TWI504413B - Composite polymer contrast agent and drug carrier in nano-scale - Google Patents

Composite polymer contrast agent and drug carrier in nano-scale Download PDF

Info

Publication number
TWI504413B
TWI504413B TW102126498A TW102126498A TWI504413B TW I504413 B TWI504413 B TW I504413B TW 102126498 A TW102126498 A TW 102126498A TW 102126498 A TW102126498 A TW 102126498A TW I504413 B TWI504413 B TW I504413B
Authority
TW
Taiwan
Prior art keywords
mixture
nano
ultrasonic
temperature
pluronic
Prior art date
Application number
TW102126498A
Other languages
Chinese (zh)
Other versions
TW201503901A (en
Inventor
San Yuan Chen
Hsin Yang Huang
Shang Hsiu Hu
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW102126498A priority Critical patent/TWI504413B/en
Publication of TW201503901A publication Critical patent/TW201503901A/en
Application granted granted Critical
Publication of TWI504413B publication Critical patent/TWI504413B/en

Links

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

奈米級複合高分子顯影劑及藥物載體Nano-sized composite polymer developer and drug carrier

本案是有關於一種奈米級複合高分子及其製造方法,特別是有關於一種兼具磁、聲特性的顯影劑或藥物載體之用途。The present invention relates to a nano-sized composite polymer and a method for producing the same, and more particularly to a developer or a drug carrier having both magnetic and acoustic properties.

目前用於藥物釋放控制系統,大多為酸鹼及熱敏感性材料所構成,上述材料只能在體內的某些特定部位達到功效,而無法廣泛地滿足大多數需要控制藥物釋放的情況。Currently used in drug release control systems, mostly composed of acid-base and heat-sensitive materials, the above materials can only achieve efficacy in certain parts of the body, and can not widely meet most of the conditions that need to control drug release.

然而,多數的藥物釋放系統或藥物載體,其結構鬆散不穩定,於體內輸送時,其結構非常容易遭受破壞,且在輸送過程中容易漏藥,進而無法在特定的位置釋放特定的藥物,尤其是熱敏感性的高分子,比如高分子普朗尼克(Pluronic)為三嵌段聚合物,由聚環氧乙烷(PEO)以及聚環氧丙烷(PPO)所組合而成,具有溫度敏感的特性。若單純利用普朗尼克來製作藥物載體時,由於其結構鬆散不穩定,於常溫存放時,容易回溶於水溶液中。請參閱圖1(a)-圖1(c)。圖1(a)-圖1(c)顯示普朗尼克Pluronic F127(PEOn -PPOm -PEOn )的結構隨溫度變化圖。在室溫之下,溶液態的普朗尼克F127(以f127表示一任意單位,以下皆然)的結構呈現鬆散狀(如圖1(a)所 示)。若對f127加熱而升溫(如圖1(b)所示),f127產生乳化而其結構緊實,體積縮小。然而,一旦溶液的溫度下降(如圖1(c)所示),f127的結構再度呈現鬆散狀。即單純f127雖然可以在高溫的條件下,因非極性端聚集以減少介面能產生團聚,然而並無法形成穩定的奈米超音波微泡結構。However, most drug delivery systems or drug carriers have a loose and unstable structure. When transported in vivo, the structure is very susceptible to damage, and it is easy to leak during delivery, and thus it is impossible to release specific drugs at specific locations, especially It is a heat sensitive polymer, such as a polymer Pluronic is a triblock polymer composed of polyethylene oxide (PEO) and polypropylene oxide (PPO), which is temperature sensitive. characteristic. If the drug carrier is simply produced by using Pluron, the structure is loose and unstable, and it is easy to be dissolved back into the aqueous solution when stored at room temperature. Please refer to Figure 1(a) - Figure 1(c). Figure 1 (a) - Figure 1 (c) shows the structure of Pluronic Pluronic F127 (PEO n -PPO m -PEO n ) as a function of temperature. At room temperature, the structure of the solution state of Pluronic F127 (indicated by an arbitrary unit of f127, the following) is loose (as shown in Fig. 1(a)). If the temperature is raised by heating f127 (as shown in Fig. 1(b)), f127 is emulsified and its structure is compact and the volume is reduced. However, once the temperature of the solution drops (as shown in Figure 1 (c)), the structure of f127 appears loose again. That is, although f127 can be agglomerated at a low temperature due to aggregation at a non-polar end to reduce the interface, a stable nano-ultrasonic microbubble structure cannot be formed.

一般熱敏感性高分子所合成的藥物載體,若沒有利用化學交聯劑,則使熱敏感藥物載體的結構不穩定且不易製備,但化學交聯劑的使用又常常對於生物相容性較差。因此,如何能夠有效地且不使用化學交聯劑,能夠製備出穩定的熱敏感藥物載體,進而於藥物釋放系統或藥物載體在到達標的位置前,能達到降低自然漏藥的特性。而且到達標的位置後,能夠以外加能量的方式來控制藥物釋放之技術手段,實為在本領域中的首要課題。此外,超音波顯影劑大都是以習知的高分子材料製備,其缺失如下:超音波微泡較不穩定、製備過程較複雜且目前無類似的方法,以一簡單步驟可合成摻雜型奈米超音波微泡,以及尚無超音波顯影劑可同時應用於腫瘤影像及控制藥物釋放。The drug carrier synthesized by the general heat sensitive polymer, if the chemical crosslinking agent is not used, makes the structure of the heat sensitive drug carrier unstable and difficult to prepare, but the use of the chemical crosslinking agent is often poor in biocompatibility. Therefore, how to effectively and without using a chemical cross-linking agent, a stable heat-sensitive drug carrier can be prepared, thereby achieving a property of reducing the natural drug leakage before the drug release system or the drug carrier reaches the target position. Moreover, after reaching the target position, the technical means of controlling the release of the drug by means of additional energy is a primary problem in the art. In addition, most of the ultrasonic developers are prepared by the conventional polymer materials, and the defects are as follows: the ultrasonic microbubbles are unstable, the preparation process is complicated, and there is no similar method at present, and the doped type can be synthesized in a simple step. The meter ultrasonic microbubbles, as well as the ultra-sonic developer, can be applied to both tumor imaging and drug release control.

台灣專利案201113040揭露一種磁性奈米粒子的製備方法,包括:首先將葉酸及普朗尼克F127聚合物進行反應成為一葉酸-普朗尼克F127聚合物;之後將聚丙烯酸及氯化鐵進行反應成為聚丙烯酸鍵結的氧化鐵;最終在交聯劑的調控下,將該葉酸-普朗尼克F127聚合物及該聚丙烯酸鍵結的氧化鐵進行酯化反應成為葉酸-聚合物-聚丙烯酸鍵結的水溶性氧化鐵粒子,此即磁性奈米粒子。該當磁性奈米粒子包覆尼羅紅時,同時可作為藥物載體及核磁共振影像的顯影劑。然而,該磁性奈米粒子需使用交聯劑以形成一穩定的藥物載體,該且該顯影劑不能被應用於超音波影像的用 途之上。Taiwan Patent No. 201113040 discloses a preparation method of magnetic nano particles, which comprises first reacting folic acid and pluronic F127 polymer into a folic acid-Pluronic F127 polymer; then reacting polyacrylic acid and ferric chloride into Polyacrylic acid-bonded iron oxide; finally, the folic acid-Pluronic F127 polymer and the polyacrylic acid-bonded iron oxide are esterified into a folic acid-polymer-polyacrylic acid bond under the control of a crosslinking agent. Water-soluble iron oxide particles, which are magnetic nano particles. When the magnetic nanoparticles are coated with Nile Red, they can be used as a drug carrier and a developer of nuclear magnetic resonance images. However, the magnetic nanoparticles need to use a crosslinking agent to form a stable drug carrier, and the developer cannot be used for ultrasonic imaging. Above the way.

本案之主要目的在於揭示一種藉由聚乙烯酸與具有生物相容性的溫度敏感型等兩種具有功能性高分子,以特定比例摻雜搭配,並且加入油相氧化鐵,然後利用介面化學的特性,經由溫度梯度內的變換使其自組裝成具有中空結構的奈米超音波微泡。上述製程簡單且快速,可建構穩定度高、並具有核磁共振影像與超音波影像敏感之奈米超音波微泡(nanobubble)。The main purpose of this case is to reveal a functional polymer which is made of polyvinyl acid and a temperature-sensitive type with biocompatibility, doped in a specific ratio, and added oil phase iron oxide, and then utilizes interface chemistry. The characteristics are self-assembled into nano-ultrasonic microbubbles having a hollow structure by transformation within a temperature gradient. The above process is simple and rapid, and can construct a nano-sonic microbubble with high stability and magnetic resonance image and ultrasonic image sensitivity.

本案另一目的在於揭示:一種合成複合磁性奈米超音波微泡之方法,包含下列步驟:將一磁性奈米粒子溶於一有機溶劑之中以形成一有機相溶液。將一水溶性高分子和一溫度敏感型高分子溶解於水中以形成一水相溶液。將該有機相溶液和該水相溶液一起震盪以形成一混合物;以及在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,在該降溫過程之後,將一氣體打入該混合物,使該混合物自組裝而形成該複合磁性奈米超音波微泡。Another object of the present invention is to disclose a method for synthesizing composite magnetic nano ultrasonic microbubbles comprising the steps of dissolving a magnetic nanoparticle in an organic solvent to form an organic phase solution. A water soluble polymer and a temperature sensitive polymer are dissolved in water to form an aqueous phase solution. The organic phase solution and the aqueous phase solution are oscillated together to form a mixture; and within a temperature gradient, the mixture is first subjected to a temperature rising process and then subjected to a cooling process, after which a gas is blown The mixture is allowed to self-assemble to form the composite magnetic nano ultrasonic microbubbles.

本案另一目的在於揭示:一種超音波顯影劑,而該超音波顯影劑可由合成複合磁性奈米超音波微泡之方法所製作。Another object of the present invention is to disclose an ultrasonic developer which can be produced by a method of synthesizing composite magnetic nano ultrasonic microbubbles.

本案另一目的在於揭示:一種合成複合磁性奈米中空藥物載體之方法,包含下列步驟:將一藥物與一磁性奈米粒子溶於一有機溶劑之中以形成一有機相溶液。將一水溶性高分子和一溫度敏感型高分子溶解於水中以形成一水相溶液。將該有機相溶液和該水相溶液一起震盪以形成一 混合物;以及在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,使該混合物自組裝而形成該複合磁性奈米中空藥物載體。Another object of the present invention is to disclose a method for synthesizing a composite magnetic nano hollow drug carrier comprising the steps of dissolving a drug and a magnetic nanoparticle in an organic solvent to form an organic phase solution. A water soluble polymer and a temperature sensitive polymer are dissolved in water to form an aqueous phase solution. The organic phase solution and the aqueous phase solution are oscillated together to form a The mixture; and within a temperature gradient, the mixture is subjected to a temperature rising process followed by a cooling process to self-assemble the mixture to form the composite magnetic nano hollow drug carrier.

本案另一目的在於揭示:一種使用合成複合磁性奈米中空藥物載體之方法所製作的藥物載體,其中當一聚焦超音波被施加到該藥物載體時,該藥物載體的結構被改變,進而釋放該藥物載體中的該藥物。Another object of the present invention is to disclose a pharmaceutical carrier prepared by a method of synthesizing a composite magnetic nano hollow drug carrier, wherein when a focused ultrasonic wave is applied to the drug carrier, the structure of the drug carrier is changed, thereby releasing the The drug in a pharmaceutical carrier.

f127,F127‧‧‧普朗尼克F127F127, F127‧‧ ‧Prannik F127

f68,F68‧‧‧普朗尼克F68F68, F68‧‧ ‧Prannik F68

PEO‧‧‧聚環氧乙烷PEO‧‧‧polyethylene oxide

PPO‧‧‧聚環氧丙烷PPO‧‧‧polypropylene oxide

hb‧‧‧氫鍵Hb‧‧‧ hydrogen bond

pfp‧‧‧全氟化物Pfp‧‧‧perfluoride

sol‧‧‧溶劑Sol‧‧‧solvent

paa,PAA‧‧‧聚丙烯酸Paa, PAA‧‧‧ polyacrylic acid

PVA‧‧‧聚乙烯醇PVA‧‧‧Phenol

spio‧‧‧超順磁性氧化鐵Spio‧‧‧Superparamagnetic iron oxide

car‧‧‧載體Car‧‧‧ carrier

med‧‧‧藥物Med‧‧‧drug

coa‧‧‧外殼Coa‧‧‧shell

nb‧‧‧奈米超音波微泡Nb‧‧‧Nei ultrasonic microbubbles

hs‧‧‧中空結構Hs‧‧‧ hollow structure

本案得藉由下列圖式之詳細說明,俾得更深入之瞭解:This case can be further explained by the detailed description of the following drawings:

圖1(a)-圖1(c)顯示普朗尼克的結構隨溫度變化圖。Figure 1 (a) - Figure 1 (c) shows the structure of Pluronic as a function of temperature.

圖2(a)-圖2(c)顯示加入聚丙烯酸的普朗尼克的結構隨溫度變化圖。Fig. 2(a) - Fig. 2(c) show the change in structure of pluronic with polyacrylic acid as a function of temperature.

圖3(a)-圖3(c)為合成一奈米級複合高分子之方法的實施例。3(a) to 3(c) are examples of a method of synthesizing a nano-sized composite polymer.

圖4顯示普朗尼克F127與(PAA+普朗尼克F127)的奈米超音波微泡在不同溫度下的直徑變化圖。Figure 4 shows the change in diameter of the nano-ultrasonic microbubbles of Pluronic F127 and (PAA + Pluronic F127) at different temperatures.

圖5顯示不同組成的奈米超音波微泡在相應超音波影像下的平均灰階值(dB)。Figure 5 shows the average grayscale value (dB) of nano-ultrasonic microbubbles of different compositions under the corresponding ultrasound image.

圖6(a)-圖6(d)顯示複合磁性奈米超音波微泡合成方法的一實施例。6(a) to 6(d) show an embodiment of a composite magnetic nanosonic microbubble synthesis method.

圖7(a)顯示包含氧化鐵的奈米超音波微泡的超音波影像下的平均灰階值(dB)。Figure 7 (a) shows the average gray scale value (dB) in an ultrasonic image of a nano-ultrasonic microbubble containing iron oxide.

圖7(b)顯示不同組成的奈米超音波微泡在相應超音波影像下的增強度百分比。Figure 7(b) shows the percent enhancement of nano-ultrasonic microbubbles of different compositions under the corresponding ultrasound image.

圖8(a)-圖8(c)顯示在不同濃度的氧化鐵奈米粒子的條件之下,奈米超音波微泡的穿透式電子顯微鏡影像。Figures 8(a)-8(c) show transmission electron microscopy images of nano-ultrasonic microbubbles under different concentrations of iron oxide nanoparticles.

圖9繪示核磁共振下弛緩時間常數的倒數對鐵離子濃度的曲線。Figure 9 is a graph showing the inverse of the relaxation time constant under nuclear magnetic resonance versus the concentration of iron ions.

圖10(a)顯示在施加聚焦超音波之下,具有不同SPIO濃度的複合磁性奈米超音波微泡,呈現不同的釋放特性。Figure 10 (a) shows composite magnetic nano ultrasonic microbubbles with different SPIO concentrations under the application of focused ultrasound, exhibiting different release characteristics.

圖10(b)示意在聚焦超音波刺激複合磁性奈米超音波微泡的情況。Fig. 10(b) shows the case of focusing ultrasonic stimulation of composite magnetic nano ultrasonic microbubbles.

圖10(c)-圖10(d)顯示穿透式電子顯微鏡下,在聚焦超音波刺激時,複合磁性奈米超音波微泡的結構變化。Fig. 10(c) - Fig. 10(d) show the structural changes of the composite magnetic nano ultrasonic microbubbles in the case of focused ultrasonic stimulation under a transmission electron microscope.

圖11顯示合成複合磁性奈米超音波微泡之方法的一實施例。Figure 11 shows an embodiment of a method of synthesizing composite magnetic nano ultrasonic microbubbles.

本文提出利用普朗尼克和摻雜劑,合成具有一中空結構之一奈米級複合高分子npp的方法及其應用。請參閱圖2(a)-圖2(c)。圖2(a)-圖2(c)顯示加入聚丙烯酸(Polyacrylic Acid,PAA)的普朗尼克的結構隨溫度變化圖。圖2(a)顯示利用溫度敏感型高分子tp,比如普朗尼克F127(以f127表示)或普朗尼克F68(以f68表示),而與另一水溶性高分子wp(比如一單位的高分子聚丙烯酸paa)的交互作用的原理。在一實施例中,f127溶液中加入paa,以強化內部氫鍵hb鍵結。並透過控制溫度,改變f127的極性。圖2(b)顯示在乳化升溫之後,f127中的PPO鍵轉成疏水態(非極性),因而開始團聚於內核,而paa因為是強極性高分子,故包覆在外殼。圖2(c)顯示:降溫時,paa的羧基與f127的PEO鏈段形成氫鍵鍵結,而奈米粒子內核中f127的PPO鏈段因為降溫,開始轉成親水性(極性),並且擴張開來,即形成具有一中空結構hs之奈米級複合高分子npp。In this paper, a method for synthesizing nano-composite polymer npp with a hollow structure and its application by using pluronic and dopants is proposed. Please refer to Figure 2(a) - Figure 2(c). Fig. 2(a) - Fig. 2(c) show the structure change of pluronic with polyacrylic acid (PAA) as a function of temperature. Figure 2 (a) shows the use of temperature-sensitive polymer tp, such as Pluronic F127 (represented by f127) or Pluronic F68 (represented by f68), and another water-soluble polymer wp (such as a unit of high The principle of the interaction of molecular polyacrylic acid paa). In one embodiment, paa is added to the f127 solution to enhance internal hydrogen bond hb bonding. And by controlling the temperature, change the polarity of f127. Fig. 2(b) shows that after the emulsification temperature rise, the PPO bond in f127 is converted into a hydrophobic state (non-polar), and thus starts to agglomerate in the inner core, and paa is coated on the outer shell because it is a highly polar polymer. Figure 2(c) shows that when cooling, the carboxyl group of paa forms a hydrogen bond with the PEO segment of f127, while the PPO segment of f127 in the core of the nanoparticle begins to turn into hydrophilicity (polarity) and expands due to cooling. The nano-composite polymer npp having a hollow structure hs is formed.

上述奈米級複合高分子npp的中空結構亦可作為具有高度聲敏型奈米超音波微泡之複合磁性奈米中空藥物載體,藉由上述兩種高分子的比例混合摻雜搭配,可建構高穩定度與超音波敏感型之奈米級複合高分 子,達到可利用特定頻率的超音波快速驅動藥物釋放,並藉由奈米材料的製程技術,來控制載體結構。在一實施例中,首先,將磁性奈米粒子和藥物(例如重量百分比濃度為0.1%的螢光分子、親疏水性分子、生物分子或其他功能性物質的其中之一)溶解於有機溶劑(比如以冰浴處理的二氯甲烷2mL)以形成一有機相溶液。然而,在另一實施例中,藥物和全氟化物亦可溶於水溶性溶劑。在本實施例中,另外將重量百分比濃度2%、12mL的溫度敏感型高分子普朗尼克F127與水溶性高分子、重量百分比濃度5%、3mL的聚乙烯酸(Polyacrylic Acid,PAA)共同溶於水中約1小時,直至水相溶液呈現澄清的狀態。將水相溶液與有機相溶液混和。而水相與有機相溶液體積的比例,固定在一個比例範圍,比如15:2。混合後,利用强超音波震盪1分鐘,產生均一乳化相的混合溶液。此後,該混合溶液微微加熱到29-32℃,攪拌約半小時,接著加熱到55-70℃,將有機相溶液完全揮發。利用離心的方法,將未包覆的藥物與高分子除去,並令該混合溶液靜置一段時間,使混合溶液的溫度與室溫平衡之後,該混合溶液即自組裝而形成同時具有一外殼和一中空結構的複合高分子,即複合磁性奈米中空藥物載體。The hollow structure of the nano-composite polymer npp can also be used as a composite magnetic nano hollow drug carrier with highly acoustic-sensitive nano-ultrasonic microbubbles, which can be constructed by mixing and mixing the above two polymers. Nano-composite high scores with high stability and ultrasonic sensitivity To achieve rapid release of drug release using ultrasonic waves of a specific frequency, and to control the carrier structure by the process technology of nanomaterials. In one embodiment, first, magnetic nanoparticles and a drug (for example, one of a fluorescent molecule, a hydrophilic molecule, a biomolecule, or other functional substance having a concentration of 0.1% by weight) are dissolved in an organic solvent (for example, Dichloromethane (2 mL) treated with ice bath to form an organic phase solution. However, in another embodiment, the drug and perfluorinated solution are also soluble in the water soluble solvent. In this embodiment, a temperature-sensitive polymer of Pluronic F127 with a concentration of 2% by weight and 12 mL is additionally dissolved in a water-soluble polymer, a 5% by weight concentration, and a 3 mL polyacrylic acid (PAA). It was about 1 hour in water until the aqueous phase solution showed a clear state. The aqueous phase solution is mixed with the organic phase solution. The ratio of the volume of the aqueous phase to the volume of the organic phase solution is fixed in a range of ratios, such as 15:2. After mixing, the mixture was shaken for 1 minute using a strong ultrasonic wave to produce a mixed solution of a uniform emulsion phase. Thereafter, the mixed solution was slightly heated to 29-32 ° C, stirred for about half an hour, and then heated to 55-70 ° C to completely evaporate the organic phase solution. The uncoated drug and the polymer are removed by centrifugation, and the mixed solution is allowed to stand for a period of time, and after the temperature of the mixed solution is balanced with the room temperature, the mixed solution is self-assembled to form a shell and A hollow polymer composite polymer, that is, a composite magnetic nano hollow drug carrier.

請參閱圖3(a)。圖3(a)為一種合成一奈米級複合高分子之方法的一實施例,包含下列步驟:Please refer to Figure 3(a). Figure 3 (a) is an embodiment of a method of synthesizing a nano-sized composite polymer, comprising the following steps:

如步驟S3101所示,首先將一氣體(比如全氟化物或六氟化硫)溶解於一有機溶劑(比如以冰浴處理的二氯甲烷)之中以形成一有機相溶液。如步驟S3102所示,隨後將一水溶性高分子(比如聚乙烯酸或聚乙烯醇)及一溫度敏感型高分子(比如普朗尼克)溶解於水中以形成一水相溶液。如步驟S3103所示,接著將該有機相溶液和該水相溶液一起震盪以形 成一混合物。如步驟S3104所示,最後在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,使該混合物自組裝而形成該奈米級複合高分子。As shown in step S3101, a gas such as perfluorinated or sulfur hexafluoride is first dissolved in an organic solvent such as dichloromethane treated with an ice bath to form an organic phase solution. As shown in step S3102, a water-soluble polymer (such as polyvinyl acid or polyvinyl alcohol) and a temperature-sensitive polymer (such as pluronic) are then dissolved in water to form an aqueous phase solution. As shown in step S3103, the organic phase solution is then oscillated together with the aqueous phase solution to form Into a mixture. As shown in step S3104, the mixture is first subjected to a temperature rising process and then subjected to a cooling process within a temperature gradient to self-assemble the mixture to form the nano-sized composite polymer.

請參閱圖3(b)。圖3(b)為一種合成一奈米級複合高分子之方法的一實施例,包含下列步驟:Please refer to Figure 3(b). Figure 3 (b) is an embodiment of a method of synthesizing a nano-sized composite polymer, comprising the following steps:

首先,如步驟S3201所示,將一氣體(比如全氟化物或六氟化硫)溶解於一有機溶劑(比如以冰浴處理的二氯甲烷)之中以形成一有機相溶液。隨即,如步驟S3202所示,形成一水相溶液。最後,如步驟S3203所示,將該有機相溶液和該水相溶液一起震盪以形成具一中空結構之該奈米級複合高分子。First, as shown in step S3201, a gas such as perfluorinated or sulfur hexafluoride is dissolved in an organic solvent such as dichloromethane treated with an ice bath to form an organic phase solution. Immediately, as shown in step S3202, an aqueous phase solution is formed. Finally, as shown in step S3203, the organic phase solution and the aqueous phase solution are oscillated together to form the nano-sized composite polymer having a hollow structure.

請參閱圖3(c)。圖3(c)為一種合成一奈米級複合高分子之方法的一實施例,包含下列步驟:Please refer to Figure 3(c). Figure 3 (c) is an embodiment of a method of synthesizing a nano-sized composite polymer, comprising the following steps:

如步驟S3301所示,形成一混合物溶液。如步驟S3302所示,加熱該混合物溶液。以及如步驟S3303所示,冷却該經加熱之混合物溶液,使該混合物自組裝而形成該奈米級複合高分子。As shown in step S3301, a mixture solution is formed. The mixture solution is heated as shown in step S3302. And as shown in step S3303, the heated mixture solution is cooled, and the mixture is self-assembled to form the nano-sized composite polymer.

請參閱圖4。圖4顯示單純普朗尼克F127(F127)與聚丙烯酸PAA摻雜普朗尼克F127(PAA+F127)的奈米超音波微泡在不同溫度下,粒子直徑變化圖。單純普朗尼克F127的奈米超音波微泡,會在低溫的時候直接溶解回水溶液,而無法探測出粒子的大小。而聚丙烯酸PAA摻雜普朗尼克F127的奈米超音波微泡,則可以經由不同的溫度循環(圖4中的兩對箭號表示升溫或降溫)來造成體積的縮放,在接近人體溫度下具一中空結構。此種超音波敏感奈米超音波微泡對於超音波的反應,也隨著組成比例的不 同而變。Please refer to Figure 4. Figure 4 shows the change of particle diameter at different temperatures of pure Pluronic F127 (F127) and polyacrylic acid PAA-doped Pluronic F127 (PAA+F127) nano-ultrasonic microbubbles. The pure ultrasonic microbubbles of the Pluronic F127 will dissolve directly back into the aqueous solution at low temperatures, and the particle size cannot be detected. The polyacrylic acid PAA is doped with the nano-ultrasonic microbubbles of Pluronic F127, which can be scaled by different temperature cycles (two pairs of arrows in Figure 4 to indicate temperature rise or decrease), close to body temperature. Has a hollow structure. The response of such ultrasonic-sensitive nano-ultrasonic microbubbles to ultrasonic waves also varies with the composition ratio. The same changes.

在另一個實施例中,圖5顯示不同組成的奈米超音波微泡,在相應超音波影像下的平均灰階值(dB),其中橫軸是依重量百分比濃度區分的組成比例,縱軸是相應超音波影像的亮度(dB)。在本實施中,考慮了三組不同組成條件的奈米超音波微泡,分別是:在55℃下摻雜聚丙烯酸PAA和普朗尼克F127;在70℃下摻雜聚乙烯醇Polyvinyl Alcohol(PVA)和普朗尼克F127;以及在55℃下摻雜聚乙烯醇PVA和普朗尼克F127。影像平均灰階值一開始隨著普朗尼克F127對於PAA的比例增加而增加(1/4、2/3、3/2),直到F127/PAA=3/2時,影像平均灰階值達到50dB最高之後便開始下降。此外,當普朗尼克F127溶液加入不同比例,極性較低的聚乙烯醇PVA高分子,發現也可以合成出類似功能性的奈米超音波微泡,但是需要提高溫度到70℃,才能造成極性差異,進而形成奈米超音波微泡。In another embodiment, FIG. 5 shows the average gray scale value (dB) of the nano-ultrasonic microbubbles of different compositions under the corresponding ultrasonic image, wherein the horizontal axis is the composition ratio by weight percentage concentration, and the vertical axis Is the brightness (dB) of the corresponding ultrasound image. In this embodiment, three sets of nano-ultrasonic microbubbles with different compositional conditions were considered, namely: doping polyacrylic acid PAA and pluronic F127 at 55 ° C; and doping polyvinyl alcohol Polyvinyl Alcohol at 70 ° C ( PVA) and Pluronic F127; and doped polyvinyl alcohol PVA and Pluronic F127 at 55 °C. The average grayscale value of the image increases with the increase of the ratio of Pluronic F127 to PAA (1/4, 2/3, 3/2). Until F127/PAA=3/2, the average grayscale value of the image reaches After the 50dB highest, it begins to decline. In addition, when the Pluronic F127 solution was added to different proportions of the less polar polyvinyl alcohol PVA polymer, it was found that similar functional nano ultrasonic microbubbles could be synthesized, but it is necessary to raise the temperature to 70 ° C to cause polarity. Differences, which in turn form nano-ultrasonic microbubbles.

另一方面,本文提出複合磁性奈米超音波微泡顯影劑合成方法。溫度敏感型高分子普朗尼克F127、高分子聚丙烯酸(PAA),以及一種磁性奈米粒子,即超順磁性氧化鐵(SPIO)奈米粒子,一同形成兼具超音波及磁敏感特性之奈米膠囊中空結構。而此複合磁性奈米超音波微泡係氧化鐵奈米粒子散布於高分子外殼。On the other hand, this paper proposes a synthetic magnetic nano-ultrasonic microbubble developer synthesis method. Temperature-sensitive polymer Pluronic F127, high molecular polyacrylic acid (PAA), and a magnetic nanoparticle, superparamagnetic iron oxide (SPIO) nanoparticle, together form a supersonic and magnetically sensitive property. Rice capsule hollow structure. The composite magnetic nano-ultrasonic microbubble-based iron oxide nano-particles are dispersed in a polymer shell.

圖6(a)顯示在一實施例中,將藥物(重量百分比濃度0.1%)、直徑介於2-30奈米(nm)之間的磁性奈米粒子,比如超順磁性氧化鐵(SPIO,以spio表示)與5μL的氣體狀的全氟化物(PFP,以pfp表示)(或六氟化硫(SF6 ))溶解於經冰浴處理之有機相溶液(比如2mL的二氯甲烷溶劑sol),形成單一有機相溶液。在其他的實施之中,磁性奈米粒子可包括一四氧化 三鐵(Fe3 O4 )、一三氧化二鐵(Fe2 O3 )、一鈷鐵氧化物(CoFe2 O4 )、一錳鐵氧化物(MnFe2 O4 )和一氧化釓(Gd2 O3 )的其中之一,而其前趨物可以包括但不局限於氯化物、硝酸鹽、醋酸鹽等。Figure 6 (a) shows, in one embodiment, a magnetic nanoparticle having a drug (weight percent concentration of 0.1%) and a diameter between 2 and 30 nanometers (nm), such as superparamagnetic iron oxide (SPIO, Expressed as spio) with 5 μL of gaseous perfluorinated acid (PFP, expressed as pfp) (or sulphur hexafluoride (SF 6 )) dissolved in an ice bath-treated organic phase solution (eg 2 mL of dichloromethane solvent sol ), forming a single organic phase solution. In other implementations, the magnetic nanoparticles may include a ferroferric oxide (Fe 3 O 4 ), a ferric oxide (Fe 2 O 3 ), a cobalt iron oxide (CoFe 2 O 4 ), a One of manganese iron oxide (MnFe 2 O 4 ) and cerium oxide (Gd 2 O 3 ), and its precursors may include, but are not limited to, chlorides, nitrates, acetates, and the like.

另外將重量百分比濃度2%、12mL溫度敏感型高分子普朗尼克F127(以f127表示)與重量百分比濃度5%、3mL的聚丙烯酸(PAA,以paa表示)置於水中約1小時,直至水相溶液呈現澄清的狀態。將水相溶液與有機相溶液混和,而水相與有機相溶液體積的比例,固定在一個比例,例如15:2。混合後,利用强超音波震盪1分鐘,產生一乳化相溶液。In addition, a weight percent concentration of 2%, 12 mL of temperature-sensitive polymer pluronic F127 (expressed as f127) and a concentration of 5% by weight, 3 mL of polyacrylic acid (PAA, expressed as paa) were placed in water for about 1 hour until water The phase solution assumes a clear state. The aqueous phase solution is mixed with the organic phase solution, and the ratio of the aqueous phase to the volume of the organic phase solution is fixed at a ratio of, for example, 15:2. After mixing, a strong ultrasonic wave was shaken for 1 minute to produce an emulsion phase solution.

請參見圖6(b)-圖6(c)。圖6(b)-圖6(c)顯示,該混合溶液微微加熱到29~32℃,攪拌約半小時,此時溫度敏感型高分子普朗尼克F127開始收縮(如圖6(b)中四個向內的箭號所示),而內部的全氟化物開始氣化,漸漸聚集在內核中,並且把超順磁性氧化鐵推往外殼(如圖6(b)中八個向外的短箭號所示)。接著加熱到55℃,將有機相溶液揮發(如圖6(b)中個向外的長箭號所示)。See Figure 6(b) - Figure 6(c). Figure 6 (b) - Figure 6 (c) shows that the mixed solution is slightly heated to 29 ~ 32 ° C, stirred for about half an hour, when the temperature-sensitive polymer Pluronic F127 begins to shrink (Figure 6 (b) The four inward arrows are shown, and the internal perfluorinated gas begins to vaporize, gradually accumulating in the inner core, and pushing the superparamagnetic iron oxide to the outer casing (as shown in Figure 6(b). Short arrow number). It is then heated to 55 ° C to volatilize the organic phase solution (as indicated by the long outward arrow in Figure 6(b)).

圖6(d)顯示利用離心的方法,將未包覆的藥物與高分子除去,即完成含有氧化鐵奈米粒子外殼的奈米超音波微泡,而該奈米超音波微泡具有一中空結構,其中該中空結構的直徑介於150奈米至500奈米之間,外殼厚度介於5奈米至100奈米之間。圖6(d)中的方框示意受壓縮的外殼。Fig. 6(d) shows the removal of the uncoated drug and the polymer by centrifugation, that is, the nano-ultrasonic microbubble containing the outer shell of the iron oxide nanoparticle, and the nano-ultrasonic microbubble has a hollow The structure wherein the hollow structure has a diameter between 150 nm and 500 nm and a shell thickness of between 5 nm and 100 nm. The box in Figure 6(d) illustrates the compressed enclosure.

在另一個實施例中,圖7(a)顯示將超順磁性氧化鐵加入不同組成的奈米超音波微泡,在相應超音波影像下的平均灰階值(dB),其中橫軸是氧化鐵濃度,縱軸是相應超音波影像的亮度(dB)。在本實施中,考慮了三組情況,分別是:在55℃下摻雜聚丙烯酸(PAA)和普朗尼克F127;在70℃ 下摻雜聚乙烯醇(PVA)和普朗尼克F127;以及在55℃下摻雜聚乙烯醇(PVA)和普朗尼克F127。可以發現普朗尼克F127摻雜丙烯酸(PAA)時(F127/PAA=3/2),加入氧化鐵之後可以巨幅的增加奈米超音波微泡在超音波影像的對比效果(95dB)。In another embodiment, Figure 7(a) shows the addition of superparamagnetic iron oxide to nano-ultrasonic microbubbles of different compositions, the average grayscale value (dB) in the corresponding ultrasound image, where the horizontal axis is oxidized. The iron concentration and the vertical axis are the brightness (dB) of the corresponding ultrasonic image. In this implementation, three sets of cases were considered, namely: doping polyacrylic acid (PAA) and pluronic F127 at 55 ° C; at 70 ° C Under-doped polyvinyl alcohol (PVA) and Pluronic F127; and doped polyvinyl alcohol (PVA) and Pluronic F127 at 55 °C. It can be found that when Pluronic F127 is doped with acrylic acid (PAA) (F127/PAA=3/2), the addition effect of nano-ultrasonic microbubbles on ultrasonic images (95dB) can be greatly increased after the addition of iron oxide.

在另一個實施例中,圖7(b)顯示不同組成的奈米超音波微泡,在相應超音波影像下的增強度百分比,其中橫軸是依重量百分比濃度區分的組成比例,縱軸是相應超音波影像的增強度百分比(%)。在本實施中,考慮了三組情況,分別是:在55℃下摻雜聚丙烯酸(PAA)和普朗尼克F127;在55℃下摻雜聚丙烯酸(PAA)和普朗尼克F68;以及在70℃下摻雜聚乙烯醇(PVA)和普朗尼克F68;在55℃下摻雜聚乙烯醇(PVA)和普朗尼克F127。可以發現普朗尼克F68替代普朗尼克F127時,亦可使得奈米超音波微泡在超音波影像中的顯影對比強化,可知此類溫度敏感型高分子都具有類似的效果。In another embodiment, FIG. 7(b) shows the percentage of enhancement of the nano-ultrasonic microbubbles of different compositions under the corresponding ultrasonic image, wherein the horizontal axis is the composition ratio distinguished by the weight percentage concentration, and the vertical axis is Percentage of enhancement (%) of the corresponding ultrasound image. In this embodiment, three sets of cases are considered, namely: doping polyacrylic acid (PAA) and pluronic F127 at 55 ° C; doping polyacrylic acid (PAA) and pluronic F68 at 55 ° C; Polyvinyl alcohol (PVA) and Pluronic F68 were doped at 70 ° C; polyvinyl alcohol (PVA) and Pluronic F127 were doped at 55 ° C. It can be found that when Pluronic F68 replaces Pluronic F127, it can also enhance the development contrast of nano-ultrasonic microbubbles in ultrasonic images. It can be seen that such temperature-sensitive polymers have similar effects.

圖8(a)-圖8(c)顯示在不同濃度的氧化鐵奈米粒子(低濃度、中濃度和高濃度)的條件之下,奈米超音波微泡的穿透式電子顯微鏡影像,其中氧化鐵奈米粒子均勻環繞在奈米超音波微泡的外殼中。奈米超音波微泡的大小約介於190奈米~230奈米的範圍之間。而加入不同濃度的氧化鐵奈米粒子可以形成不同外殼厚度的複合磁性奈米超音波微泡;氧化鐵奈米粒子的濃度越高,所形成的複合磁性奈米超音波微泡的外殼厚度越厚,內核的體積越小,反之亦然。最重要的是可以利用氧化鐵加強外殼的結構,在超音波影像對比上可以增強到95dB以上。Figure 8(a) - Figure 8(c) show the transmission electron microscopy images of nano-ultrasonic microbubbles under different concentrations of iron oxide nanoparticles (low, medium and high concentrations), The iron oxide nanoparticles are uniformly surrounded by the outer shell of the nano ultrasonic microbubbles. The size of the nano-ultrasonic microbubbles is between 190 nm and 230 nm. The addition of different concentrations of iron oxide nanoparticles can form composite magnetic nano-ultrasonic microbubbles with different shell thicknesses; the higher the concentration of iron oxide nanoparticles, the higher the shell thickness of the composite magnetic nano-ultrasonic microbubbles formed. Thick, the smaller the kernel, and vice versa. The most important thing is that you can use iron oxide to strengthen the structure of the outer casing, which can be enhanced to over 95dB in ultrasonic image comparison.

圖9繪示核磁共振下1/T2 對鐵離子濃度的曲線,其中橫軸為 鐵離子濃度(M),縱軸為T2 的倒數。T1 和T2 分別為針對磁化強度的縱向或橫向的參數。在經過核磁共振後,複合磁性奈米超音波微泡為一良好的顯影劑,相應於不同濃度28.8mg/mL、18.8mg/ml和9.4mg/ml的SPIO溶液,所形成的奈米級複合高分子顯影劑的r2值分別為208、183和164。r2為勻場(shimming)的參數。Figure 9 is a graph showing the concentration of 1/T 2 to iron ion concentration under nuclear magnetic resonance, wherein the horizontal axis is the iron ion concentration (M) and the vertical axis is the reciprocal of T 2 . T 1 and T 2 are parameters for the longitudinal or lateral direction of the magnetization, respectively. After NMR, the composite magnetic nano-ultrasonic microbubbles are a good developer, corresponding to different concentrations of 28.8mg/mL, 18.8mg/ml and 9.4mg/ml of SPIO solution, the formation of nano-composite The polymer developers have r2 values of 208, 183 and 164, respectively. R2 is the parameter of shimming.

此外,本案所發展出的複合磁性奈米超音波微泡,由於其具中空結構,具有良好的超音波感特性,可利用聚焦超音波(HIFU)的操控誘導微泡瞬間壓縮變化,造成外殼結構破壞,進而迅速且精準的釋放大量藥物,而作為一種藥物載體。此外,在未給予藥物載體聚焦超音波時,載體可持續將藥物良好包覆於內核,此項特性對於長時間藥物控制有極大助益,然後在施加超音波能量之後,可以透過核磁共振設備,以監測附近組織磁學特性的變化。In addition, the composite magnetic nano-ultrasonic microbubbles developed in this case have good supersonic characteristics due to their hollow structure, and can be used to induce the instantaneous compression of microbubbles by the manipulation of focused ultrasound (HIFU), resulting in the outer shell structure. Destruction, which in turn releases a large amount of drug quickly and accurately, as a drug carrier. In addition, when the drug carrier is not focused on the ultrasound, the carrier can continue to coat the drug well in the inner core. This feature is very helpful for long-term drug control, and then after applying ultrasonic energy, it can pass through the nuclear magnetic resonance device. To monitor changes in the magnetic properties of nearby tissues.

圖10(a)顯示在施加固定條件的聚焦超音波HIFU,具有不同SPIO濃度以及不同外殼厚度的複合磁性奈米超音波微泡(nb),呈現不同藥物的釋放特性,其中橫軸為時間,縱軸為累積釋放量。HIFU可設定成:400KHz的脈衝在0.001秒開啟,而在0.999秒關閉。包含9.4mg/mL的SPIO的奈米超音波微泡,具有較薄外殼的物理特性,則呈現最強的超音波反應,而藥物濃度快速的上升。在一實施例中,將卡莫斯汀(Carmustine)或紫杉醇(paclitaxel)作為模擬的藥物,將其包覆於該奈米超音波微泡內,測試其對於此超音波敏感的特性,為在未加超音波之前的狀態,僅有極小量的釋放,表示藥物可以儲藏於該奈米超音波微泡的內核;而在外加HIFU作用之後,藥物迅速由內核釋放出來。Fig. 10(a) shows a composite magnetic nanosonic microbubble (nb) with different SPIO concentrations and different shell thicknesses under the application of fixed-focus focused ultrasonic HIFU, showing the release characteristics of different drugs, wherein the horizontal axis is time. The vertical axis is the cumulative release amount. The HIFU can be set such that a 400 KHz pulse is turned on at 0.001 seconds and turned off at 0.999 seconds. Nano-ultrasonic microbubbles containing 9.4 mg/mL of SPIO, with the physical properties of a thinner shell, exhibit the strongest supersonic response, while the drug concentration rises rapidly. In one embodiment, Carmustine or paclitaxel is used as a simulated drug, which is coated in the nano-ultrasonic microbubble to test its sensitivity to the ultrasonic wave. The state before the supersonic wave is added, only a very small amount of release, indicating that the drug can be stored in the core of the nano-ultrasonic microbubbles; and after the application of HIFU, the drug is quickly released from the inner core.

圖10(b)示意在HIFU刺激時,包含一中空結構hs的複合磁性奈米超音波微泡會先團聚然後再爆破成藥物med和外殼coa的片段,為良好的藥物載體car及釋放系統。外殼coa的片段可更包括一溫度敏感型高分子tp和一水溶性高分子wp。圖10(c)顯示HIFU刺激中的複合磁性奈米超音波微泡先開始團聚,此圖的比例尺為200nm。圖10(d)顯示HIFU刺激後,複合磁性奈米超音波微泡的破裂狀況,其中圈形、箭號和凹盤皆為局部示意,此圖的比例尺為100nm。Figure 10 (b) shows that during HIFU stimulation, the composite magnetic nano-ultrasonic microbubbles containing a hollow structure hs will first agglomerate and then blast into fragments of the drug med and the outer shell coa, which is a good drug carrier car and release system. The fragment of the outer shell coa may further comprise a temperature sensitive polymer tp and a water soluble polymer wp. Figure 10 (c) shows that the composite magnetic nano-ultrasonic microbubbles in the HIFU stimulation begin to agglomerate first, and the scale of this figure is 200 nm. Fig. 10(d) shows the rupture of the composite magnetic nano-ultrasonic microbubbles after HIFU stimulation, in which the circle shape, the arrow and the concave disk are partially illustrated, and the scale of this figure is 100 nm.

請參閱圖11。圖11為合成複合磁性奈米超音波微泡之方法的實施例,包含下列步驟:Please refer to Figure 11. Figure 11 is an embodiment of a method of synthesizing a composite magnetic nano ultrasonic microbubble comprising the following steps:

如步驟S1101所示,將一磁性奈米粒子溶於一有機溶劑之中以形成一有機相溶液,其中該磁性奈米粒子包括一四氧化三鐵(Fe3 O4 )、一三氧化二鐵(Fe2 O3 )、一鈷鐵氧化物(CoFe2 O4 )、一錳鐵氧化物(MnFe2 O4 )和一氧化釓(Gd2 O3 )的其中之一,該有機溶劑包括一二氯甲烷。As shown in step S1101, a magnetic nanoparticle is dissolved in an organic solvent to form an organic phase solution, wherein the magnetic nanoparticle comprises a ferroferric oxide (Fe 3 O 4 ), a ferric oxide. One of (Fe 2 O 3 ), a cobalt iron oxide (CoFe 2 O 4 ), a manganese iron oxide (MnFe 2 O 4 ), and cerium oxide (Gd 2 O 3 ), the organic solvent including Dichloromethane.

如步驟S1102所示,將一水溶性高分子和一溫度敏感型高分子溶解於水中以形成一水相溶液,其中該水溶性高分子包括一聚乙烯酸(Polyacrylic Acid,PAA)和一聚乙烯醇(Polyvinyl alcohol,PVA)的其中之一,該溫度敏感型高分子包括一普朗尼克(Pluronic)F68和一普朗尼克F127的其中之一。As shown in step S1102, a water-soluble polymer and a temperature-sensitive polymer are dissolved in water to form an aqueous phase solution, wherein the water-soluble polymer comprises a polyacrylic acid (PAA) and a polyethylene. One of the polyvinyl alcohol (PVA), the temperature-sensitive polymer includes one of Pluronic F68 and one Pluronic F127.

如步驟S1103所示,將該有機相溶液和該水相溶液一起震盪以形成一混合物。The organic phase solution and the aqueous phase solution are shaken together to form a mixture as shown in step S1103.

如步驟S1104所示,在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,而該升溫過程包括下列步驟:將該混合 物緩緩加熱到攝氏29-32度,攪拌約半小時,接著將該混合物加熱到攝氏55-70度,以便揮發該有機相溶液。在該降溫過程之後,將一氣體打入該混合物,使該混合物自組裝而形成該複合磁性奈米超音波微泡,其中該氣體包括一全氟化物(Perfluoropentane,PFP,C5 F12 )和六氟化硫(SF6 )的其中之一;該複合磁性奈米超音波微泡更包括具有該磁性奈米粒子的一外殼,該外殼環繞於該複合磁性奈米超音波微泡之外部以形成一中空結構,該磁性奈米粒子的直徑介於2奈米至15奈米之間,該複合磁性奈米超音波微泡的直徑介於150奈米至500奈米之間。As shown in step S1104, the mixture is subjected to a temperature rising process and then subjected to a temperature decreasing process within a temperature gradient, and the temperature increasing process includes the following steps: slowly heating the mixture to 29-32 degrees Celsius, stirring After about half an hour, the mixture is then heated to 55-70 degrees Celsius to volatilize the organic phase solution. After the cooling process, a gas is driven into the mixture, and the mixture is self-assembled to form the composite magnetic nano ultrasonic microbubble, wherein the gas comprises a perfluoropentane (PFP, C 5 F 12 ) and One of the sulfur hexafluoride (SF 6 ); the composite magnetic nano ultrasonic microbubble further comprises a casing having the magnetic nanoparticle, the outer casing surrounding the composite magnetic nano ultrasonic microbubble A hollow structure is formed, the diameter of the magnetic nanoparticle is between 2 nm and 15 nm, and the diameter of the composite magnetic nano ultrasonic microbubble is between 150 nm and 500 nm.

綜上所述,本文揭露一種兼具高穩定性與高溫度敏感性的複合高分子,實為一難能可貴之發明。其可被應用於以下產業:藥物載體、癌症標靶治療、核磁共振影像、超音波影像、組織工程用生醫材料以及生醫元件。複合高分子可被開發為智慧型藥物載體、生物晶片、核磁共振或超音波影像的顯影劑等等的產品。In summary, this paper discloses a composite polymer with high stability and high temperature sensitivity, which is a valuable invention. It can be applied to the following industries: drug carriers, cancer target treatment, nuclear magnetic resonance imaging, ultrasound imaging, biomedical materials for tissue engineering, and biomedical components. The composite polymer can be developed as a product of a smart drug carrier, a biochip, a developer of nuclear magnetic resonance or ultrasonic imaging, and the like.

詳而言之,在合成複合高分子時,高分子聚丙烯酸扮演一個輔助與穩定外殼的角色,此高分子可以提供大量穩定結構的氫鍵,使得奈米超音波微泡具有下列特性:穩定奈米結構:當聚丙烯酸含量過低時,奈米超音波微泡外殼的氫鍵作用力不強,則普朗尼克F127容易回溶於水溶液中。當提高聚乙烯醇的比例時,大量的氫鍵可以穩定該奈米結構,不過卻因為普朗尼克F127的含量變少,使得內核體積變化太小,影響奈米超音波微泡中空結構的生成。倘若奈米超音波微泡應用於藥物載體時,因其具有超音波敏感的特性,在外部聚焦超音波的操控下,能快速且精準的控制藥物釋放,然而累積的能量並不會造成藥物被破壞。此外,因奈米超音波微 泡的合成無需使用任何的化學交聯劑,故此該微泡藥物載體具有低毒性的特性。再者,奈米超音波微泡的製程在55℃即可合成,不會造成對於藥物活性的破壞。最後,此複合高分子具高生物相容性與低毒性,可作為超音波影像或核磁共振影像的首選顯影劑。In detail, in the synthesis of composite polymers, high molecular polyacrylic acid plays a role as an auxiliary and stable outer shell. This polymer can provide a large number of stable structure hydrogen bonds, making nano ultrasonic microbubbles have the following characteristics: stable nai Rice structure: When the polyacrylic acid content is too low, the hydrogen bonding force of the nano-ultrasonic microbubble shell is not strong, and the pluronic F127 is easily dissolved back into the aqueous solution. When the proportion of polyvinyl alcohol is increased, a large number of hydrogen bonds can stabilize the nanostructure, but because the content of Pluronic F127 is less, the volume change of the core is too small, which affects the formation of hollow structure of nano ultrasonic microbubbles. . If nano-ultrasonic microbubbles are applied to drug carriers, because of their ultra-sonic sensitivity, the drug can be quickly and accurately controlled under the control of externally focused ultrasound. However, the accumulated energy does not cause the drug to be damage. In addition, in nano-sound micro The synthesis of the bubbles does not require the use of any chemical crosslinking agent, so the microbubble drug carrier has low toxicity properties. Furthermore, the process of nano-ultrasonic microbubbles can be synthesized at 55 ° C without causing damage to the activity of the drug. Finally, the composite polymer has high biocompatibility and low toxicity and can be used as the preferred developer for ultrasonic imaging or nuclear magnetic resonance imaging.

在本文提出的實施例及許多修改將提示熟悉本領域人士所作出的發明,然而這些發明已涉及上述說明和相關圖示所提出的教導。因此,可以理解的是,發明不侷限於已公開的特定的實施例,修改和其他實施例將被包含在所附請求項的範圍之中,再者,儘管上述說明和相關圖示只描述了含蓋某些單元和/或功能示例性的組合的一示例性實施例,應當理解的是,不同單元和/或功能的組合可以由不同實施例所提供,卻不偏離所附請求項的範圍。在這方面,例如不僅前述所明確地描述的,單元和/或功能上的不同組合也包括於一些衍生的請求項之內。雖然本文使用特定名詞,它們被只用於通例和描述之用,而不應受侷限。The embodiments and many modifications presented herein will be familiar with the inventions made by those skilled in the art, however, these inventions have been directed to the teachings set forth in the above description and related drawings. Therefore, it is understood that the invention is not limited to the specific embodiments disclosed, and the modifications and other embodiments are included in the scope of the appended claims. An exemplary embodiment that includes some combinations of elements and/or functional examples, it should be understood that combinations of different elements and/or functions may be provided by different embodiments without departing from the scope of the appended claims. . In this regard, various combinations of elements and/or functions are also included in some of the derived claims, for example, not only as specifically described above. Although specific nouns are used herein, they are used for general purposes only and are not intended to be limiting.

f127‧‧‧普朗尼克F127F127‧‧ ‧Prannik F127

spio‧‧‧超順磁性氧化鐵Spio‧‧‧Superparamagnetic iron oxide

pfp/sol‧‧‧全氟化物和溶劑Pfp/sol‧‧‧perfluorinated and solvent

paa‧‧‧聚丙烯酸Paa‧‧‧poly acrylic

Claims (7)

一種合成複合磁性奈米超音波微泡之方法,包含下列步驟:將一磁性奈米粒子溶於一有機溶劑之中以形成一有機相混成溶液;將一水溶性高分子和一溫度敏感型高分子進行一特定比例的摻雜以形成一水相溶液;將該有機相混成溶液和該水相溶液在室溫下一起震盪,以形成一混合物;以及在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,在該降溫過程之後,將一氣體打入該混合物,使該混合物自組裝而形成該複合磁性奈米超音波微泡,其中該氣體包括全氟化物(Perfluoropentane,PFP,C5 F12 )和六氟化硫(SF6 )的其中之一,該溫度敏感型高分子包括一普朗尼克(Pluronic)F68和一普朗尼克F127的其中之一,該水溶性高分子包括一聚乙烯酸(Polyacrylic Acid,PAA)和一聚乙烯醇(Polyvinyl alcohol,PVA)的其中之一,該有機溶劑包括一二氯甲烷,該磁性奈米粒子包括一四氧化三鐵(Fe3 O4 )、一三氧化二鐵(Fe2 O3 )、一鈷鐵氧化物(CoFe2 O4 )、一錳鐵氧化物(MnFe2 O4 )和一氧化釓(Gd2 O3 )的其中之一。A method for synthesizing composite magnetic nano ultrasonic microbubbles comprises the steps of: dissolving a magnetic nanoparticle in an organic solvent to form an organic phase mixed solution; and a water soluble polymer and a temperature sensitive type The molecules are doped in a specific ratio to form an aqueous phase solution; the organic phase is mixed into a solution and the aqueous phase solution is shaken together at room temperature to form a mixture; and within a temperature gradient, the mixture is first After a temperature rising process, a cooling process is performed. After the cooling process, a gas is driven into the mixture to self-assemble the mixture to form the composite magnetic nano ultrasonic microbubble, wherein the gas comprises perfluorinated ( One of Perfluoropentane, PFP, C 5 F 12 ) and sulfur hexafluoride (SF 6 ), the temperature-sensitive polymer comprising one of Pluronic F68 and one Pluronic F127, The water-soluble polymer comprises one of polyacrylic acid (PAA) and one polyvinyl alcohol (PVA), and the organic solvent comprises a dichloromethane, and the magnetic nanoparticle package A triiron tetroxide (Fe 3 O 4), a ferric oxide (Fe 2 O 3), a cobalt-iron oxide (CoFe 2 O 4), a manganese iron oxide (MnFe 2 O 4) and nitrous oxide One of 釓(Gd 2 O 3 ). 如申請專利範圍第1項之方法,其中該複合磁性奈米超音波微泡更包括具有該磁性奈米粒子的一外殼,該外殼環繞於該複合磁性奈米超音波微泡之外部以形成一中空結構,該磁性奈米粒子的直徑介於2奈米至15奈米之間,該複合磁性奈米超音波微泡的直徑介於150奈米至1000奈米之間。 The method of claim 1, wherein the composite magnetic nano ultrasonic microbubble further comprises a casing having the magnetic nanoparticle, the outer casing surrounding the composite magnetic nano ultrasonic microbubble to form a The hollow structure has a diameter of between 2 nm and 15 nm, and the diameter of the composite magnetic nano ultrasonic microbubble is between 150 nm and 1000 nm. 如申請專利範圍第1項所述之方法,其中該升溫過程包括下列步驟: 將該混合物緩緩加熱到攝氏29-32度,攪拌約半小時,接著將該混合物加熱到攝氏55-70度,以便揮發該有機相混成溶液。 The method of claim 1, wherein the heating process comprises the following steps: The mixture is slowly heated to 29-32 degrees Celsius, stirred for about half an hour, and then the mixture is heated to 55-70 degrees Celsius to volatilize the organic phase to form a solution. 一種使用申請專利範圍第1項所述之方法所合成的複合磁性奈米超音波微泡,其中該複合磁性奈米超音波微泡可作為超音波顯影劑。 A composite magnetic nano ultrasonic microbubble synthesized by the method of claim 1, wherein the composite magnetic nano ultrasonic microbubble can be used as an ultrasonic developer. 一種合成複合磁性奈米中空藥物載體之方法,包含下列步驟:將一藥物與一磁性奈米粒子溶於一有機溶劑之中以形成一有機相混成溶液;將一水溶性高分子和一溫度敏感型高分子溶解於水中以形成一水相溶液;將該有機相混成溶液和該水相溶液一起震盪以形成一混合物;以及在一溫度梯度之內,對該混合物先進行一升溫過程後再進行一降溫過程,使該混合物自組裝而形成該複合磁性奈米中空藥物載體,其中該溫度敏感型高分子包括一普朗尼克(Pluronic)F68和一普朗尼克F127的其中之一,該水溶性高分子包括一聚乙烯酸(Polyacrylic Acid,PAA)和一聚乙烯醇(Polyvinyl alcohol,PVA)的其中之一,該磁性奈米粒子包括一四氧化三鐵(Fe3 O4 )、一三氧化二鐵(Fe2 O3 )、一鈷鐵氧化物(CoFe2 O4 )、一錳鐵氧化物(MnFe2 O4 )和一氧化釓(Gd2 O3 )的其中之一。A method for synthesizing a composite magnetic nano hollow drug carrier, comprising the steps of: dissolving a drug and a magnetic nanoparticle in an organic solvent to form an organic phase mixed solution; and sensitizing a water soluble polymer and a temperature The polymer is dissolved in water to form an aqueous phase solution; the organic phase is mixed into a solution and shaken together to form a mixture; and the mixture is subjected to a temperature rising process in a temperature gradient. a cooling process, the mixture is self-assembled to form the composite magnetic nano hollow drug carrier, wherein the temperature sensitive polymer comprises one of Pluronic F68 and a Pluronic F127, the water solubility The polymer comprises one of polyacrylic acid (PAA) and a polyvinyl alcohol (PVA), and the magnetic nanoparticle comprises a ferroferric oxide (Fe 3 O 4 ), a trioxide One of two iron (Fe 2 O 3 ), one cobalt iron oxide (CoFe 2 O 4 ), one manganese iron oxide (MnFe 2 O 4 ), and cerium oxide (Gd 2 O 3 ). 如申請專利範圍第5項所述之方法,其中該藥物包括卡莫斯汀(Carmustine)和紫杉醇(paclitaxel)的其中之一。 The method of claim 5, wherein the drug comprises one of Carmustine and paclitaxel. 一種使用申請專利範圍第8項所述之方法所合成的藥物載體,其中當一聚焦超音波被施加到該藥物載體時,該藥物載體的結構被改變,進而釋放該藥物載體中的該藥物。 A pharmaceutical carrier synthesized by the method of claim 8, wherein when a focused ultrasound is applied to the drug carrier, the structure of the drug carrier is altered to release the drug in the drug carrier.
TW102126498A 2013-07-24 2013-07-24 Composite polymer contrast agent and drug carrier in nano-scale TWI504413B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102126498A TWI504413B (en) 2013-07-24 2013-07-24 Composite polymer contrast agent and drug carrier in nano-scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102126498A TWI504413B (en) 2013-07-24 2013-07-24 Composite polymer contrast agent and drug carrier in nano-scale

Publications (2)

Publication Number Publication Date
TW201503901A TW201503901A (en) 2015-02-01
TWI504413B true TWI504413B (en) 2015-10-21

Family

ID=53018678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102126498A TWI504413B (en) 2013-07-24 2013-07-24 Composite polymer contrast agent and drug carrier in nano-scale

Country Status (1)

Country Link
TW (1) TWI504413B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11266749B2 (en) 2016-07-06 2022-03-08 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11395856B2 (en) 2014-12-31 2022-07-26 Lantheus Medical Imaging, Inc. Lipid-encapsulated gas microsphere compositions and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201103563A (en) * 2009-07-17 2011-02-01 Univ Nat Chiao Tung Drug delivery nanodevice, its preparation method and uses thereof
TW201247225A (en) * 2011-05-17 2012-12-01 Univ Nat Chiao Tung Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201103563A (en) * 2009-07-17 2011-02-01 Univ Nat Chiao Tung Drug delivery nanodevice, its preparation method and uses thereof
TW201247225A (en) * 2011-05-17 2012-12-01 Univ Nat Chiao Tung Drug carrier with thermal sensitivity, manufacturing method thereof, and use of the same as NMR contrast agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蕭義正,《溫度感應型水膠應用於聚焦型超音波熱治療之研究》,大同大學,2007年7月 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395856B2 (en) 2014-12-31 2022-07-26 Lantheus Medical Imaging, Inc. Lipid-encapsulated gas microsphere compositions and related methods
US11266749B2 (en) 2016-07-06 2022-03-08 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11266750B2 (en) 2016-07-06 2022-03-08 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11344636B2 (en) 2016-07-06 2022-05-31 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11529431B2 (en) 2016-07-06 2022-12-20 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11857646B2 (en) 2016-07-06 2024-01-02 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents
US11925695B2 (en) 2016-07-06 2024-03-12 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents

Also Published As

Publication number Publication date
TW201503901A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
Liu et al. Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents
Dheyab et al. Synthesis and coating methods of biocompatible iron oxide/gold nanoparticle and nanocomposite for biomedical applications
Hauser et al. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles
Ramimoghadam et al. Stable monodisperse nanomagnetic colloidal suspensions: an overview
Zhu et al. Magnetic, fluorescent, and thermo-responsive Fe3O4/rare earth incorporated poly (St-NIPAM) core–shell colloidal nanoparticles in multimodal optical/magnetic resonance imaging probes
Hao et al. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles
Oehlsen et al. Approaches on ferrofluid synthesis and applications: current status and future perspectives
Laha et al. Rare‐earth doped iron oxide nanostructures for cancer theranostics: magnetic hyperthermia and magnetic resonance imaging
Liu et al. Synthesis and characterization of highly-magnetic biodegradable poly (d, l-lactide-co-glycolide) nanospheres
Javed et al. MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture
Salehipour et al. Recent advances in polymer-coated iron oxide nanoparticles as magnetic resonance imaging contrast agents
JP6293149B2 (en) Contrast agent and its use for imaging
Bardajee et al. Thermo/pH/magnetic-triple sensitive poly (N-isopropylacrylamide-co-2-dimethylaminoethyl) methacrylate)/sodium alginate modified magnetic graphene oxide nanogel for anticancer drug delivery
Sang et al. A thermo/pH/magnetic-responsive nanogel based on sodium alginate by modifying magnetic graphene oxide: preparation, characterization, and drug delivery
Hammad Biomedical applications of magnetic nanoparticles
Antwi‐Baah et al. Metal‐based nanoparticle magnetic resonance imaging contrast agents: classifications, issues, and countermeasures toward their clinical translation
KR102056948B1 (en) Bilirubin Derivatives Based Ultrasound Contrast Agent For Theranostics
TWI504413B (en) Composite polymer contrast agent and drug carrier in nano-scale
US20120294806A1 (en) Drug carrier with thermal sensitivity, manufacturing method thereof, and use thereof
Mishra et al. Microwave synthesis of chitosan capped silver–dysprosium bimetallic nanoparticles: a potential nanotheranosis device
Zhao et al. Facile fabrication of single-phase multifunctional BaGdF5 nanospheres as drug carriers
Bilalis et al. Multi‐responsive polymeric microcontainers for potential biomedical applications: synthesis and functionality evaluation
Mohapatra et al. Carboxymethyl Assam Bora rice starch coated SPIONs: Synthesis, characterization and in vitro localization in a micro capillary for simulating a targeted drug delivery system
JP2008056827A (en) Magnetic particle and method for producing the same
Favela-Camacho et al. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees