TWI504594B - Process for the epoxidation of olefins - Google Patents

Process for the epoxidation of olefins Download PDF

Info

Publication number
TWI504594B
TWI504594B TW103132305A TW103132305A TWI504594B TW I504594 B TWI504594 B TW I504594B TW 103132305 A TW103132305 A TW 103132305A TW 103132305 A TW103132305 A TW 103132305A TW I504594 B TWI504594 B TW I504594B
Authority
TW
Taiwan
Prior art keywords
solvent
product
peroxide
reaction
olefin
Prior art date
Application number
TW103132305A
Other languages
Chinese (zh)
Other versions
TW201612168A (en
Inventor
Sung Kuang Chung
Ping Chieh Wang
An Pang Tu
Kuen Yuan Hwang
Original Assignee
Chang Chun Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang Chun Plastics Co Ltd filed Critical Chang Chun Plastics Co Ltd
Priority to TW103132305A priority Critical patent/TWI504594B/en
Priority to US14/857,301 priority patent/US9499505B2/en
Priority to JP2015185243A priority patent/JP6559028B2/en
Application granted granted Critical
Publication of TWI504594B publication Critical patent/TWI504594B/en
Publication of TW201612168A publication Critical patent/TW201612168A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • C07D301/16Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof formed in situ, e.g. from carboxylic acids and hydrogen peroxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

環氧化烯烴類的方法Method for epoxidizing olefins

本發明係關於一種使用過氧化物環氧化烯烴類的製備方法,特別係關於在流反應器中進行環氧化,並提升烯烴類環氧化的選擇性。This invention relates to a process for the preparation of epoxidized olefins using peroxides, particularly with regard to epoxidation in a stream reactor and to enhance the selectivity of olefin epoxidation.

將不飽和的烯烴環氧化的技術有多種方式,如Ullmann's Encyclopedia of Industrial Chemistry(章節:Epoxides,Wiley-VCH;2000)所述,烯烴類可經由與過氧羥酸、過氧化氫、鹵化醇或分子氧等方式進行環氧化反應。環氧化二烯類常見以過氧羥酸進行環氧化,例如過醋酸;美國公告專利US 2716123 A(1955,UCC)揭露以25.5%的過醋酸於20-40℃、2-3小時滴入含丙酮溶劑的二烯化物中,之後再反應11-16個小時,可將式1、式3、式5、式7和式9的脂環族二烯化物環氧成式2、式4、式6、式8和式10的脂環族二環氧化物,其產率分別為85.5%、84%、85.4%、95%和79%。There are many ways to epoxidize unsaturated olefins, as described in Ullmann's Encyclopedia of Industrial Chemistry (Section: Epoxides, Wiley-VCH; 2000), with olefins via peroxyhydroxy acid, hydrogen peroxide, halogenated alcohol or The epoxidation reaction is carried out by molecular oxygen or the like. Epoxidized dienes are often epoxidized with peroxy hydroxy acid, such as peracetic acid; U.S. Patent No. 2716123 A (1955, UCC) discloses the instillation of 25.5% peracetic acid at 20-40 ° C for 2-3 hours. In the diene compound of the acetone solvent, after further reacting for 11-16 hours, the alicyclic diene compound of Formula 1, Formula 3, Formula 5, Formula 7, and Formula 9 can be epoxy-formed into Formula 2, Formula 4, and Formula. 6. The alicyclic diepoxides of formula 8 and formula 10 in yields of 85.5%, 84%, 85.4%, 95% and 79%, respectively.

英國公告專利GB735974 A(1955,UCC)揭露由乙醛氧化製成的過醋酸,將式11環氧化成式12。美國公告專利US3275661 A(1966,Ciba)揭露在30℃以42%過醋酸,於一小時內滴入含有式13二烯烴化物及含有醋酸鈉的苯中,在30℃繼續反應4小時後可製備出式14的二環氧化物。日本公開專利JP 2006-188476 A(2006,Daicel)揭露一種高純度脂環族二環氧化物的製備方法,其方法是在30℃以含水量≦0.8wt%的過醋酸反應3小時,可將式15的脂環族二烯烴環氧化成式16的脂環族二環氧化物。British Bulletin GB735974 A (1955, UCC) discloses peracetic acid produced by oxidation of acetaldehyde to epoxidize Formula 11 to Formula 12. U.S. Patent No. 3,725,661 A (1966, Ciba) discloses that it can be prepared by injecting 42% peracetic acid at 30 ° C into benzene containing a dialkylate of formula 13 and sodium acetate in one hour, and continuing the reaction at 30 ° C for 4 hours. The diepoxide of formula 14 is obtained. Japanese Laid-Open Patent Publication No. 2006-188476 A (2006, Daicel) discloses a process for preparing a high-purity alicyclic diepoxide by reacting at a moisture content of 0.8 wt% of peracetic acid at 30 ° C for 3 hours. The alicyclic diene of formula 15 is epoxidized to the alicyclic diepoxide of formula 16.

美國公告專利US 8697895 B2(2014,DOW)揭露以鈦矽質岩-1(titanium silicalite-1,TS-1)催化劑環氧化丙烯,使用甲醇為溶劑,搭配非反應的助溶劑,所述的助溶劑的溶解度分散力參數δD =0.4-1.0、極性參數δP =0.0-0.5和氫鍵參數δH =0.0-0.3,使用此助溶劑可降低甲醇溶劑的使用量,因此減少醇解;又由於此助溶劑可與水分層分離,且副產物多溶於水層,因此有機相可回流回反應,不會有副產物蓄積的問題,而簡化後續回收過程;環氧產物可進入有機相的非反應性助溶劑,減少產物堵塞催化劑孔洞的機會,而延長其壽命。歐盟公告專利EP 2462130 B1(2013,DOW)同樣以TS-1催化劑環氧化丙烯,使用甲醇為溶劑,並搭配非反應的助溶劑,所述的助溶劑的溶解度參數接近環氧丙烷產物,有助於減少甲醇溶劑的使用量、減少醇解副產物、增加環氧產物的選擇性、延長催化劑壽命以及簡化後續回收過程。U.S. Patent No. 8,697,895 B2 (2014, DOW) discloses the use of a titanium silicate rock-1 (TS-1) catalyst for epoxidizing propylene, using methanol as a solvent, and a non-reactive cosolvent. Solubility solubility parameter δ D =0.4-1.0, polarity parameter δ P =0.0-0.5 and hydrogen bond parameter δ H =0.0-0.3, the use of this cosolvent can reduce the amount of methanol solvent used, thus reducing alcoholysis; Since the co-solvent can be separated from the moisture layer, and the by-product is mostly soluble in the water layer, the organic phase can be refluxed back to the reaction without the problem of accumulation of by-products, and the subsequent recovery process is simplified; the epoxy product can enter the organic phase. A non-reactive co-solvent that reduces the chance of product clogging the pores of the catalyst and prolongs its life. EU publication EP 2462130 B1 (2013, DOW) also uses epoxidized propylene with TS-1 catalyst, using methanol as solvent, and with non-reactive cosolvent, the solubility parameter of the cosolvent is close to that of propylene oxide product, which helps It reduces the amount of methanol solvent used, reduces alcoholysis by-products, increases the selectivity of epoxy products, extends catalyst life, and simplifies subsequent recovery processes.

在傳統批次式的製程中,以過氧化物進行烯烴環氧化時,滴入 過氧化物的條件必須以低溫且長時間的方式進行,使用越大型的反應器,滴入所需的時間越長,反應溫度越難以控制,容易造成安全方面的問題。專利合作協約PCT/EP2001/003875、日本公告專利JP 5163921 B2、日本公開專利JP 2009-256217 A和JP 2009-263240 A中,揭露以微型反應器進行烯烴類的環氧化反應,提供一種較安全且可連續化生產的方法。其中,日本公開專利JP 2009-263240 A述敘在微反應器中利用氧氣和鈷催化劑將乙醛氧化,經蒸餾得到濃度約40%的過醋酸,再利用所述的過醋酸於35℃在內徑為0.26mm的不鏽鋼管中,將式1的脂肪族二烯烴化物環氧化得式2的脂肪族二環氧化物產率為79%。In the traditional batch process, when olefin epoxidation is carried out with peroxide, dripping The conditions of the peroxide must be carried out at a low temperature and for a long period of time. The larger the reactor is used, the longer the time required for the dropwise addition, and the more difficult the reaction temperature is to control, which is likely to cause safety problems. Patent cooperation agreement PCT/EP2001/003875, Japanese publication patent JP 5163921 B2, Japanese laid-open patent JP 2009-256217 A and JP 2009-263240 A disclose epoxidation of olefins in a microreactor to provide a safer A method of continuous production. Among them, Japanese Laid-Open Patent Publication No. 2009-263240 A describes the oxidation of acetaldehyde in a microreactor using oxygen and a cobalt catalyst, and distillation to obtain a peracetic acid having a concentration of about 40%, and then using the peracetic acid at 35 ° C. In the stainless steel pipe having a diameter of 0.26 mm, the aliphatic diolefin compound of the formula 1 was epoxidized to obtain an aliphatic diepoxide of the formula 2 in a yield of 79%.

在過氧化物環氧化烯烴類的反應中,為了要降低環氧化物水解的副反應,需要以低溫且長時間反應的方式進行,如此會大幅縮減產能。Campanella,A.& Baltanás,M.A.以過醋酸環氧化植物油進行水解的研究(Chemical Engineering Journal 2006,118,141-152;Latin American Applied Research 2005,35,211-216及205-210),歸納出造成水解的物質分別為過醋酸、醋酸、質子酸、水及過氧化氫。各項水解的反應都與質子酸有關,因此一般都會添加醋酸鹽類或磷酸鹽類的緩衝試劑調控pH值,或是使用乙醛氧化法製備無水的過醋酸,避開質子酸、水和過氧化氫造成環氧化合物水解的問題,但是仍無法解決過醋酸和醋酸對環氧化合物造成水解的問題。In the reaction of the peroxide epoxidized olefins, in order to reduce the side reaction of the epoxide hydrolysis, it is necessary to carry out the reaction at a low temperature and for a long period of time, which greatly reduces the productivity. Campanella, A. & Baltanás, MA studies on the hydrolysis of peracetic acid epoxidized vegetable oils (Chemical Engineering Journal 2006, 118, 141-152; Latin American Applied Research 2005, 35, 211-216 and 205-210), summarizing the substances that cause hydrolysis It is peracetic acid, acetic acid, protic acid, water and hydrogen peroxide. The hydrolysis reaction is related to protonic acid. Therefore, the pH value of the acetate or phosphate buffer is generally added, or the anhydrous peracetic acid is prepared by the acetaldehyde oxidation method, avoiding the protonic acid, water and Hydrogen peroxide causes a problem of hydrolysis of the epoxy compound, but it still does not solve the problem of hydrolysis of the epoxy compound by peracetic acid and acetic acid.

以過氧化物環氧化烯烴的反應中,轉化率和選擇性不易兼顧,特別係關於二烯烴類的環氧化反應,在高轉化率的反應條件下,雖然產物中單環氧化物的含量低,但水解反應的選擇性則偏高;反之,若於低水解的反應條件下,例如,低溫或低反應物濃度的條件,則面臨單環氧化物的選擇性偏高的問題。In the reaction of epoxidizing olefins with peroxides, the conversion and selectivity are not easy to balance, especially in the epoxidation reaction of diolefins. Under the high conversion reaction conditions, although the content of monoepoxide in the product is low, However, the selectivity of the hydrolysis reaction is relatively high; conversely, under the conditions of low hydrolysis, for example, conditions of low temperature or low reactant concentration, there is a problem that the selectivity of the monoepoxide is high.

本發明的發明人已經成功開發了具有低水解量、高選擇性的環氧化烯烴類方法,特別是用於製備脂環族二環氧化物。其方法是依溶解度參數選用適當的溶劑,以過氧化物在反應器中將烯烴類環氧化。The inventors of the present invention have successfully developed an epoxidized olefin having a low hydrolysis amount and high selectivity, particularly for preparing an alicyclic diepoxide. The method comprises the following steps: selecting a suitable solvent according to the solubility parameter, and epoxidizing the olefin in the reactor with a peroxide.

本發明係關於一種環氧化烯烴類的方法,其包含在溶劑的存在下將過氧化物於反應器中與烯烴類進行反應,該溶劑具有溶解度參數δT,溶劑 及δH,溶劑 ,而環氧產物具有溶解度參數δT,產物 及δH,產物 ,其中:δT,產物 -6δT,溶劑 δT,產物 +6;且δH,產物 -6δH,溶劑The present invention relates to a process for the epoxidation of olefins comprising reacting a peroxide with a olefin in a reactor having a solubility parameter δ T, a solvent and δ H, a solvent , and a ring in the presence of a solvent The oxygen product has a solubility parameter δ T, product and δ H, product , where: δ T, product -6 δ T, solvent δ T, product +6; and δ H, product- 6 δ H, solvent .

依溶解度參數選用溶劑的方法,常用於聚合物組成,例如,塗料組成、聚合物加工及改質、彈性體工業和助劑的選用。溶解度參數的概念最早由Hildebrand J.H.(J.Am.Chem.Soc.1916,38,1452-1473)提出,認為物質內聚能密度的平方根可表示液體分子間相互作用的強度。1967年,Hansen C.M.在博士論文中根據原始的架構,建立了三維的溶解度參數體系,即所謂的HSP(Hansen Solubility Parameters)。HSP包含三個維度:δD 、δP 和δH ,分別代表分散力、極性和氫鍵,三者的平方總和可表示為δ2 T ,即δT =(δ2 D2 P2 H )1/2 。溶解度參數的計算方法係利用基團貢獻法,詳細方法可參考Hansen,Charles M.2007.Hansen solubility parameters:a user's handbook. Boca Raton,Fla:CRC Press,以及Krevelen,D.W.van;Hoftyzer,P.J.1976.Properties of Polymers:Their Estimation and Correlation with Chemical Structure ;2nd ed.;Elsevier:Amsterdam;New York。The solvent is selected according to the solubility parameter, and is often used for polymer composition, for example, coating composition, polymer processing and upgrading, elastomer industry and additives. The concept of solubility parameters was first proposed by Hildebrand JH (J. Am. Chem. Soc. 1916, 38, 1452-1473), and it is believed that the square root of the cohesive energy density of a substance can indicate the strength of interaction between liquid molecules. In 1967, Hansen CM established a three-dimensional solubility parameter system based on the original structure in the doctoral thesis, the so-called HSP (Hansen Solubility Parameters). HSP consists of three dimensions: δ D , δ P and δ H , which represent dispersive force, polarity and hydrogen bond, respectively. The sum of the squares of the three can be expressed as δ 2 T , ie δ T =(δ 2 D2 P + δ 2 H ) 1/2 . The method of calculating the solubility parameter of the system using the group contribution method, the method can refer to the detailed Hansen, Charles M.2007 Hansen solubility parameters: a user's handbook Boca Raton, Fla: CRC Press, and Krevelen, DWvan; Hoftyzer, PJ1976 Properties of... Polymers: Their Estimation and Correlation with Chemical Structure ; 2nd ed.; Elsevier: Amsterdam; New York.

溶劑對環氧化反應影響的研究中,Sapunov和Lebedev(Izvestiya Vysshikh Uchebnykh Zavedenii,Khimiya i Khimicheskaya Tekhnologiya 1965,8,771-775)以過醋酸將烯烴環氧化,發現溶劑的鹼度越大,環氧化反應的速率常數越小。Murray和Gu(J.Chem.Soc.,Perkin Trans.2 1993,2203-2207)以雙環氧乙烷(dioxirane)進行反式肉桂酸乙酯(trans-ethyl cinnamate)和環己烯(cyclohexene)的環氧化反應,發現當 溶劑的氫鍵越強,雙環氧乙烷進行環氧化的反應速度越快。Gisdakis和Rösch(Eur.J.Org.Chem.2001,719-723;J.Phys.Org.Chem.2001,14,328-332.)及Shi等(J.Mol.Catal.A:Chem.2005,238,13-25.)以模擬計算過氧羥酸環氧化烯烴類的反應機構,發現反應體系中的質子氫或溶劑的氫鍵,可降低環氧化反應中過渡狀態結構的位能,因此可提高過氧羥酸環氧化反應的速率。然而,上述研究皆未對環氧化二烯中單體含量降低、水解量降低提出解決辦法。In the study of the effect of solvents on the epoxidation reaction, Sapunov and Lebedev (Izvestiya Vysshikh Uchebnykh Zavedenii, Khimiya i Khimicheskaya Tekhnologiya 1965, 8, 771-775) epoxidized the olefin with peracetic acid and found that the greater the alkalinity of the solvent, the rate of epoxidation The smaller the constant. Murray and Gu (J. Chem. Soc., Perkin Trans. 2 1993, 2203-2207) trans-ethyl cinnamate and cyclohexene with dioxirane Epoxidation reaction, found when The stronger the hydrogen bond of the solvent, the faster the reaction of the epoxidation of the dioxirane. Gisdakis and Rösch (Eur. J. Org. Chem. 2001, 719-723; J. Phys. Org. Chem. 2001, 14, 328-332.) and Shi et al. (J. Mol. Catal. A: Chem. 2005, 238 , 13-25.) By simulating the reaction mechanism of epoxidation of olefins by peroxyhydroxy acid, it is found that hydrogen bonds of proton hydrogen or solvent in the reaction system can reduce the potential energy of the transition state structure in the epoxidation reaction, thereby improving The rate of peroxyhydroxy acid epoxidation. However, none of the above studies proposed a solution to reduce the monomer content in the epoxidized diene and reduce the amount of hydrolysis.

本專利發明人透過大量的模擬計算和實驗更發現,以過氧化物進行烯烴類環氧化,反應中使用溶劑的溶解度參數δT,溶劑 等於或介於環氧產物的溶解度參數δT,產物 ±6的範圍內,即δT,產物 -6δT,溶劑 δT,產物 +6,且溶劑的溶解度參數δH,溶劑 等於或大於環氧產物的溶解度參數δH,產物 -6,即δH,產物 -6δH,溶劑 ,可提高環氧產物的選擇性和降低水解反應的選擇性。較佳的溶劑溶解度參數δT,溶劑 等於或介於環氧產物的溶解度參數δT,產物 -6至δT,產物 +3之範圍內,即δT,產物 -6≦δT,溶劑 ≦δT,產物 +3,且溶劑的溶解度參數δH,溶劑 等於或大於環氧產物的溶解度參數δH,產物 -6,即δH,產物 -6δH,溶劑The inventors of the present invention have found through extensive simulation calculations and experiments that olefin epoxidation is carried out by using a solvent, and the solubility parameter δ T of the solvent is used in the reaction, and the solvent is equal to or in the solubility parameter δ T of the epoxy product , and the product ± Within the range of 6, ie δ T, product- 6 δ T, solvent δ T, product +6, and solvent solubility parameter δ H, solvent equal to or greater than the solubility parameter δ H of the epoxy product , product -6, ie δ H, product- 6 δ H, a solvent , increases the selectivity of the epoxy product and reduces the selectivity of the hydrolysis reaction. Preferred solvent solubility parameter δ T, solvent equal to or between the solubility parameter δ T of the epoxy product , product -6 to δ T, product +3, ie δ T, product -6 ≦ δ T, solvent ≦ δ T, product +3, and solvent solubility parameter δ H, solvent equal to or greater than the solubility parameter δ H of the epoxy product , product -6, ie δ H, product- 6 δ H, solvent .

應瞭解在此說明書中所引用的任何數值範圍欲包含其內所涵括之所有次範圍。例如,從「δT,產物 -6至δT,產物 +3」的範圍包括陳述的最小數值δT,產物 -6及陳述的最大數值δT,產物 +3之間所有的次範圍(如從δT,產物 -5.2至δT,產物 +1.5、δT,產物 -3.5至δT,產物 +0.8)且包含該兩數值,亦即包含等於或大於δT,產物 -6之最小值以及等於或小於δT,產物 +3之最大值之範圍。因為所揭示的數值範圍是連續的,因此他們包含最小值和最大值之間的每個數值。除非另加說明,否則此說明書中指明的各種數值範圍是概略值。It is to be understood that any range of values recited in this specification is intended to include all sub-ranges For example, the range from "δ T, product -6 to δ T, product +3" includes the stated minimum value δ T, product -6 and the stated maximum value δ T, and all sub-ranges between products +3 (eg from δ T, product to -5.2 δ T, product + 1.5, δ T, product to -3.5 δ T, product +0.8) and comprising the two values, i.e., comprising greater than or equal to δ T, the product of the minimum -6 And a range equal to or less than δ T, the maximum value of the product +3. Because the ranges of values disclosed are continuous, they contain each value between the minimum and maximum values. Unless otherwise stated, the various numerical ranges indicated in this specification are approximate.

本發明環氧化反應中使用的溶劑依據所環氧化的烯烴種類和反應條件而異,合適的溶劑包括脂肪族羧酸酯類,醇類或其烷基取代衍 生物、環狀或芳香基取代衍生物,烴類或其烷基取代衍生物、鹵基取代衍生物,酮類或其烷基取代衍生物,腈類或芳香基取代衍生物,醚類,雜環化合物,或上述一或多者之混合物。舉例而言,合適的溶劑包括乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯等脂肪族羧酸酯類;甲醇、乙醇、丙醇、丁醇、戊醇、己醇、庚醇、辛醇等直鏈或支鏈型式或它們的烷基取代衍生物;環己醇、芐醇等環狀或芳香基取代衍生物;己烷、辛烷等直鏈或支鏈烴類或它們的烷基取代衍生物;環己烷、環庚烷等脂環族烴類或它們的烷基取代衍生物;苯、萘、甲苯、二甲苯等芳香族烴類或烷基取代芳香族烴類;氯仿、氯苯、二氯苯等氯化烴類;丙酮、丁酮、甲基異丁基酮等酮類衍生物;乙腈、丙腈、丁腈、苯乙腈等腈類衍生物;乙醚、丁醚等醚類化合物;二氧陸圜、四氫呋喃等雜環化合物。其中,從能溶解作為環氧化劑的過氧化物和烯烴反應物的溶解性以及環氧產物的選擇性等來看,溶劑優選的是乙腈、丙酮、正丁醇、2-丁醇、異辛醇、環己醇、芐醇、乙酸甲酯、乙酸乙酯、乙酸丁酯、氯仿、二氧陸圜、四氫呋喃等,它們可單獨使用也可兩種以上混合使用。The solvent used in the epoxidation reaction of the present invention varies depending on the type of epoxidized olefin and the reaction conditions, and suitable solvents include aliphatic carboxylic acid esters, alcohols or alkyl substituted derivatives thereof. Biological, cyclic or aryl substituted derivatives, hydrocarbons or alkyl substituted derivatives thereof, halogen substituted derivatives, ketones or alkyl substituted derivatives thereof, nitrile or aryl substituted derivatives, ethers, miscellaneous a cyclic compound, or a mixture of one or more of the foregoing. For example, suitable solvents include aliphatic carboxylic acid esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate; methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, a straight or branched chain type such as octanol or an alkyl substituted derivative thereof; a cyclic or aryl substituted derivative such as cyclohexanol or benzyl alcohol; a linear or branched hydrocarbon such as hexane or octane or a An alkyl-substituted derivative; an alicyclic hydrocarbon such as cyclohexane or cycloheptane or an alkyl-substituted derivative thereof; an aromatic hydrocarbon such as benzene, naphthalene, toluene or xylene; or an alkyl-substituted aromatic hydrocarbon; Chlorinated hydrocarbons such as chloroform, chlorobenzene and dichlorobenzene; ketone derivatives such as acetone, methyl ethyl ketone and methyl isobutyl ketone; nitrile derivatives such as acetonitrile, propionitrile, butyronitrile and phenylacetonitrile; An ether compound such as ether; a heterocyclic compound such as dioxane or tetrahydrofuran. Among them, from the viewpoint of solubility of a peroxide and an olefin reactant which can be dissolved as an epoxidizing agent, and selectivity of an epoxy product, etc., the solvent is preferably acetonitrile, acetone, n-butanol, 2-butanol or isooctanol. And cyclohexanol, benzyl alcohol, methyl acetate, ethyl acetate, butyl acetate, chloroform, dioxane, tetrahydrofuran, etc., which may be used alone or in combination of two or more.

本發明所使用的反應器不限定於任何形式之反應器。在本發明一實施例中,該反應器係微型反應器。在本發明之另一實施例中,反應器可以為批次式或連續式的反應器,其中連續式的反應器可為流反應器。The reactor used in the present invention is not limited to any type of reactor. In an embodiment of the invention, the reactor is a microreactor. In another embodiment of the invention, the reactor may be a batch or continuous reactor, wherein the continuous reactor may be a flow reactor.

所述流反應器可為商業可取得的流反應器機型,例如,Corning Inc.的Advanced-Flow® Reactor、Ehrfeld Mikrotechnik BTS GmbH的Modular MicroReaction System、Lonza FlowPlate® 、ART® plate reactors、Miprowa® ;Cetoni的Qmix® microreaction system;Chemtrix的LABTRIX® START、LABTRIX® S1、KILOFLOW® 和PLANTRIX® ;Little Things Factory的HTM® 、MR-LAB® 、MR PILOT® 和XXL® SERIES;Syrris的Asia® Flow Chemistry System;YMC的KeyChem® 、CYTOS-200® 和CYTOS-2000® 等;此外,亦可使用自製的流反應器。所述流反應器內徑沒有一定的限制,一般的內徑大小範圍是0.01mm至10mm,較佳的範圍是0.05mm至8mm。若考量製作反應器的困難度、反應效率、生產能力等,最佳的範圍是0.1mm至5mm。所述流反應器可具有單一通道、並聯或串聯的多個通道。The flow reactor may be a commercially available flow type reactor made of, for example, Corning Inc. of Advanced-Flow ® Reactor, Ehrfeld Mikrotechnik BTS GmbH of Modular MicroReaction System, Lonza FlowPlate ®, ART ® plate reactors, Miprowa ®; Cetoni's Qmix ® microreaction system; Chemtrix's LABTRIX ® START, LABTRIX ® S1, KILOFLOW ® and PLANTRIX ® ; Little Things Factory's HTM ® , MR-LAB ® , MR PILOT ® and XXL ® SERIES; Syrris's Asia ® Flow Chemistry System YMC's KeyChem ® , CYTOS-200 ® and CYTOS-2000 ® ; in addition, a self-contained flow reactor can also be used. The inner diameter of the flow reactor is not limited, and the general inner diameter ranges from 0.01 mm to 10 mm, and preferably ranges from 0.05 mm to 8 mm. The optimum range is from 0.1 mm to 5 mm, considering the difficulty in producing the reactor, the reaction efficiency, the productivity, and the like. The flow reactor can have multiple channels in a single channel, in parallel or in series.

本發明係關於過氧化物將烯烴類環氧化的方法,因而本發明中所使用的過氧化物所扮演的角色為環氧化劑。本發明中可使用的過氧化物,包括過氧羥酸類、過氧羥苯酸類、烷基氫過氧化物類、烷基取代苯氫過氧化物類、酯基取代苯氫過氧化物類、雜環氫過氧化物類,其合適者係包括過氧化氫、過甲酸、過醋酸、過氧化三級丁基、過氧化二(三級丁基)、特戊基過氧化氫、異丙苯過氧化氫、異丁苯過氧化氫、過氧化苯甲醯、過氧化環己酮、過氧化二異丙苯、甲基環己基過氧化氫、過氧化四氫萘、萘乙烷過氧化氫和過氧化苯甲酸丁酯。此外,若考慮工業上取得的容易性,所使用的環氧化劑可為過醋酸、過氧化三級丁基和異丙苯過氧化氫。The present invention relates to a process in which a peroxide epoxidizes an olefin, and thus the peroxide used in the present invention plays a role as an epoxidizing agent. The peroxides usable in the present invention include peroxyhydroxy acids, peroxyhydroxybenzoic acids, alkyl hydroperoxides, alkyl-substituted benzene hydroperoxides, ester-substituted benzene hydroperoxides, Heterocyclic hydroperoxides, which are suitable, include hydrogen peroxide, performic acid, peracetic acid, tertiary butyl peroxide, di(tertiary butyl peroxide), tetraamyl hydroperoxide, cumene Hydrogen peroxide, isobutylbenzene hydroperoxide, benzammonium peroxide, cyclohexanone peroxide, dicumyl peroxide, methylcyclohexyl hydroperoxide, tetrahydronaphthalene peroxide, naphthylethane hydrogen peroxide And butyl peroxybenzoate. Further, in view of industrial easiness, the epoxidizing agent used may be peracetic acid, tertiary butyl peroxide, and cumene hydroperoxide.

作為環氧化劑的過氧化物的用量沒有嚴格限制,較佳的使用量由烯烴類化合物的使用量決定,一般過氧化物對烯烴類化合物的當量比範圍是0.5至3,較佳的當量比範圍是0.8至2.8,最佳的當量比範圍是1至2.6。使用流反應器時,過氧化物的使用量也可由兩相在反應器中的體積比或流速比決定,一般過氧化物溶液對含有烯烴的溶劑的流速比範圍是0.2至5;較佳的流速比範圍是0.5至4;最佳的流速比範圍是0.8至3。The amount of the peroxide used as the epoxidizing agent is not critical, and the preferred amount is determined by the amount of the olefin compound used. Generally, the equivalent ratio of the peroxide to the olefin compound is in the range of 0.5 to 3, preferably the equivalent ratio range. It is from 0.8 to 2.8, and the optimum equivalent ratio ranges from 1 to 2.6. When a flow reactor is used, the amount of peroxide used can also be determined by the volume ratio or flow rate ratio of the two phases in the reactor. Generally, the flow ratio of the peroxide solution to the solvent containing the olefin is in the range of 0.2 to 5; The flow rate ratio ranges from 0.5 to 4; the optimum flow rate ratio ranges from 0.8 to 3.

本發明中使用的過氧化物可以是商業購得的或者是自行製造的,如為後者,其製備方式沒有嚴格限制,製備方式如Ullmann's Encyclopedia of Industrial Chemistry(第26卷,章節:Peroxy Compounds,Organic,Wiley-VCH,2012)所述,可由所對應的羧酸、醛類、醇纇、酯類和烯類氧化而製成。本發明可使用的過氧化物在過氧化物溶液中的濃度沒有一定限制,可使用的過氧化物在過氧化物溶液中的重量百分比範圍為20至70重量%,較佳是20至65重量%,最佳是25至60重量%。過氧化物的重量百分比低於20重量%時,會因為用量不足,使得環氧化反應的轉化率大幅降低;過氧化物的重量百分比高於70重量%時,不易於過氧化物的工業生產,且具有較大的危險性。The peroxide used in the present invention may be commercially available or self-manufactured, as in the latter, the preparation thereof is not strictly limited, and the preparation method is, for example, Ullmann's Encyclopedia of Industrial Chemistry (Vol. 26, Section: Peroxy) Compounds, Organic, Wiley-VCH, 2012) can be made by oxidation of the corresponding carboxylic acids, aldehydes, oximes, esters and alkenes. The concentration of the peroxide which can be used in the present invention in the peroxide solution is not limited, and the weight percentage of the peroxide which can be used in the peroxide solution is in the range of 20 to 70% by weight, preferably 20 to 65% by weight. %, preferably 25 to 60% by weight. When the weight percentage of the peroxide is less than 20% by weight, the conversion rate of the epoxidation reaction is greatly lowered due to the insufficient amount; when the weight percentage of the peroxide is more than 70% by weight, the industrial production of the peroxide is not easy. And it is more dangerous.

本發明可於反應過程中加入緩衝溶劑。適用於本發明之緩衝溶劑沒有一定限制,可為醋酸鹽類或磷酸鹽類,其合適者係包括醋酸鈉、磷酸二氫鈉、磷酸氫鈉。其共軛金屬離子可置換為其他鹼金屬或鹼土金屬離子,形成如醋酸鉀、磷酸二氫鉀、磷酸氫鉀之醋酸鹽類或磷酸鹽類。該緩衝溶液之量不超過5重量%,較佳不超過2重量%。The present invention can add a buffering solvent during the reaction. The buffer solvent to be used in the present invention is not limited, and may be an acetate or a phosphate, and a suitable one thereof includes sodium acetate, sodium dihydrogen phosphate, and sodium hydrogen phosphate. The conjugated metal ion can be replaced with other alkali metal or alkaline earth metal ions to form an acetate or a phosphate such as potassium acetate, potassium dihydrogen phosphate or potassium hydrogen phosphate. The amount of the buffer solution is not more than 5% by weight, preferably not more than 2% by weight.

本發明的環氧化對象為烯烴化合物,根據本發明的方法可應用於所有的烯烴類上。所述的烯烴化合物至少含有一個雙鍵,且可含有兩個或兩個以上的雙鍵。所述的雙鍵可在分子結構的內部或末端。所述的烯烴化合物可為環狀化合物,例如,環己烯、4-乙烯-1-環己烯、1-甲基-5-(1-甲基乙烯基)環己烯、雙環戊二烯、二環己-3,3’-二烯、4-(環己-3-烯-1-基甲基)環己烯、2,2-雙(3’,4’-環己烯)丙烷、2,2-雙(環己烯-3-基)丙烷和上述的衍生物或混合物。The epoxidized object of the present invention is an olefin compound, and the method according to the present invention can be applied to all olefins. The olefin compound contains at least one double bond and may contain two or more double bonds. The double bond can be internal or end of the molecular structure. The olefin compound may be a cyclic compound such as cyclohexene, 4-ethylene-1-cyclohexene, 1-methyl-5-(1-methylvinyl)cyclohexene, dicyclopentadiene. , dicyclohexyl-3,3'-diene, 4-(cyclohex-3-en-1-ylmethyl)cyclohexene, 2,2-bis(3',4'-cyclohexene)propane 2,2-bis(cyclohexen-3-yl)propane and the above derivatives or mixtures.

所述烯烴化合物較佳為脂環族或芳香族化合物,例如,3-環己烯-1-羧酸,3-環己烯-1-基甲酯、3-環己烯-1-羧酸,6-甲基-(6-甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸,3-甲基-(3-甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸-4-甲基,(4-甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸-1-甲基-,(1-甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸-2-甲基,(2-甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸,3,4-二甲基-,(3,4- 二甲基-3-環己烯-1-基)甲酯、3-環己烯-1-羧酸,1-(3-環己烯-1-基)乙酯、3-環己烯-1-羧酸,1-(3-環己烯-1-基)-1-甲基乙酯、二環[2,2,1]己-5-烯-2-羧酸,3-甲基,(3-甲基雙環[2,2,1]己-5-烯-2-基)甲酯、5-降冰片烯-2-羧酸,乙二酯、1,6-己二醇-雙(降冰片-2-烯-5-羧酸)、3-環己烯-1-羧酸,乙二酯、3-環己烯-1-羧酸,4-甲基-,1,2-乙二酯、3-環己烯-1-羧酸,4-甲基,1-甲基-1,2-乙烷二基酯、3-環己烯-1-羧酸,6-甲基-1,1’-(1,6-己烷二基)酯、3-環己烯-1-羧酸,1,1’-[1,4-環己烷二基雙(甲烯)]酯、碳酸,C,C’-[1,4-環己烷二基雙(甲烯)]C,C’-雙(3-環己烯-1-基甲基)酯、乙二酸,1,2-雙(3-環己烯-1-基甲)酯、己二酸,1,6-雙(3-環己烯-1-基甲)酯、馬來酸,雙(6-甲基-3-環己烯-1-基甲)酯、1,4-環己烷二羧酸,1,4-雙(3-環己烯-1-基甲基)酯、1,1,2,2-乙烷四羧酸,,四(3-環己烯-1-基甲基)酯、1,2,3,4-丁烷四羧酸,四(3-環己烯-1-基甲基)酯、二環[2.2.1]己-5-烯-2-羧酸,2,2’-[[2,2-雙[(二環[2.2.1]己-5-烯-2-基甲酰)氧基]甲基-1,3-丙烷二基]酯、二環[2.2.1]己-5-烯-2-羧酸,2,2’-[[2,2-雙[(二環[2.2.1]己-5-烯-2-基甲酰)氧基]-2-乙基-1,3-丙烷二基)酯、雙(環己-3-烯基甲基)碳酸酯、雙[1-(3-環己烯)乙基]碳酸酯、二烯丙基1,2-環己烷二羧酸酯、二烯丙基四氫酞酸酯、1,2-環己烷二羧酸,1,2-雙(3-環己烯-1-基甲基)酯、4-環己烯-1,2-二羧酸,1,2-雙(3-環己烯-1-基甲基)酯、聚[氧(1-氧代-1,6-己二基)],α-(3-環己烯-1-基甲基)-ω-[(3-環己烯-1-基羧酸)氧基]-和上述的衍生物或混合物。The olefin compound is preferably an alicyclic or aromatic compound, for example, 3-cyclohexene-1-carboxylic acid, 3-cyclohexen-1-ylmethyl ester, 3-cyclohexene-1-carboxylic acid ,6-methyl-(6-methyl-3-cyclohexen-1-yl)methyl ester, 3-cyclohexene-1-carboxylic acid, 3-methyl-(3-methyl-3-ring Hexen-1-yl)methyl ester, 3-cyclohexene-1-carboxylic acid-4-methyl, (4-methyl-3-cyclohexen-1-yl)methyl ester, 3-cyclohexene 1-carboxylic acid-1-methyl-, (1-methyl-3-cyclohexen-1-yl)methyl ester, 3-cyclohexene-1-carboxylic acid-2-methyl, (2- Methyl-3-cyclohexen-1-yl)methyl ester, 3-cyclohexene-1-carboxylic acid, 3,4-dimethyl-, (3,4- Dimethyl-3-cyclohexen-1-yl)methyl ester, 3-cyclohexene-1-carboxylic acid, 1-(3-cyclohexen-1-yl)ethyl ester, 3-cyclohexene- 1-carboxylic acid, 1-(3-cyclohexen-1-yl)-1-methylethyl ester, bicyclo[2,2,1]hex-5-ene-2-carboxylic acid, 3-methyl , (3-methylbicyclo[2,2,1]hex-5-en-2-yl)methyl ester, 5-norbornene-2-carboxylic acid, ethylene diester, 1,6-hexanediol- Bis(norborn-2-ene-5-carboxylic acid), 3-cyclohexene-1-carboxylic acid, ethylene diester, 3-cyclohexene-1-carboxylic acid, 4-methyl-, 1,2 -ethylene diester, 3-cyclohexene-1-carboxylic acid, 4-methyl, 1-methyl-1,2-ethanediester, 3-cyclohexene-1-carboxylic acid, 6-A 1,1'-(1,6-hexanediyl)ester, 3-cyclohexene-1-carboxylic acid, 1,1'-[1,4-cyclohexanediyl bis(methene) ] ester, carbonic acid, C, C'-[1,4-cyclohexanediyl bis(methylene)]C, C'-bis(3-cyclohexen-1-ylmethyl) ester, oxalic acid 1,2-bis(3-cyclohexen-1-ylmethyl)ester, adipic acid, 1,6-bis(3-cyclohexen-1-ylmethyl) ester, maleic acid, double (6 -Methyl-3-cyclohexen-1-ylmethyl)ester, 1,4-cyclohexanedicarboxylic acid, 1,4-bis(3-cyclohexen-1-ylmethyl)ester, 1, 1,2,2-ethane tetracarboxylic acid, tetrakis(3-cyclohexen-1-ylmethyl)ester, 1,2,3,4-butanetetracarboxylic acid, tetrakis(3-cyclohexene) -1-ylmethyl)ester, bicyclo[2. 2.1]Hex-5-ene-2-carboxylic acid, 2,2'-[[2,2-bis[(bicyclo[2.2.1]hex-5-en-2-ylformyl)oxy]-) -1,3-propanediyl]ester, bicyclo[2.2.1]hex-5-ene-2-carboxylic acid, 2,2'-[[2,2-bis[(bicyclo[2.2.1] Hex-5-en-2-ylcarbonyl)oxy]-2-ethyl-1,3-propanediyl) ester, bis(cyclohex-3-enylmethyl)carbonate, bis[1] -(3-cyclohexene)ethyl]carbonate, diallyl 1,2-cyclohexanedicarboxylate, diallyl tetrahydrofurfurate, 1,2-cyclohexanedicarboxylic acid 1,2-bis(3-cyclohexen-1-ylmethyl)ester, 4-cyclohexene-1,2-dicarboxylic acid, 1,2-bis(3-cyclohexen-1-yl) Methyl)ester, poly[oxy(1-oxo-1,6-hexanediyl)], α-(3-cyclohexen-1-ylmethyl)-ω-[(3-cyclohexene- 1-ylcarboxylic acid)oxy]- and the above derivatives or mixtures.

所述烯烴化合物亦可為含有醚鍵於結構中的化合物,例如,雙(環戊-2-烯基)醚、雙(環戊-3-烯基)醚、4-(環己-3-烯-1-基)甲氧基甲基環己烯、環己烯,3,3’-[甲烷雙氧]雙-、4-(環己-3-烯-1-基氧甲氧基)環己烯、乙二醇 雙(2-環己烯基)醚、異丙二醇 雙(2-環己烯基)醚、雙(3-環己烯-1-基甲氧基)甲烷、甲烷,雙(5-降冰片烯-2-基甲氧基)-、二環[2,2,1]己-2-烯,5,6-雙[(2-丙烯-1-基氧]甲基)-、雙酚A二烯丙基 醚、雙酚F二烯丙基醚、環己烯,4,4-雙[(2-環己烯-1-基氧基)甲基]-、四丙烯基季戊四醇醚和上述的衍生物或混合物。The olefin compound may also be a compound containing an ether bond in the structure, for example, bis(cyclopent-2-enyl)ether, bis(cyclopent-3-enyl)ether, 4-(cyclohex-3- Alken-1-yl)methoxymethylcyclohexene, cyclohexene, 3,3'-[methane bisoxy]bis-, 4-(cyclohex-3-en-1-yloxymethoxy) Cyclohexene, ethylene glycol bis(2-cyclohexenyl) ether, isopropyl glycol bis(2-cyclohexenyl) ether, bis(3-cyclohexen-1-ylmethoxy)methane, methane, Bis(5-norbornene-2-ylmethoxy)-, bicyclo[2,2,1]hex-2-ene, 5,6-bis[(2-propen-1-yloxy)methyl )-, bisphenol A diallyl Ether, bisphenol F diallyl ether, cyclohexene, 4,4-bis[(2-cyclohexen-1-yloxy)methyl]-, tetrapropenyl pentaerythritol ether and the above derivatives or mixture.

所述的烯烴化合物亦可為含有雜環或氨基於結構中的化合物,例如,3-環己-2-烯-1-基-2,4-二氧代螺[5.5]undec-9-烯、螺[間-二氧陸圜-5,2'-[5]降冰片烯],2-(5-降冰片烯-2-基)-、雙[4-(二烯丙氨)苯基]甲烷、苯胺,N,N-二-2-丙烯基-4-(2-2-丙烯氧基)-和上述的衍生物或混合物。所述的烯烴化合物也可為含矽酸或磷酸於結構中的化合物,例如,環己烯,4,4',4"-[(甲基次甲矽基)三(氧乙基)]、矽甲烷,三(二環[2.2.1]己-5-烯-2-基甲氧基)甲基-、三(環己-3-烯甲醇)苯基矽烷、矽酸,四(3-環己烯-1-基甲)酯、3-環己烯-1-甲醇,1,1',1"-磷酸和上述的衍生物或混合物、三烯丙基異氰脲酸酯。The olefin compound may also be a compound containing a heterocyclic ring or an amino group in the structure, for example, 3-cyclohex-2-en-1-yl-2,4-dioxospiro[5.5]undec-9-ene. , spiro [m-dioxoindole-5,2'-[5]norbornene], 2-(5-norbornene-2-yl)-, bis[4-(diallylammonium)phenyl Methane, aniline, N,N-di-2-propenyl-4-(2-2-propenyloxy)- and the above derivatives or mixtures. The olefin compound may also be a compound containing citric acid or phosphoric acid in a structure, for example, cyclohexene, 4,4',4"-[(methylmethenyl)tris(oxyethyl)], Methane, tris(bicyclo[2.2.1]hex-5-en-2-ylmethoxy)methyl-, tris(cyclohex-3-enemethanol)phenyl decane, citric acid, tetra (3- Cyclohexene-1-ylmethyl)ester, 3-cyclohexene-1-methanol, 1,1',1"-phosphoric acid and the above derivatives or mixtures, triallyl isocyanurate.

於本發明之一實施例中,所述烯烴化合物係選自下表所列之化合物: In one embodiment of the invention, the olefinic compound is selected from the compounds listed in the following table:

所述烯烴類在溶液中的濃度可為1至99重量%,較佳10至90重量%,最佳20至80重量%。The concentration of the olefins in the solution may be from 1 to 99% by weight, preferably from 10 to 90% by weight, most preferably from 20 to 80% by weight.

在本發明之一實施例中,所述反應之反應溫度係0℃至110℃,較佳30℃至100℃,最佳係50℃至100℃。In one embodiment of the invention, the reaction temperature of the reaction is from 0 ° C to 110 ° C, preferably from 30 ° C to 100 ° C, and most preferably from 50 ° C to 100 ° C.

在本發明之一實施例中,所述反應之滯留時間係10秒至120秒, 較佳15秒至100秒,最佳20秒至100秒。In an embodiment of the invention, the residence time of the reaction is from 10 seconds to 120 seconds. It is preferably 15 seconds to 100 seconds, preferably 20 seconds to 100 seconds.

在本發明之一實施例中,反應背壓沒有一定限制,所述之背壓大小,係指溶劑或反應物在不同溫度時,將溶劑或反應物控制於液相所需之壓力。In one embodiment of the present invention, the reaction back pressure is not limited, and the back pressure is the pressure required to control the solvent or reactant to the liquid phase at different temperatures of the solvent or reactant.

在本發明之一實施例中,所述反應在烯烴反應物轉化率大於或等於99%時,可具有大於或等於80%之二或多環氧莫耳選擇率,較佳係大於或等於90%,最佳係大於或等於95%。In one embodiment of the invention, the reaction may have a two or more epoxy molar selectivity of greater than or equal to 80%, preferably greater than or equal to 90, when the olefin reactant conversion is greater than or equal to 99%. %, the best system is greater than or equal to 95%.

在本發明之一實施例中,所述反應在烯烴反應物轉化率大於或等於99%時,可具有低於或等於5%之單環氧莫耳選擇率,較佳係低於或等於3%,最佳係低於或等於1.5%。In one embodiment of the invention, the reaction may have a monoepoxy molybdenum selectivity of less than or equal to 5%, preferably less than or equal to 3, when the olefin reactant conversion is greater than or equal to 99%. %, the best is less than or equal to 1.5%.

在本發明之一實施例中,所述反應在烯烴反應物轉化率大於或等於99%時,可具有低於或等於15%之水解莫耳選擇率,較佳係低於或等於10%,最佳係低於或等於5%。In an embodiment of the present invention, the reaction may have a hydrolyzable molar selectivity of less than or equal to 15%, preferably less than or equal to 10%, when the olefin reactant conversion rate is greater than or equal to 99%. The best system is less than or equal to 5%.

以下實施例將對本發明作進一步之說明,唯非用以限制本發明之範圍,任何熟悉本發明技術領域者,在不違背本發明之精神下所得以達成之修飾及變化,均屬本發明之範圍。The invention is further illustrated by the following examples, which are not intended to limit the scope of the invention, and any modifications and variations which may be obtained without departing from the spirit of the invention are range.

GC及HPLC分析GC and HPLC analysis

藉本發明之方法進行烯烴類環氧化後,其所得產物配製於2-丁醇中以氣相層析儀(GC)進行分析,各組成分積分面積依檢量線求出各組成份的質量,換算成莫耳數。過醋酸溶液中定量過醋酸和過氧化氫的滴定方法,係依據中華人民共和國國家標準「GB 19104-2008過氧乙酸溶液」實施。過醋酸溶液以高效液相色譜法(HPLC)定量過醋酸、過氧化氫和醋酸的方法,係參照文獻「分析化學2004年10月,第32 卷,第10期,第1329至1332頁」中的方法實施,各組成分積分面積依檢量線求出各組成份的含量。After the olefin epoxidation by the method of the present invention, the obtained product is prepared in 2-butanol and analyzed by gas chromatography (GC), and the integral area of each component is determined by the calibration line to determine the quality of each component. , converted to moles. The titration method for quantifying peracetic acid and hydrogen peroxide in peracetic acid solution is carried out according to the national standard "GB 19104-2008 peracetic acid solution" of the People's Republic of China. A method for the quantitative determination of peracetic acid, hydrogen peroxide and acetic acid by peracetic acid solution by high performance liquid chromatography (HPLC) is described in the literature "Analytical Chemistry October 2004, No. 32 In the method of volume, No. 10, pages 1329 to 1332, the integral area of each component is determined by the calibration curve.

GC分析條件GC analysis conditions

裝置:PerkinElmer AutoSystemDevice: PerkinElmer AutoSystem

偵測器:火焰離子化偵測器Flame Ionization Detector(FID)Detector: Flame Ionization Detector (FID)

管柱:Agilent Tech HP-1 0.320mm,length=50M,film=1.05載送氣體:N2 20psiColumn: Agilent Tech HP-1 0.320mm, length=50M, film=1.05 carrier gas: N 2 20psi

注射口溫度:220℃Injection port temperature: 220 ° C

偵測器區溫度:280℃Detector zone temperature: 280 ° C

HPLC分析條件HPLC analysis conditions

裝置:Waters 600Device: Waters 600

偵測器:Waters 2487 Dual λ.Absorbance DetectorDetector: Waters 2487 Dual λ.Absorbance Detector

偵測波長:205nmDetection wavelength: 205nm

管柱:YMC-Pack ODS C18 L=150mm,ID=6.0mmColumn: YMC-Pack ODS C18 L=150mm, ID=6.0mm

管柱溫度:40℃Column temperature: 40 ° C

流動相:Water:Acetonitrile=82:18(v.v)Mobile phase: Water:Acetonitrile=82:18 (v.v)

流動相流速:0.8mL/minMobile phase flow rate: 0.8mL/min

選擇率計算方法Selection rate calculation method

烯烴類環氧化的烯烴轉化率、單環氧化合物莫耳選擇率、二環氧化合物莫耳選擇率和水解物莫耳選擇率的定義如下。反應消耗的烯烴化合物,生成非對應的單環氧化合物或二環氧化合物者,視為水解物。The olefin epoxidation olefin conversion rate, the monoepoxy compound molar selectivity, the diepoxide molar selectivity, and the hydrolyz molar selectivity are defined as follows. The olefin compound consumed by the reaction is considered to be a hydrolyzate when a non-corresponding monoepoxy compound or diepoxide is formed.

水解物莫耳選擇率=100%-(單環氧化合物莫耳選擇率)-(二環氧化合物莫耳選擇率)Molar selectivity of hydrolysate = 100% - (monoepoxy molybdenum selectivity) - (diepoxide molar selectivity)

實施例1Example 1

將1431毫升的醋酸、1646毫升50重量%的過氧化氫置於12公升的玻璃反應瓶中,保持溫度在45℃以下,在90分鐘的時間內,逐滴加入280毫升的濃硫酸,滴加結束後,對該混合物再攪拌30分鐘。保持溫度在45℃,減壓至10托,蒸餾2小時後,得蒸出液為過醋酸溶液。過醋酸溶液以過錳酸鉀溶液和硫代硫酸鈉溶液滴定後,可知過醋酸溶液中過醋酸含量為58.5重量%,過氧化氫含量為3.4重量%。過醋酸溶液以HPLC分析後,可知過醋酸溶液中醋酸含量為11.7重量%。Place 1431 ml of acetic acid, 1646 ml of 50% by weight of hydrogen peroxide in a 12 liter glass reaction flask, keep the temperature below 45 ° C, add 280 ml of concentrated sulfuric acid dropwise over 90 minutes, add dropwise After the end, the mixture was stirred for another 30 minutes. The temperature was maintained at 45 ° C, the pressure was reduced to 10 Torr, and after distillation for 2 hours, the distillate was obtained as a peracetic acid solution. After the peracetic acid solution was titrated with a potassium permanganate solution and a sodium thiosulfate solution, it was found that the peracetic acid solution had a peracetic acid content of 58.5 wt% and a hydrogen peroxide content of 3.4 wt%. After the peracetic acid solution was analyzed by HPLC, it was found that the acetic acid content in the peracetic acid solution was 11.7% by weight.

取前述過醋酸溶液添加醋酸鈉固體,配製成含有1.0重量%醋酸鈉的過醋酸溶液,注入至1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘6.65微升。取5.0克的3-環己烯-1-羧酸,3-環己烯-1-基甲酯與10.0克的甲苯混合,注入至另一個1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘8.35微升。The sodium peracetate solid was added to the above peracetic acid solution to prepare a peracetic acid solution containing 1.0% by weight of sodium acetate, and injected into a 1.0 ml glass gas-tight needle and mounted on a syringe pump at a flow rate of 6.65 μl per minute. 5.0 g of 3-cyclohexene-1-carboxylic acid, 3-cyclohexen-1-ylmethyl ester was mixed with 10.0 g of toluene, injected into another 1.0 ml glass gas-tight needle and mounted on a syringe pump. The flow rate was set to 8.35 microliters per minute.

將上述兩者溶液,注入一等效直徑長為0.2mm的玻璃微型反應器,並加熱至90℃,反應滯留時間為40秒。反應10分鐘後,取樣以GC分析,二烯烴反應物轉化率99.7%,單環氧化物莫耳選擇率1.2%,二環氧化物莫耳選擇率95.8%,水解莫耳選擇率3.0%。The above two solutions were injected into a glass microreactor having an equivalent diameter of 0.2 mm and heated to 90 ° C for a reaction residence time of 40 seconds. After 10 minutes of reaction, a sample was analyzed by GC. The conversion of the diene reactant was 99.7%, the molar selectivity of the monoepoxide was 1.2%, the molar selectivity of the diepoxide was 95.8%, and the selectivity of the hydrolysis molar was 3.0%.

實施例2~5Example 2~5

將實施例1中的甲苯,在實施例2至實施例5中,分別換成丙酮、2-乙基己醇、芐醇和乙腈,GC分析結果如表1。The toluene in Example 1 was replaced with acetone, 2-ethylhexanol, benzyl alcohol and acetonitrile in each of Examples 2 to 5, and the results of GC analysis are shown in Table 1.

比較例1~3Comparative example 1~3

將實施例1中的甲苯,在比較例1至比較例3中,分別換成環己烷、甲醇和乙醇,GC分析結果如表1。The toluene in Example 1 was replaced with cyclohexane, methanol and ethanol in Comparative Examples 1 to 3, respectively, and the results of GC analysis are shown in Table 1.

實施例6Example 6

取實施例1的58.5重量%過醋酸溶液添加醋酸鈉水溶液,配製成含有1.0重量%醋酸鈉、43重量%過醋酸的過醋酸溶液,注入至1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘6.5微升。取3.0克的3-環己烯-1-羧酸,3-環己烯-1-基甲酯與2.0克的芐醇混合,注入至另一個1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘5.5微升。A 58.5 wt% peracetic acid solution of Example 1 was added with an aqueous solution of sodium acetate to prepare a peracetic acid solution containing 1.0% by weight of sodium acetate and 43% by weight of peracetic acid, and injected into a 1.0 ml glass gas-tight needle and mounted on a syringe pump. The flow rate was set to 6.5 microliters per minute. 3.0 g of 3-cyclohexene-1-carboxylic acid, 3-cyclohexen-1-ylmethyl ester was mixed with 2.0 g of benzyl alcohol, injected into another 1.0 ml glass-tight needle and mounted on a syringe pump. The flow rate was set to 5.5 microliters per minute.

將上述兩者溶液,注入一等效直徑長為0.2mm的玻璃微型反應器,並加熱至90℃,反應滯留時間為50秒。反應10分鐘後,取樣以GC分析,二烯烴反應物轉化率99.6%,單環氧化物莫耳選擇率0.7%,二環氧化物莫耳選擇率85.1%,水解莫耳選擇率14.2%。The above two solutions were injected into a glass microreactor having an equivalent diameter of 0.2 mm and heated to 90 ° C for a reaction residence time of 50 seconds. After 10 minutes of reaction, a sample was analyzed by GC. The conversion of the diene reactant was 99.6%, the molar selectivity of the monoepoxide was 0.7%, the molar selectivity of the diepoxide was 85.1%, and the selectivity of the hydrolysis molar was 14.2%.

實施例7~8Examples 7-8

將實施例6中的芐醇,在實施例7和實施例8,分別換成乙酸乙酯、重量比乙醚:甲苯=1:1的混合溶液,GC分析結果如表2。The benzyl alcohol in Example 6 was replaced with a mixed solution of ethyl acetate and diethyl ether: toluene = 1:1 in Example 7 and Example 8, respectively, and the results of GC analysis are shown in Table 2.

比較例4~5Comparative Example 4~5

將實施例6中的芐醇,在比較例4至比較例5中,分別換成重量比甲苯:正己烷=1:9的混合溶液、重量比甲苯:正己烷=1:1的混合溶液,GC分析結果如表2。The benzyl alcohol in Example 6 was replaced with a mixed solution of a weight ratio of toluene: n-hexane = 1:9 and a mixed solution of a weight ratio of toluene: n-hexane = 1:1 in Comparative Example 4 to Comparative Example 5, respectively. The GC analysis results are shown in Table 2.

實施例9Example 9

取實施例1的58.5重量%過醋酸溶液添加醋酸鈉水溶液,配製成含有1.0重量%醋酸鈉、42重量%過醋酸的過醋酸溶液,注入至1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘6.5微升。取2.5克的3-環己烯-1-羧酸,3-環己烯-1-基甲酯與2.0克的乙酸乙酯混合,注入至另一個1.0毫升的玻璃氣密針並安裝於注射泵,流速設定為每分鐘5.5微升。A 58.5 wt% peracetic acid solution of Example 1 was added with an aqueous solution of sodium acetate to prepare a peracetic acid solution containing 1.0% by weight of sodium acetate and 42% by weight of peracetic acid, and injected into a 1.0 ml glass gas-tight needle and mounted on a syringe pump. The flow rate was set to 6.5 microliters per minute. 2.5 g of 3-cyclohexene-1-carboxylic acid, 3-cyclohexen-1-ylmethyl ester was mixed with 2.0 g of ethyl acetate, and injected into another 1.0 ml glass-tight needle and mounted in an injection. Pump, flow rate set to 5.5 microliters per minute.

將上述兩者溶液,注入一等效直徑長為0.2mm的玻璃微型反應器,並加熱至80℃,反應滯留時間為50秒。反應10分鐘後,取樣以GC分析,二烯烴反應物轉化率99.7%,單環氧化物莫耳選擇率1.2%,二環氧化物莫耳選擇率98.7%,水解莫耳選擇率0.1%。The above two solutions were injected into a glass microreactor having an equivalent diameter of 0.2 mm and heated to 80 ° C for a reaction residence time of 50 seconds. After 10 minutes of reaction, a sample was analyzed by GC. The conversion of the diene reactant was 99.7%, the molar selectivity of the monoepoxide was 1.2%, the molar selectivity of the diepoxide was 98.7%, and the selectivity of the hydrolysis molar was 0.1%.

實施例10Example 10

取實施例1的58.5重量%過醋酸溶液添加醋酸鈉水溶液,配製成含有1.0重量%醋酸鈉、42重量%過醋酸的過醋酸溶液,注入至25毫升的雙注射筒之連續式注射泵,流速設定為每分鐘8.44毫升。取250克的3-環己烯-1-羧酸,3-環己烯-1-基甲酯與200克的乙酸乙酯混合,注入至另一個25毫升的雙注射筒之連續式注射泵,流速設定為每分鐘7.16毫升。A 58.5 wt% peracetic acid solution of Example 1 was added to an aqueous solution of sodium acetate to prepare a peracetic acid solution containing 1.0% by weight of sodium acetate and 42% by weight of peracetic acid, and injected into a 25 ml double syringe continuous syringe pump. The flow rate was set to 8.44 ml per minute. 250 g of 3-cyclohexene-1-carboxylic acid, 3-cyclohexen-1-ylmethyl ester was mixed with 200 g of ethyl acetate, and injected into another 25 ml double syringe continuous syringe pump. The flow rate was set to 7.16 ml per minute.

將上述兩者溶液,以注入一等效直徑長為1.34mm的流反應器,並加熱至80℃,反應滯留時間為50秒。反應30分鐘後,取樣以GC分析,二烯烴反應物轉化率99.9%,單環氧化物莫耳選擇率0.3%,二環氧化物莫耳選擇率93.8%,水解莫耳選擇率5.9%。The above two solutions were injected into a flow reactor having an equivalent diameter of 1.34 mm and heated to 80 ° C for a reaction residence time of 50 seconds. After the reaction for 30 minutes, a sample was analyzed by GC. The conversion of the diene reactant was 99.9%, the molar selectivity of the monoepoxide was 0.3%, the molar selectivity of the diepoxide was 93.8%, and the selectivity of the hydrolysis molar was 5.9%.

比較結果Comparing results

參照表1,實施例1至實施例5的溶劑之δT 和δH 符合本發明之特定範圍,因此在高烯烴轉化率下,保有低單環氧莫耳選擇率和低水解莫耳選擇率。比較例1的溶劑因δH 不符本發明之特定範圍,使環氧化反應速度變慢,因此轉化率偏低,且單環氧化物的莫耳選擇率偏高。比較例2和比較例3因δT 超出本發明之特定範圍,使溶劑保護樹脂,避免被水解的能力下降,因此在高轉化率的同時,水解莫耳選擇率偏高。Referring to Table 1, the δ T and δ H of the solvents of Examples 1 to 5 are in accordance with the specific range of the present invention, thus maintaining a low monoepoxy molybdenum selectivity and a low hydrolyzable molar selectivity at high olefin conversion. . The solvent of Comparative Example 1 did not satisfy the specific range of the present invention because δ H did not cause the epoxidation reaction rate to be slow, so the conversion rate was low, and the molar selectivity of the monoepoxide was high. In Comparative Example 2 and Comparative Example 3, since δ T was outside the specific range of the present invention, the solvent-protecting resin was prevented from being degraded by hydrolysis, so that the hydrolysis selectivity was high at the same time as high conversion.

參照表2中比較例4和比較例5,即使在較長的反應滯留時間下,轉化率未能達到99%以上,且單環氧化物的莫耳選擇率偏高,水解莫耳選擇率偏高的情形。Referring to Comparative Example 4 and Comparative Example 5 in Table 2, even at a longer reaction residence time, the conversion rate failed to reach 99% or more, and the molar selectivity of the monoepoxide was high, and the hydrolysis molar selectivity was biased. High situation.

參照實施例9和實施例10,說明本發明可應用至不同通道內徑的流反應器,具有工業生產之利用價值。Referring to Example 9 and Example 10, the flow reactor to which the present invention can be applied to the inner diameters of different passages is explained, and has the utility value of industrial production.

故本發明依溶解度參數選用溶劑進行之實例在保有高烯烴轉化率的同時,亦具有較低的單環氧選擇率及較低的水解選擇率。Therefore, the example in which the solvent is selected according to the solubility parameter of the present invention has a low monoepoxy selectivity and a low hydrolysis selectivity while maintaining a high olefin conversion rate.

Claims (15)

一種環氧化烯烴類的方法,其包含在溶劑的存在下將過氧化物於反應器中與烯烴類進行反應,該溶劑具有溶解度參數δT,溶劑 及δH,溶劑 而所得環氧產物具有溶解度參數δT,產物 及δH,產物 ,其中:δT,產物 -6≦δT,溶劑 ≦δT,產物 +6;且δH,產物 -6≦δH,溶劑A process for the epoxidation of olefins comprising reacting a peroxide with a olefin in a reactor in the presence of a solvent having a solubility parameter δ T, a solvent and δ H, a solvent and the resulting epoxy product having solubility The parameter δ T, product and δ H, product , wherein: δ T, product -6 ≦ δ T, solvent ≦ δ T, product +6; and δ H, product -6 ≦ δ H, solvent . 如請求項1之方法,其中δT,產物 -6≦δT,溶劑 ≦δT,產物 +3;且δH,產物 -6≦δH,溶劑The method of claim 1, wherein δ T, product -6 ≦ δ T, solvent ≦ δ T, product +3; and δ H, product -6 ≦ δ H, solvent . 如請求項1之方法,其中該過氧化物係過氧羥酸類。 The method of claim 1, wherein the peroxide is a peroxy hydroxy acid. 如請求項1之方法,其中該反應器係流反應器。 The method of claim 1, wherein the reactor is a stream reactor. 如請求項4之方法,其中該流反應器係微型反應器。 The method of claim 4, wherein the flow reactor is a microreactor. 如請求項5之方法,其中該流反應器具有0.01mm至10mm之通道內徑。 The method of claim 5, wherein the flow reactor has a channel inner diameter of from 0.01 mm to 10 mm. 如請求項5之方法,其中該流反應器具有單一通道、並聯或串聯的多個通道。 The method of claim 5, wherein the flow reactor has a plurality of channels in a single channel, in parallel or in series. 如請求項5之方法,其中該過氧化物對烯烴類的流速係0.2至5。 The method of claim 5, wherein the peroxide has a flow rate of 0.2 to 5 to the olefin. 如請求項1之方法,其中該過氧化物對烯烴類之當量比係0.5至3。 The method of claim 1, wherein the equivalent ratio of the peroxide to the olefin is from 0.5 to 3. 如請求項1之方法,其中反應過程可加入緩衝溶劑,其量係小於或等於5wt%。 The method of claim 1, wherein the buffering solvent is added to the reaction process in an amount of less than or equal to 5% by weight. 如請求項1之方法,其中該過氧化物係以過氧化物溶液之型式加入該反應器。 The method of claim 1, wherein the peroxide is added to the reactor in the form of a peroxide solution. 如請求項1之方法,其中該烯烴類係脂環族烯烴類。 The method of claim 1, wherein the olefin is an alicyclic olefin. 如請求項1之方法,其中該烯烴類在溶液中的濃度係1至99重量 %。 The method of claim 1, wherein the concentration of the olefin in the solution is from 1 to 99 by weight. %. 如請求項1之方法,其中該反應之反應溫度係0℃至110℃。 The method of claim 1, wherein the reaction temperature of the reaction is from 0 ° C to 110 ° C. 如請求項1之方法,其中該反應之滯留時間係10秒至120秒。 The method of claim 1, wherein the residence time of the reaction is from 10 seconds to 120 seconds.
TW103132305A 2014-09-18 2014-09-18 Process for the epoxidation of olefins TWI504594B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103132305A TWI504594B (en) 2014-09-18 2014-09-18 Process for the epoxidation of olefins
US14/857,301 US9499505B2 (en) 2014-09-18 2015-09-17 Process for the epoxidation of olefins
JP2015185243A JP6559028B2 (en) 2014-09-18 2015-09-18 Olefin epoxidation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103132305A TWI504594B (en) 2014-09-18 2014-09-18 Process for the epoxidation of olefins

Publications (2)

Publication Number Publication Date
TWI504594B true TWI504594B (en) 2015-10-21
TW201612168A TW201612168A (en) 2016-04-01

Family

ID=54851782

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103132305A TWI504594B (en) 2014-09-18 2014-09-18 Process for the epoxidation of olefins

Country Status (3)

Country Link
US (1) US9499505B2 (en)
JP (1) JP6559028B2 (en)
TW (1) TWI504594B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311836A (en) * 2016-06-15 2019-02-05 巴斯夫农业公司 The method of four substituted olefine of epoxidation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661503B2 (en) * 2016-04-13 2020-05-26 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181081A1 (en) * 2000-08-11 2004-09-16 Anna Forlin Process for the continuous production of an olefinic oxide
CN103998436A (en) * 2011-11-04 2014-08-20 陶氏环球技术有限责任公司 Process and system for producing an oxirane

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB735974A (en) 1952-08-07 1955-08-31 Union Carbide & Carbon Corp Improvements in the epoxidation of ethylenically unsaturated organic compounds
US2716123A (en) 1953-08-13 1955-08-23 Dbepoxides of cycloaliphatic esters
NL127409C (en) 1959-03-05
DE10020632A1 (en) * 2000-04-27 2001-10-31 Merck Patent Gmbh Process for exposing olefins
JP4688503B2 (en) 2005-01-07 2011-05-25 ダイセル化学工業株式会社 High purity alicyclic diepoxy compound and process for producing the same
JP5163921B2 (en) 2006-03-01 2013-03-13 荒川化学工業株式会社 Method for producing epoxy compound
JP2009256217A (en) 2008-04-14 2009-11-05 Showa Denko Kk Method for producing epoxy compound
JP2009263240A (en) 2008-04-22 2009-11-12 Showa Denko Kk Process for producing peracetic acid and process for producing epoxy compound using the peracetic acid
JP5517237B2 (en) * 2008-09-17 2014-06-11 日本化薬株式会社 Method for producing epoxy compound, epoxy compound, curable resin composition and cured product thereof
DE102009035648B3 (en) * 2009-07-29 2011-03-17 Siemens Aktiengesellschaft A process for the preparation of a radiolabeled carboxylate and the use of a microelectrode for the electrochemical synthesis of a radiolabeled carboxylate
WO2011017401A1 (en) 2009-08-05 2011-02-10 Dow Global Technologies, Inc. Process for producing an oxirane
JP2013501070A (en) 2009-08-05 2013-01-10 ダウ グローバル テクノロジーズ エルエルシー Propylene oxide production method
WO2012104886A2 (en) * 2011-02-04 2012-08-09 Dow Global Technologies Llc System and process for producing an oxirane
JP5757126B2 (en) * 2011-03-28 2015-07-29 日産化学工業株式会社 Sharpless asymmetric epoxidation using flow reactor
JP5610646B2 (en) * 2012-10-26 2014-10-22 竹本油脂株式会社 Method for producing alkylene oxide adduct

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181081A1 (en) * 2000-08-11 2004-09-16 Anna Forlin Process for the continuous production of an olefinic oxide
CN103998436A (en) * 2011-11-04 2014-08-20 陶氏环球技术有限责任公司 Process and system for producing an oxirane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311836A (en) * 2016-06-15 2019-02-05 巴斯夫农业公司 The method of four substituted olefine of epoxidation

Also Published As

Publication number Publication date
JP6559028B2 (en) 2019-08-14
US9499505B2 (en) 2016-11-22
US20160083360A1 (en) 2016-03-24
TW201612168A (en) 2016-04-01
JP2016065054A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
Zhu et al. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications
Dong et al. Palladium‐catalyzed anti‐Markovnikov oxidation of terminal alkenes
Van Ornum et al. Ozonolysis applications in drug synthesis
Ten Brink et al. The Baeyer− Villiger reaction: New developments toward greener procedures
KR20190017924A (en) Epoxidation method of tetra-substituted alkene
US20040116722A1 (en) Process for the epoxidation of cyclic alkenes
Liu et al. Preparation of trans-2-Substituted-4-halopiperidines and cis-2-Substituted-4-halotetrahydropyrans via AlCl3-Catalyzed Prins Reaction
KR20190017926A (en) Epoxidation of tetrasubstituted alkenes
US6300506B1 (en) Process for the preparation of epoxites
TWI504594B (en) Process for the epoxidation of olefins
Baccin et al. Platinum-Catalyzed Oxidations with Hydrogen Peroxide: The (Enantioselective) Epoxidation of. alpha.,. beta.-Unsaturated Ketones
US11840542B2 (en) Method for producing cyclic enol ether compound
Ragan et al. Safe execution of a large-scale ozonolysis: Preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination
US20040152592A1 (en) Process for producing carbonyl or hydroxy compound
Hamsath et al. Quinone C–H Alkylations via Oxidative Radical Processes
An et al. Unusual Transformations of Strain-Heightened Oxetanes
US11512050B2 (en) Process for perhydrolysis of aliphatic epoxides
EP2551265B1 (en) Novel process for the preparation of 1-(6-methylpyridin-3-yl)-2-[4-(methylsulfonyl)phenyl]ethanone, an intermediate of etoricoxib.
US20190345088A1 (en) Dehydrogenation reaction
ITMI991657A1 (en) PROCEDURE FOR THE PREPARATION OF OLEFINIC OXIDES
Kuznetsova et al. Effect of transition metal compounds on the cyclohexene oxidation catalyzed by N-hydroxyphthalimide
Rohokale et al. Synthesis of (2S, 3R)-3-amino-2-hydroxydecanoic acid and its enantiomer: a non-proteinogenic amino acid segment of the linear pentapeptide microginin
EP0811003B1 (en) Process for producing epoxides using aromatic peroxycarboxylic acids
Zheng et al. Oxidation of α-Pinene with Hydrogen Peroxide Catalyzed by VO (OAc) 2
Raja et al. Producing hazardous reagents in situ using single‐site heterogeneous catalysts