for example, delivery system 878 can be part of isolation component 874. As noted above, the chemical processing system and the thermal processing system can include individual processing chambers coupled to one another. Alternatively, the chemical processing system and the thermal processing system can be a single processing chamber component.

圖9為在一實施例中用以使用處理液體及蒸氣水汽混合物來增加用於批次蝕刻處理系統的基板之遮罩層的蝕刻速率及蝕刻 選擇性的方法900之示範性流程圖。在步驟904中,選定目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性比例。遮罩層可為氮化矽、氮化鎵、或氮化鋁及類似物。在步驟908中,獲得高壓下的蒸氣水汽混合物之供應。蒸氣水汽混合物可由管線上蒸氣產生器提供或來自製造叢集中的通用蒸氣源。在步驟912中,獲得用以選擇地蝕刻遮罩層的處理液體之供應。處理液體可包含磷酸、氫氟酸、或氫氟酸/乙二醇及類似物。在步驟916中,將複數基板置於蝕刻處理腔室中。在步驟920中,處理液體係於蝕刻處理腔室中分配,其中可使用供應輸送管線或使用噴嘴而執行分配。在步驟924中,將蒸氣水汽混合物之流動注入蝕刻處理腔室中,其中蒸氣水汽混合物之流速受到控制,以達到遮罩層的目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性。如圖4A及4B中所示,蒸氣水汽混合物之流速可與根據處理液體濃度、水溶液溫度、及蒸氣壓的資料相關。如圖4B之描述內容中所提及,可將蒸氣水汽混合物之流速及壓力用作控制處理液體之溫度的變數,此影響處理液體之沸點溫度,並進一步決定處理液體中的磷酸濃度。平衡磷酸濃度及溫度影響蝕刻速率及蝕刻選擇性。9 is an etch rate and etching of a mask layer for use in a substrate for a batch etching process using a process liquid and a vapor-vapor mixture in one embodiment. An exemplary flow chart of the alternative method 900. In step 904, the target etch rate and the target etch selectivity ratio of the mask layer to tantalum oxide or germanium are selected. The mask layer can be tantalum nitride, gallium nitride, or aluminum nitride, and the like. In step 908, a supply of vapor water vapor mixture at high pressure is obtained. The vapor water vapor mixture may be provided by a vapor generator on the line or from a common vapor source in the manufacturing cluster. In step 912, a supply of process liquid to selectively etch the mask layer is obtained. The treatment liquid may comprise phosphoric acid, hydrofluoric acid, or hydrofluoric acid/ethylene glycol and the like. In step 916, the plurality of substrates are placed in an etch processing chamber. In step 920, the treatment fluid system is dispensed in an etch processing chamber, wherein dispensing can be performed using a supply delivery line or using a nozzle. In step 924, a flow of the vapor water vapor mixture is injected into the etching process chamber, wherein the flow rate of the vapor water vapor mixture is controlled to achieve a target etching rate of the mask layer and a target etching option of the mask layer for the tantalum oxide or tantalum. Sex. As shown in Figures 4A and 4B, the flow rate of the vapor water vapor mixture can be correlated with data based on the concentration of the treatment liquid, the temperature of the aqueous solution, and the vapor pressure. As mentioned in the description of Figure 4B, the flow rate and pressure of the vapor-vapor mixture can be used as a variable to control the temperature of the treatment liquid, which affects the boiling temperature of the treatment liquid and further determines the concentration of phosphoric acid in the treatment liquid. The equilibrium phosphoric acid concentration and temperature affect the etch rate and etch selectivity.

圖10為使用結合的處理液體及蒸氣水汽混合物來增加批次蝕刻處理系統中的基板之遮罩層的蝕刻速率及蝕刻選擇性的方法1000之示範性流程圖。在步驟1004中,選定目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性。遮罩層可為氮化矽、氮化鎵、或氮化鋁及類似物。在步驟1008中,獲得高壓下的蒸氣水汽混合物之供應。該供應可藉由管線上蒸氣產生器或來自製造叢集中的通用蒸氣源而提供。在步驟1012中,獲得用以選擇性地蝕刻遮罩層的處理液體之供應。處理液體可包含磷酸、氫氟酸、或氫氟酸/乙二醇及類似物。在步驟1016中,將複數基板置於蝕刻處理腔室中。在步驟1020中,處理液體係於混合槽或供應輸送管線中與蒸氣水汽混合物結合。足夠的壓力必須加以維持以避免供應輸送管線中的沸騰。在進入周圍壓力下的蝕刻處理腔室之時,處理液體將開始快速沸騰。10 is an exemplary flow diagram of a method 1000 for increasing the etch rate and etch selectivity of a mask layer of a substrate in a batch etch processing system using a combined process liquid and vapor water vapor mixture. In step 1004, the target etch rate and the target etch selectivity of the mask layer for the tantalum oxide or germanium are selected. The mask layer can be tantalum nitride, gallium nitride, or aluminum nitride, and the like. In step 1008, a supply of vapor water vapor mixture at high pressure is obtained. The supply can be provided by a steam generator on the pipeline or from a common vapor source in the manufacturing cluster. In step 1012, a supply of process liquid to selectively etch the mask layer is obtained. The treatment liquid may comprise phosphoric acid, hydrofluoric acid, or hydrofluoric acid/ethylene glycol and the like. In step 1016, a plurality of substrates are placed in an etch processing chamber. In step 1020, the treatment fluid system is combined with the vapor water vapor mixture in a mixing tank or supply transfer line. Sufficient pressure must be maintained to avoid boiling in the supply transfer line. Upon entering the etching process chamber at ambient pressure, the process liquid will begin to boil rapidly.

參考圖10,在步驟1024中,將結合的蒸氣水汽混合物及處理液體之流動注入蝕刻處理腔室中,其中蒸氣水汽混合物之流速受到控制,以達到遮罩層的目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性。如上述,蒸氣水汽混合物之流量可如圖4A及4B中所示,與基於處理液體濃度、水溶液溫度、及蒸氣壓的資料相關。如圖4B之描述內容中所提及,可將蒸氣水汽混合物之流速及壓力用作控制處理液體之溫度的變數,此影響處理液體之沸點溫度,並進一步決定處理液體中的磷酸濃度。平衡磷酸濃度及溫度影響蝕刻速率及蝕刻選擇性。Referring to FIG. 10, in step 1024, the combined vapor-vapor mixture and the flow of the treatment liquid are injected into the etching processing chamber, wherein the flow rate of the vapor-vapor mixture is controlled to achieve a target etching rate of the mask layer and a mask layer pair. The target etch selectivity of cerium oxide or cerium. As described above, the flow rate of the vapor water vapor mixture can be related to the data based on the treatment liquid concentration, the aqueous solution temperature, and the vapor pressure as shown in Figs. 4A and 4B. As mentioned in the description of Figure 4B, the flow rate and pressure of the vapor-vapor mixture can be used as a variable to control the temperature of the treatment liquid, which affects the boiling temperature of the treatment liquid and further determines the concentration of phosphoric acid in the treatment liquid. The equilibrium phosphoric acid concentration and temperature affect the etch rate and etch selectivity.

可將相關性用以判定滿足目標蝕刻速率及目標蝕刻選擇性所需的流量。在一實施例中,蒸氣水汽混合物及處理液體係於進入蝕刻處理腔室前,在供應輸送管線中結合。在另一實施例中,蒸氣水汽混合物及處理液體於接近離開排出蝕刻處理腔室中的供應輸送管線前結合。Correlation can be used to determine the flow rate required to meet the target etch rate and target etch selectivity. In one embodiment, the vapor water vapor mixture and treatment fluid system are combined in a supply delivery line prior to entering the etching process chamber. In another embodiment, the vapor water vapor mixture and the treatment liquid are combined prior to exiting the supply delivery line in the discharge etch processing chamber.

圖11為使用設置於蝕刻處理腔室之底部及側部的複數噴嘴來增加批次蝕刻處理系統中的基板之遮罩層的蝕刻速率及蝕刻選擇性的方法1100之示範性流程圖。在步驟1104中,選定目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性。遮罩層可為氮化矽、氮化鎵、或氮化鋁及類似物。在步驟1108中,獲得高壓下的蒸氣水汽混合物之供應。該供應可藉由管線上蒸氣產生器或來自製造叢集中的通用蒸氣源而提供。在步驟1112中,獲得用以選擇地蝕刻遮罩層的處理液體之供應。處理液體可包含磷酸、氫氟酸、或氫氟酸/乙二醇及類似物。在步驟1116中,將複數基板置於蝕刻處理腔室中。在步驟1120中,處理液體係於蝕刻處理腔室中加以分配。11 is an exemplary flow diagram of a method 1100 of increasing the etch rate and etch selectivity of a mask layer of a substrate in a batch etch processing system using a plurality of nozzles disposed at the bottom and sides of the etch processing chamber. In step 1104, the target etch rate and the target etch selectivity of the mask layer for the tantalum oxide or germanium are selected. The mask layer can be tantalum nitride, gallium nitride, or aluminum nitride, and the like. In step 1108, a supply of vapor water vapor mixture at high pressure is obtained. The supply can be provided by a steam generator on the pipeline or from a common vapor source in the manufacturing cluster. In step 1112, a supply of processing liquid to selectively etch the mask layer is obtained. The treatment liquid may comprise phosphoric acid, hydrofluoric acid, or hydrofluoric acid/ethylene glycol and the like. In step 1116, the plurality of substrates are placed in an etch processing chamber. In step 1120, the treatment fluid system is dispensed in an etch processing chamber.

在步驟1124中,使用複數噴嘴將結合的蒸氣水汽混合物及處理液體之流動注入蝕刻處理腔室中,其中蒸氣水汽混合物之流速受到控制,以達到遮罩層的目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性。可將複數噴嘴置於蝕刻處理腔室之底部中及/或側部上。複數噴嘴之配置可加以改變,以確保溫度均勻 性及後續蝕刻均勻性。如上述,蒸氣水汽混合物之流速可如圖4A及4B中所示,與基於處理液體濃度、水溶液溫度、及蒸氣壓的資料相關。如圖4B之描述內容中所述,可將蒸氣水汽混合物之流速及壓力用作控制處理液體之溫度的變數,此影響處理液體之沸點溫度,並進一步決定處理液體中的磷酸濃度。平衡磷酸濃度及溫度影響蝕刻速率及蝕刻選擇性。In step 1124, the combined vapor vapour mixture and the flow of the treatment liquid are injected into the etching process chamber using a plurality of nozzles, wherein the flow rate of the vapor vapour mixture is controlled to achieve a target etch rate of the mask layer and a mask layer confrontation. The target etch selectivity of the oxide or germanium. Multiple nozzles can be placed in the bottom and/or side of the etch processing chamber. The configuration of the multiple nozzles can be changed to ensure uniform temperature Sexual and subsequent etching uniformity. As described above, the flow rate of the vapor water vapor mixture can be related to the data based on the treatment liquid concentration, the aqueous solution temperature, and the vapor pressure as shown in Figs. 4A and 4B. As described in the description of Figure 4B, the flow rate and pressure of the vapor water vapor mixture can be used as a variable to control the temperature of the treatment liquid, which affects the boiling temperature of the treatment liquid and further determines the concentration of phosphoric acid in the treatment liquid. The equilibrium phosphoric acid concentration and temperature affect the etch rate and etch selectivity.

圖12為在單一基板蝕刻處理系統中增加一層基板之蝕刻速率及蝕刻選擇性的方法1200之示範性流程圖。在步驟1204中,選定目標蝕刻速率及遮罩層對矽氧化物或矽的目標蝕刻選擇性、及/或目標完成時間。遮罩層可為氮化矽、氮化鎵、或氮化鋁及類似物。在步驟1208中,獲得高壓下的蒸氣水汽混合物之供應。 該供應可藉由管線上蒸氣產生器或來自製造叢集中的通用蒸氣源而提供。在步驟1212中,獲得用以選擇性地蝕刻遮罩層的處理液體之供應。處理液體可包含磷酸、氫氟酸、或氫氟酸/乙二醇及類似物。在步驟1216中,將單一基板置於蝕刻處理腔室中。在一實施例中,可將二或更多蝕刻處理腔室配置成使得該等腔室可受處理液體供應、受蒸氣水汽混合物供應、及裝載與卸載基板。在步驟1220中,處理液體係於蝕刻處理腔室中分配,其中可使用供應輸送管線或噴嘴執行該分配。在步驟1224中,蒸氣水汽混合物及/或處理液體之流動係於基板旋轉時使用一或更多噴嘴加以注入蝕刻處理腔室中。選擇性地,在使噴嘴旋轉時,基板可為靜止。12 is an exemplary flow diagram of a method 1200 of adding an etch rate and etch selectivity of a substrate in a single substrate etch processing system. In step 1204, the target etch rate and the target etch selectivity of the mask layer for the tantalum oxide or germanium, and/or target completion time are selected. The mask layer can be tantalum nitride, gallium nitride, or aluminum nitride, and the like. In step 1208, a supply of vapor water vapor mixture at high pressure is obtained. The supply can be provided by a steam generator on the pipeline or from a common vapor source in the manufacturing cluster. In step 1212, a supply of processing liquid to selectively etch the mask layer is obtained. The treatment liquid may comprise phosphoric acid, hydrofluoric acid, or hydrofluoric acid/ethylene glycol and the like. In step 1216, a single substrate is placed in the etch processing chamber. In an embodiment, two or more etch processing chambers may be configured such that the chambers are subject to a supply of processing liquid, a supply of vaporized water vapor mixture, and loading and unloading of substrates. In step 1220, the treatment fluid system is dispensed in an etch processing chamber, wherein the dispensing can be performed using a supply delivery line or nozzle. In step 1224, the vapor water vapor mixture and/or the flow of the treatment liquid is injected into the etching process chamber using one or more nozzles as the substrate rotates. Alternatively, the substrate can be stationary while the nozzle is being rotated.

參考圖12,在一實施例中,處理液體及蒸氣水汽混合物係於進入蝕刻處理腔室前、或在進入蝕刻處理腔室後但離開噴嘴前,在供應輸送管線中結合。充足壓力必須加以維持,以預防供應輸送管線中之沸騰。然後,在進入周圍壓力的處理腔室之時,處理液體將開始快速沸騰。在另一實施例中,可於基板上方使用複數噴嘴。第一噴嘴引入加熱磷酸,第二或更多噴嘴在引入磷酸之前,引入高溫蒸氣之噴流以預熱基板表面,以協助維持基板範圍的均勻溫度並確保蝕刻均勻性。在另一實施例中,可將噴嘴位置及噴嘴數量設置成使得自處理液體至基板的熱輸送效率達到最 大。在又另一實施例中,亦可將蒸氣水汽混合物噴注至基板背側上,以維持溫度均勻性。Referring to Figure 12, in one embodiment, the process liquid and vapor water vapor mixture are combined in a supply transfer line prior to entering the etch processing chamber or after entering the etch processing chamber but before exiting the nozzle. Adequate pressure must be maintained to prevent boiling in the supply line. The process liquid will then begin to boil rapidly as it enters the processing chamber of ambient pressure. In another embodiment, a plurality of nozzles can be used above the substrate. The first nozzle introduces heated phosphoric acid, and the second or more nozzles introduce a jet of high temperature vapor to preheat the substrate surface prior to introduction of phosphoric acid to assist in maintaining a uniform temperature across the substrate and ensuring etch uniformity. In another embodiment, the nozzle position and the number of nozzles can be set such that the heat transfer efficiency from the treatment liquid to the substrate is maximized. Big. In yet another embodiment, a vaporous water vapor mixture can also be injected onto the back side of the substrate to maintain temperature uniformity.

圖13為蝕刻處理後用以判定及利用基板上的結構之輪廓參數的系統1300之示範性方塊圖,其中將輪廓參數數值用於自動處理及設備控制。系統1300包含第一製造叢集1302及光學量測系統1304。系統1300亦包含第二製造叢集1306。關於判定基板上的結構之輪廓參數的光學量測系統之細節,參考2005年9月13日公告的美國專利第6,943,900號之GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNALS,其整體係併於此作為參考。雖然第二製造叢集1306在圖-13中係描繪成在第一製造叢集1302後,但仍應察知例如在製造處理流程中,於系統1300中第二製造叢集1306可位於第一製造叢集1302前。Figure 13 is an exemplary block diagram of a system 1300 for determining and utilizing contour parameters of structures on a substrate after etching, wherein contour parameter values are used for automated processing and device control. System 1300 includes a first manufacturing cluster 1302 and an optical metrology system 1304. System 1300 also includes a second manufacturing cluster 1306. For details of the optical measurement system for determining the profile parameters of the structure on the substrate, reference is made to GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNALS of US Pat. No. 6,943,900, issued Sep. 13, 2005, the entire disclosure of which is incorporated herein by reference. . Although the second manufacturing cluster 1306 is depicted in FIG. 13 as being after the first manufacturing cluster 1302, it should be noted that, for example, in the manufacturing process flow, the second manufacturing cluster 1306 can be located in the system 1300 before the first manufacturing cluster 1302. .

例如使施加至基板之光阻層曝光及/或顯影的光微影處理可使用第一製造叢集1302來執行。在一示範性實施例中,光學量測系統1304包含光學量測工具1308及處理器1310。光學量測工具1308係配置成量測離開樣本結構的繞射訊號。處理器1310係配置成:使用由光學量測工具量測到的量測繞射訊號並使用訊號調整器調整、產生經調整的量測輸出訊號。再者,處理器1310係配置成將經調整的量測輸出訊號與模擬繞射訊號比較。如上述,模擬繞射係利用光學量測工具模型來判定,該光學量測工具模型使用射線追蹤、一組結構之輪廓參數及基於電磁繞射之馬克士威方程式的數值分析。在一示範性實施例中,光學量測系統1304亦可包含具有複數模擬繞射訊號及與複數模擬繞射訊號有關的一或更多輪廓參數之複數數值的函式庫1312。如上述,可欲線產生函式庫;量測處理器1310可將經調整的量測輸出訊號與函式庫中的複數模擬繞射訊號比較。當發現匹配的模擬繞射訊號時,將與函式庫中的匹配之模擬繞射訊號有關的輪廓參數之一或更多數值假定為在基板應用中所使用的輪廓參數之一或更多數值,以製造樣本結構。For example, photolithographic processing that exposes and/or develops the photoresist layer applied to the substrate can be performed using the first fabrication cluster 1302. In an exemplary embodiment, optical metrology system 1304 includes an optical metrology tool 1308 and a processor 1310. Optical metrology tool 1308 is configured to measure a diffracted signal exiting the sample structure. The processor 1310 is configured to: modulate the diffracted signal measured by the optical metrology tool and use the signal conditioner to adjust and generate the adjusted measurement output signal. Moreover, the processor 1310 is configured to compare the adjusted measurement output signal to the analog diffracted signal. As described above, the simulated diffraction system is determined using an optical metrology tool model that uses ray tracing, contour parameters of a set of structures, and numerical analysis of the Maxwell equation based on electromagnetic diffraction. In an exemplary embodiment, optical metrology system 1304 can also include a library 1312 having complex analog diffracted signals and complex values of one or more contour parameters associated with the complex analog diffracted signals. As described above, the library can be generated by the line; the measurement processor 1310 can compare the adjusted measurement output signal with the complex analog diffraction signal in the library. When a matching analog diffract signal is found, one or more of the contour parameters associated with the matched analog diffract signal in the library are assumed to be one or more of the contour parameters used in the substrate application. To make a sample structure.

系統1300亦包含量測處理器1316。在一示範性實施例中, 處理器1310可將一或更多輪廓參數之一或更多數值傳送至量測處理器1316。然後,基於使用光學量測系統1304所判定的一或更多輪廓參數之一或更多數值,量測處理器1316可調整第一製造叢集1302之一或更多處理參數或設備設定。基於使用光學量測系統1304所判定的一或更多輪廓參數之一或更多數值,量測處理器1316亦可調整第二製造叢集1306之一或更多處理參數或設備設定。如上述,第二製造叢集1306可於第一製造叢集1302之前或之後處理基板。在另一示範性實施例中,處理器1310係配置成:使用該組所量測繞射訊號作為對機器學習系統1314之輸入、並使用輪廓參數作為機器學習系統1314之期望輸出,來調整機器學習系統1314。System 1300 also includes a measurement processor 1316. In an exemplary embodiment, The processor 1310 can communicate one or more values of one or more profile parameters to the measurement processor 1316. The measurement processor 1316 can then adjust one or more processing parameters or device settings of the first manufacturing cluster 1302 based on one or more values of one or more profile parameters determined using the optical metrology system 1304. The measurement processor 1316 can also adjust one or more processing parameters or device settings of the second manufacturing cluster 1306 based on one or more values of one or more profile parameters determined using the optical metrology system 1304. As described above, the second fabrication cluster 1306 can process the substrate before or after the first fabrication cluster 1302. In another exemplary embodiment, processor 1310 is configured to adjust the machine using the set of measured diffracted signals as input to machine learning system 1314 and using profile parameters as desired output of machine learning system 1314. Learning system 1314.

圖14為使用配置成增加蝕刻速率及蝕刻選擇性之蝕刻處理系統來控制製造叢集的方法之示範性流程圖。在使用圖13中所述的系統之情況下,於使用關於圖3至12所述的系統及方法的蝕刻處理後,基板中的結構可使用如判定及利用自動處理及設備控制之輪廓參數的系統之示範性方塊圖1400所繪的方法加以量測。在步驟1410中,離開樣本結構的量測繞射訊號係使用光學量測工具而獲得。在步驟1420中,量測輸出訊號係使用射線追蹤方法、光學量測裝置之校正參數、及一或更多精度準則或其他如迴歸、函式庫匹配或機器學習系統的散射方法由量測繞射訊號加以判定。在步驟1430中,樣本結構的至少一輪廓參數係使用量測輸出訊號加以判定。在步驟1440中,至少一製造處理參數或設備設定係使用結構的至少一輪廓參數加以修改。14 is an exemplary flow diagram of a method of controlling fabrication clusters using an etch processing system configured to increase etch rate and etch selectivity. In the case of using the system described in FIG. 13, after etching using the systems and methods described with respect to Figures 3 through 12, the structures in the substrate can be used, such as determining and utilizing contour parameters of automatic processing and device control. The method depicted by the exemplary block diagram 1400 of the system is measured. In step 1410, the measurement diffraction signal exiting the sample structure is obtained using an optical metrology tool. In step 1420, the measurement output signal is measured by a ray tracing method, an optical measurement device calibration parameter, and one or more accuracy criteria or other scattering methods such as regression, library matching, or machine learning systems. The radio signal is judged. In step 1430, at least one profile parameter of the sample structure is determined using the measured output signal. In step 1440, at least one manufacturing process parameter or device setting is modified using at least one profile parameter of the structure.

參考圖6A及6B,可將控制器(未顯示)用以控制批次或單一基板蝕刻應用中的處理液體及蒸氣水汽混合物之流速、處理液體之壓力、噴嘴之使用次序。儲存於控制器之記憶體中的程式可用以依據處理配方來啟動對前述蝕刻處理系統600、650之構件(圖6A及6B)的輸入,以執行增加蝕刻速率及遮罩層相較矽或矽氧化物之蝕刻選擇性的方法。控制器1090之一示例為可得自德克薩斯州奧斯汀市的戴爾公司的DELL PRECISION WORKSTATION 610TM。控制器可相關於蝕刻處理系統600、650而本地性地設置,或其可經由網際網路或內部網路相關於蝕刻處理系統600、650而遠端地設置。因此,控制器可使用直接連接、內部網路、或網際網路之至少一者來與蝕刻處理系統600、650交換資料。可將控制器耦合至顧客位置的內部網路(即裝置製造商等)、或耦合至供應商位置的內部網路(即設備製造商)。再者,另一電腦(即控制器、伺服器等)可存取蝕刻處理系統600、650之控制器,以經由直接連接、內部網路、或網際網路之至少一者來交換資料。Referring to Figures 6A and 6B, a controller (not shown) can be used to control the flow rate of the process liquid and vapor-vapor mixture in a batch or single substrate etching application, the pressure of the process liquid, and the order in which the nozzles are used. The program stored in the memory of the controller can be used to initiate input to the components of the aforementioned etch processing system 600, 650 (Figs. 6A and 6B) in accordance with the processing recipe to perform an increased etch rate and a mask layer compared to 矽 or 矽A method of etching selectivity of an oxide. One example of controller 1090 is DELL PRECISION WORKSTATION available from Dell Corporation of Austin, Texas. 610TM. The controller can be localized with respect to the etch processing system 600, 650, or it can be remotely located via the internet or internal network associated with the etch processing systems 600, 650. Thus, the controller can exchange data with the etch processing systems 600, 650 using at least one of a direct connection, an internal network, or an internet. The controller can be coupled to an internal network (ie, device manufacturer, etc.) at the customer's location, or to an internal network (ie, device manufacturer) that is coupled to the supplier's location. Furthermore, another computer (ie, controller, server, etc.) can access the controllers of the etch processing system 600, 650 to exchange data via at least one of a direct connection, an internal network, or the Internet.

雖然已描述示範性實施例,但各種修改仍可在不悖離本發明之精神及/或範圍的情況下加以進行。例如,本發明係利用具體為氮化矽之基板上的遮罩層之蝕刻加以說明及描述。其它遮罩材料或絕緣層可使用說明書中所述的相同方法及系統來處理。因此,不應將本發明解釋成限制於圖式中所示及上述的特定形式。因此,欲使所有此等修改包含於本發明之範圍內。Although the exemplary embodiments have been described, various modifications may be made without departing from the spirit and scope of the invention. For example, the invention is illustrated and described using etching of a mask layer on a substrate, specifically tantalum nitride. Other masking materials or insulating layers can be treated using the same methods and systems as described in the specification. Therefore, the present invention should not be construed as limited to the particular forms shown in the drawings. Accordingly, all such modifications are intended to be included within the scope of the invention.

10‧‧‧架構圖10‧‧‧Architecture

18‧‧‧溢流口18‧‧‧Overflow

22‧‧‧加熱器22‧‧‧heater

26‧‧‧複數基板26‧‧‧Multiple substrates

34‧‧‧輸入蒸氣34‧‧‧Input Vapor

38‧‧‧輸入蒸氣38‧‧‧Input Vapor

42‧‧‧溢流槽42‧‧‧Overflow trough

44‧‧‧處理腔室44‧‧‧Processing chamber

46‧‧‧流入熱通量46‧‧‧Inflow of heat flux

50‧‧‧批次蝕刻處理系統50‧‧‧Batch etching system

58‧‧‧溢流槽58‧‧‧Overflow trough

62‧‧‧傳導62‧‧‧ Conduction

66‧‧‧處理腔室66‧‧‧Processing chamber

70‧‧‧加熱器70‧‧‧heater

74‧‧‧給水74‧‧‧Water supply

78‧‧‧供應管線78‧‧‧Supply pipeline

90‧‧‧水之蒸發90‧‧‧Water evaporation

94‧‧‧水溶液94‧‧‧ aqueous solution

300‧‧‧圖表300‧‧‧ Chart

304‧‧‧沸點曲線304‧‧‧ boiling point curve

308‧‧‧沸點308‧‧‧ boiling point

312‧‧‧條件A312‧‧‧Condition A

400‧‧‧圖表400‧‧‧ Chart

404‧‧‧沸點曲線404‧‧‧ boiling point curve

408‧‧‧蒸氣壓曲線408‧‧‧Vapor pressure curve

500‧‧‧圖表500‧‧‧ Chart

504‧‧‧第一曲線504‧‧‧First curve

508‧‧‧第二曲線508‧‧‧second curve

550‧‧‧圖表550‧‧‧ Chart

554‧‧‧高蝕刻選擇性554‧‧‧High etching selectivity

558‧‧‧低蝕刻選擇性558‧‧‧Low etch selectivity

562‧‧‧高蝕刻選擇性562‧‧‧High etching selectivity

564‧‧‧蝕刻選擇性曲線564‧‧‧etching selectivity curve

600‧‧‧蝕刻處理系統600‧‧‧etching system

604‧‧‧溢流容器604‧‧‧Overflow container

608‧‧‧排出口608‧‧‧Export

612‧‧‧蒸氣水汽混合物612‧‧‧Vapor vapour mixture

614‧‧‧蒸氣產生器614‧‧‧Vapor generator

616‧‧‧加熱器616‧‧‧heater

620‧‧‧輸送管線620‧‧‧Transport line

628‧‧‧處理液體628‧‧‧Processing liquid

632‧‧‧基板632‧‧‧Substrate

636‧‧‧接管636‧‧‧ take over

640‧‧‧蝕刻處理腔室640‧‧‧etching chamber

650‧‧‧處理系統650‧‧‧Processing system

654‧‧‧基板654‧‧‧Substrate

658‧‧‧蒸氣輸送管線658‧‧‧Vapor transfer line

662‧‧‧平台662‧‧‧ platform

666‧‧‧噴嘴666‧‧‧Nozzle

670‧‧‧供應輸送管線670‧‧‧Supply transfer line

674‧‧‧蒸氣水汽混合物674‧‧‧Vapor vapour mixture

678‧‧‧處理液體678‧‧‧Processing liquid

682‧‧‧供應管線682‧‧‧Supply pipeline

700‧‧‧批次蝕刻處理系統700‧‧‧Batch etching system

704‧‧‧溢流槽704‧‧‧Overflow trough

708‧‧‧傳導708‧‧‧ Conduction

716‧‧‧加熱器716‧‧‧heater

720‧‧‧流入熱通量720‧‧‧ inflow heat flux

722‧‧‧額外流入熱通量722‧‧‧Additional inflow heat flux

724‧‧‧第二供應輸送管線724‧‧‧Second supply transfer line

726‧‧‧供應輸送管線726‧‧‧Supply transfer line

730‧‧‧噴嘴730‧‧‧Nozzle

734‧‧‧水蒸發734‧‧‧Water evaporation

736‧‧‧蒸氣水汽混合物736‧‧‧Vapor vapour mixture

738‧‧‧處理液體738‧‧‧Processing liquid

742‧‧‧蝕刻處理腔室742‧‧‧etching chamber

760‧‧‧單一基板蝕刻處理系統760‧‧‧Single substrate etching processing system

762‧‧‧蝕刻處理腔室762‧‧‧etching chamber

764‧‧‧供應管線764‧‧‧Supply pipeline

766‧‧‧蒸氣水汽混合物766‧‧‧Vapor vapour mixture

768‧‧‧蒸氣輸入管線768‧‧‧Vapor input line

769‧‧‧蒸氣769‧‧‧Vapor

770‧‧‧溶解態二氧化矽770‧‧‧dissolved cerium oxide

772‧‧‧二氧化矽注入管線772‧‧‧2O2 injection line

774‧‧‧處理液體774‧‧‧Processing liquid

776‧‧‧輸送管線776‧‧‧Transportation pipeline

778‧‧‧加熱器778‧‧‧heater

780‧‧‧排除管線780‧‧ ‧excluding pipeline

782‧‧‧控制閥782‧‧‧Control valve

783‧‧‧處理液體回收系統783‧‧‧Processing liquid recovery system

784‧‧‧回收管線784‧‧‧Recycling pipeline

786‧‧‧排出管線786‧‧‧Drainage line

788‧‧‧平台788‧‧‧ platform

790‧‧‧噴嘴790‧‧‧Nozzles

796‧‧‧基板796‧‧‧Substrate

800‧‧‧處理系統800‧‧‧Processing system

804‧‧‧多元件製造系統804‧‧‧Multi-component manufacturing system

808‧‧‧傳送系統808‧‧‧Transport system

812‧‧‧第二處理系統812‧‧‧Second treatment system

816‧‧‧第一處理系統816‧‧‧First Processing System

820‧‧‧隔離組件820‧‧‧Isolation components

850‧‧‧處理系統850‧‧‧Processing system

854‧‧‧傳送系統854‧‧‧Transport system

856‧‧‧第一處理系統856‧‧‧First Processing System

858‧‧‧第二處理系統858‧‧‧Second treatment system

862‧‧‧隔離組件862‧‧‧Isolation components

870‧‧‧處理系統870‧‧‧Processing system

874‧‧‧隔離組件874‧‧‧Isolation components

878‧‧‧傳送系統878‧‧‧Transport system

882‧‧‧第二處理系統882‧‧‧Second treatment system

886‧‧‧第一處理系統886‧‧‧First Processing System

900‧‧‧方法900‧‧‧ method

904‧‧‧步驟904‧‧‧Steps

908‧‧‧步驟908‧‧‧Steps

912‧‧‧步驟912‧‧ steps

916‧‧‧步驟916‧‧‧Steps

920‧‧‧步驟920‧‧‧Steps

924‧‧‧步驟924‧‧‧Steps

1000‧‧‧方法1000‧‧‧ method

1004‧‧‧步驟1004‧‧‧Steps

1008‧‧‧步驟1008‧‧‧Steps

1012‧‧‧步驟1012‧‧‧Steps

1016‧‧‧步驟1016‧‧‧Steps

1020‧‧‧步驟1020‧‧‧Steps

1024‧‧‧步驟1024‧‧‧ steps

1100‧‧‧方法1100‧‧‧ method

1104‧‧‧步驟1104‧‧‧Steps

1108‧‧‧步驟1108‧‧‧Steps

1112‧‧‧步驟1112‧‧‧Steps

1116‧‧‧步驟1116‧‧‧Steps

1120‧‧‧步驟1120‧‧‧Steps

1124‧‧‧步驟1124‧‧‧Steps

1200‧‧‧方法1200‧‧‧ method

1204‧‧‧步驟1204‧‧‧Steps

1208‧‧‧步驟1208‧‧‧Steps

1212‧‧‧步驟1212‧‧‧Steps

1216‧‧‧步驟1216‧‧‧Steps

1224‧‧‧步驟1224‧‧‧Steps

1300‧‧‧系統1300‧‧‧ system

1302‧‧‧第一製造叢集1302‧‧‧First Manufacturing Cluster

1304‧‧‧光學量測系統1304‧‧‧Optical measurement system

1306‧‧‧第二製造叢集1306‧‧‧Second Manufacturing Cluster

1308‧‧‧光學量測工具1308‧‧‧Optical measuring tools

1310‧‧‧處理器1310‧‧‧ processor

1312‧‧‧函式庫1312‧‧‧Library

1314‧‧‧機器學習系統1314‧‧‧ Machine Learning System

1316‧‧‧量測處理器1316‧‧‧Measurement processor

1400‧‧‧方塊圖1400‧‧‧block diagram

1410‧‧‧步驟1410‧‧‧Steps

1420‧‧‧步驟1420‧‧‧Steps

1430‧‧‧步驟1430‧‧‧Steps

1440‧‧‧步驟1440‧‧‧Steps

圖1為顯示於批次蝕刻處理中蝕刻氮化矽之先前技術方法的架構圖。1 is a block diagram showing a prior art method of etching tantalum nitride in a batch etching process.

圖2描繪顯示先前技術之批次蝕刻處理系統的示範性架構圖,該系統使用給水及加熱器以供蝕刻氮化矽。2 depicts an exemplary architectural diagram showing a prior art batch etch processing system that uses feed water and a heater for etching tantalum nitride.

圖3描繪作為磷酸濃度及溫度之函數的磷酸之沸點的示範性圖表。Figure 3 depicts an exemplary graph of the boiling point of phosphoric acid as a function of phosphoric acid concentration and temperature.

圖4A為作為磷酸濃度及溫度之函數的磷酸之沸點的示範性圖表、及於蝕刻處理系統中作為混合物平衡條件的溫度之函數的蒸氣壓的示範性圖表。4A is an exemplary graph of the boiling point of phosphoric acid as a function of phosphoric acid concentration and temperature, and an exemplary graph of vapor pressure as a function of temperature as a mixture equilibrium condition in an etch processing system.

圖4B為作為磷酸濃度及溫度之函數的磷酸之沸點的示範性圖表、及於蝕刻處理系統中作為在兩蒸汽壓下的混合物平衡條件的溫度之函數的蒸氣壓的示範性圖表。4B is an exemplary graph of the boiling point of phosphoric acid as a function of phosphoric acid concentration and temperature, and an exemplary graph of vapor pressure as a function of temperature of the equilibrium conditions of the mixture under two vapor pressures in an etch processing system.

圖5A描繪作為溫度之函數的磷酸溶液之組成的示範性圖表。Figure 5A depicts an exemplary graph of the composition of a phosphoric acid solution as a function of temperature.

圖5B描繪於蝕刻處理系統中作為時間及溫度之函數的磷酸溶液之蝕刻選擇性的示範性圖表。Figure 5B depicts an exemplary graph of etch selectivity of a phosphoric acid solution as a function of time and temperature in an etch processing system.

圖6A描繪依據本發明之一實施例的批次蝕刻處理系統之示範性示意圖。6A depicts an exemplary schematic of a batch etch processing system in accordance with an embodiment of the present invention.

圖6B描繪依據本發明之一實施例的單一基板蝕刻處理系統之示範性示意圖。6B depicts an exemplary schematic diagram of a single substrate etch processing system in accordance with an embodiment of the present invention.

圖7A為依據本發明之一實施例的使用噴嘴來分配蒸氣的批次蝕刻處理系統之示範性示意圖。7A is an exemplary schematic diagram of a batch etch processing system that uses a nozzle to dispense vapor in accordance with an embodiment of the present invention.

圖7B描繪依據本發明之一實施例的包含處理液體回收系統的單一基板蝕刻處理系統之示範性示意圖。7B depicts an exemplary schematic diagram of a single substrate etch processing system including a process liquid recovery system in accordance with an embodiment of the present invention.

圖8A、8B、及8C為在本發明之數個實施例中的用於蝕刻處理系統之傳送系統的示範性示意圖。8A, 8B, and 8C are exemplary schematic diagrams of a delivery system for an etch processing system in various embodiments of the present invention.

圖9為在本發明之一實施例中用以使用處理液體及蒸氣來增加用於批次蝕刻處理系統的基板之遮罩層的蝕刻速率及蝕刻選擇性的方法之示範性流程圖。9 is an exemplary flow diagram of a method for increasing the etch rate and etch selectivity of a mask layer for a substrate for a batch etch processing system using a process liquid and vapor in one embodiment of the invention.

圖10為在本發明之一實施例中使用結合的處理液體及蒸氣來增加用於批次蝕刻處理系統的基板之遮罩層的蝕刻速率及選擇性的方法之示範性流程圖。10 is an exemplary flow diagram of a method of using a combined process liquid and vapor to increase the etch rate and selectivity of a mask layer for a substrate of a batch etch processing system in one embodiment of the invention.

圖11為在本發明之一實施例中使用注射噴嘴來增加用於批次蝕刻處理系統的基板之遮罩層的蝕刻速率及選擇性的方法之示範性流程圖。11 is an exemplary flow diagram of a method of using an injection nozzle to increase the etch rate and selectivity of a mask layer for a substrate of a batch etch processing system in one embodiment of the invention.

圖12為在本發明之一實施例中於單一基板蝕刻處理系統中增加基板之遮罩層的蝕刻速率及選擇性的方法之示範性流程圖。12 is an exemplary flow diagram of a method of increasing the etch rate and selectivity of a mask layer of a substrate in a single substrate etch processing system in accordance with an embodiment of the present invention.

圖13為在本發明之一實施例中的處理控制系統之示範性示意圖,其係用以使用配置成增加蝕刻速率及蝕刻選擇性的蝕刻處理系統來控制製造叢集。13 is an exemplary schematic diagram of a process control system in an embodiment of the invention for controlling fabrication clusters using an etch processing system configured to increase etch rate and etch selectivity.

圖14為在本發明之一實施例中使用配置成增加蝕刻速率及蝕刻選擇性的蝕刻處理系統來控制製造叢集的方法之示範性流程圖。14 is an exemplary flow diagram of a method of controlling fabrication clusters using an etch processing system configured to increase etch rate and etch selectivity in one embodiment of the invention.

600‧‧‧蝕刻處理系統600‧‧‧etching system

604‧‧‧溢流容器604‧‧‧Overflow container

608‧‧‧排出口608‧‧‧Export

612‧‧‧蒸氣水汽混合物612‧‧‧Vapor vapour mixture

614‧‧‧蒸氣產生器614‧‧‧Vapor generator

616‧‧‧加熱器616‧‧‧heater

620‧‧‧輸送管線620‧‧‧Transport line

628‧‧‧處理液體628‧‧‧Processing liquid

632‧‧‧基板632‧‧‧Substrate

636‧‧‧接管636‧‧‧ take over

640‧‧‧蝕刻處理腔室640‧‧‧etching chamber

Claims (18)

一種用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,該複數基板之各者具有一層矽或矽氧化物,該系統包含:蝕刻處理腔室,其係配置成處理該複數基板,該蝕刻處理腔室含有用以供蝕刻該複數基板上之該遮罩層的處理液體;煮沸設備,耦合至該蝕刻處理腔室,且係配置成產生高壓下的蒸氣水汽混合物之供應;及一控制器,控制蝕刻處理的處理液體流速、莫耳濃度、壓力、及溫度,以達成目標蝕刻速率、目標蝕刻選擇性比例、及目標蝕刻完成時間;其中,該蒸氣水汽混合物係在足以維持選定之目標蝕刻速率及該遮罩層對矽或矽氧化物的選定之目標蝕刻選擇性比例的流速下引入該蝕刻處理腔室中,其中高壓下的該蒸氣水汽混合物及處理液體係於離開供應輸送管線至該蝕刻處理腔室前在高壓下結合,其中該蝕刻處理係一批次處理,且該處理液體係水相磷酸溶液。 A system for increasing the etch rate and etch selectivity of a mask layer on each of a plurality of substrates, each of the plurality of substrates having a layer of germanium or germanium oxide, the system comprising: an etching process chamber Configuring to process the plurality of substrates, the etch processing chamber containing processing liquid for etching the mask layer on the plurality of substrates; a boiling device coupled to the etch processing chamber and configured to generate vapor at high pressure a supply of a water vapor mixture; and a controller that controls the processing liquid flow rate, molar concentration, pressure, and temperature of the etching process to achieve a target etching rate, a target etching selectivity ratio, and a target etching completion time; wherein the vapor water vapor The mixture is introduced into the etching process chamber at a flow rate sufficient to maintain a selected target etch rate and a selected target etch selectivity ratio of the mask layer to the ruthenium or osmium oxide, wherein the vapor water vapor mixture and treatment at high pressure The liquid system is combined under high pressure before leaving the supply transfer line to the etching processing chamber, wherein the etching process is at a batch , And the processing system aqueous phosphoric acid solution phase. 如申請專利範圍第1項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中該遮罩層包含氮化矽、氮化鎵、或氮化鋁其中一者。 A system for increasing the etch rate and etch selectivity of a mask layer on each of a plurality of substrates, wherein the mask layer comprises tantalum nitride, gallium nitride, or aluminum nitride, as in claim 1 One of them. 如申請專利範圍第2項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中該水相磷酸溶液之溫度在攝氏160至220度的範圍中。 A system for increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, wherein the temperature of the aqueous phosphoric acid solution is in the range of 160 to 220 degrees Celsius. 如申請專利範圍第2項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中:該蒸氣水汽混合物之流速及壓力受到控制,以維持選定之該 目標蝕刻速率及氮化矽對矽或矽氧化物的選定之該目標蝕刻選擇性比例。 A system for increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 2, wherein: the flow rate and pressure of the vapor water vapor mixture are controlled to maintain the selected The target etch rate and the target etch selectivity of the tantalum nitride selected for tantalum or niobium oxide. 如申請專利範圍第1項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中:使用沿該蝕刻處理腔室之底部及側部而裝配的噴嘴將高壓下的該蒸氣水汽混合物引入該蝕刻處理腔室中;且該蒸氣水汽混合物係以受控速率引入,以維持選定之該目標蝕刻速率及該遮罩層對矽或矽氧化物的選定之該目標蝕刻選擇性比例。 A system for increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 1, wherein: the nozzles assembled along the bottom and sides of the etching processing chamber are used. Introducing the vaporous water vapor mixture at elevated pressure into the etch processing chamber; and introducing the vaporized water vapor mixture at a controlled rate to maintain the selected target etch rate and the mask layer's choice of tantalum or niobium oxide The target etches the selectivity ratio. 如申請專利範圍第1項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中替代磷酸,該處理液體包含氫氟酸、或氫氟酸/乙二醇其中一者。 A system for increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 1, wherein the processing liquid comprises hydrofluoric acid or hydrofluoric acid/B. One of the diols. 如申請專利範圍第1項之用以增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的系統,其中該蒸氣水汽混合物之流速及壓力受到控制,以產生該處理液體之溫度,因此產生該處理液體之沸點溫度,並進一步產生該處理液體之平衡濃度及溫度,以達成該目標蝕刻速率及該目標蝕刻選擇性比例。 A system for increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, wherein the flow rate and pressure of the vapor water vapor mixture are controlled to produce the processing liquid, as in claim 1 The temperature, thus the boiling temperature of the treatment liquid, and the equilibrium concentration and temperature of the treatment liquid are further produced to achieve the target etch rate and the target etch selectivity ratio. 一種增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,該方法包含:基板製造步驟,製造各含有該遮罩層及一層矽或矽氧化物的該複數基板;蒸氣水汽混合物供應步驟,獲得在自0.2至2.0百萬帕斯卡(MPa)範圍中之壓力下的蒸氣水汽混合物之供應;處理液體供應步驟,獲得處理液體之供應,以供選擇性地以目標蝕刻速率及目標蝕刻選擇性比例,相對該矽或矽氧化物蝕刻該遮罩層; 放置步驟,將該複數基板放入蝕刻處理腔室中;結合步驟,使該處理液體與該蒸氣水汽混合物結合;及注入步驟,將所結合的該處理液體與該蒸氣水汽混合物注入該蝕刻處理腔室中;其中控制蝕刻處理的操作參數,以達成目標蝕刻速率及目標蝕刻選擇性比例,且其中該蝕刻處理係一批次處理,且該處理液體係水相磷酸溶液。 A method for increasing an etch rate and an etch selectivity of a mask layer on each of a plurality of substrates, the method comprising: a substrate fabrication step of fabricating the plurality of substrates each comprising the mask layer and a layer of germanium or antimony oxide; a vapor-vapor mixture supply step of obtaining a supply of a vapor-vapor mixture at a pressure in the range of 0.2 to 2.0 megapascals (MPa); a process of supplying a liquid to obtain a supply of a treatment liquid for selectively at a target etch rate And etching a selective ratio of the target, etching the mask layer relative to the germanium or germanium oxide; a placing step of placing the plurality of substrates in the etching processing chamber; combining a step of combining the processing liquid with the vapor water vapor mixture; and an injecting step of injecting the combined processing liquid and the vaporous water vapor mixture into the etching processing chamber In the chamber; wherein the operating parameters of the etching process are controlled to achieve a target etching rate and a target etching selectivity ratio, and wherein the etching process is one batch processing, and the processing liquid system is an aqueous phase phosphoric acid solution. 如申請專利範圍第8項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中該遮罩層包含氮化矽。 A method of increasing the etch rate and etch selectivity of a mask layer on each of a plurality of substrates, as in claim 8, wherein the mask layer comprises tantalum nitride. 如申請專利範圍第9項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中該水相磷酸溶液之溫度在攝氏160至180度的範圍中。 A method of increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 9, wherein the temperature of the aqueous phosphoric acid solution is in the range of 160 to 180 degrees Celsius. 如申請專利範圍第9項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中在自0.2至2.0MPa範圍中之壓力下的該蒸氣水汽混合物及該處理液體係於進入該蝕刻處理腔室前結合。 A method of increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 9, wherein the vapor water vapor mixture and the treatment are at a pressure ranging from 0.2 to 2.0 MPa The liquid system is combined prior to entering the etching process chamber. 如申請專利範圍第9項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中:該注入步驟使用沿該蝕刻處理腔室之底部及/或側部而裝配的噴嘴;且該蒸氣水汽混合物係以受控速率引入,以維持氮化矽對矽或矽氧化物的該目標蝕刻選擇性比例。 A method of increasing the etch rate and etch selectivity of a mask layer on each of a plurality of substrates, as in claim 9, wherein the implanting step is performed along the bottom and/or sides of the etch processing chamber An assembled nozzle; and the vaporous water vapor mixture is introduced at a controlled rate to maintain the target etch selectivity of tantalum nitride for tantalum or niobium oxide. 如申請專利範圍第9項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中替代磷酸,該處理液體包 含氫氟酸、或氫氟酸/乙二醇其中一者。 A method of increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates, as in claim 9, wherein the processing liquid package is substituted for phosphoric acid Containing one of hydrofluoric acid or hydrofluoric acid/ethylene glycol. 如申請專利範圍第13項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中該遮罩層包含氮化矽、氮化鎵、或氮化鋁其中一者。 A method of increasing an etch rate and an etch selectivity of a mask layer on each of a plurality of substrates according to claim 13 wherein the mask layer comprises one of tantalum nitride, gallium nitride, or aluminum nitride. By. 如申請專利範圍第14項之增加複數基板之每一者上的遮罩層之蝕刻速率及蝕刻選擇性的方法,其中該蒸氣水汽混合物之流速及壓力受到控制,以產生該處理液體之溫度,因此產生該處理液體之沸點溫度,並進一步產生該處理液體之平衡濃度及溫度,以達成該目標蝕刻速率及該目標蝕刻選擇性比例。 A method of increasing the etching rate and etching selectivity of a mask layer on each of a plurality of substrates according to claim 14, wherein the flow rate and pressure of the vapor water vapor mixture are controlled to generate a temperature of the processing liquid, Thus, the boiling temperature of the treatment liquid is generated, and the equilibrium concentration and temperature of the treatment liquid are further generated to achieve the target etching rate and the target etching selectivity ratio. 一種增加蝕刻複數基板之每一者上的蝕刻速率及選擇性的方法,該方法包含:將各含有氮化矽之遮罩層及一層矽或矽氧化物的複數基板放入一蝕刻批次處理的蝕刻處理腔室;在0.2至2.0MPa範圍的壓力下使處理液體與蒸氣水汽混合物結合;及將所結合之該處理液體及該蒸氣水汽混合物注入該蝕刻處理腔室中;其中所結合之該處理液體與該蒸氣水汽混合物之流速、莫耳濃度、溫度、及壓力受到控制,以維持該氮化矽之目標蝕刻速率、該氮化矽對該矽或矽氧化物的目標蝕刻選擇性比例、及目標蝕刻完成時間。 A method of increasing etching rate and selectivity on each of a plurality of etched substrates, the method comprising: placing each of the plurality of substrates including a cerium nitride mask layer and a layer of lanthanum or cerium oxide in an etch batch process Etching the processing chamber; combining the processing liquid with the vapor water vapor mixture at a pressure in the range of 0.2 to 2.0 MPa; and injecting the combined processing liquid and the vapor water vapor mixture into the etching processing chamber; The flow rate, molar concentration, temperature, and pressure of the treatment liquid and the vapor water vapor mixture are controlled to maintain a target etch rate of the tantalum nitride, a target etch selectivity ratio of the tantalum nitride to the tantalum or niobium oxide, And the target etching completion time. 如申請專利範圍第16項之增加蝕刻複數基板之每一者上的蝕刻速率及選擇性的方法,其中該處理液體不包含磷酸,而是包含氫氟酸、或氫氟酸/乙二醇其中一者。 A method of increasing etching rate and selectivity on each of a plurality of substrates, as in claim 16, wherein the processing liquid does not comprise phosphoric acid, but comprises hydrofluoric acid, or hydrofluoric acid/ethylene glycol. One. 如申請專利範圍第17項之增加蝕刻複數基板之每一者上的蝕 刻速率及選擇性的方法,其中該蒸氣水汽混合物之流速及壓力受到控制,以產生該處理液體之溫度,因此產生沸點溫度,並進一步產生該處理液體之平衡濃度及溫度,以達成該目標蝕刻速率及該目標蝕刻選擇性比例。 Increasing the etch on each of the etched plurality of substrates as in claim 17 An engraving rate and selectivity method, wherein the flow rate and pressure of the vapor-vapor mixture are controlled to produce a temperature of the treatment liquid, thereby generating a boiling temperature, and further generating an equilibrium concentration and temperature of the treatment liquid to achieve the target etching Rate and the target etch selectivity ratio.
TW101111457A 2011-03-30 2012-03-30 Increasing masking layer etch rate and selectivity TWI505350B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/076,272 US20120248061A1 (en) 2011-03-30 2011-03-30 Increasing masking layer etch rate and selectivity

Publications (2)

Publication Number Publication Date
TW201250817A TW201250817A (en) 2012-12-16
TWI505350B true TWI505350B (en) 2015-10-21

Family

ID=46925858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111457A TWI505350B (en) 2011-03-30 2012-03-30 Increasing masking layer etch rate and selectivity

Country Status (5)

Country Link
US (1) US20120248061A1 (en)
JP (1) JP6081442B2 (en)
KR (1) KR101799139B1 (en)
TW (1) TWI505350B (en)
WO (1) WO2013101274A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062586B2 (en) * 2013-07-26 2018-08-28 Tokyo Electron Limited Chemical fluid processing apparatus and chemical fluid processing method
TWI629720B (en) 2015-09-30 2018-07-11 東京威力科創股份有限公司 Method and apparatus for dynamic control of the temperature of a wet etch process
JP6645900B2 (en) * 2016-04-22 2020-02-14 キオクシア株式会社 Substrate processing apparatus and substrate processing method
JP6732546B2 (en) * 2016-06-09 2020-07-29 東京エレクトロン株式会社 Substrate liquid processing apparatus, substrate liquid processing method and storage medium
US10436958B2 (en) 2016-10-05 2019-10-08 Magic Leap, Inc. Fabricating non-uniform diffraction gratings
US10551749B2 (en) 2017-01-04 2020-02-04 Kla-Tencor Corporation Metrology targets with supplementary structures in an intermediate layer
KR102517333B1 (en) * 2018-12-21 2023-04-03 삼성전자주식회사 Operating method for wet etching system and related system
CN111785623B (en) * 2020-06-15 2022-11-04 上海华虹宏力半导体制造有限公司 Wet etching method
KR20220092345A (en) 2020-12-24 2022-07-01 세메스 주식회사 Apparatus for processing substrate and method for processing substrate
US20230062572A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914710A (en) * 2003-12-30 2007-02-14 艾奎昂有限责任公司 System and method for selective etching of silicon nitride during substrate processing
TW200903604A (en) * 2007-05-18 2009-01-16 Fsi Int Inc Process for treatment of substrates with water vapor or steam

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709749A (en) * 1969-12-01 1973-01-09 Fujitsu Ltd Method of etching insulating films
US4092211A (en) * 1976-11-18 1978-05-30 Northern Telecom Limited Control of etch rate of silicon dioxide in boiling phosphoric acid
JPH0810684B2 (en) * 1989-02-17 1996-01-31 山形日本電気株式会社 Semiconductor device manufacturing equipment
JPH0350724A (en) * 1989-07-19 1991-03-05 Hitachi Ltd Wet etching apparatus
JPH06140380A (en) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd Etching equipment
JP2605594B2 (en) * 1993-09-03 1997-04-30 日本電気株式会社 Method for manufacturing semiconductor device
US5885903A (en) * 1997-01-22 1999-03-23 Micron Technology, Inc. Process for selectively etching silicon nitride in the presence of silicon oxide
JPH10214813A (en) * 1997-01-31 1998-08-11 Matsushita Electron Corp Method and apparatus for cleaning semiconductor wafer
US6037273A (en) * 1997-07-11 2000-03-14 Applied Materials, Inc. Method and apparatus for insitu vapor generation
US6117351A (en) * 1998-04-06 2000-09-12 Micron Technology, Inc. Method for etching dielectric films
US20070289732A1 (en) * 2004-03-11 2007-12-20 Pillion John E Apparatus for conditioning the temperature of a fluid
JP4471131B2 (en) * 2007-02-19 2010-06-02 セイコーエプソン株式会社 PROCESSING DEVICE AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
WO2012078580A1 (en) * 2010-12-10 2012-06-14 Fsi International, Inc. Process for selectively removing nitride from substrates
US9257292B2 (en) * 2011-03-30 2016-02-09 Tokyo Electron Limited Etch system and method for single substrate processing
JP6146109B2 (en) * 2013-04-26 2017-06-14 新日鐵住金株式会社 Method for selecting caking filler and method for producing high strength coke using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914710A (en) * 2003-12-30 2007-02-14 艾奎昂有限责任公司 System and method for selective etching of silicon nitride during substrate processing
TW200903604A (en) * 2007-05-18 2009-01-16 Fsi Int Inc Process for treatment of substrates with water vapor or steam

Also Published As

Publication number Publication date
JP2014510417A (en) 2014-04-24
KR20140130622A (en) 2014-11-11
TW201250817A (en) 2012-12-16
US20120248061A1 (en) 2012-10-04
WO2013101274A1 (en) 2013-07-04
KR101799139B1 (en) 2017-11-17
JP6081442B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
TWI527111B (en) Etch system and method for single substrate processing
TWI505350B (en) Increasing masking layer etch rate and selectivity
TWI555078B (en) Method for providing a heated etching solution
JP5599754B2 (en) Substrate processing apparatus, substrate processing method, and recording medium on which a computer program for executing the substrate processing method is recorded
TWI518768B (en) Sequential stage mixing for single substrate strip processing
TWI526257B (en) Controlling cleaning of a layer on a substrate using nozzles
JP2005079212A (en) Semiconductor manufacturing equipment, and method for manufacturing semiconductor device
JP6276922B2 (en) Sequential stepwise mixing method for resist batch stripping process
KR102413039B1 (en) Optional SiARC Removal
JP7128099B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
US9513556B2 (en) Method and system of process chemical temperature control using an injection nozzle
JP2017117938A (en) Substrate liquid processing apparatus and substrate liquid processing method
JP2006032673A (en) Substrate treatment apparatus
JP2008016548A (en) High-pressure processing method