TW201103563A - Drug delivery nanodevice, its preparation method and uses thereof - Google Patents

Drug delivery nanodevice, its preparation method and uses thereof Download PDF

Info

Publication number
TW201103563A
TW201103563A TW98124323A TW98124323A TW201103563A TW 201103563 A TW201103563 A TW 201103563A TW 98124323 A TW98124323 A TW 98124323A TW 98124323 A TW98124323 A TW 98124323A TW 201103563 A TW201103563 A TW 201103563A
Authority
TW
Taiwan
Prior art keywords
nanodevice
following
drug
quantum dot
nanosphere
Prior art date
Application number
TW98124323A
Other languages
Chinese (zh)
Other versions
TWI374751B (en
Inventor
San-Yuan Chen
Shang-Hsiu Hu
Dean-Mo Liu
Kun-Ting Kuo
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW98124323A priority Critical patent/TWI374751B/en
Publication of TW201103563A publication Critical patent/TW201103563A/en
Application granted granted Critical
Publication of TWI374751B publication Critical patent/TWI374751B/en

Links

Abstract

Nanodevice and method for in vivo monitoring and release of drugs are provided. The disclosed nanodevice is characterized in having a drug-loaded nanosphere that is capable of releasing the encapsulated drugs upon magnetically stimulation. The nanodevice may also be used as a contrast agent for in vivo imaging and monitoring the concentration and distribution of the released drugs and/or active compounds injected separately into a target site of a subject.

Description

201103563 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種奈米級藥物傳送裝置,其製備方 法與用途。 【先前技術】 傳送藥物到病患個體體内的途徑有許多種,包括口 服、經鼻吸入、經皮膜擴散、皮下注射及肌肉注射、非經 腸胃道方式和植入等。口服一直是最常見的方式。但是, 目前的口服藥物,包括膠囊及藥疑都還有一些缺點,例 如,藥效不彰、不具控制釋放效果致使藥物太快被吸收或 是吸收不完全、腸胃道不適等其他副作用。此外,這些藥 物可能無法提供局部治療效果,和/或無法即時監控藥物的 釋出情形。因此’亟需一種改良的藥物傳送系統和/或裝 置,以便能更有效地傳送藥物至患者體内,降低副作用, 同時容許在活體内追蹤患者體内標的位置處之藥物釋出 情形。 目前已有多種影像技術可在活體内追蹤金屬性奈米 顆粒,例如,奈米金顆粒等。這些影像技術所產生的影像, 可反應出個體身體内組織與結構密度上的差異。最常使用 的影像技術包括X·光攝影、電腦斷層(c〇mputed tomography,CT)和核磁共振造影res〇nance imaging,MRI)。 本發明設計、製造及採用一種新穎的奈米裝置作為藥 物的傳送載體’可透過刺激個體身體之一特定部位,而能 201103563 主動地、由遠端將藥物釋出,同時並可利用如上述習知造 影技術而於活體内追蹤藥物的釋出情形,包括其濃度與分 佈。 【發明内容】 本揭示内容是有關於一種奈米級藥物傳送裝置,其之 製造方法與用途。此奈米級藥物傳送裝置包括一種特徵為 殼-核結構的奈米球(nanosphere)。此奈米球的核相中可以 包埋有藥物或是生物活性物質,而外殼則是由磁性材料所 製成,並進一步在殼層的表面上鍵結量子點(quantum dot),而構成所謂奈米裝置(nanodevice)。當施加特定磁 場到此奈米裝置的獨特結構上,透過磁性刺激上述磁性外 殼來誘使磁性外殼產生變形,同時量子點產生光學變化, 使得包埋在核相中的藥物或是生物活性物質,能夠根據所 施加磁場的強度與時間長短,以控制釋出的形式被釋放至 受測個體的特定身體部位。此外,也可利用其它適當的造 影技術,例如,X-光攝影、電腦斷層和核磁共振造影,在 有或無外加顯影劑的情況下,於活體内追蹤本揭示内容之 奈米級藥物傳送裝置。 本揭示内容第一態樣是提供一種製造奈米級藥物傳 送裝置的方法。此方法包括以下步驟:(a)提供第一溶液, 其係將奈米球分散在含有鋅鹽之第一溶劑中;(b)提供第 二溶液,其係將至少兩種量子點前驅物在第二溶劑中混 合;(c)將該第一溶液與該第二溶液混合,以在該奈米球 表面上形成一量子點。第一溶劑通常是由兩種選自下列的 溶劑組成,包括三辛基膦(trioctylphosphine,TOP)、四氫咬 201103563 喃(tetrahydrofuran,THF)、C6-18 烯烴類和二曱基亞讽 (dimethylsulfoxid,DMSO);第二溶劑則是烷胺,例如油基 胺(oleylamine)和十六烷胺(hexadecylamine)。量子點前驅 物乃是至少兩種選自以下群組之材料,包括:氯化亞銅 (I)、三氯化銦(III)、碘化銦(III)、硫粉、硬脂酸鋅、氣化 鎘和Te粉。量子點本身為順磁性且可以是以下任一種:201103563 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a nanometer drug delivery device, a preparation method and use thereof. [Prior Art] There are many ways to deliver drugs to patients, including oral, nasal inhalation, transmucosal diffusion, subcutaneous and intramuscular injection, parenteral and implantation. Oral has always been the most common way. However, current oral medications, including capsules and suspicions, have some shortcomings, such as poor efficacy and non-controlled release resulting in too fast absorption of the drug or incomplete absorption, gastrointestinal discomfort and other side effects. In addition, these drugs may not provide a local therapeutic effect and/or may not be able to monitor the release of the drug in real time. Therefore, there is a need for an improved drug delivery system and/or device for more efficient delivery of drugs into a patient, reducing side effects while allowing for the tracking of drug release at a target location within the patient in vivo. A variety of imaging techniques are available to track metallic nanoparticles, such as nanogold particles, in vivo. The images produced by these imaging techniques reflect the differences in tissue and structural density within an individual's body. The most commonly used imaging techniques include X-ray photography, c〇mputed tomography (CT), and nuclear magnetic resonance imaging (MRI). The invention designs, manufactures and adopts a novel nano device as a drug delivery carrier' to stimulate a specific part of an individual's body, and can actively release the drug from the distal end of 201103563, and can utilize the above Know the contrast technique to track the release of the drug in vivo, including its concentration and distribution. SUMMARY OF THE INVENTION The present disclosure is directed to a nanoscale drug delivery device, a method of manufacture and use thereof. This nanoscale drug delivery device comprises a nanosphere characterized by a shell-core structure. The core phase of the nanosphere can be embedded with a drug or a biologically active substance, and the outer shell is made of a magnetic material, and further a quantum dot is bonded on the surface of the shell layer to form a so-called nai. Meter device (nanodevice). When a specific magnetic field is applied to the unique structure of the nano device, the magnetic outer casing is magnetically stimulated to induce deformation of the magnetic outer casing, and the quantum dots are optically changed, so that the drug or biologically active substance embedded in the nuclear phase can Depending on the strength of the applied magnetic field and the length of time, it is released into the specific body part of the subject to be tested in a controlled release form. In addition, other suitable imaging techniques, such as X-ray photography, computed tomography, and magnetic resonance imaging, can be used to track the nanoscale drug delivery device of the present disclosure in vivo with or without the application of an additive. . A first aspect of the present disclosure is to provide a method of making a nanoscale drug delivery device. The method comprises the steps of: (a) providing a first solution that disperses nanospheres in a first solvent comprising a zinc salt; (b) providing a second solution that is capable of at least two quantum dot precursors Mixing in the second solvent; (c) mixing the first solution with the second solution to form a quantum dot on the surface of the nanosphere. The first solvent is usually composed of two solvents selected from the group consisting of trioctylphosphine (TOP), tetrahydrofuran (THF), tetrahydrofuran (THF), C6-18 olefins and dimethylsulfoxidase. , DMSO); the second solvent is an alkylamine such as oleylamine and hexadecylamine. The quantum dot precursor is at least two materials selected from the group consisting of cuprous chloride (I), indium (III) trichloride, indium (III) iodide, sulfur powder, zinc stearate, Gasification of cadmium and Te powder. The quantum dots themselves are paramagnetic and can be any of the following:

CuInZn、CuInS2、CdS、ZnS 或 CdTe。 依據一實例,上述的奈米球是由包含以下步驟的方法 所形成:(a)在一極性溶劑中將聚合性材料、無機材料或 其之混合物與一藥物彼此混合成一懸浮液,藉此形成一内 含藥物的奈米顆粒;和(b)在該懸浮液中加入至少兩種金 屬氧化物前驅物;其中該至少兩種金屬氧化物前驅物可圍 繞者s玄内含藥物的奈来顆粒而自我組裝成一金屬氧化物 外殼。在一實施方式中,此聚合性材料是選自由聚乙烯11比 咯烷酮(PVP)、聚乙烯(PE)、聚醯胺、聚酯、聚酐、聚醚、 聚縮醛、多醣及磷脂所組成的物質群組中;且此無機材料 是選自由氧化鈦、氧化矽和一種由鈣與磷所形成的複合材 料所組成的物質群組中。此金屬氧化物外殼是包含以下任 一物質之單晶殼層、多晶殼層或是非晶殼,包括Fe2〇3 Fe304、CoFe204、MnFe204 或 Gd203。 本揭示内容第二態樣是提供一種奈米裝置。此奈米裝 置包括一奈米球和一量子點。此奈米球含有由聚合性材 料、無機材料或其之組合所製成的核,以及由金屬乳化物 製成的外殼。上述之量子點是沉積在外殼表面’而且此量 子點是可以選自以下物質組成的群組中,包括CuInZn、 201103563CuInZn, CuInS2, CdS, ZnS or CdTe. According to an example, the above-described nanosphere is formed by a method comprising the steps of: (a) mixing a polymerizable material, an inorganic material or a mixture thereof with a drug into a suspension in a polar solvent, thereby forming a drug-containing nanoparticle; and (b) adding at least two metal oxide precursors to the suspension; wherein the at least two metal oxide precursors may surround the Nai granules of the drug And self-assembled into a metal oxide shell. In one embodiment, the polymeric material is selected from the group consisting of polyethylene 11 pyrrolidone (PVP), polyethylene (PE), polyamine, polyester, polyanhydride, polyether, polyacetal, polysaccharide, and phospholipid In the group of substances composed; and the inorganic material is selected from the group consisting of titanium oxide, cerium oxide, and a composite material composed of calcium and phosphorus. The metal oxide outer shell is a single crystal shell layer, a polycrystalline shell layer or an amorphous shell comprising any of the following materials, including Fe2〇3 Fe304, CoFe204, MnFe204 or Gd203. A second aspect of the present disclosure is to provide a nanodevice. The nanodevice includes a nanosphere and a quantum dot. This nanosphere contains a core made of a polymerizable material, an inorganic material or a combination thereof, and an outer casing made of a metal emulsion. The above quantum dots are deposited on the surface of the outer casing and the quantum dots are selected from the group consisting of CuInZn, 201103563.

CuInS2、CdS、ZnS和CdTe。適合包埋在核中的藥物可以 是以下任一種:抗癲癇劑、抗腫瘤劑、抗菌劑、抗病毒气、 抗增生劑、抗發炎劑、抗糖尿病劑或是荷爾蒙。 β 本揭示内容第三態樣是提供一種在活體内追蹤依 上述方法所製造而成之奈米裝置’以及利用磁性誘發 自此奈求裝置中釋出的方法。所述方法包含以下步驟 施用足量之本發明奈米裝置到一個體之—身體部位;和 以強度在約0.05 kA/m至2.5 kA/m間的磁場,磁性刺激該 身體部位約10至180秒,使得被包埋在該奈米裝置中^ 藥物被釋放至該個體中被磁性刺激的身體部位。^述方法 更包含以下步驟:藉由χ_域影、電腦斷層和核磁共振^ 影技術,在不外加顯影劑的情況下,以本揭示内容 裝置於活體内追蹤該個體身體部位。所述的身體 二只 JS- / η 口 MSL 可以 透過以下的詳細說明及附隨之請求範圍 發明的這些及其他優點。 κ ί解本 在敘述前,應瞭解在說明書及後附 的用語不應被_成_在—般及字典上 了最佳釋_允許發明人適當地定義㈣之,,於為 所提之敘述是僅為說明之二因:非:此 _下,對树明為其他均等«及修改是可=精神及 【實施方式】 201103563 下文中將配合附圖詳細說明本發明之較佳實施例。 以下描述用於活^ Λ 奈米裝置,其之製造影和/或磁性誘發藥物釋放的 新穎的奈料置,魏。可絲地自料控制此 ^個體身上的奴未部位,例如人體之腦部 官中。而且,可利用、* , 〜凡仕恭 習知顯影劑的當的影像技術,在有或無額外添加 、月/下,於活體内追蹤此奈米裝置。習知_ 影劑的例子包括有访酿A >知顯 ;ilS久鋇、碘系顯影劑、錮、釓、氧化鐵 和/或與鐘螯合的氧化織。 、弟(a)圖其為本發明之奈米級藥物傳送裝置1 〇 的示意圖。此夺米梦罢 〇7Γ、木屐置10是由繪示在第1(b)圖之奈米球 1 Ί子點14兩者所共同構成。在此實例中,只綠示 出一個量子點14 ’但是,需了解在必要時,奈米球12上 可以包含有多個量子點14。此奈米球12的特徵是具有殼/ 核結構。4玄16可由聚合性材料、無機材料或此兩種材料 之$合來構成’外殼18則是由金屬氧化物構成。量子點 14是沉積在外殼18的表面上。此奈米裝置1〇是設計成可 將藥物包埋在奈米球12之由聚合性材料、無機材料或此 兩種材料之纟且合所構成的核心16中。利用磁場(magnetic field,MF)磁性刺激外殼18使金屬氧化物外殼μ變形和/ 或崩塌’而能以可控制方式將包埋在核16中的藥物20釋 出。 製造奈米球 製造奈米球的方法已揭示在公開文獻中(參見Hu et al.,“Core/Single-Crystal-Shell Nanospheres for Conducting 201103563CuInS2, CdS, ZnS and CdTe. The drug suitable for embedding in the nucleus may be any of the following: an anti-epileptic agent, an anti-tumor agent, an antibacterial agent, an anti-viral gas, an anti-proliferative agent, an anti-inflammatory agent, an anti-diabetic agent, or a hormone. The third aspect of the present disclosure provides a method of tracking a nanodevice manufactured by the above method in vivo and a method of releasing it by magnetic induction. The method comprises the steps of applying a sufficient amount of the nanodevice of the invention to a body-body part; and magnetically stimulating the body part by about 10 to 180 with a magnetic field having an intensity between about 0.05 kA/m and 2.5 kA/m In seconds, the drug is embedded in the nanodevice. The drug is released to the body part of the individual that is magnetically stimulated. The method further comprises the steps of: tracking the body part of the individual in vivo by means of the present disclosure by means of χ_domain shadow, computerized tomography and nuclear magnetic resonance imaging without the application of a developer. The body of the two JS- / η-port MSLs can be exemplified by the following detailed description and the accompanying claims. Before the narrative, it should be understood that the terms in the specification and the attached words should not be interpreted as the best in the dictionary and the dictionary. The inventor is allowed to define (4) appropriately. It is only for the purpose of the explanation. The following is a detailed description of the preferred embodiment of the present invention with reference to the accompanying drawings. The following describes a novel nanomaterial for use in a live nanodevice, which produces a shadow and/or magnetically induced drug release. It is possible to control this part of the slave in the body, such as the brain of the human body. Moreover, it is possible to use the image technology of the developer to track the nano device in the living body with or without additional addition, monthly/lower. Conventional _ Examples of the agent include a visitor A >knowledge; ilS long-term iodine, iodine-based developer, hydrazine, hydrazine, iron oxide and/or oxidized woven with bell. (a) is a schematic view of the nano drug delivery device 1 of the present invention. This is the combination of the 梦7Γ and the rafter 10, which are formed by the nanosphere 1 and the scorpion point 14 shown in Fig. 1(b). In this example, only one quantum dot 14' is shown in green. However, it is to be understood that the quantum sphere 12 may contain a plurality of quantum dots 14 when necessary. This nanosphere 12 is characterized by a shell/core structure. 4 Xuan 16 may be composed of a polymerizable material, an inorganic material or a combination of the two materials. The outer casing 18 is composed of a metal oxide. Quantum dots 14 are deposited on the surface of the outer casing 18. The nanodevice 1 is designed to embed the drug in the core 16 of the nanosphere 12 composed of a polymeric material, an inorganic material or a combination of the two materials. The drug 20, which is embedded in the core 16, can be released in a controlled manner by magnetically stimulating the outer casing 18 with a magnetic field (MF) to deform and/or collapse the metal oxide outer casing. Making nanospheres The method of making nanospheres has been disclosed in the open literature (see Hu et al., "Core/Single-Crystal-Shell Nanospheres for Conducting 201103563

Drug Release via a Magnetically Triggered RupturingDrug Release via a Magnetically Triggered Rupturing

Mechanism”,Adv. Mater.,2008 20,2690-2695),在此併入 其全部揭示内容做為參考。在一實施方式中,奈米球是由 包含以下步驟的方法來形成,包括:在諸如水或是Cw醇 類的極性溶劑中將1-10% (重量%)之聚合性材料、無機材 料或其之混合物彼此混合成一懸浮液,藉此形成一聚合物 型、無機型或聚合物/無機型之奈米顆粒;以及在該懸浮液 中加入至少兩種金屬氧化物前驅物;其中該至少兩種金屬 氧化物前驅物可圍繞著該内奈米顆粒而自我組裝成一金 屬氧化物外殼。 可用來形成奈米球之核心相的適合的聚合性材料,包 ^ ’但不限於’聚乙埽吼洛烧酮(pvp)、聚乙婦㈣、聚酿 胺、聚酷、聚野、聚峻、聚縮酿、多醋及構脂。上述之多 醣可以是澱粉、输炝本 m a ^ , 、β 纖維素、果膠、幾丁質或甲殼素;且上述 m t疋磷脂膽鹼(pc)、磷脂醯絲胺酸(ps)、磷脂乙 為PVP。it當的ίΐΓ脂。在一實例中’此聚合性材料 氣彳一Μα/、、、機材料包括,但不限於,二氧化鈦、二 氧化碎和一種由艇· 中,此無機材料為二/酸鹽組成的複合材料。在一實例 料為二氧化跃。〜1切;且在另—實射,此無機材 可圍繞 〜種金屬氧化物外y或無機性奈米顆粒而自我組裝成 於,氯化亞鐵(11)、^金屬氧化物前驅物包括’但不限 (II)、醋酸鐵(In)、、g^化鐵(111)、氣化亞鈷(11)、硝酸亞鐵 此金屬氧化物外拉;、麵(11)、氯化釓(ΙΠ)和醋酸錳(11)。 双可以是包含以下任一物質之單晶殼 201103563 層、多晶殼層或是非晶殼層,包括Fe2〇3、Fe3〇4、c〇Fe2Q4、 MnFe2〇4 或 Gd203。 4 在一實例中,此金屬氧化物外殼是一種單晶型氧化鐵 殼層,透過包含以下步驟的方法所形成:在諸如水或是A 6 醇類的極性溶劑中,以莫耳比介於約2 :][至約5 : !之^ 例,將包含氯化亞鐵(II)和氣化鐵(111)在内的至少兩種金屬 氧化物前驅物混合並形成一懸浮液;調整pH值到7至工2 間;讓所形成的氧化鐵圍繞著奈米顆粒而自我組裴成一金 屬氧化物外殼。適用的Cw醇類可選自曱醇、乙醇、丙醇、 異丙醇、丁醇、異丁醇、戊醇、異戊醇、己醇等類似物。 也可使用適當的金屬氧化物前驅物,依照上述步驟來形成 由其他金屬氡化物構成的金屬氧化物外殼。舉例來說,可 以 CoCl2 和 FeCl3 來形成 c〇Fe204 外殼;以 MnCl2 和 FeCl3 來形成MnFe2〇4外殼;或以醋酸釓或Gd(〇H)2來形成 Gd203外殼。 如果要製造的是载有藥物的奈米球,則可將在上述懸 浮液中添加生物活性物質並將其混合均勻,使得藥物可被 包埋在聚合性材料或無機性材料結構中;接著如上述方式 以金屬氧化物圍繞著含有藥物的奈米顆粒外,$而組裝成 金屬氧化物外殼,而形成所需的載有藥物的奈米球。可被 包埋在奈米顆粒之核心相中的藥物量多寡,一般需透過實 驗來決定,而此多半取決於所要包埋的藥物類型而定。在 本文中「藥物(dmg)」或「生物活性物質卬沁丨叫丨^丨active substance)」兩名詞可交替使用,並係指可用來治療和/或 預防多種藥學領域中之情況且可被施用在活的有機體,如 201103563 哺乳類動物,特別是人類身上的化合物或組合物。可用 於本文中的藥物包括,但不限於:核酸,如DNA或小型 干擾性RNA(siRNA);胜肽;蛋白質,如牛血清白蛋白、 醣蛋白或膠原蛋白;抗生素;抗氧化劑,如維生素E或維 生素C (即,抗壞血酸);免疫原性製備物,例如疫苗;抗 癲癇藥劑,例如乙醯嗤確胺(acetazolamide)、卡馬西平 (carbamazepine)、可洛巴寧(clobazam)、氣石肖安定 (clonazepam)、寧神平(diazepam)、乙琥胺(ethosuximide)、 乙苯妥因(ethotoin)、非氨醋(felbamate)、填笨妥因 (fosphenytoin)、加巴潘 丁(gabapentin)、樂命達 (lamotrigine)、左乙拉西坦(levetiracetam)、美芬妥因 (mephenytoin)、美沙比妥(metharbital)、甲琥胺 (methsuximide)、甲氮醯胺(methazolamide)、除癲達 (oxcarbazepine)、苯巴比妥(Phenobarbital)、苯妥因 (phenytoin)、苯琥胺(phensuximide)、普瑞巴林 (pregabalin)、去氧苯巴比妥(primidone)、丙戊酸鈉(sodium valproate)、司替物醇(stiripentol)、0塞加濱(tiagabine)、托 0比酉旨(topiramate)、三曱雙酮(trimethadione)、丙戊酸 (valproic acid)、氨己烯酸(vigabatrin)或唾尼沙胺 (zonisamide);抗腫瘤藥劑,例如紫杉醇(taxol)、喜樹驗 (camptothecin,CPT)、抗癌妥(topotecan,TPT)或治癌妥 (irinotecan, CPT-11); 抗菌劑,例如氧化鋅或四級胺化合 物;抗病毒藥劑,例如無環鳥苷(acyclovir)、雷巴威林 (ribavirin)、九那米爾(zanamivir)、奥0塞米爾(oseltamivir)、 齊多夫鍵(zidovudine)或拉脈優銳(lamivudine);抗增生藥 201103563 劑’例如放線菌素(actinomycin)、阿黴素(doxorubicin)、唐 黴素(daunorubicin)、戊黴素(valrubicine)、泛達黴素 (idarubicin)、表阿黴素(epirubicin)、博來黴素(bleomycin)、 光輝黴素(plicamycin)或絲裂黴素(mitomycin);抗發炎藥 劑’例如類固醇(corticosteroids)、布洛芬(ibuprofen)、除 癌錠(methotrexate)、阿思匹靈(aspirin)、水楊酸(salicyclic acid)、二苯氫胺(diphenyhydramine)、人人百炎錠 (naproxen)、保泰松(phenylbutazone)、。弓j 〇朵美辛 (indomethacin)或酮基布洛芬(ketoprofen);抗糖尿病藥 劑,包括續醯尿素(sulfonylureas),例如曱苯績丁脲 (tolbutamide)、醋續己脲(acetohexamide)、妥拉續脲 (tolazamide)、氯石黃丙脲(chlorpropamide)、°比績環己脲 (glipizide)、格列本脲(glyburide)、格列美脲(glimepiride) 或甲磺π比脲(gliclazide),苯丙胺酸衍生物(meglitinides), 例如瑞格列奈(repaglinide)或那格列萘(nateglinide);雙脈 類(biguanides)例如二甲双胍(metformin)、苯乙双脈 (phenformin)或丁双胍(buformin); 售σ坐烧二酮類似物 (thiazolidinediones)例如羅格列酮(rosiglitazone)、皮利酮 (pioglitazone)或曲格列酮(troglitazone); α-葡萄糖苷酶抑制 劑(alpha-glucosidase inhibitors)例如米格列醇(miglitol)或 阿卡波糖(acarbose);類胜肽(peptide analogs),例如艾塞那 肽(exenatide)、利拉鲁肽(liraglutide)、他司鲁肽 (taspoglutide)、维格列 '汀(vildagliptin)、佳糖維(sitagliptin) 或普蘭林肽(pramlintide);和荷爾蒙,例如胰島素、表皮 生長因子(epidermal growth factor, EGF)和固醇類,例如黃 201103563 f素杏雌激素1上腺皮#_醇 明一實施方式,奈米球中所包含的荜=素。依據本發 ;〇,)之間,例如約。^ 2、5、8、1〇、19 1 c υ·2、〇·5、1、 35:3δ, 藝的:應;2二5需:声或實:%。任何醫藥領域中具通常技 磁場誘導_===::,= 藥物為諸如乙琥胺之類的二;The mechanism, Adv. Mater., 2008 20, 2690-2695), the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in the the the the the In a polar solvent such as water or a Cw alcohol, 1-10% by weight of a polymerizable material, an inorganic material or a mixture thereof is mixed with each other to form a suspension, thereby forming a polymer type, an inorganic type or a polymer. /inorganic nanoparticle; and adding at least two metal oxide precursors to the suspension; wherein the at least two metal oxide precursors self-assemble into a metal oxide shell around the inner nanoparticle A suitable polymerizable material that can be used to form the core phase of the nanosphere, including but not limited to 'polyacetone ketone (pvp), polymethylene (four), polyamine, poly, poly, Jujun, polycondensation, vinegar and vegetable fat. The above polysaccharide may be starch, sputum, ma ^, β cellulose, pectin, chitin or chitin; and the above mt phospholipid choline (pc ), phospholipid lysine (ps), phospholipid B is PVP. In an example, the polymer material is composed of, but not limited to, titanium dioxide, oxidized granules and a boat, and the inorganic material is a di-acid salt. Composite material. In one example, it is a dioxide oxidizer. ~1 cut; and in another, the inorganic material can self-assemble around the metal oxide y or inorganic nano particles, chlorination Ferrous (11), metal oxide precursors include 'but not limited (II), iron acetate (In), g ^ iron (111), cobaltated cobalt (11), ferrous nitrate Extrusion; face (11), barium chloride (antimony) and manganese acetate (11). Double may be a single crystal shell 201103563 layer, polycrystalline shell layer or amorphous shell layer containing any of the following materials, including Fe2 〇3, Fe3〇4, c〇Fe2Q4, MnFe2〇4 or Gd203. 4 In one example, the metal oxide outer shell is a single crystal type iron oxide shell formed by a method comprising the following steps: Or a polar solvent of an A 6 alcohol, containing a molar ratio of about 2:] [to about 5: !, which will contain ferrous chloride (II) and gas. At least two metal oxide precursors, including iron (111), are mixed and form a suspension; the pH is adjusted to between 7 and 2; and the formed iron oxide is self-assembled into a metal around the nanoparticle. Oxide shell. Suitable Cw alcohols may be selected from the group consisting of decyl alcohol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isoamyl alcohol, hexanol, etc. Suitable metals may also be used. An oxide precursor according to the above steps to form a metal oxide shell composed of other metal halides. For example, CoCl2 and FeCl3 may be used to form a c〇Fe204 shell; MnCl2 and FeCl3 may be used to form a MnFe2〇4 shell; Barium acetate or Gd(〇H)2 is formed to form a Gd203 shell. If a drug-loaded nanosphere is to be produced, the biologically active substance may be added to the above suspension and mixed uniformly so that the drug may be embedded in the structure of the polymerizable material or the inorganic material; In the above manner, the metal oxide is surrounded by the drug-containing nanoparticle, and assembled into a metal oxide outer shell to form a desired drug-loaded nanosphere. The amount of drug that can be embedded in the core phase of the nanoparticle is generally determined by experimentation, and this depends on the type of drug to be embedded. In this context, the terms "drug (dmg)" or "biologically active substance" are used interchangeably and refer to conditions that can be used to treat and/or prevent a variety of pharmaceutical fields and can be A compound or composition that is administered to a living organism, such as 201103563, a mammal, particularly a human. Drugs useful herein include, but are not limited to, nucleic acids such as DNA or small interfering RNA (siRNA); peptides; proteins such as bovine serum albumin, glycoproteins or collagen; antibiotics; antioxidants such as vitamin E Or vitamin C (ie, ascorbic acid); immunogenic preparations, such as vaccines; anti-epileptic agents, such as acetazolamide, carbamazepine, clobazam, sulphate Clonazepam, diazepam, ethosuximide, ethotoin, felbamate, fosphenytoin, gabapentin, Lamotrigine, levetiracetam, mephenytoin, metharbital, methsuximide, methazolamide, epilepsy Oxcarbazepine), Phenobarbital, phenytoin, phensuximide, pregabalin, primidone, sodium valproate Substitute Alcohol (stiripentol), 0 tiagabine, topiramate, trimethadione, valproic acid, vigabatrin or salnifloxacin (zonisamide); anti-tumor agents, such as taxol, camptothecin (CPT), topotecan (TPT) or irinotecan (CPT-11); antibacterial agents such as zinc oxide or a quaternary amine compound; an antiviral agent such as acyclovir, ribavirin, zanamivir, oseltamivir, zidovudine or Lamivudine; anti-proliferative drug 201103563 'such as actinomycin, doxorubicin, daunorubicin, valrubicine, idarubicin, Epirubicin, bleomycin, plicamycin or mitomycin; anti-inflammatory agents such as corticosteroids, ibuprofen, cancer removal Ingot (methotrexate), aspirin, aspirin, Salicyclic acid, diphenyhydramine, naproxen, phenylbutazone. Bow j indomethacin or ketoprofen; anti-diabetic agents, including sulfonylureas, such as tolbutamide, acetohexamide, Tolazamide, chlorpropamide, glipizide, glyburide, glimepiride or gliclazide, amphetamine An acid derivative (eg, gliglelinide or nateglinide); a biguanides such as metformin, phenformin or buformin; Selling thiazolidinediones such as rosiglitazone, pioglitazone or troglitazone; alpha-glucosidase inhibitors such as rice Migitol or acarbose; peptide analogs, such as exenatide, liraglutide, taspoglutide, weige Column '' vildagliptin, Sugar vitamins (sitagliptin or pramlintide); and hormones, such as insulin, epidermal growth factor (EPF) and sterols, such as yellow 201103563 f apricot estrogen 1 glandular skin #_ 醇明In one embodiment, the 荜=素 contained in the nanosphere. According to this hair; 〇,), for example, about. ^ 2,5,8,1〇,19 1 c υ·2, 〇·5, 1, 35:3δ, Art: Should; 2 2 5 Need: Sound or Reality: %. In any medical field, there is a general magnetic field induction _===::, = the drug is two such as ethosylamine;

施方=藥物為諸如喜樹卿-⑴之類的二另J _至100、施^式中,所製成的奈米球平均直徑約為10 至lOOnm間,例如約1〇、u、 17广"。,、4。、5。、60、7。、8。、9= 八之非晶形外殼和單晶核心也暗示成氧 物會圍繞著PVP核心而自我組裳成氧化鐵外殼。鐵别駆 製造奈米裝置 本揭示内容之一是有關於一種用來製 的奈米裝置的方法。所揭示方法特徵為含有以下步驟:、 ⑷提供第-溶液’其餘奈米球分散在含 第一溶劑中’且該鋅鹽與該奈米球在該第—溶劑^ 为別為約1-40毫克/毫升和0.02-0.2毫莫耳/毫升;/又 ⑻提供第二溶液’其係將至少兩種量子點前驅物在 劑中混合’其中每-種量子點前驅物在該第二溶劑 中的濃度約為0.003-0.03毫莫耳/毫升; 12 201103563 (c)在惰性氣體與約lot:〜300t的溫度下 :液與该第二溶液混合,以在該奈米球表面上形成」量子 …ΐ步驟⑻令’第一溶液是利用在鋅鹽存在下,將太 η文在第一溶劑中而形成。奈米球可由上述方法來; 二:或不包含治療性藥劑或藥物在其核心 實”’可依據上述揭示的方法將藥物载入至 二相:。在另一實例中,可將奈米球當作顯影劑使用, 因此不需包埋藥物在其核心相中。 第-溶劑通常是由兩種選自下列的溶劑組成,包括 一肀基膦(trioctylphosphine, TOP)、四讀咕 ⑽rahydrofuran,THF)、Q i8 烴類和二至基 :ethy^xid,DMS0)。在—實例中,第—溶劑是= 和己朗組成。可用於本發明之適當的辞鹽包括,但 1 ’二乙基二硫代胺基f酸鋅鹽。分散在第一溶液中 的不未球濃度約在冑克/亳升間,例如約卜5、1〇、 古广^ 18 2〇、22、25、28、30、32、35、38 或 40 毫 2升。分散在第-溶液中的鋅鹽濃度則約在㈣2 _ 〇2 毫莫耳/毫升間,例如約⑽、G 〇3、〇 〇5、〇 〇6、〇 〇7、 0.08 ' 0.1 > 0.11 s 0 12 > 〇 ^ * U.12 0.13、0.14、0.15、〇.16、0.17、 0.18、0.19或〇·2毫莫耳/亳升。 在步騾(b)中’第二溶液是藉由在第二溶劑中混合至 少兩種量子點前驅物所製備而成的。在一實例中,第二溶 :則是刪員’例如,油基胺(ο——或十六烧胺 (heXadeCylamine)。但是’也可使用其他類型的溶劑,只要 13 201103563 該溶劑可將量子點前驅物溶解即可。依據所欲沉積在奈米 球外殼表面的量子點種類來選擇適當的量子點前驅物,而 適合用在本發明中的量子點包括,但不限於,CuInZn、 CuInS2、CdS、ZnS或CdTe。如果欲求的量子點是CdS, 則可選擇氯化鎘(Π)和硫粉當作量子點前驅物。在一實例 中,欲求的量子點是CuInZn,因此所選的量子點前驅物包 括氯化亞銅(I)、三氣化銦(III)、峨化銦(III)和硬脂酸鋅。 當所求的量子點是CuInS2時,則可選擇氯化亞銅(I)、三氯 化銦(III)、職化銦(III)和硫粉做為量子點前驅物。在另一 實例中,是使用硬脂酸鋅和硫粉做為前驅物來沉積ZnS量 子點,並使用氯化鎘和Te粉來沉積CdTe量子點。每一量 子點前驅物在第二溶液中的濃度約在0.003-0.03毫莫耳/ 毫升間,例如約為 0.003、0.005、0.007、0.009、0.0卜 0.012、 0.014、0.016、0.018、0,02、0,022、0.024、0.026、0.028 和0.03毫莫耳/毫升。 最後,在步驟(c)中,是在諸如氮、氦、氖、氬或其 之組合的惰性氣體環境以及介於約l〇°C至300°C的溫度 下,將第一溶液與第二溶液彼此混合,以在奈米球表面形 成量子點。在一實例中,操作溫度是設在約140°C。 依據上述方式所製造成的奈米裝置可做為一種藥物 載體,用來傳送藥物到一受測個體體内的任一標的位置 處,例如人體的腦部或任何其他器官;或是可將所製造成 的奈米裝置當作一種工具來造影並追蹤受測個體内標的 位置處之藥物的藥物動力學。 14 201103563 活體内造影及磁性誘發藥物釋放 本揭示内容更進一步態樣在於提供一種活體内造影 及磁性誘發藥物自依前述方式製成之奈米裝置中釋出的 方法。所揭示方法包含以下步驟:(a)施用足夠量之本發 明的奈米裝置到受測個體的身體部位;及(b)在該身體部 位施加〆介於約〇·〇5 kA/m至2.5 kA/m的磁場一段約1〇 至180秒的時間’來磁性誘發該奈米裝置,使包埋在該奈 米裝置中的藥物可被釋放至該受測個體的身體部位中。所 揭示方法更包括以下步驟:在不使用額外添加的顯影劑情 況下,以選自下列的造影方法來追蹤該受測個體的身體部 位’包括電子自旋共振(electron spin resonance, ESR)造 影、X-光造影、電腦斷層(computed toln〇graphy,CT)造影 和核磁共振(MRI)造影。 本文所指的受測個體是人類或非人類的動物。非人類 的動物實例包括所有的脊椎類動物,例如哺乳類,如靈長 類、狗、嚅齒類(如,小鼠與大鼠)、貓、羊、馬或豬;和 非哺乳類,如鳥類、兩棲類、爬蟲類等。在一實例中,此 文測個體是人類。本揭示内容的奈米裝置可利用吸入或注 射方式而系統性地施用到受測個體體内;或利用靜脈注射 或表面塗抹而施用至局部區域’例如施用到腸胃道、肝或 腎臟系統,或是到如腹部、腰部脊柱、手臂或腿的區域) 或同樣利用靜脈注射或表面塗抹而施用至受測個體體内 或體表的特定、冶療部位。這些和其它可能的施用方法、途 徑已是此技術領域中熟習技術人士所能了解並輕易掌握 的技術,因此也應涵蓋在本揭㈣容的料中。適合進行 201103563 主射的身體部位可依據以下條件來選擇,例如所 活性藥劑種類、個體個人身體狀況包括性別、年齡、體、、 和/或目前及過去的病史。有經驗的醫師可在不 _ 的情況下來決定適合進行注射的身體部位。在二 此f體部位是人類的上臂部位。在另一實例中,’ 位疋人類的腦部。依據本揭示内容更進一步 所述的奈米裝置不會對即將吸入或注射:二人 :健康有任何安全性上的威脅’亦即,此奈米i置= 、依據本揭示内容的實施例,可利用注射、口服、灌注 d::',將此裝載有藥物的奈米裝置引入至受測個體 體縣内,讓此奈米裝置在有興趣的身體部位内的 處/也就是希望藥物被釋出的部位(例如腦 了有較㊅濃度。在此奈米裝置本身保持幾乎完整的情 办姑可利用電子自旋共振(eleCtr〇n Spin re繼ance,ESR) =技術來追縱此奈米裝置在體内該深體部位中的濃度 是:種核磁共振造影技術,藉由通常發^ 〜叫中的動態核極化所強化的磁共振來產生影像。通 吊=顯影#丨的電子過渡頻率照射該特定身體部位來進 夕H ^本揭示内容中’顯影劑即為奈米裝置的氧化鐵 習:,也可合併使用本揭示内容的奈米裝置與其它 ϋ影劑’―起來提供高品質的影像。適當的 及=:限於,硫酸鎖一劑,、-、氧化鐵 201103563 =㈣最初㈣像之後,利用磁場誘發使奈米裝置 „化物外殼完全或部分崩解,而將包埋在奈米裝置 藥物釋放到標的位置。詳言之,以磁場照射該 身體部位-段時間,例如約1〇秒至18〇秒,以釋出所包 埋的藥物到該身體部位中,而產生特定的治療效果,例如 轉錄基因或治療癌症。磁場(magnetie fidd,娜)的強度從 約 〇.〇5kA/m至約 2.5kA/m,例如約 〇〇5、〇 卜〇2 〇3、 〇.4、0.5、0.6、0.7、0.8、0.9、L0、】.卜 12、13、14、 1.5、1.6、1.7、1.8、1.9、2.0、2」、2.2、2.3、2.m5kA/m。 施加MF的期間從約10秒到約18〇秒,例如約1〇、2〇、 3〇、4〇、50、60、7〇、80、9〇、1〇〇、11〇、12〇13()、14()、 =、160、170或180秒。一旦經過磁性刺激後,沉積在 外殼層表面上的量子點會吸收磁性能量,使奈米裝置的金 屬氧化物外殼變形,進而使包埋在核心相中的藥物可被釋 放出來到標的位置。在最極端的情況下,整個金屬氧化物 外殼在磁場刺激後會完全崩解,使得藥物被迅速釋出。因 此,可透過控制所施加磁場的強度與時間,來控制被釋出 =藥物量多募。換言之’可透過適#的調整施加到身體特 定部位處的磁場強度和/或時間,來控制性地釋出包埋在本 揭示内容奈米裝置中的藥物量。 一旦包埋在核心相中的藥物被釋出後,即可利用工 技術進行後續測量,以繪出該藥物的藥動學關係,因此, 可利用MRI中的NMR訊號來監控/測量所釋出藥物的濃度 和/或分佈。舉例來說,利用^^^尺訊號來監控所釋放藥物 的動力學或產生可顯示顯影劑(即,本揭示内容的奈米襞置 201103563 分佈的三維影像,並用以推測所關連藥物之相符的藥動性 質。 依據本揭系内容另一實施例’可使用本揭示内容一空 的奈米裝置作為顯影劑來追蹤或造影另一活性藥物(例 如’安非他命),此活性藥物可在施用過本揭示内容的奈米 裝置後,再被注射或聚集到個體之一標的處。 以下,將透過特定實施例及附隨圖示’進一步闡述本 發明内容。需知’除非另做說明’否則圖示中相同元件符 號代表相同元件。 實施例 以下實施例係為了闡述本發明特定態樣而提供,本發 明範疇並不侷眼於此。 實施例1 製造及分析包埋有模型藥物的奈米裝置 1.1 製造pvP-Fe304核-殼奈米球 將聚乙烯基吡咯烷酮(PVP)溶在蒸餾水中,使濃度為 4%(重量%),接著將此PVP溶液加熱至80°C。在此PVP 溶液中,加入〇·〇1毫克的綠色螢光物質-異硫氰酸螢光素 (fluorescein isothiocyanate,TITC) ’ 攪拌混合約 6 小時。溶 液中的PVP會自動組裝成奈米球並將FITC包埋在其中而 形成載有FITC的PVP奈米顆粒。在充氮下,將The prescription=drug is two J_ to 100, such as Xi Shuqing-(1), and the prepared nanospheres have an average diameter of about 10 to 100 nm, for example, about 1 〇, u, 17 Wide ". ,, 4. , 5. 60, 7. ,8. , 9 = eight amorphous shell and single crystal core also suggests that oxygen will surround the PVP core and self-assembled into an iron oxide shell. Iron bismuth Manufacture of nanodevices One of the present disclosures relates to a method for making a nanodevice. The disclosed method is characterized by the steps of: (4) providing a first solution 'the remaining nanospheres dispersed in the first solvent' and the zinc salt and the nanosphere in the first solvent are about 1-40 Mg/ml and 0.02-0.2 millimoles/ml; / (8) provides a second solution 'which mixes at least two quantum dot precursors in the agent' in which each quantum dot precursor is in the second solvent The concentration is about 0.003-0.03 millimoles/ml; 12 201103563 (c) at a temperature of about inert gas and about lot: ~300t: the liquid is mixed with the second solution to form a quantum on the surface of the nanosphere ...ΐStep (8) Let 'the first solution be formed in the presence of a zinc salt, too η in the first solvent. The nanosphere can be obtained by the above method; two: or no therapeutic agent or drug at its core can be loaded into the two phases according to the method disclosed above: In another example, the nanosphere can be Used as a developer, so there is no need to embed the drug in its core phase. The first solvent is usually composed of two solvents selected from the group consisting of trioctylphosphine (TOP), tetradium (10) rahydrofuran, THF. ), Q i8 hydrocarbons and di- to bases: ethy^xid, DMS0). In the examples, the first solvent is = and hexan. Suitable salts for use in the present invention include, but 1 'diethyl a thioaminyl-f-acid zinc salt. The concentration of the non-spherical dispersion in the first solution is between about gram/μl, for example, about 5, 1 〇, Gu Guang ^ 18 2 〇, 22, 25, 28, 30, 32, 35, 38 or 40 liters. The concentration of zinc salt dispersed in the first solution is between (4) 2 〇 2 mM/ml, for example about (10), G 〇 3, 〇〇 5, 〇 〇6, 〇〇7, 0.08 ' 0.1 > 0.11 s 0 12 > 〇^ * U.12 0.13, 0.14, 0.15, 〇.16, 0.17, 0.18, 0.19 or 〇·2 毫In step (b), the second solution is prepared by mixing at least two quantum dot precursors in a second solvent. In one example, the second solution is deleted. 'For example, oleylamine (ο- or heXadeCylamine). But 'other types of solvents can be used as long as 13 201103563. The solvent can dissolve the quantum dot precursor. The quantum dot type on the surface of the nanosphere shell is used to select an appropriate quantum dot precursor, and quantum dots suitable for use in the present invention include, but are not limited to, CuInZn, CuInS2, CdS, ZnS or CdTe. If the desired quantum dot is CdS, then cadmium chloride (strontium) and sulfur powder can be selected as quantum dot precursors. In one example, the desired quantum dot is CuInZn, so the selected quantum dot precursor includes cuprous chloride (I), Indium trioxide (III), indium(III) oxide and zinc stearate. When the quantum dot sought is CuInS2, cuprous chloride (I), indium trichloride (III), or Indium (III) and sulfur powder are used as quantum dot precursors. In another example, zinc stearate is used. Sulfur powder is used as a precursor to deposit ZnS quantum dots, and cadmium chloride and Te powder are used to deposit CdTe quantum dots. The concentration of each quantum dot precursor in the second solution is between 0.003-0.03 mmol/ml. For example, about 0.003, 0.005, 0.007, 0.009, 0.0, 0.012, 0.014, 0.016, 0.018, 0, 02, 0,022, 0.024, 0.026, 0.028, and 0.03 millimoles per milliliter. Finally, in step (c), the first solution and the second solution are in an inert gas atmosphere such as nitrogen, helium, neon, argon or a combination thereof, and at a temperature of from about 10 ° C to 300 ° C. The solutions are mixed with one another to form quantum dots on the surface of the nanospheres. In one example, the operating temperature is set at about 140 °C. The nano device manufactured according to the above manner can be used as a drug carrier for delivering the drug to any target position in a subject, such as the brain or any other organ of the human body; The manufactured nanodevice acts as a tool to illuminate and track the pharmacokinetics of the drug at the location of the subject's internal standard. 14 201103563 In vivo angiography and magnetically induced drug release A further aspect of the present disclosure is to provide a method of in vivo angiography and magnetic evoked drug release from a nanodevice made in the manner described above. The disclosed method comprises the steps of: (a) applying a sufficient amount of the nanodevice of the invention to a body part of the subject to be tested; and (b) applying a sputum at the body part between about 〇·〇5 kA/m to 2.5 The magnetic field of kA/m is magnetically induced for a period of about 1 〇 to 180 seconds to magnetically induce the nanodevice, so that the drug embedded in the nanodevice can be released into the body part of the subject to be tested. The disclosed method further includes the steps of: tracking the body part of the subject to be tested, including electron spin resonance (ESR) angiography, using an imaging method selected from the group consisting of: X-ray angiography, computed tolnography (CT) angiography and nuclear magnetic resonance (MRI) angiography. The subject to be tested referred to herein is a human or non-human animal. Examples of non-human animals include all vertebrates, such as mammals, such as primates, dogs, caries (eg, mice and rats), cats, sheep, horses, or pigs; and non-mammals, such as birds, Amphibians, reptiles, etc. In one example, the subject is a human. The nanodevice of the present disclosure may be administered systemically to the subject to be tested by inhalation or injection; or may be administered to a localized area by intravenous or topical application, eg, to the gastrointestinal, liver or renal system, or It is applied to the specific, treatment site of the subject or the body surface by intravenous or topical application to areas such as the abdomen, lumbar spine, arms or legs. These and other possible methods and methods of application are well known and readily understood by those skilled in the art and should therefore be included in the materials of this disclosure. Suitable body parts for 201103563 can be selected according to the following conditions, such as the type of active agent, individual physical condition including gender, age, body, and/or current and past medical history. An experienced physician can decide on a body part that is suitable for injection without a _. In the second part, the body part is the upper arm part of the human. In another example, 'the brain is located in the human. The nanodevice according to the present disclosure will not be inhaled or injected immediately: two people: there is any safety threat to health', ie, this nanometer is set, according to an embodiment of the present disclosure, Using injection, oral, perfusion d::', the drug-loaded nanodevice is introduced into the body of the subject to be tested, and the nanodevice is placed in the body part of interest/that is, the drug is expected to be released. The location of the brain (for example, the brain has more than six concentrations. In this case, the nanodevice itself remains almost intact, and the electron spin resonance (ESR) = technique can be used to trace the nanodevice in the body. The concentration in the deep body part is: a nuclear magnetic resonance imaging technique, which generates an image by magnetic resonance enhanced by dynamic nuclear polarization in the usual 〜 〜 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影 显影The specific body part comes into the future. In the disclosure, the developer is the iron oxide device of the nano device: it can also be combined with the nano device and other photographic agent of the present disclosure to provide high-quality images. .appropriate And =: limited, sulfuric acid lock a dose, -, iron oxide 201103563 = (d) after the initial (four) image, using the magnetic field induced to make the nanodevice   housing shell completely or partially disintegrated, and will be embedded in the nano device drug release The position of the target. In particular, the body part is irradiated with a magnetic field for a period of time, for example, about 1 second to 18 seconds, to release the embedded drug into the body part, thereby producing a specific therapeutic effect, such as a transcription gene. Or treating cancer. The intensity of the magnetic field (magnetie fidd, na) is from about 〇.〇5kA/m to about 2.5kA/m, for example about 〇5, 〇卜〇2 〇3, 〇.4, 0.5, 0.6, 0.7. , 0.8, 0.9, L0, 】. 12, 13, 14, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2", 2.2, 2.3, 2.m5kA/m. The period during which MF is applied is from about 10 seconds to About 18 〇 seconds, for example about 1 〇, 2 〇, 3 〇, 4 〇, 50, 60, 7 〇, 80, 9 〇, 1 〇〇, 11 〇, 12 〇 13 (), 14 (), =, 160, 170 or 180 seconds. Once magnetically stimulated, the quantum dots deposited on the surface of the outer shell absorb magnetic energy, deforming the metal oxide shell of the nanodevice, thereby The drug buried in the core phase can be released to the target position. In the most extreme case, the entire metal oxide shell will completely disintegrate after the magnetic field stimulation, so that the drug is quickly released. Therefore, it can be applied by control. The strength and time of the magnetic field to control the release = the amount of drug is multiplied. In other words, the intensity and/or time of the magnetic field applied to a specific part of the body can be controlled to be embedded in the present disclosure. The amount of drug in the content of the nano-device. Once the drug embedded in the core phase is released, the subsequent measurement can be carried out using engineering techniques to map the pharmacokinetic relationship of the drug, and therefore, the MRI can be utilized. The NMR signal is used to monitor/measure the concentration and/or distribution of the released drug. For example, the ^^^ rule signal is used to monitor the kinetics of the released drug or to produce a three-dimensional image showing the distribution of the developer (ie, the nanometer set 201103563 of the present disclosure, and to predict the conformity of the drug of interest). Pharmacokinetic properties. According to another embodiment of the present disclosure, an empty device of the present disclosure can be used as a developer to track or contrast another active drug (eg, 'amphetamine'), which can be applied to the present disclosure. After the nano device of the content, it is injected or aggregated to one of the individual targets. Hereinafter, the content of the present invention will be further explained through specific embodiments and accompanying drawings. It is to be understood that 'unless otherwise stated' The same element symbols represent the same elements. EXAMPLES The following examples are provided to illustrate specific aspects of the invention, and the scope of the invention is not intended to be the same. Example 1 Manufacturing and analysis of a nanodevice embedded with a model drug 1.1 Manufacturing pvP-Fe304 core-shell nanospheres Dissolve polyvinylpyrrolidone (PVP) in distilled water to a concentration of 4% by weight, and then this PVP solution Heat to 80 ° C. In this PVP solution, add 1 mg of fluorene-fluorescein isothiocyanate (TITC) to stir and mix for about 6 hours. PVP in the solution will automatically Assembled into nanospheres and embedded in FITC to form PVP nanoparticles loaded with FITC. Under nitrogen filling,

FeCl3 · 6H20 和 FeCl2 · 4H20 (其中 FeCl2/FeCl3 的莫耳比 約為2 : 1)溶在水中並與上述載有FITC的PVP奈米顆粒 在80 C下劇烈攪拌。4小時後,再缓慢地加入2毫升的氨 水(NH40H,33%) ’使氧化鐵外殼可沉積在pvp奈米球的 表面。接著,將溶液在6000 rpm下離心,移除上清液並收 201103563 集 >儿殿。以蒸餾水清洗沉澱4次。利用離心分離出 pVPee3〇4核殼奈米球。 第20)圖繪示出依據本實施例步驟用來形成可傳送藥 物之奈米裝置的操作圖。第2(b)及2(c)圖分別為依據本實 施例所製成之奈米球的穿透式電子顯微鏡(TEM)照片和高 解析度穿透式電子顯微鏡(HRTEM)照片。從第2(b)及2(c) 圖的結果可確認每一奈米球為直徑在10-15 nm間的球 體’且具有一非晶型核心和一單晶殼層結構,顯示氧化鐵 前驅物在成核後可圍繞著此PVP核心自我組裝成一外殼。 1,2 在實施例1.1之奈米球表面上沉積Zn-Cu-In-S (ZCIS) 量子點 為了在奈米球表面上成長ZCIS量子點,將實施例1.1 的奈米球重新懸浮在含有〇.M毫莫耳二乙基二硫代氨基 甲酸鋅鹽([(C2H5)2NCSS]2Zn)的三辛基膦(TOP,90%,技 術級)中。進一步以十八烯(ODE,90%,技術級)來稀釋上 述溶液以形成第一溶液。接著,在5〇。(:下將CuCl與InCl3 溶在油基胺中以形成第二溶液。接著,在氮氣下將兩種溶 液混合並加熱到14(TC,以使量子點沉積在實施例1.1的 奈米球表面上。 第2(d)圖是摻雜有ZCIS之奈米球的HRTEM照片, 其中在奈米球的環形殼上沉積有ZCIS量子點的固體顆 粒’且此懸浮液在UV光下會產生螢光(參見第2(d)圖中的 插圖)’表示本實施例的奈米裝置不只能做為傳送藥物的載 體’還可做為造影用的奈米碳針。能量分散X-光光譜儀 (energy dispersive X-ray spectrometer,EDS)分析確認此環 19 201103563 狀區域主要是由Fe組成且該固體顆粒主要是由Cii和S組 成(並未示出數據)。 進一步以超導量子干涉裝置(super quantum interference device,SQUID)(MPMS,XL7)在 298K 且磁場強 度在-10000至+ 10000 G之間的條件下,來分析實施例1.2 之奈米裝置和實施例1.1的奈米球(亦即,奈米球的外殼上 沒有量子點沉積)的磁性。結果示於第3圖。實施例1,2之 奈米裝置和實施例1.1的奈米球兩者都表現出超磁行為, 且因為稀釋效應,使得實施例1 ·2之奈米裝置,相較於實 施例1.1的奈米球來說,具有較小的飽和磁化強度(Ms)。 1.3 從實施例1.2之奈米裝置中控制釋放其中所包埋的 模型藥物 將上述實施例所製成的奈米裝置放在強度在50〜100 kHz間的高頻磁場(HFMF),使得所包埋的模型藥物(亦 即’綠螢光物’ FITC)能從奈米裝置中釋出。利用電力、 功能產生器、放大器和冷卻水來創造出此HFMF。類似的 設備揭示在 PNAS 的文章中(vol 103, 3540-3545 (2006))。 磁%強度端視所用線圈而定。在此實例中,此線圈包括8 個迴圈。將頻率設在50 kHz且磁場強度(H)大約為2.5 kA/m °以循環水將HFMF產生器的溫度控制在25。(:。在 20毫升磷酸緩衝液(131^7.4)中測量從〇.〇5%(重量%)之磁性 奈米裝置中釋出藥物的模式。以PL光譜儀(PL螢光光譜儀 F-4500 ’日立’日本)來測量施加5〇kHz高頻磁場(HFMF) 後’染料分子的釋出模式與奈米裝置的螢光強度。以 0.05°/°(重量%)的濃度,將實施例1的奈米裝置分散在水中 20 201103563 -段不同時間’ χ_光光電光譜(xps)是在陽極配備有FeCl3 · 6H20 and FeCl2 · 4H20 (wherein the molar ratio of FeCl2/FeCl3 is about 2:1) were dissolved in water and vigorously stirred at 80 C with the above-mentioned FITC-loaded PVP nanoparticles. After 4 hours, 2 ml of aqueous ammonia (NH40H, 33%) was slowly added to make the iron oxide shell deposited on the surface of the pvp nanosphere. Next, the solution was centrifuged at 6000 rpm, the supernatant was removed and the collection was collected. The precipitate was washed 4 times with distilled water. The pVPee3〇4 core-shell nanosphere was isolated by centrifugation. Fig. 20) is a view showing the operation of the nanodevice for forming a transportable drug according to the procedure of the present embodiment. Figs. 2(b) and 2(c) are a transmission electron microscope (TEM) photograph and a high-resolution transmission electron microscope (HRTEM) photograph of the nanospheres produced in accordance with the present embodiment, respectively. From the results of Figures 2(b) and 2(c), it can be confirmed that each nanosphere is a sphere with a diameter of 10-15 nm and has an amorphous core and a single crystal shell structure, showing iron oxide. The precursors self-assemble into a shell around the PVP core after nucleation. 1,2 Depositing Zn-Cu-In-S (ZCIS) quantum dots on the surface of the nanosphere of Example 1.1 In order to grow ZCIS quantum dots on the surface of the nanosphere, the nanosphere of Example 1.1 was resuspended in the containing三.M millimolar diethyldithiocarbamate zinc salt ([(C2H5)2NCSS]2Zn) in trioctylphosphine (TOP, 90%, technical grade). The above solution was further diluted with octadecene (ODE, 90%, technical grade) to form a first solution. Then, at 5 〇. (: CuCl and InCl3 were dissolved in the oleylamine to form a second solution. Then, the two solutions were mixed under nitrogen and heated to 14 (TC) to deposit quantum dots on the surface of the nanosphere of Example 1.1. Figure 2(d) is a HRTEM photograph of a nanosphere doped with ZCIS, in which a solid particle of ZCIS quantum dots is deposited on the annular shell of the nanosphere and the suspension produces a fluorescent light under UV light. Light (see the illustration in Fig. 2(d)) ' indicates that the nanodevice of the present embodiment can be used not only as a carrier for delivering a drug' but also as a nanocarbon needle for contrast. Energy dispersive X-ray spectrometer ( Energy dispersive X-ray spectrometer (EDS) analysis confirmed that this ring 19 201103563 region is mainly composed of Fe and the solid particles are mainly composed of Cii and S (data not shown). Further superconducting quantum interference device (super The quantum interference device, SQUID) (MPMS, XL7) was analyzed at 298 K and the magnetic field strength was between -10000 and + 10000 G to analyze the nanodevice of Example 1.2 and the nanosphere of Example 1.1 (ie, There is no quantum dot deposition on the outer shell of the nanosphere) Magnetic. The results are shown in Fig. 3. Both the nanodevice of Example 1, 2 and the nanosphere of Example 1.1 exhibited supermagnetic behavior, and the nanodevice of Example 1-2 was used due to the dilution effect. Compared with the nanosphere of Example 1.1, it has a smaller saturation magnetization (Ms). 1.3 Controlling the release of the model drug embedded therein from the nanodevice of Example 1.2. The nano device is placed in a high frequency magnetic field (HFMF) with an intensity between 50 and 100 kHz, so that the embedded model drug (ie, 'green fluoresce' FITC) can be released from the nano device. Power, function generators, amplifiers, and cooling water are used to create this HFMF. Similar equipment is revealed in the PNAS article (vol 103, 3540-3545 (2006)). The magnetic % intensity depends on the coil used. The coil consists of 8 loops. The frequency is set at 50 kHz and the magnetic field strength (H) is approximately 2.5 kA/m ° with circulating water to control the temperature of the HFMF generator to 25. (: in 20 ml phosphate buffer Discharge of 5% (% by weight) of magnetic nanodevices in liquid (131^7.4) The model is based on a PL spectrometer (PL fluorescence spectrometer F-4500 'Hitachi' Japan) to measure the release mode of the dye molecule after applying a 5 kHz high frequency magnetic field (HFMF) and the fluorescence intensity of the nanodevice. ° / ° (% by weight) concentration, the nano device of Example 1 was dispersed in water 20 201103563 - segment at different times ' χ _ photoelectron spectroscopy (xps) is equipped at the anode

1253.6電子伏特的Mg “之ESCALAB 25〇⑽鳴vG1253.6 electron volts of Mg "ESCALAB 25 〇 (10) sound vG

Scientific,West Sussex,υκ)中執行。相對於 284 6 ev、c i 秒的波峰來標準化XPS波峰的化學位移。結果示於第4 圖中。 田在施加磁場之前,當載有FITC的奈米球被儲存在室 脈下24小時,並未發現有任何藥物釋出,此觀察結果又 經以PL光譜儀進行監控及觀察後確認,表示染料可被包 埋在核〜相中一段長時間而不會滲漏出來。但是如第4(&) 圖所示,一旦施加HFME不同時間之後,自奈米球中釋出 之模型藥物所發射出來的綠螢光強度在517 nm下,會隨 著所施加磁場強度的增加而提高,相反的,量子點的紅螢 光強度則會隨著所施加磁場時間的增加而減少。同時還測 试不同程度的HFME對藥物從實施例1的奈米裝置中釋出 的影響,結果示於第4(b)圖中。對所施加的3種不同強度 的HFME而言,螢光強度與所施加HFME的時間長短具有 線性關係,此代表可透過施加預定強度的HFME 一段預定 的時間,而以控制釋放的方式將所包埋的模型藥物釋出, 且可利用奈米裝置的ZCIS量子點,來監控模型藥物被釋 出的情況。 1.4活體外監控自實施例1之奈米裝置中釋出模型藥物 將人類子宮頸癌細胞株(Hela細胞)維持在添加有 10%胎牛血清、100單位/毫升之盤尼西林和1〇〇 μ§/ηι1之 鏈黴素(streptomycin)的DMEM培養基中。然後將細胞放 在37°C下含有5% C〇2的環境下進行培育。在培養基中加 201103563 入實施例1之奈米裝置,與細胞一起培育12小時。接著, 以HFMF處理細胞0、90和180秒,以PL顯微鏡(Nikon TE-2000U,日本)來觀察細胞。以數位分析軟體(Nikon, 曰本)來分析模型藥物和奈米裝置的螢光強度,且每一種顏 色通道的曝光條件都相同。Nikon C1軟體來進行分析,其 將螢光強度分成1至255。螢光強度的範圍如下:藍色通 道(60-255)、綠色通道(40-255)、紅色通道(30-255)。結果 示於第5及6圖。 如第5圖所示,施加磁場時間從0秒增加到180秒可 使模型藥物或螢光物質(綠色通道)快速地從細胞中釋出, 而同時間可偵測ZCIS量子點的螢光強度(紅色通道)則跟 著下降。以數位分析軟體(Nikon,日本)來分析模型藥物和 ZCIS量子點的螢光強度。Bsum、Gsum和Rsum分別代表影像 中藍色、綠色和紅色通道中的總螢光強度。藍螢光是肇因 於以DAPI染色的細胞核,且預期每一細胞中此螢光強度 應該相去不遠。因此,在每一張影像中均以藍色通道的強 度當作標準。Gsum和Rsum則是分別代表來自釋出藥物與量 子點的總螢光強度。Gsum/Bsum代表綠色通道的螢光強度與 藍色通道之螢光強度的比值,也代表每一細胞中奈米裝置 的相對強度。結果示於第6圖中。Gsum/Bsum和Rsum/Rsum 與細胞中磁場強度的長短分別產生兩條曲線。這些曲線顯 示細胞中相對的藥物濃度(以Gsum/Bsum表示)會隨著刺激期 間的增加而增加,相反的,同一時間内,奈米裝置的螢光 強度(亦即,來自ZCIS量子點的螢光強度,以Rsum/Rsum 表示)則成比例地下降。 22 201103563 實施例2以包埋有抗癌藥劑的奈米裝置進行活趙外▲療 2.1 讓細胞吸入實施例1之奈米裝置 口 在執行體外治療之前,依據以下所述步驟厄焦顯 微鏡來評估細胞吸入實施例1之奈米裝置的能力]…… 簡言之,將人類肺腺癌Α549細胞株養在內a 1含10%胎 牛血清、1%盤尼西林/鏈黴素的DMEM培養基中。然後將 細胞放在37°C下含有5% C〇2的環境下進行培育了 A549 細胞株是養在6孔盤内’在其培養基中加入實施例丨之載 有FITC模型藥物的奈米裝置,與細胞一起培育不同時間, 接著以磷酸缓衝液(PBS,pH 7.4)清洗3次,以移除未被吸 入細胞中的過量奈米裝置。以3%甲酸將細胞固定後以 DAPI和若丹明溶液染色,然後放在共軛焦顯微鏡下進行 觀察。 可發現加入奈米裝置培育2小時後,這些奈米裝置已 聚集在細胞中(參見第7圖),證明細胞可迅速、有效地自 行吸入這些奈米裝置。 2.2 奈米裝置在細胞内的毒性分析與其對細胞存活率的 影響 以MTT試驗來分析實施例1;1之奈米顆粒與實施例 1.2之奈米裝置在A549細胞中的活體外毒性試驗。簡言 之’先將A549細胞培養在%孔培養盤中(104細胞/盤)’ 然後在37°C下,將細胞暴露在一系列不同濃度的實施例 1.1之奈米顆粒或實施例1.2之奈米裝置下。結束後,在培 養基中加入20 μΐ的MTT溶液並繼續培育4小時。接著, 23 201103563 以200 μΐ的DMSO來取代培養基並以Sunrise吸收盤讀值 器在570 nm和650 nm下來監控吸光值。 第8圖顯示實施例1.1之奈米顆粒與實施例1.2之奈 米裝置對A549細胞的細胞毒性影響,第9圖則繪示出細 胞存活的結果。實驗發現,無論是以濃度高達200微克/ 毫升的奈米顆粒或奈米裝置來處理細胞48小時,都不會 對細胞造成任何毒殺的作用(第8圖)。細胞的存活率達 85%(第9圖)。這些結果顯示實施例1的奈米顆粒或奈米 裝置與活細胞間具有生物可相容性。 2.3 以包埋有抗癌藥劑的奈米球或奈米裝置進行活體外 治療 除了以喜樹鹼(CPT)來取代綠螢光物質-FITC之外,大 致依照實施例1所述方式來製備出包埋有抗癌藥劑的奈米 裝置。以MTT試驗來評估載有CPT之奈米裝置對癌細胞 的抗癌效果。簡言之,以載有CPT的奈米裝置來處理A549 細胞約6小時,接著以不同強度的HFMF來刺激細胞一段 時間’以便將CPT從奈米裝置的核心相中釋放至細胞中。 接著繼續培育細胞約18小時,然後以MTT試驗來決定細 胞的存活率。 第10圖示出以載有CPT之奈米裝置處理A549細胞 並磁性誘發釋出CPT後,細胞的存活率。經載有CPT之 奈米裝置處理過的癌細胞,其存活率大幅下降,一般認為 這是因為受到熱與藥物兩者影響所產生的結果。 本實施例的結果證明以本發明所述方式製成之載有 CPT的奈米裝置乃是一種絕佳的藥物傳送系統,其具有良 24 201103563 好的生物可相容性、高細胞吸收率、磁敏特性且可在hfmf 下進行藥物的控制釋放。 實施例3以包埋有抗癲癇藥劑的奈米裝置進行活體治療 3.1 製造内含乙琥胺(ESM)之奈米裝置 除了以抗癲癇藥劑-乙琥胺(ESM)來取代綠螢光物質 -FITC之外,大致依照實施例1所述方式來製備出包埋有 乙琥胺的奈米裝置,並以此奈米裝置來實施活體治療。 3.2 活體内治療癲癇 在本試驗中使用Long-Evans和Wistar雄鼠,所有的 小鼠均飼養在室溫、隔音且白天-黑夜各12小時(照光時間 從早上7點到晚上7點)且可自由使用食物與水的環境中。 整個實驗流程是經過動物照護與使用委員會的認可後實 施。簡言之,以巴比妥酸鹽(60毫克/毫升,注射)將動物麻 醉後,植入紀錄電極。接著,將小鼠放在標準的立體定位 儀(stereotaxic)中。在從頭骨内雙向覆蓋皮質層之額骨(相 對於前囪,A +2.0, L 2.0)和枕骨區域(A-6.0, L 2.0)總計鎖 進6根不鏽鋼螺絲以紀錄皮質的場電位。在從尾部到第11 節(lambda)間約2mm處植入接地電極。以牙科用接合劑將 插座固定在頭骨表面。接著以手術線縫合,給予動物抗生 素(氯四環黴素)並單獨飼養在籠中,待其復原。 在本實驗中使用Long-Evans小鼠的原因是這類小鼠 經常表現出自發性的突波放電(spike-wave discharge, SWDs),依據許多方面的證據,已知這種SWDs與癲癇有 關。為了確認SWDs是經由皮質控制,使用了另一種藥學 25 201103563 上的癲癇鼠模型,亦即在Wistar小鼠上注射低劑量戊歸四 唾(20毫克/公斤’靜脈注射)。在此初步的動物試驗中比 較了生理食鹽水、乙琥胺(ESM)、内含ESM的奈米球(奈 米球-ESM)、和内含ESM的奈米裝置(奈米裝置-ESM)對 Long-Evans小鼠之自發性swDs的效果。製備出大小為5 毫米X 5毫米x0.02毫米的晶片,然後將其植入小鼠的腹 腔中’其它劑量則經由靜脈注射來施予。結果示於第u 與12圖中。 第11圖繪示出對實驗動物施用生理食鹽水、乙琥胺 (ESM)、内含ESM的奈米球(奈米球-ESM)、和内含ESM 的奈米裝置(奈米褽置-ESM,device-ESM)後對SWDs的影 響。SWDs並無明顯變化。在此實驗中,分別紀錄了處理 前1小時(基礎線)與處理後30分鐘後的腦波活動。將兩次 1小時的基礎線平均做為指數。在施用奈米球^gSM與奈米 裝置-ESM時,小鼠是被固定在一塑膠箱中並放到線圈中 心’然後以磁場刺激(2.5 kA/m)使ESM能夠從所製備的奈 米球或奈米裝置中釋放出來。雖然很難量化釋出到小鼠體 内的ESM含量,但可以確定的是,相較於單獨使用ESM (第11(b)圖)來說,無論是從奈米球-ESM (第11(c_)或是 從奈米裝置-ESM (第11(d)圖)釋出到小鼠體内的esm量, 明顯可減少出現自發性SWDs的數目與其持續期間。 第12圖繪出在施用生理食鹽水、ESM、奈米球_ESM 和奈米裝置-ESM之前或之後,小鼠體内SWDs數目與其 總持續期間。結果顯不不同形式的ESM可以明顯的減少 自發性SWDs出現的數目與其總持續期間。 26 201103563 這些體内數據,僅管仍屬非常初步的結果,顯示具有 ESM的奈米顆粒與晶片可透過外加磁場刺激成功地使藥 物釋出,一如體外試驗中所觀察到的一般。同時,被釋出 的ESM具有明顯可抑制SWDs的治療性效果。Executed in Scientific, West Sussex, υκ). The chemical shift of the XPS peak is normalized to the peak of 284 6 ev, c i seconds. The results are shown in Figure 4. Before the application of the magnetic field, when the FITC-loaded nanosphere was stored under the chamber for 24 hours, no drug was released. This observation was confirmed by the PL spectrometer and observed to indicate that the dye could be It is buried in the core ~ phase for a long time without leaking out. However, as shown in the 4th (&) figure, once the HFME is applied for different times, the intensity of the green fluorescence emitted by the model drug released from the nanosphere at 517 nm will vary with the applied magnetic field strength. Increasing and increasing, conversely, the red fluorescence intensity of a quantum dot decreases as the applied magnetic field time increases. The effect of varying degrees of HFME on the release of the drug from the nanodevice of Example 1 was also tested and the results are shown in Figure 4(b). For the three different strengths of HFME applied, the fluorescence intensity has a linear relationship with the length of time of the applied HFME, which means that the HFME of a predetermined intensity can be applied for a predetermined period of time, and the package is controlled in a controlled manner. The buried model drug is released, and the ZCIS quantum dots of the nanodevice can be used to monitor the release of the model drug. 1.4 In vitro monitoring The release of the model drug from the nanodevice of Example 1 maintains human cervical cancer cell line (Hela cells) in penicillin supplemented with 10% fetal calf serum, 100 units/ml and 1 μμ§ / ηι1 of streptomycin in DMEM medium. The cells were then incubated at 37 ° C in an environment containing 5% C 〇 2 . The medium device of Example 1 was added to the medium, and the cells were incubated with the cells for 12 hours. Next, the cells were treated with HFMF for 0, 90 and 180 seconds, and the cells were observed with a PL microscope (Nikon TE-2000U, Japan). The digital analysis software (Nikon, transcript) was used to analyze the fluorescence intensity of the model drug and the nanodevice, and the exposure conditions were the same for each color channel. The Nikon C1 software was used for analysis, which splits the fluorescence intensity from 1 to 255. The range of fluorescence intensity is as follows: blue channel (60-255), green channel (40-255), red channel (30-255). The results are shown in Figures 5 and 6. As shown in Figure 5, the application of the magnetic field from 0 seconds to 180 seconds allows the model drug or fluorescent substance (green channel) to be quickly released from the cell while simultaneously detecting the fluorescence intensity of the ZCIS quantum dot. (Red channel) is followed by a drop. The fluorescence of the model drug and the ZCIS quantum dot was analyzed by a digital analysis software (Nikon, Japan). Bsum, Gsum, and Rsum represent the total fluorescence intensity in the blue, green, and red channels in the image, respectively. Blue fluorescence is due to the nucleus stained with DAPI and it is expected that this fluorescence intensity should not be too close in each cell. Therefore, the intensity of the blue channel is used as a standard in each image. Gsum and Rsum represent the total fluorescence intensity from the released drug and the quantum point, respectively. Gsum/Bsum represents the ratio of the fluorescence intensity of the green channel to the fluorescence intensity of the blue channel and also represents the relative intensity of the nanodevice in each cell. The results are shown in Figure 6. Gsum/Bsum and Rsum/Rsum produce two curves respectively with the length of the magnetic field in the cell. These curves show that the relative drug concentration in cells (expressed as Gsum/Bsum) increases with increasing stimulation period. Conversely, at the same time, the fluorescence intensity of the nanodevice (ie, the firefly from the ZCIS quantum dot) The light intensity, expressed as Rsum/Rsum, decreases proportionally. 22 201103563 Example 2 Using a Nanodevice embedded with an anticancer agent to perform a live sputum treatment 2.1 Let the cells inhale the mouth of the nanodevice of Example 1 Before performing the in vitro treatment, evaluate according to the following procedure using an eschar microscope The ability of the cells to inhale the nanodevice of Example 1] Briefly, human lung adenocarcinoma Α549 cell line was maintained in DMEM medium containing 10% fetal calf serum, 1% penicillin/streptomycin. Then, the cells were cultured in an environment containing 5% C〇2 at 37 ° C. The A549 cell line was grown in a 6-well plate. The medium device containing the FITC model drug was added to the medium in the example. The cells were incubated with the cells for different times and then washed 3 times with phosphate buffer (PBS, pH 7.4) to remove excess nanodevices that were not inhaled into the cells. The cells were fixed with 3% formic acid, stained with DAPI and rhodamine solution, and then observed under a conjugated focus microscope. It can be found that these nanodevices have accumulated in the cells after 2 hours of incubation with the nanodevice (see Figure 7), demonstrating that the cells can be inhaled quickly and efficiently by inhaling these nanodevices. 2.2 Toxicity analysis of the nanodevice in the cell and its effect on cell viability The in vitro toxicity test of the nanoparticle of Example 1; 1 and the nanodevice of Example 1.2 in A549 cells was analyzed by MTT assay. Briefly, 'A549 cells were first cultured in a % well plate (104 cells/pan)' and then exposed to a series of different concentrations of Nanoparticles of Example 1.1 or Example 1.2 at 37 °C. Under the nano device. After the end, 20 μM of MTT solution was added to the medium and incubation was continued for 4 hours. Next, 23 201103563 replaced the medium with 200 μM DMSO and monitored the absorbance at 570 nm and 650 nm with a Sunrise absorption plate reader. Fig. 8 shows the cytotoxic effect of the nanoparticle of Example 1.1 and the nanodevice of Example 1.2 on A549 cells, and Fig. 9 shows the results of cell survival. The experiment found that cells treated with nanoparticle or nanodevices at concentrations up to 200 μg/ml for 48 hours did not cause any toxic effects on the cells (Fig. 8). The cell survival rate is 85% (Fig. 9). These results show that the nanoparticle or nano device of Example 1 is biocompatible with living cells. 2.3 In vitro treatment with a nanosphere or nanodevice embedded with an anticancer agent, except that the green fluorescent substance-FITC was replaced by camptothecin (CPT), it was prepared in the same manner as in Example 1. A nano device embedded with an anticancer agent. The MTT assay was used to evaluate the anticancer effect of a CPT-loaded nanodevice on cancer cells. Briefly, A549 cells were treated with a CPT-loaded nanodevice for about 6 hours, followed by stimulation of cells with different intensities of HFMF for a period of time to release CPT from the core phase of the nanodevice into the cells. The cells were then incubated for approximately 18 hours and then the MTT assay was used to determine cell viability. Figure 10 shows the survival rate of cells after treatment of A549 cells with a CPT-loaded nanodevice and magnetically induced release of CPT. The survival rate of cancer cells treated with a CPT-loaded nanodevice is greatly reduced, which is generally considered to be the result of both heat and drugs. The results of this example demonstrate that the CPT-loaded nanodevice made in the manner described in the present invention is an excellent drug delivery system having good biocompatibility, high cell absorption rate, and good bioactivity. Magnetic sensitivity and controlled release of the drug at hfmf. Example 3 In vivo treatment with a nanodevice embedding an anti-epileptic agent 3.1 Manufacturing a nano-device containing ethosylamine (ESM) in addition to replacing the green fluorescent substance with an anti-epileptic drug, ethylamine (ESM) - In addition to FITC, a nanodevice embedding ethosylamine was prepared in substantially the manner described in Example 1, and the biotherapy was carried out using this nanodevice. 3.2 In vivo treatment of epilepsy In this trial, Long-Evans and Wistar male rats were used, all of which were housed at room temperature, soundproofed and 12 hours each day and night (lighting time from 7 am to 7 pm) and Free to use food and water in the environment. The entire experimental procedure was performed after approval by the Animal Care and Use Committee. Briefly, animals were numb with barbiturate (60 mg/ml, injection) and implanted with a recording electrode. Next, the mice were placed in a standard stereotaxic instrument. A total of 6 stainless steel screws were locked in the frontal bone (relative to the bregma, A + 2.0, L 2.0) and the occipital region (A-6.0, L 2.0) from both sides of the skull to record the field potential of the cortex. The ground electrode is implanted approximately 2 mm from the tail to the 11th lambda. Secure the socket to the skull surface with a dental cement. The suture was then sutured with a surgical line and the animal was administered antibiotic (chlorotetracycline) and housed separately in a cage until it was restored. The reason for using Long-Evans mice in this experiment is that such mice often exhibit spontaneous spoke-wave discharges (SWDs), which are known to be associated with epilepsy based on evidence in many respects. To confirm that SWDs were controlled via cortex, another model of epilepsy on Pharmacy 25 201103563 was used, i.e., a low dose of sputum was administered to Wistar mice (20 mg/kg 'intravenous injection). In this preliminary animal test, physiological saline, ethosuxamine (ESM), ESM-containing nanospheres (nanosphere-ESM), and ESM-containing nanodevices (nano devices-ESM) were compared. Effect on spontaneous swDs in Long-Evans mice. A wafer having a size of 5 mm x 5 mm x 0.02 mm was prepared and then implanted into the abdominal cavity of a mouse. Other doses were administered via intravenous injection. The results are shown in Figures u and 12. Figure 11 depicts the application of physiological saline, ethosylamine (ESM), ESM-containing nanospheres (nanosphere-ESM), and a NEM-containing nanodevice to the experimental animals. The impact of ESM, device-ESM) on SWDs. There are no significant changes in SWDs. In this experiment, brain wave activity was recorded 1 hour before the treatment (basic line) and 30 minutes after the treatment. The average of the two-hour baseline is used as an index. When the nanospheres ^gSM and the nanodevice-ESM were applied, the mice were fixed in a plastic box and placed in the center of the coil' and then excited by a magnetic field (2.5 kA/m) to enable the ESM to be prepared from the nanometer. Released in a ball or nano device. Although it is difficult to quantify the amount of ESM released into mice, it is certain that compared to ESM alone (Fig. 11(b)), whether it is from nanosphere-ESM (11th ( C_) or the amount of esm released from the nanodevice-ESM (Fig. 11(d)) into the mouse, significantly reducing the number of spontaneous SWDs and their duration. Figure 12 depicts the physiological application The number of SWDs in mice before or after saline, ESM, nanosphere _ESM and nanodevice-ESM, and their total duration. The results of the different forms of ESM can significantly reduce the number of spontaneous SWDs and their total Continuing period. 26 201103563 These in vivo data, although still very preliminary results, show that nanoparticles and wafers with ESM can successfully release the drug through external magnetic field stimulation, as observed in in vitro experiments. At the same time, the released ESM has a therapeutic effect that significantly inhibits SWDs.

實施例4 以核磁共振造影(MRI)於活體内追蹤奈米裝置 4.1 活體外MRI 除了以0.5% PVP做為聚合性材料且最終的鐵濃度 設定在不超過150克鐵/毫升之外’大致依據實施例1所述 步驟製備奈米裝置樣品。為了進行MRI造影,分別以0.47 T核磁共振來測量R1(自旋晶格放鬆速率)與R2(自旋-自旋 放鬆速率)。奈米裝置的R1與R2分別為63.2 mM^sec-1 和372.8 mM_1 sec·1,且均高於大部分的商業產品。Example 4 In vivo tracking of nanodevices by magnetic resonance imaging (MRI) 4.1 In vitro MRI except that 0.5% PVP was used as the polymeric material and the final iron concentration was set to not exceed 150 g iron/ml. The procedure described in Example 1 was used to prepare a sample of the nanodevice. For MRI imaging, R1 (spin lattice relaxation rate) and R2 (spin-spin relaxation rate) were measured by 0.47 T nuclear magnetic resonance, respectively. The R1 and R2 of the nanodevice were 63.2 mM^sec-1 and 372.8 mM_1 sec·1, respectively, and were higher than most commercial products.

4.2 活體内MRI 本實驗中使用了 5隻Wistar雄鼠(國家動物中心,台 灣),體重都在250〜300公克左右。先以3%的異氟烷 (isoflurane)將動物麻醉。接著從左股靜脈插入一根PE-50 導管’以便後續施用α-氯酸糖(α-chloralose)麻醉劑(70毫 克/公斤體重)。將麻醉的小鼠固定,以循環的溫水系統維 持其體溫。以兩個耳柱和門牙固定器(incisor fixer)來固定 小鼠的頭部,並以膠帶固定其身體。 以配備有主動遮蔽梯度系統(5〇〇微秒内,〇〜5.9 G/cm) 的BrukerBiospecBMT 47/40 4.7 T系統來截取影像。以一 個20公分的線圈做為RF發射器,並在頭部放置一個2公 分的表面線圈做為接收器。沿著正中矢狀平面取得一 τ2_ 27 201103563 權重的影像,透過鑑別出前聯體(前囪-0.8 mm)來找出解剖 學上的位置。第13圖示出以自旋回聲順序(TR = 4000 ms, TE = 8〇 ms,f〇V = 4 cm,SLTH = 2 mm,NEX = 2,且截取 矩陣為256 x 128,且在填入0之後的矩陣為256 x 256) 所取得的四切T2_權重的影像(分別位於前囪_〇 8 mm,_2 8 mm,-4.8 mm和-6.8 mm)。13圖影像顯示當注射或奈米球 或奈米裴置於動物體内時,可使腦部的血管及組織的解析 能力大大的提升。 對動態灌注影像而言,在同樣位置取得120-重複四切 梯度回聲影像(TR = 215 ms,TE = 20 ms,翻轉角度=22.5°, F〇V = 4 cm, SLTH = 2 mm,NEX = 1,且截取矩陣為 256 x 64,且在填入〇之後的矩陣為256 x 256),且每一張影 像費時13秒。由於在血液中的半生期非常長,因此注射 至動物體内的奈米裝置,可產生穩定且持續期相當長的 MR掃描影像。在腦實體(parachymal)中可觀察到mr訊 號減弱約45% (第14圖)。 4,3以實施例1之奈米裝置做為顯影劑於活體内進行藥 學性MRI診斷 為進行藥學性MRI實驗,取得40-重複四切梯度回聲 影像(其他的掃描影像與上述相同),且在第1〇次的時間處 &gt;主射入I〇P(30毫克/公斤體重)。循環15分鐘後,取得1〇〇_ 重複四切梯度回聲影像並在第2〇次時間處,注射入安非 他命(2毫克/公斤體重)。 28 201103563 安非他命在此是當作功能性刺激劑來顯露出經α-氯 酸糖麻醉後不同的局部腦血液體積(regional cerebral blood volume, rCBV)與活化區域。實驗發現活化區域包括紋狀 體、腦幹和下視丘,如第15圖所示,且訊號差異也與先 前多巴胺刺激實驗相對應。此外,使用實施例1之奈米裝 置做為顯影劑也揭露腦部在安非他命刺激後的時間模 式,不只提供較佳的對比·雜訊比(contrast-to-noise, CNR),同時也使有意義的神經血管反應測量變得可行。 如上所述,本發明之較佳實施例已經參照附圖而詳細 地敘述。然而,應暸解當中所表示為本發明之較佳實施例 者,其中詳細的敘述以及特定的實驗例僅為說明之目的而 已,對本發明所屬技術領域中之技術人士而言,由以上詳 細地說明,在本發明之範疇與精神内為各式變化與修改是 顯而易見的。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1(a)及1(b)圖為本發明一實施方式中所述之奈米級 藥物傳送裝置與奈米球的分解示意圖; 第2(a)圖為本發明一實施方式中用來製造包含有聚合 物核以及圍繞此聚合物核自我組裝成之單晶氧化鐵外殼 的奈米裝置的方法示意圖; 29 201103563 第2(b)及2(c)圖依據為本發明一實施方式勢成之各 球的穿透式電子顯微鏡(ΓΕΜ)照片和高解析度電子顯^鏡 (HRTEM)照片; 第2(d)圖依據為本發明一實施方式製成之奈米裝置的 高解析度電子顯微鏡(HRTEM)照片,其中在奈米球的環形 外设上沉積有ZC1S的量子點且此懸浮液在υν光照射下 會發出螢光(插入圖); 第3圖為依據本發明實施方式所製成的奈米球與奈米 裝置其分別與磁場強度間之依賴關係的曲線圖; μ 第4(a)圖為以HFMF處理包埋有模型藥物的奈米裝置 (30 mg/10 ml 7火)約〇〜1〇〇秒時的發射光譜; 第4(b)圖為在各種不同磁場強度下分別從模型藥物 FITC和ZC1S量子點所發射出來的光譜強度; 第5圖為依據本發明實施方式以包埋有FITC之奈米 裝置處理Hela細胞12小時後所拍攝的螢光照片,其中 Gslm/Bsum代表綠螢光強度比上藍螢光強度的比值且其代 表每一細胞中模型藥物FITC的相對濃度,Rsum/Bsum代表 每一細胞中奈米装置的相對強度; 第6圖代表第5圖中細胞的Gsum/Bsum與R_/Bsum相 對於磁場刺激期間長短的關係; 第7圖為依據本發明實施方式細胞吸入奈米裝置的情 況,此照片是在以奈米裝置處理細胞2小時後所拍攝的; 第8圖為依據本發明實施方式使細胞吸入奈米球或奈 米裝置12、24及48小時後所測量到的細胞毒性結果; 201103563 第9圖為依據本發明實施方式以翁CPT的奈米裝置 處理癌細胞12、2 4及4 8小時後所測量到的細胞存活率結 果; 第ίο圖為依據本發明實施方式,以載有cpt的奈米 裝置處理細胞並使細胞吸入該奈米裝置後,以HFMF磁性 刺激該載有CPT的奈米裝置不同時間來使藥物釋出的結 果; 第11圖示出依據本發明實施方式,對實驗動物施用⑻ 生理食鹽水、(b)乙琥胺(ESM) (28 mg/Kg,ip)、(c)内含 esm的奈米球(奈米球·Ε8Μ) (48 mg/Kg,ip)、和(d)内含 ESM 的奈米裝置(奈米裝置_ESM, device -ESM) (4〇 rng/Kg ip)後對SWDs的影響; ’ 第12圖繪出依據本發明實施方式,在施用生理食睡 水、ESM (0.5 ml,28 mg/Kg, ip)、奈米球-ESM (40 mg/Kg,ip) 和奈米裝置-ESM (40 mg/Kg,ip)之前或之後,小鼠體内 SWDs數目與其總持續期間: 第13圖分別繪出依據本發明實施方式,將奈米裝置 注射到小鼠腦部之前(上排)與之後(下排),所拍攝的權 重影像; 2 第14圖為第13圖小鼠腦部區域的動態顯影強化 MRI,其中(A)是注射奈米裝置3〇分鐘後所擷取的權重 影像,(B)和(C)則分別是右腦半球與左腦半球的訊號模 式’紅色箭頭代表注射奈米裝置的時間;且 、 201103563 第15圖是安非他命刺激後小鼠腦部的MRI影像以及 安非他命的活化時間圖,其中分別以熱與冷的顏色代表事 件相關程度為+0.5及-0.5。 【主要元件符號說明】 10 奈米級藥物傳送裝置 12 奈米球 14 量子點 16 核心 18 外殼 20 藥物4.2 In vivo MRI Five Wistar male rats (National Animal Center, Taiwan) were used in this experiment and weighed around 250 to 300 grams. Animals were first anesthetized with 3% isoflurane. A PE-50 catheter was then inserted from the left femoral vein for subsequent administration of an alpha-chloralose anesthetic (70 mg/kg body weight). The anesthetized mice were fixed and maintained in a circulating warm water system. The head of the mouse was fixed with two ear posts and an incisor fixer, and the body was fixed with tape. Images were captured with a Bruker Biospec BMT 47/40 4.7 T system equipped with an active masking gradient system (within 5 〇〇 microseconds, 〇~5.9 G/cm). A 20 cm coil is used as the RF transmitter, and a 2 cm surface coil is placed in the head as a receiver. An image of τ2_ 27 201103563 weights was taken along the median sagittal plane and the anatomical location was found by identifying the prosthesis (pre-basal - 0.8 mm). Figure 13 shows the spin echo sequence (TR = 4000 ms, TE = 8〇ms, f〇V = 4 cm, SLTH = 2 mm, NEX = 2, and the intercept matrix is 256 x 128, and is filled in The matrix after 0 is 256 x 256) The four-cut T2_weighted image is obtained (in the front buff _ 8 mm, _2 8 mm, -4.8 mm and -6.8 mm, respectively). Figure 13 shows that when the injection or nanosphere or nano-sputum is placed in the animal, the analytical ability of the blood vessels and tissues of the brain can be greatly improved. For dynamic perfusion images, a 120-repetition four-cut gradient echo image was taken at the same position (TR = 215 ms, TE = 20 ms, flip angle = 22.5°, F〇V = 4 cm, SLTH = 2 mm, NEX = 1, and the intercept matrix is 256 x 64, and the matrix after filling in 〇 is 256 x 256), and each image takes 13 seconds. Since the half-life in the blood is very long, a nanodevice that is injected into the animal produces a stable and long-lasting MR scan image. The mr signal was observed to be reduced by approximately 45% in the parachymal (Fig. 14). 4, 3 using the nanodevice of Example 1 as a developer for medicinal MRI diagnosis in vivo for performing a medicinal MRI experiment, obtaining a 40-repeated four-cut gradient echo image (other scan images are the same as above), and At the time of the 1st time, the main injection was I〇P (30 mg/kg body weight). After 15 minutes of circulation, 1 〇〇 _ repeated four-cut gradient echo images were obtained and amphetamine (2 mg/kg body weight) was injected at the 2nd time. 28 201103563 Amphetamine is used here as a functional stimulator to reveal different regional cerebral blood volume (rCBV) and activation areas after anesthesia with alpha- gluconate. The experiment found that the activation area included the striatum, brainstem and hypothalamus, as shown in Figure 15, and the signal difference also corresponded to the previous dopamine stimulation experiment. In addition, the use of the nanodevice of Example 1 as a developer also reveals the temporal pattern of brain stimulation after amphetamine stimulation, providing not only a better contrast-to-noise (CIR) but also meaningful meaning. The measurement of neurovascular responses becomes feasible. As described above, the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings. However, it is to be understood that the preferred embodiments of the invention are intended to It will be apparent that various changes and modifications may be made within the scope and spirit of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic diagram of decomposition of a nano-scale drug delivery device and a nanosphere according to an embodiment; FIG. 2(a) is a diagram for manufacturing a polymer core and self-assembling around the polymer core in an embodiment of the invention Schematic diagram of a method for forming a nanodevice of a single crystal iron oxide shell; 29 201103563 Figs. 2(b) and 2(c) are diagrams of a transmission electron microscope (ΓΕΜ) of each sphere according to an embodiment of the present invention. And a high-resolution electron microscope (HRTEM) photograph; FIG. 2(d) is a high-resolution electron microscope (HRTEM) photograph of a nanodevice manufactured according to an embodiment of the present invention, wherein the ring of the nanosphere is The quantum dots of ZC1S are deposited on the peripheral device and the suspension emits fluorescence under the irradiation of υν light (inserted image); FIG. 3 is a view of the nanosphere and the nanodevice prepared according to the embodiment of the present invention, respectively. A graph of the dependence of magnetic field strength; μ Figure 4(a) shows HFMF treatment of the nanoparticle device (30 mg/10 ml 7 fire) embedded with the model drug is about ~1 〇〇 second emission spectrum; Figure 4 (b) shows the model drug FITC under different magnetic field strengths And the spectral intensity emitted by the ZC1S quantum dots; FIG. 5 is a fluorescent photograph taken after 12 hours of processing Hela cells by a device embedded with FITC according to an embodiment of the present invention, wherein Gslm/Bsum represents green fluorescent light. The ratio of the intensity to the intensity of the blue fluorescence and which represents the relative concentration of the model drug FITC in each cell, Rsum/Bsum represents the relative intensity of the nanodevice in each cell; Figure 6 represents the Gsum of the cell in Figure 5. The relationship between Bsum and R_/Bsum with respect to the length of the magnetic field stimulation period; FIG. 7 is a view of the cell inhalation nano device according to an embodiment of the present invention, which was taken after treating the cells for 2 hours by the nano device; The figure shows the cytotoxicity results measured after inhaling cells into a nanosphere or nanodevice for 12, 24 and 48 hours according to an embodiment of the invention; 201103563 Fig. 9 is a treatment with a nanodevice of Weng CPT according to an embodiment of the present invention. Carcinoma Results of cell viability measured after 12, 24 and 48 hours of cells; Figure 00 is a diagram of treatment of cells with a cpt-loaded nanodevice and inhalation of cells into the nanodevice according to an embodiment of the invention, HFMF magnetically stimulates the CPT-loaded nanodevice to release the drug at different times; Figure 11 shows the application of (8) physiological saline to (b) ethosuxamine (ESM) to experimental animals in accordance with an embodiment of the present invention. (28 mg/Kg, ip), (c) nanospheres containing esm (nanospheres Ε8Μ) (48 mg/Kg, ip), and (d) nanodevices containing ESM (nano devices) _ESM, device -ESM) (4〇rng/Kg ip) effect on SWDs; 'Figure 12 depicts the application of physiological sleeping water, ESM (0.5 ml, 28 mg/Kg, in accordance with an embodiment of the invention) Number of SWDs in mice before and after ip), nanosphere-ESM (40 mg/Kg, ip) and nanodevice-ESM (40 mg/Kg, ip) and their total duration: Figure 13 According to an embodiment of the present invention, the nano device is injected into the mouse brain (upper row) and after (lower row), the captured weight image; 2 Figure 14 is the 13th image Dynamic imaging enhanced MRI in the brain region, where (A) is the weighted image taken 3 minutes after the injection of the nanodevice, and (B) and (C) are the signal patterns of the right hemisphere and the left hemisphere, respectively. The red arrow represents the time of injection of the nanodevice; and, 201103563, Fig. 15 is the MRI image of the brain of the mouse after amphetamine stimulation and the activation time map of amphetamine, wherein the correlation degree of the event represented by heat and cold color is +0.5 and -0.5. [Main component symbol description] 10 nanometer drug delivery device 12 nanosphere 14 quantum dot 16 core 18 outer casing 20 drug

3232

Claims (1)

201103563 七、申請專利範圍: L 一種製造奈米級藥物傳送裝置的方法,包括以下 步驟· P 一笛,^~第一溶液,其係將一奈米球分散在含有鋅鹽之 曲 冷劑令,其中該奈米球與該鋅鹽在該第一溶液 /辰又:別為約1-4〇毫克/毫升和約0.02-0.2毫莫耳/毫升; 一 ^仏第一溶液,其係將至少兩種量子點前驅物在一 A二办劑中混合,其中每一量子點前驅物在該第二溶液中 的濃度約為0·003_0.03毫莫耳/毫升間; 在 h性氣體存在下,於一介於1 〇°c至300。〇的溫度 下,將該第一溶液與該第二溶液混合,以在該奈米球表面 上形成一量子點。 2.如請求項1所述之方法,其中該奈米球是由以下步 驟所製成: 在一極性溶劑中’將M0% (重量%)之一聚合性材料 或無機材料與約0.01-80% (重量%)之一藥物彼此混合成 一懸浮液,藉此形成一内含藥物的聚合性或無機性奈米顆 粒;和 在該懸浮液中加入氧化物前驅物(其莫耳比約為2: 1 至約5 : 1間),並在約2(TC至約120Ϊ下劇烈攪拌約2-12 小時; 其中該金屬氧化物前驅物可圍繞著該聚合物型或無 機型奈米顆粒而自我組裝成一金屬氧化物外殼。 33 201103563 3. 如請求項2所述之方法,其中該極性溶劑是水或 Cu的醇類。 4. 如請求項3所述之方法,其中該聚合性材料是選自 以下任一種:聚乙烯吡咯烷酮(PVP)、聚乙烯(PE)、聚醯胺、 聚酉旨、聚酐、聚趟、聚縮酸·、多醣或峨脂;且該無機性材 料是選自以下任一種:二氧化鈦、二氧化矽或由鈣與磷組 成之複合材料中。 5. 如請求項4所述之方法,其中該上述之多醣是以下 任一種:澱粉、纖維素、果膠、幾丁質或曱殼素;且該磷 脂是以下任一種··磷脂膽鹼(PC)、磷脂醯絲胺酸(PS)、磷 脂乙醇胺、磷脂醯甘油或卵磷脂。 6. 如請求項3所述之方法,其中該金屬氧化物前驅物 是選自以下任一種:氯化亞鐵(II)、氣化鐵(III)、氯化亞鈷 (II)、硝酸亞鐵(II)、醋酸鐵(III)、醋酸銘(II)、氯化亂(III) 和醋酸錳(II)。 7. 如請求項3所述之方法,其中該金屬氧化物外殼是 一種包含有以下任一種化合物的單晶殼層、多晶殼層或非 晶殼層,包括:Fe2〇3、Fe3〇4、CoFe2〇4、MnFe204 或 Gd2〇3。 34 201103563 8. 如請求項6所述之方法,其中該金屬氧化物前驅物 包含氯化亞鐵(II)和氯化鐵(III),且該金屬氧化物外殼是一 種利用以下步驟形成之單晶殼層: 在水中以莫耳比約2 : 1之比例,混合氯化亞鐵(II)和 氯化鐵(III); 調整pH值到7至12間;及 讓所形成的氧化鐵圍繞著該聚合物型或無機型奈米 顆粒而自我組裝成該金屬氧化物外殼。 9. 如請求項1所述之方法,其中該第一溶劑是由兩種 選自下列的溶劑組成,包括三辛基膦(trioctylphosphine, TOP)、四氫呋喃(tetrahydrofuran,THF)、C6-18 烯烴類和 二甲基亞讽(dimethylsulfoxid,DMS0);且第二溶劑則是油 基胺(oleylamine)或十六烧胺(hexadecylamine)。 10. 如請求項1所述之方法,其中該鋅鹽是二乙基二 硫代胺基甲酸鋅鹽。 11·如請求項1所述之方法,其中該量子點是以下任 一種:CuInZn、CuInS2、CdS、ZnS 或 CdTe。 12.如請求項11所述之方法,其中CuInS2是由至少 兩種選自以下的量子點前驅物所形成,包含CuCl、InCl3、 Inl3和硫粉。 35 201103563 13. 如請求項11所述之方法,其中CuInZn是由至少 兩種選自以下的量子點前驅物所形成,包含CuCl、InCl3、 Inl3和醋酸鋅。 14. 如請求項11所述之方法,其中CdS是由至少兩種 選自以下的量子點前驅物所形成,包含CdCl2和硫粉。 15. 如請求項11所述之方法,其中CdTe是由至少兩 種選自以下的量子點前驅物所形成,包含CdCh和碲(Te) 粉。 16. 如請求項11所述之方法,其中ZnS是由至少兩種 選自以下的量子點前驅物所形成,包含醋酸鋅和硫粉。 17. 如請求項1所述之方法,其中該溫度是140°C。 18. 如請求項1所述之方法,其中該惰性氣體是以下 任一種:N2、He、Ne、Ar或其之組合。 19. 一種藥物傳送裝置,其係以請求項1所述方法製 造而成的。 20. —種奈米裝置,包含: 36 201103563 一奈米球,包含: 一核心,由一聚合性材料或一無機材料製成;和 一外殼,由一種金屬氧化物製成; 一量子點,沉積在該外殼之外表面上,其中該量子點 是以下任一種:CuInZn、CuInS2、CdS、ZnS 或 CdTe。 21. 如請求項20所述之奈米裝置,其中該聚合性材料 是選自以下任一種:聚乙烯吡咯烷酮(PVP)、聚乙烯(PE)、 聚蕴胺、聚酯、聚酐、聚醚、聚縮醛、多醣或磷脂;且該 無機性材料是選自以下任一種:二氧化鈦、二氧化矽或由 鈣與磷組成之複合材料中。 22. 如請求項2〇所述之奈米裝置,其中該金屬氧化物 外殼是一種包含有以下任一種化合物的單晶殼層、多晶殼 層或非晶殼層,包括:Fe203、Fe304、CoFe204、MnFe204 或 Gd2〇3。 23.如請求項2〇所述之奈米裝置,其中該奈米球具有 一介於約10 nm至1〇〇 nm間。 24·如請求項2〇所述之奈米裝置,其中該量子點具有 順磁性,且該奈米裝置能被一種選自以下的造影技術加以 追蹤及造影,包括:電子自旋共振(ESR)造影、X-光攝影、 電腦斷層和核磁共振造影(MRI)。 37 201103563 25. 如請求項2〇所述之奈米裝置,更包含一藥物,包 埋在該核心中,且該藥物可在以約0.05 kA/m至約2.5 kA/m的磁場刺激該量子點後,自該核心中釋出。 26. 如請求項25所述之奈米裝置,其中該藥物可以是 以下任一種:抗癲癇劑、抗腫瘤劑、抗菌劑、抗病毒劑、 抗增生劑、抗發炎劑、抗糖尿病劑或是荷爾蒙。 27. 如請求項26所述之奈米裝置,其中該抗發炎劑可 以是以下任一種:(corticosteroids)、(ibuprofen)、 (methotrexate)、阿思匹靈(aspirin)、水楊酸(salicyclic acid)、二苯氫胺(diphenyhydramine)、人人百炎鍵 (naproxen)、保泰松(phenylbutazone)、°引 °朵美辛 (indomethacin)或酮基布洛芬(ketoprofen)。 28. 如請求項26所述之奈米裝置,其中該抗病毒劑可 以是以下任一種:無環鳥苷(acyclovir)、,雷巴威林 (ribavirin)、九那米爾(zanamivir)、奥 °塞米爾(oseltamivir)、 齊多夫錠(zidovudine)或拉脈優鍵(lamivudine)。 29. 如請求項26所述之奈米裝置,其中該抗癲癇劑可 以是以下任一種:乙酿u坐續胺(acetazolamide)、卡馬西平 (carbamazepine)、可浴巴寧(ci〇bazam)、氣石肖安定 (clonazepam)、寧神平(diazepam)、乙琥胺(eth〇suximide)、 38 201103563 乙苯妥因(ethotoin)、非氨g旨(felbamate)、填笨妥因 (fosphenytoin)、加巴潘汀(gabapentin)、樂命達 (lamotrigine)、左乙拉西坦(levetiracetam)、美芬妥因 (mephenytoin)、美沙比妥(metharbital)、曱琥胺 (methsuximide)、曱氮醯胺(methazolamide)、除癲達 (oxcarbazepine)、苯巴比妥(Phenobarbital)、苯妥因 (phenytoin)、笨琥胺(phensuximide)、普瑞巴林 (pregabalin)、去氧苯巴比妥(primid〇ne)、丙戊酸鈉(sodium valproate)、司替物醇(stiripentol)、σ塞力口濱(tiagabine)、托 吡酯(topiramate)、三甲雙酮(trimethadione)、丙戊酸 (valproic acid)、氨己烯酸(vigabatrin)或唑尼沙胺 (zonisamide) ° 30. 如請求項26所述之奈米裝置,其中該抗增生劑可 以是以下任一種:放線菌素(actinomycin)、阿黴素 (doxorubicin)、唐黴素(daunorubicin)、戊黴素 (valrubicine)、泛達黴素(idarubicin)、表阿黴素 (epirubicin)、博來黴素(bleomycin)、光輝黴素(plicamycin) 或絲裂黴素(mitomycin)。 31. 如請求項20所述之奈米裝置,其中該抗糖尿病劑 可以是以下任一種:續醯尿素(sulfonylureas)、苯丙胺酸衍 生物(meglitinides)、雙胍類(biguanides)、嗟。坐院二酮類似 物(thiazolidinediones) 、α-葡萄糖苷酶抑制劑 (alpha-glucosidase inhibitors)或一類胜肽。 39 201103563 32. 如請求項20所述之奈米裝置,其中該磺醯尿素可 以是以下任一種:甲苯磺丁脲(tolbutamide)、醋磺己脲 (acetohexamide)、妥拉讀脲(tolazamide)、氣續丙脲 (chlorpropamide)、η比續環己脲(glipizide)、格列本脲 (glyburide)、格列美脲(glimepiride)或甲磺吡脲 (gliclazide);該苯丙胺酸衍生物(meglitinides)是瑞格列奈 (repaglinide)或那格列萘(nateglinide);該雙胍類(biguanides) 是二曱双胍(metformin)、苯乙双胍(phenformin)或丁双胍 (buformin);該嗟嗤烧二酮類似物(thiazolidinediones)可以 是羅格列酮(rosiglitazone)、皮利酮(pioglitazone)或曲格列 酮(troglitazone);該 α-葡萄糖苷酶抑制劑(alpha-glucosidase inhibitors)是米格列醇(migiitoi)或阿卡波糖(acarbose);該 類胜肽(peptide analogs)是艾塞那肽(exenatide)、利拉鲁肽 (liraglutide)、他司鲁肽(taSp〇gjutide)、维格列汀 (vildagliptin)、佳糖維(sitagiiptin)或普蘭林肽 (pramlintide)。 33. 如睛求項26所述之奈米裝置,其中該荷爾蒙可以 疋以下任一種.騰島素、表皮生長因子(epidermal growth factor,EGF)、黃體素、雌激素、腎上腺皮質類固醇或雄性 激素。 34. —種磁性誘發藥物釋出至個體的方法,包含: (a)施用一足量之如請求項25所述之奈米裝置至該個 201103563 體的一身體部位;和 體2 ⑽M 2·5 kA/m的磁場刺激該身 :迖之“裝置釋出所包埋的藥物至該個體的該身體部 35. 如請求項34所述之方法,其中該個體是一人類。 36. 如5月求g 34所述之方法,更包含步驟⑷,在不 額外加人—顯㈣的情況下,以—種選自町的造影技術 來追蹤位於該個體之該身體部位内的該奈米裝置,包括: 電子自旋共振(ESR)造影、X_光攝影、電腦斷層和核磁丘 振造影(MRI)。 八 37. —種在一個體中活體造影的方法,包含: (a) 施用一足量之如請求項2〇所述之奈米裝置至該個 體的一身體部位;和 (b) 在不額外加入一顯影劑的情況下,以一種選自以 下的造影技術來追蹤位於該個體之該身體部位内的該奈 米裝置’包括:電子自旋共振(ESR)造影、光攝影、^ 腦斷層和核磁共振造影(MRI)。201103563 VII. Patent application scope: L A method for manufacturing a nano-scale drug delivery device, comprising the following steps: P-flute, ^~ first solution, which disperses a nanosphere in a quenching agent containing zinc salt , wherein the nanosphere and the zinc salt are in the first solution / □ another: not about 1-4 〇 mg / ml and about 0.02-0.2 mmol / ml; a ^ 仏 first solution, which will At least two quantum dot precursors are mixed in an A solution, wherein the concentration of each quantum dot precursor in the second solution is between about 0.0003_0.03 millimoles per milliliter; in the presence of a gas Next, the one is between 1 〇 ° c and 300. The first solution is mixed with the second solution at a temperature of ruthenium to form a quantum dot on the surface of the nanosphere. 2. The method according to claim 1, wherein the nanosphere is produced by the following steps: 'M0% (% by weight) of one of a polymeric material or an inorganic material in a polar solvent with about 0.01-80 One (% by weight) of one of the drugs is mixed with each other to form a suspension, thereby forming a drug-containing polymerizable or inorganic nanoparticle; and an oxide precursor is added to the suspension (the molar ratio is about 2) : 1 to about 5:1) and vigorously stirred at about 2 (TC to about 120 Torr for about 2-12 hours; wherein the metal oxide precursor can surround the polymer or inorganic nanoparticle itself The method of claim 2, wherein the polar solvent is water or an alcohol of Cu. 4. The method of claim 3, wherein the polymerizable material is selected. Any one of the following: polyvinylpyrrolidone (PVP), polyethylene (PE), polydecylamine, polyethylamine, polyanhydride, polyfluorene, polycondensate, polysaccharide or rouge; and the inorganic material is selected from Any of the following: titanium dioxide, cerium oxide or a composite of calcium and phosphorus 5. The method according to claim 4, wherein the polysaccharide is any one of the following: starch, cellulose, pectin, chitin or quercetin; and the phospholipid is any one of the following: phospholipid The method of claim 3, wherein the metal oxide precursor is selected from any one of the following: chlorine; Ferrous (II), iron (III), cobalt (II) chloride, iron (II) nitrate, iron (III) acetate, acetate (II), chloride (III) and manganese acetate The method of claim 3, wherein the metal oxide outer shell is a single crystal shell layer, a polycrystalline shell layer or an amorphous shell layer comprising any one of the following compounds, including: Fe2〇3 The method of claim 6, wherein the metal oxide precursor comprises iron (II) chloride and iron (III) chloride. And the metal oxide outer shell is a single crystal shell layer formed by the following steps: mixing ferrous chloride in water at a molar ratio of about 2:1 (II) and iron (III) chloride; adjusting the pH to between 7 and 12; and allowing the formed iron oxide to self-assemble into the metal oxide shell around the polymer or inorganic type of nanoparticle. The method of claim 1, wherein the first solvent is composed of two solvents selected from the group consisting of trioctylphosphine (TOP), tetrahydrofuran (THF), C6-18 olefins, and Dimethylsulfoxide (DMS0); and the second solvent is oleylamine or hexadecylamine. 10. The method of claim 1 wherein the zinc salt is zinc diethyldithiocarbamate. The method of claim 1, wherein the quantum dot is any one of the following: CuInZn, CuInS2, CdS, ZnS or CdTe. The method of claim 11, wherein the CuInS2 is formed of at least two quantum dot precursors selected from the group consisting of CuCl, InCl3, Inl3, and sulfur powder. The method of claim 11, wherein the CuInZn is formed of at least two quantum dot precursors selected from the group consisting of CuCl, InCl3, Inl3, and zinc acetate. 14. The method of claim 11, wherein the CdS is formed from at least two quantum dot precursors selected from the group consisting of CdCl2 and sulfur powder. 15. The method of claim 11, wherein the CdTe is formed from at least two quantum dot precursors selected from the group consisting of CdCh and tellurium (Te) powder. 16. The method of claim 11, wherein the ZnS is formed from at least two quantum dot precursors selected from the group consisting of zinc acetate and sulfur powder. 17. The method of claim 1, wherein the temperature is 140 °C. 18. The method of claim 1, wherein the inert gas is any one of the following: N2, He, Ne, Ar, or a combination thereof. 19. A drug delivery device made by the method of claim 1. 20. A nanodevice comprising: 36 201103563 a nanosphere comprising: a core made of a polymeric material or an inorganic material; and an outer shell made of a metal oxide; a quantum dot, Deposited on the outer surface of the outer casing, wherein the quantum dots are any of the following: CuInZn, CuInS2, CdS, ZnS or CdTe. 21. The nanodevice of claim 20, wherein the polymeric material is selected from the group consisting of polyvinylpyrrolidone (PVP), polyethylene (PE), polyamine, polyester, polyanhydride, polyether. a polyacetal, a polysaccharide or a phospholipid; and the inorganic material is selected from the group consisting of titanium dioxide, cerium oxide or a composite material composed of calcium and phosphorus. 22. The nanodevice of claim 2, wherein the metal oxide outer shell is a single crystal shell layer, a polycrystalline shell layer or an amorphous shell layer comprising any one of the following compounds, including: Fe203, Fe304, CoFe204, MnFe204 or Gd2〇3. 23. The nanodevice of claim 2, wherein the nanosphere has a distance between about 10 nm and 1 〇〇 nm. The nanodevice of claim 2, wherein the quantum dot is paramagnetic, and the nanodevice can be tracked and imaged by an imaging technique selected from the group consisting of: electron spin resonance (ESR) Contrast, X-ray photography, computed tomography, and magnetic resonance imaging (MRI). 37 201103563 25. The nanodevice of claim 2, further comprising a drug embedded in the core, and the drug is capable of stimulating the quantum at a magnetic field of from about 0.05 kA/m to about 2.5 kA/m After the point, it is released from the core. 26. The nanodevice of claim 25, wherein the medicament is any one of the following: an anti-epileptic agent, an anti-tumor agent, an antibacterial agent, an antiviral agent, an anti-proliferative agent, an anti-inflammatory agent, an anti-diabetic agent, or Hormones. 27. The nanodevice of claim 26, wherein the anti-inflammatory agent can be any of the following: (corticosteroids), (ibuprofen), (methotrexate), aspirin, salicylic acid (salicyclic acid) ), diphenyhydramine, naproxen, phenylbutazone, indomethacin or ketoprofen. 28. The nanodevice of claim 26, wherein the antiviral agent is any one of the following: acyclovir, ribavirin, zanamivir, ome Oseltamivir, zidovudine or lamivudine. 29. The nanodevice of claim 26, wherein the anti-epileptic agent can be any of the following: acetazolamide, carbamazepine, ci〇bazam , Clonazepam, diazepam, eth〇suximide, 38 201103563 ethotoin, felbamate, fosphenytoin , gabapentin, lamotrigine, levetiracetam, mephenytoin, metharbital, methsuximide, guanidinium Methazolamide, oxcarbazepine, Phenobarbital, phenytoin, phensuximide, pregabalin, deoxyphenobarbital (primid〇) Ne), sodium valproate, stiripentol, tiagabine, topiramate, trimethadione, valproic acid, ammonia Vigabatrin or zonisamide ° 3 The nanodevice of claim 26, wherein the anti-proliferative agent is any one of the following: actinomycin, doxorubicin, daunorubicin, valrubicine ), idarubicin, epirubicin, bleomycin, plicamycin or mitomycin. The nanodevice of claim 20, wherein the antidiabetic agent is any one of the following: sulfonylureas, meglitinides, biguanides, guanidines. Sitting as a thiozolidinediones, alpha-glucosidase inhibitors or a class of peptides. The nano device of claim 20, wherein the sulfonamide can be any of the following: tolbutamide, acetohexamide, tolazamide, Chlorpropamide, η ratio glipizide, glyburide, glimepiride or gliclazide; the amphetamine derivative (meglitinides) Is repaglinide or nateglinide; the biguanides are metformin, phenformin or buformin; The analog (thiazolidinediones) may be rosiglitazone, pioglitazone or troglitazone; the alpha-glucosidase inhibitors are miglitol ( Migiitoi) or acarbose; such peptide analogs are exenatide, liraglutide, taSp〇gjutide, vildagliptin (vildagliptin), sitagiiptin or pulan Peptide (pramlintide). 33. The nanodevice of claim 26, wherein the hormone is any one of the following: an allergic hormone, epidermal growth factor (EGF), lutein, estrogen, adrenocortical steroid or androgen . 34. A method of releasing a magnetically-inducing drug to an individual, comprising: (a) administering a sufficient amount of a nanodevice as claimed in claim 25 to a body part of the 201103563 body; and a body 2 (10) M 2· A magnetic field of 5 kA/m stimulates the body: the device "releases the embedded drug to the body portion of the individual. 35. The method of claim 34, wherein the individual is a human. 36. The method of claim 34, further comprising the step (4) of tracking the nanodevice located in the body part of the individual with an imaging technique selected from the group without additional human-display (4). These include: Electron Spin Resonance (ESR) angiography, X-ray photography, computed tomography, and nuclear magnetic resonance imaging (MRI). VIII. 37. A method of in vivo angiography in a body, comprising: (a) administering a sufficient amount a nanodevice as claimed in claim 2 to a body part of the individual; and (b) in the absence of additional developer, tracking the individual located in the individual with an imaging technique selected from the group consisting of The nanodevice in the body part 'includes: electron spin resonance ( ESR) angiography, photophotography, brain tomography, and magnetic resonance imaging (MRI).
TW98124323A 2009-07-17 2009-07-17 Drug delivery nanodevice, its preparation method and uses thereof TWI374751B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98124323A TWI374751B (en) 2009-07-17 2009-07-17 Drug delivery nanodevice, its preparation method and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98124323A TWI374751B (en) 2009-07-17 2009-07-17 Drug delivery nanodevice, its preparation method and uses thereof

Publications (2)

Publication Number Publication Date
TW201103563A true TW201103563A (en) 2011-02-01
TWI374751B TWI374751B (en) 2012-10-21

Family

ID=44813233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98124323A TWI374751B (en) 2009-07-17 2009-07-17 Drug delivery nanodevice, its preparation method and uses thereof

Country Status (1)

Country Link
TW (1) TWI374751B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504413B (en) * 2013-07-24 2015-10-21 Univ Nat Chiao Tung Composite polymer contrast agent and drug carrier in nano-scale
TWI563027B (en) * 2015-06-18 2016-12-21 Univ Nat Chiao Tung Poly(3,4-ethylenedioxythiophene) grafted amphiphilic chitosan polymer and the hydrogel membrane with a network structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504413B (en) * 2013-07-24 2015-10-21 Univ Nat Chiao Tung Composite polymer contrast agent and drug carrier in nano-scale
TWI563027B (en) * 2015-06-18 2016-12-21 Univ Nat Chiao Tung Poly(3,4-ethylenedioxythiophene) grafted amphiphilic chitosan polymer and the hydrogel membrane with a network structure

Also Published As

Publication number Publication date
TWI374751B (en) 2012-10-21

Similar Documents

Publication Publication Date Title
US20110014296A1 (en) Drug Delivery Nanodevice, its Preparation Method and Uses Thereof
Green-Sadan et al. Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats
US20210346499A1 (en) Nanoparticle delivery system for targeted anti-obesity treatment
Sawant et al. Cancer research and therapy: Where are we today
KR20190042305A (en) Remote-control actuation nanorobot system for delivery and controlled release of drug and control method thereof
JP2007528888A (en) Targeted delivery composition comprising cells and magnetic material
JP2023505579A (en) Compositions and methods for altering the electrical impedance of alternating electric fields
CN113599525A (en) Anti-tumor nano-drug and preparation method and application thereof
Akram et al. Magnesium oxide in nanodimension: model for MRI and multimodal therapy
TWI374751B (en) Drug delivery nanodevice, its preparation method and uses thereof
CN107106699A (en) Nano-particle and its purposes in treatment of cancer
Silva et al. Magnetic particles in biotechnology: from drug targeting to tissue engineering
TWI511751B (en) Pharmaceutical composition for treating cancer by using fe-based particles and method thereof
CN110167602A (en) Chemoembolization emulsion compositions and preparation method thereof
US20210106536A1 (en) Drug delivery agents for prevention or treatment of pulmonary disease
US9089619B2 (en) Hybrid nanocrystals for treatment and bioimaging of disease
CN113925834B (en) Polydopamine-lactoferrin drug carrier and application thereof
CN113548656B (en) Carbon dots with anticancer bioactivity and preparation method thereof
Masotti Multifunctional nanoparticles, nanocages and degradable polymers as a potential novel generation of non-invasive molecular and cellular imaging systems
Yang Nano-Hydrogel for the Treatment of Depression and Epilepsy
US20230270681A1 (en) Drug delivery agents for prevention or treatment of pulmonary disease
Hashmi et al. Gold Nano Particles (GNPs): An Emerging Solution of Cancer
Iqbal et al. Magnetic nanohybrids for magnetic resonance imaging and phototherapy applications
Huan et al. Sustainable gambogic acid release via pH/Redox Dual-Responsive C60-Modified magnetic mesoporous nanospheres for antitumor therapy
US20130236507A1 (en) Method for treating cancer by using Fe-containing alloy particles