TWI503804B - Flexible display device and manufacturing method thereof - Google Patents
Flexible display device and manufacturing method thereof Download PDFInfo
- Publication number
- TWI503804B TWI503804B TW100115132A TW100115132A TWI503804B TW I503804 B TWI503804 B TW I503804B TW 100115132 A TW100115132 A TW 100115132A TW 100115132 A TW100115132 A TW 100115132A TW I503804 B TWI503804 B TW I503804B
- Authority
- TW
- Taiwan
- Prior art keywords
- flexible substrate
- heat generator
- forming
- heat
- layer
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 239000000758 substrate Substances 0.000 claims description 203
- 239000010410 layer Substances 0.000 claims description 108
- 238000000034 method Methods 0.000 claims description 59
- 239000010409 thin film Substances 0.000 claims description 47
- 238000010438 heat treatment Methods 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000002356 single layer Substances 0.000 claims description 10
- 239000012044 organic layer Substances 0.000 claims description 8
- -1 polyethylene terephthalate Polymers 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229920002614 Polyether block amide Polymers 0.000 claims description 5
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000002923 oximes Chemical class 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 229920000570 polyether Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 2
- 229920000962 poly(amidoamine) Polymers 0.000 claims 2
- 150000002148 esters Chemical class 0.000 claims 1
- 125000004494 ethyl ester group Chemical group 0.000 claims 1
- 230000008569 process Effects 0.000 description 30
- 239000003990 capacitor Substances 0.000 description 15
- 230000004888 barrier function Effects 0.000 description 12
- 229920001721 polyimide Polymers 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005538 encapsulation Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002438 flame photometric detection Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- BHOQZFDFSMPLOU-UHFFFAOYSA-N C(C)NC(=O)OCC.C(C=C)(=O)O Chemical compound C(C)NC(=O)OCC.C(C=C)(=O)O BHOQZFDFSMPLOU-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3157—Partial encapsulation or coating
- H01L23/3171—Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1262—Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/03001—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Description
所述技術一般關於顯示裝置。尤其,所述技術一般關於可撓性顯示裝置及製造其之方法。 The techniques are generally related to display devices. In particular, the techniques are generally directed to flexible display devices and methods of making the same.
顯示裝置市場已經透過引入平面顯示器(flat panel display,FPD)而改變,該顯示器輕易地實現了大面積以及展現出減少的重量和厚度。舉例而言,於多種的FPD當中,有機發光二極體(organic light emitting diode,OLED)顯示器由於其自我發光的特性(亦即不需要光源)而展現出減少的厚度和重量。 The display device market has changed by introducing a flat panel display (FPD) that easily achieves a large area and exhibits reduced weight and thickness. For example, among a variety of FPDs, organic light emitting diode (OLED) displays exhibit reduced thickness and weight due to their self-illuminating properties (ie, no light source is required).
因為傳統的FPD可能包括玻璃基板,所以其可撓性有所減少,並且在應用上有所受限。再者,傳統的FPD可能在其基板上包括薄膜電晶體以做控制。 Since the conventional FPD may include a glass substrate, its flexibility is reduced and limited in application. Furthermore, conventional FPDs may include thin film transistors on their substrates for control.
本節所揭露的上述資訊僅為了增進了解所述技術的背景,因此本節可能包含對所屬技術領域具有通常知識者而言並不構成該國已知之先前技術的資訊。 The above information disclosed in this section is only for the purpose of promoting an understanding of the technology, and therefore this section may contain information that does not constitute a prior art known in the art to those of ordinary skill in the art.
因為已經努力做到所述的科技以提供製造可撓性顯示裝置的方法,所以當可撓性基板和載體基板分開時可以避免薄膜電晶體受損,並且如此可以減少處理成本以允許大面積情形下做快速脫離。 Since the above-described technology has been made to provide a method of manufacturing a flexible display device, damage of the thin film transistor can be avoided when the flexible substrate and the carrier substrate are separated, and thus the processing cost can be reduced to allow a large-area situation. Do a quick break.
範例性具體態樣提供製造可撓性顯示裝置的方法,其包括:形成熱產生器於載體基板上;形成可撓性基板於熱產生器上;形成薄膜電晶體於可撓性基板上;形成連接於薄膜電晶體的發光元件;以及藉由施加熱至可撓性基板而從熱產生器分開可撓性基板,其中施加熱包括以熱產生器來產生熱。 Exemplary embodiments provide a method of fabricating a flexible display device comprising: forming a thermal generator on a carrier substrate; forming a flexible substrate on the thermal generator; forming a thin film transistor on the flexible substrate; forming a light-emitting element coupled to the thin film transistor; and separating the flexible substrate from the heat generator by applying heat to the flexible substrate, wherein applying heat includes generating heat with a heat generator.
形成可撓性基板可以包括形成單層於熱產生器上。 Forming the flexible substrate can include forming a single layer on the heat generator.
從熱產生器分開可撓性基板可以包括施加熱而於熱產生器和可撓性基板之間提供介面溫度,該溫度大於可撓性基板的熔點。 Separating the flexible substrate from the heat generator can include applying heat to provide an interface temperature between the heat generator and the flexible substrate that is greater than a melting point of the flexible substrate.
形成可撓性基板可以包括形成具有初始厚度的可撓性基板,並且形成熱產生器包括形成傳送熱到可撓性基板的熱產生器。 Forming the flexible substrate can include forming a flexible substrate having an initial thickness, and forming the heat generator includes forming a heat generator that transfers heat to the flexible substrate.
形成可撓性基板可以包括:形成犧牲層於熱產生器上;形成避免水氣滲透層於犧牲層上;以及形成主體層於避免水氣滲透層上。 Forming the flexible substrate may include: forming a sacrificial layer on the heat generator; forming a water vapor permeable layer on the sacrificial layer; and forming the body layer on the water vapor permeable layer.
從熱產生器分開犧牲層可以包括施加熱而於熱產生器和犧牲層之間提供介面溫度,該溫度大於犧牲層的熔點。 Separating the sacrificial layer from the heat generator can include applying heat to provide an interface temperature between the heat generator and the sacrificial layer that is greater than a melting point of the sacrificial layer.
可撓性顯示裝置可以藉由上述方法所製造,其可撓性基板的外部具有範圍從大約1奈米到大約15奈米的均方根粗糙度。 The flexible display device can be manufactured by the above method, and the outer portion of the flexible substrate has a root mean square roughness ranging from about 1 nm to about 15 nm.
範例性具體態樣提供另一種製造可撓性顯示裝置的方法,其包括:形成熱產生器於載體基板上,該熱產生器包括具有預定電阻的傳導材料;形成可撓性基板於熱產生器上;形成包括薄膜電晶體的驅動電路於可撓性基板上;形成發光元件和包封構件於驅動電路上;藉由施加電壓至熱產生器而產生焦耳熱,所產生的焦耳熱施加於可撓性基板以從熱產生器分開可撓性基板。 Exemplary Aspects Provided is another method of fabricating a flexible display device comprising: forming a heat generator on a carrier substrate, the heat generator comprising a conductive material having a predetermined electrical resistance; forming a flexible substrate in the heat generator Forming a driving circuit including a thin film transistor on the flexible substrate; forming a light emitting element and an encapsulating member on the driving circuit; generating Joule heat by applying a voltage to the heat generator, and generating the Joule heat The flexible substrate separates the flexible substrate from the heat generator.
形成熱產生器可以包括於載體基板上沉積金屬和金屬氧化物當中至少一者至均勻厚度。 Forming the heat generator can include depositing at least one of a metal and a metal oxide onto the carrier substrate to a uniform thickness.
產生焦耳熱可以包括施加具有脈衝波形的電壓至熱產生器。 Generating Joule heat can include applying a voltage having a pulse waveform to the heat generator.
形成可撓性基板可以包括形成單層於熱產生器上,使得單層接觸熱產生器的預定部分被熱產生器的焦耳熱所分解。 Forming the flexible substrate can include forming a single layer on the heat generator such that a predetermined portion of the single layer contact heat generator is decomposed by the Joule heat of the heat generator.
可撓性基板可以包括聚亞醯胺、聚碳酸酯、聚丙烯酸酯、聚醚亞醯胺、聚醚碸、聚對苯二甲酸乙酯、聚萘酸乙酯當中至少一者。 The flexible substrate may include at least one of polyamine, polycarbonate, polyacrylate, polyether amide, polyether oxime, polyethylene terephthalate, and polybutylene naphthalate.
產生焦耳熱可以包括加熱熱產生器到大約300℃到大約900℃的溫度。 Producing Joule heat can include heating the heat generator to a temperature of from about 300 °C to about 900 °C.
形成可撓性基板可以包括形成具有初始厚度的可撓性基板,並且形成熱產生器包括形成傳送熱到可撓性基板的熱產生器。 Forming the flexible substrate can include forming a flexible substrate having an initial thickness, and forming the heat generator includes forming a heat generator that transfers heat to the flexible substrate.
形成可撓性基板可以包括:形成犧牲層於熱產生器上;形成避免水氣滲透層於犧牲層上;以及形成主體層於避免水氣滲透層上。 Forming the flexible substrate may include: forming a sacrificial layer on the heat generator; forming a water vapor permeable layer on the sacrificial layer; and forming the body layer on the water vapor permeable layer.
犧牲層可以形成得比主體層還薄,而至少部分的犧牲層被熱產生器的焦耳熱所分解,如此則避免水氣滲透層和主體層從熱產生器分開。 The sacrificial layer may be formed thinner than the bulk layer, and at least a portion of the sacrificial layer is decomposed by the Joule heat of the heat generator, thus preventing the moisture vapor permeable layer and the body layer from separating from the heat generator.
犧牲層可以由聚亞醯胺、聚碳酸酯、聚丙烯酸酯、聚醚亞醯胺、聚醚碸、聚對苯二甲酸乙酯、聚萘酸乙酯當中至少一者所形成。 The sacrificial layer may be formed of at least one of polyamine, polycarbonate, polyacrylate, polyether amide, polyether oxime, polyethylene terephthalate, and polybutylene naphthalate.
熱產生器的焦耳加熱溫度可以是在大約300℃到大約900℃的範圍裡。 The Joule heating temperature of the heat generator may be in the range of about 300 ° C to about 900 ° C.
藉由上述方法所製造之一種可撓性顯示裝置,其可撓性基板的外部具有大約1奈米到大約15奈米的均方根粗糙度。 A flexible display device manufactured by the above method, the outer surface of the flexible substrate having a root mean square roughness of about 1 nm to about 15 nm.
21‧‧‧犧牲層 21‧‧‧ sacrificial layer
22‧‧‧避免水氣滲透層 22‧‧‧ Avoid water vapor permeability
23‧‧‧主體層 23‧‧‧ body layer
25‧‧‧像素電極 25‧‧‧pixel electrode
26‧‧‧有機發射層 26‧‧‧Organic emission layer
27‧‧‧共同電極 27‧‧‧Common electrode
30‧‧‧切換薄膜電晶體 30‧‧‧Switching thin film transistor
31‧‧‧切換半導體層 31‧‧‧Switching the semiconductor layer
32‧‧‧切換閘極 32‧‧‧Switching gate
33‧‧‧切換源極 33‧‧‧Switching source
34‧‧‧切換汲極 34‧‧‧Switching bungee
40‧‧‧驅動薄膜電晶體 40‧‧‧Drive film transistor
41‧‧‧驅動半導體層 41‧‧‧Drive semiconductor layer
42‧‧‧驅動閘極 42‧‧‧Drive gate
43‧‧‧驅動源極 43‧‧‧Drive source
44‧‧‧驅動汲極 44‧‧‧Drive bungee
50‧‧‧電容器 50‧‧‧ capacitor
51、52‧‧‧電容板 51, 52‧‧‧ Capacitor plates
61‧‧‧閘極線 61‧‧‧ gate line
62‧‧‧資料線 62‧‧‧Information line
63‧‧‧共同電力線 63‧‧‧Common power line
64‧‧‧層間絕緣層 64‧‧‧Interlayer insulation
110‧‧‧載體基板 110‧‧‧ Carrier substrate
120‧‧‧熱產生器 120‧‧‧heat generator
130‧‧‧襯墊 130‧‧‧ cushion
200‧‧‧可撓性顯示裝置 200‧‧‧Flexible display device
201‧‧‧可撓性顯示裝置 201‧‧‧Flexible display device
210‧‧‧可撓性基板 210‧‧‧Flexible substrate
211‧‧‧可撓性基板 211‧‧‧Flexible substrate
220‧‧‧阻障層 220‧‧‧Barrier layer
230‧‧‧驅動電路 230‧‧‧ drive circuit
240‧‧‧發光元件 240‧‧‧Lighting elements
250‧‧‧包封構件 250‧‧‧encapsulated components
S10~S50‧‧‧操作 S10~S50‧‧‧ operation
藉由參考所附圖式來詳細敘述範例性具體態樣,上面和其他的特色與優點對於此技藝中具一般技術者而言已變得更明顯,其中:圖1示範根據範例性具體態樣之製造可撓性顯示裝置的方法流程圖。 The above and other features and advantages will become more apparent to those of ordinary skill in the art in the <RTIgt; A flow chart of a method of manufacturing a flexible display device.
圖2A到圖2E示範根據範例性具體態樣之製造可撓性顯示裝置的方法階段截面圖。 2A through 2E illustrate cross-sectional views of a method of fabricating a flexible display device in accordance with an exemplary embodiment.
圖2F示範圖2D的部分立體圖。 Figure 2F illustrates a partial perspective view of Figure 2D.
圖3A到圖3C示範根據另一範例性具體態樣之製造可撓性顯示裝置的方法階段截面圖。 3A through 3C illustrate phase cross-sectional views of a method of fabricating a flexible display device in accordance with another exemplary embodiment.
圖4示範當電壓施加於熱產生器時所測量的熱分布模擬結果。 Figure 4 illustrates the simulation results of the heat distribution measured when a voltage is applied to the heat generator.
圖5示範可以從熱產生器和載體基板分離之可撓性顯示裝置的照片。 Figure 5 illustrates a photograph of a flexible display device that can be separated from the heat generator and the carrier substrate.
圖6示範根據範例性具體態樣的可撓性顯示裝置之可撓性基板表面的掃描式電子顯微鏡(SEM)照片。 Figure 6 illustrates a scanning electron microscope (SEM) photograph of a flexible substrate surface of a flexible display device in accordance with an exemplary embodiment.
圖7和圖8示範根據範例性具體態樣的可撓性顯示裝置之可撓性基板表面的原子力顯微鏡(AFM)照片。 7 and 8 illustrate atomic force microscope (AFM) photographs of a flexible substrate surface of a flexible display device according to an exemplary embodiment.
圖9示範應用雷射掃描過程之比較性範例的可撓性顯示裝置之可撓性基板表面的SEM照片。 Figure 9 illustrates an SEM photograph of a flexible substrate surface of a flexible display device to which a comparative example of a laser scanning process is applied.
圖10示範應用雷射掃描過程之比較性範例的可撓性顯示裝置之可撓性基板表面的AFM照片。 Figure 10 illustrates an AFM photograph of a flexible substrate surface of a flexible display device using a comparative example of a laser scanning process.
圖11示範薄膜電晶體在焦耳加熱感應升離(JILO)過程之前/之後的轉移特性圖形。 Figure 11 illustrates a transfer characteristic pattern of a thin film transistor before/after a Joule heating induced lift-off (JILO) process.
圖12示範薄膜電晶體根據偏壓溫度應力(BTS)測試而在JILO過程之後的轉移特性圖形。 Figure 12 is a graph showing the transfer characteristics of a thin film transistor after a JILO process according to a bias temperature stress (BTS) test.
圖13A示範薄膜電晶體根據高汲極電流(HDC)應力測試而在JILO過程之後的轉移特性圖形。 Figure 13A illustrates a transfer pattern of a thin film transistor after a JILO process in accordance with a high threshold current (HDC) stress test.
圖13B示範薄膜電晶體在JILO過程之後的遲滯圖形。 Figure 13B illustrates a hysteresis pattern of a thin film transistor after the JILO process.
圖14示範可撓性顯示裝置的像素組態佈局。 Figure 14 illustrates a pixel configuration layout of a flexible display device.
圖15示範沿著圖14之線A-A的截面圖。 Figure 15 illustrates a cross-sectional view along line A-A of Figure 14.
下文將參考所附圖式來更完整地描述範例性具體態樣;然而,它們可以具像為不同的形式,並且不應解讀成受限於在此所列的具體態樣。反而是提供這些具體態樣,如此則本揭示將會是透徹而完全的,並且將完整地傳達本發明的範圍裡給熟於此技藝者。 The exemplary embodiments are described more fully hereinafter with reference to the accompanying drawings. Rather, these specific aspects are provided so that this disclosure will be thorough and complete, and will be <RTIgt;
於圖式,層和區域的尺寸可能有所誇大以清楚示範。也將了解當某層(或元件)是指在另一層或基板「上」時,它可以直接在另一層或基板上,或者也可以存在著中介層。此外,也將了解當某層是指在二層「之間」時,它可以是二層之間的唯一層,或者也可以存在著一或更多個中介層。全篇相同的參考數字是指相同的元件。 In the drawings, the dimensions of layers and regions may be exaggerated for clarity. It will also be appreciated that when a layer (or component) is referred to as being "on" another layer or substrate, it can be directly on another layer or substrate, or an intervening layer. In addition, it will also be understood that when a layer refers to "between" layers, it can be the only layer between the two layers, or one or more intervening layers can exist. The same reference numerals are used throughout the drawings to refer to the same elements.
圖1示範根據範例性具體態樣之製造可撓性顯示裝置的方法流程圖。參見圖1,製造可撓性顯示裝置的方法可以包括:形成熱產生器於載體基板上(操作S10);形成可撓性基板於熱產生器上(操作S20);形成薄膜電晶體(thin film transistor,TFT)於可撓性基板上(操作S30);形成發光元件和包封構件(操作S40);以及藉由使用熱產生器所產生的熱而從熱產生器和載體基板分開可撓性基板(操作S50)。 1 illustrates a flow chart of a method of fabricating a flexible display device in accordance with an exemplary embodiment. Referring to FIG. 1, a method of manufacturing a flexible display device may include: forming a heat generator on a carrier substrate (operation S10); forming a flexible substrate on the heat generator (operation S20); forming a thin film transistor (thin film) a transistor (TFT) on the flexible substrate (operation S30); forming a light-emitting element and an encapsulation member (operation S40); and separating the flexibility from the heat generator and the carrier substrate by using heat generated by the heat generator Substrate (operation S50).
圖2A到圖2E示範圖1所示之製造可撓性顯示裝置的第一方法階段截面圖,而圖2F示範圖2D的部分立體圖。現在將參考圖1和圖2A~2F來敘述根據第一範例性具體態樣之製造可撓性顯示裝置的方法。 2A through 2E illustrate a first method stage cross-sectional view of the manufacture of the flexible display device of FIG. 1, and FIG. 2F illustrates a partial perspective view of FIG. 2D. A method of manufacturing a flexible display device according to a first exemplary embodiment will now be described with reference to FIGS. 1 and 2A to 2F.
參見圖2A,於操作S10,可以製備載體基板110,並且熱產生器120可以形成於載體基板110上。載體基板110可以是玻璃基板以做為硬的絕緣基板。熱產生器120於預定的條件下產生熱。熱產生器120可以形成於載體基板110上以發揮表面加熱構件的功能。 Referring to FIG. 2A, a carrier substrate 110 may be prepared in operation S10, and a heat generator 120 may be formed on the carrier substrate 110. The carrier substrate 110 may be a glass substrate as a hard insulating substrate. The heat generator 120 generates heat under predetermined conditions. The heat generator 120 may be formed on the carrier substrate 110 to function as a surface heating member.
參見圖2B,於操作S20,可撓性基板210可以形成於(譬如直接於)熱產生器120上。舉例而言,可撓性基板210可以是塑膠膜,並且可以藉由披覆液態聚合材料於(譬如直接於)熱產生器120上再熱硬化所披覆的液態聚合材料而製造。舉例而言,可撓性基板210可以由聚亞醯胺、聚碳酸酯、聚丙烯酸酯、聚醚亞醯胺、聚醚碸、聚對苯二甲酸乙酯、聚萘酸乙酯當中至少一者所形成。舉例而言,聚亞醯胺可以用於大於450℃的製程溫度,藉此使可撓性基板210上之薄膜電晶體於製造期間的劣化減到最少。 Referring to FIG. 2B, the flexible substrate 210 may be formed on (eg, directly from) the heat generator 120 in operation S20. For example, the flexible substrate 210 can be a plastic film and can be fabricated by coating a liquid polymeric material on (eg, directly on) the heat generator 120 and then thermally hardening the coated liquid polymeric material. For example, the flexible substrate 210 may be at least one of polytheneamine, polycarbonate, polyacrylate, polyether amide, polyether oxime, polyethylene terephthalate, and polybutyl naphthalate. Formed by the people. For example, polymethyleneamine can be used at process temperatures greater than 450 ° C, thereby minimizing degradation of the thin film transistor on the flexible substrate 210 during fabrication.
注意關於可撓性基板210,其係由塑膠膜所做成,而可以被熱所彎曲或延伸,但可能難以於可撓性基板210上形成以薄膜電晶體、發光元件和/或導線所建構的精確薄膜圖案。因此,因為可撓性基板210可以形成於載體基板110上,所以載體基板110可以提供可撓性基板210於後續製程期間(譬如薄膜電晶體形成於可撓性基板210上的期間)足夠的支持。 Note that the flexible substrate 210 is made of a plastic film and may be bent or extended by heat, but may be difficult to form on the flexible substrate 210 by a thin film transistor, a light-emitting element, and/or a wire. Precise film pattern. Therefore, since the flexible substrate 210 can be formed on the carrier substrate 110, the carrier substrate 110 can provide sufficient support for the flexible substrate 210 during subsequent processes, such as during formation of the thin film transistor on the flexible substrate 210. .
可撓性基板210可以用單層來建構,並且可以形成於熱產生器120上以接觸熱產生器120。舉例而言,因為可撓性基板210可以小於熱產生器120,所以熱產生器120的邊緣可以延伸超過可撓性基板210,譬如沿著可撓性基板210的整個周邊。 The flexible substrate 210 may be constructed in a single layer and may be formed on the heat generator 120 to contact the heat generator 120. For example, because the flexible substrate 210 can be smaller than the heat generator 120, the edges of the heat generator 120 can extend beyond the flexible substrate 210, such as along the entire perimeter of the flexible substrate 210.
參見圖2C,於操作S30,阻障層220可以形成於可撓性基板210上,並且包括薄膜電晶體的驅動電路230可以形成於阻障層220上,譬如阻障層220可以是在可撓性基板210和驅動電路230之間。為了便於示範,驅動電路230於圖2C簡單地顯示為單層,譬如真正的驅動電路可以包括多個薄膜電晶體和多個電容器。多條導線可以形成於可撓性基板210上。 Referring to FIG. 2C, a barrier layer 220 may be formed on the flexible substrate 210, and a driving circuit 230 including a thin film transistor may be formed on the barrier layer 220. For example, the barrier layer 220 may be flexible. Between the substrate 210 and the driving circuit 230. For ease of demonstration, the driver circuit 230 is shown as a single layer in FIG. 2C, such as a true driver circuit that may include a plurality of thin film transistors and a plurality of capacitors. A plurality of wires may be formed on the flexible substrate 210.
如圖2C所進一步示範,於操作S40,發光元件240可以形成於驅動電路230上,並且包封構件250可以形成於發光元件240上。發光元件240可以包括多個有機發光元件。發光元件240可以由驅動電路230所控制,並且可以根據驅動訊號來發光而顯示影像。為了容易敘述,圖2C把發光元件240簡化為單層。 As further illustrated in FIG. 2C, in operation S40, the light emitting element 240 may be formed on the driving circuit 230, and the encapsulation member 250 may be formed on the light emitting element 240. The light emitting element 240 may include a plurality of organic light emitting elements. The light emitting element 240 can be controlled by the driving circuit 230, and can display an image by emitting light according to the driving signal. For ease of description, FIG. 2C simplifies the light-emitting element 240 into a single layer.
阻障層220可以由無機層和/或有機層所形成,或者可以由堆疊的無機和有機層所形成。阻障層220抑制了不欲的元素(譬如溼氣或氧)經由可撓性基板210而滲透到發光元件240,因為溼氣或氧可以劣化發光元件240和減少發光元件240的壽命。 The barrier layer 220 may be formed of an inorganic layer and/or an organic layer, or may be formed of stacked inorganic and organic layers. The barrier layer 220 suppresses unwanted elements (such as moisture or oxygen) from penetrating into the light emitting element 240 via the flexible substrate 210 because moisture or oxygen can degrade the light emitting element 240 and reduce the life of the light emitting element 240.
包封構件250可以由多層所形成。包封構件250可以由多個有機層、多個無機層和/或多個交替堆疊的有機和無機層所形成。無機層譬如可以包括氧化鋁和/或氧化矽,而有機層譬如可以包括環氧樹脂、丙烯酸酯和/或丙烯酸胺基甲酸乙酯。 The encapsulation member 250 may be formed of a plurality of layers. The encapsulation member 250 may be formed of a plurality of organic layers, a plurality of inorganic layers, and/or a plurality of alternately stacked organic and inorganic layers. The inorganic layer may, for example, comprise aluminum oxide and/or cerium oxide, and the organic layer may, for example, comprise an epoxy resin, an acrylate and/or an ethyl urethane acrylate.
無機層避免外面的溼氣和氧滲透到發光元件240。有機層弱化了無機層的內應力或者填充了無機層的微小裂隙和針孔。無機層和有機層的材料是範例性的而不限制於所述材料,並且可以使用熟於此技藝者所知的多種無機層和有機層。 The inorganic layer prevents the outside moisture and oxygen from penetrating into the light emitting element 240. The organic layer weakens the internal stress of the inorganic layer or the micro-cracks and pinholes filled with the inorganic layer. The materials of the inorganic layer and the organic layer are exemplary and not limited to the materials, and various inorganic layers and organic layers known to those skilled in the art may be used.
包封構件250可以包圍著驅動電路230的側面和發光元件240的側面,如此則驅動電路230和發光元件240的側面可以不暴露於外面。換言之,包 封構件250可以接觸(譬如直接接觸)阻障層220,而驅動電路230和發光元件240位於其間。 The encapsulation member 250 may surround the side of the driving circuit 230 and the side of the light emitting element 240 such that the sides of the driving circuit 230 and the light emitting element 240 may not be exposed to the outside. In other words, the package The sealing member 250 can contact (e.g., directly contact) the barrier layer 220 with the driver circuit 230 and the light emitting element 240 therebetween.
參見圖2D,於操作S50,熱產生器120可以產生熱並且施加產生的熱至可撓性基板210。由於施加熱的結果,因為可撓性基板210接觸熱產生器120的預定區域(亦即圖中的底部區域)可以被熱能所分解,所以可撓性基板210可以從熱產生器120和載體基板110分開(圖2E)。也就是說,因為熱產生器120可以發揮熱能來源的功能而接觸可撓性基板210,譬如直接接觸可撓性基板210面對熱產生器120的整個底部表面,所以熱產生器120的熱能可以直接轉移到可撓性基板210而不用介質。 Referring to FIG. 2D, in operation S50, the heat generator 120 may generate heat and apply the generated heat to the flexible substrate 210. As a result of the application of heat, since the flexible substrate 210 contacts a predetermined region of the heat generator 120 (that is, the bottom region in the drawing) can be decomposed by thermal energy, the flexible substrate 210 can be from the heat generator 120 and the carrier substrate. 110 is separated (Fig. 2E). That is, since the heat generator 120 can function as a source of thermal energy to contact the flexible substrate 210, such as directly contacting the flexible substrate 210 facing the entire bottom surface of the heat generator 120, the heat energy of the heat generator 120 can Transfer directly to the flexible substrate 210 without using a medium.
相對而言,如果載體基板上的可撓性基板是由雷射源所加熱,譬如相對於範例性具體態樣的熱產生器120來看,則雷射光束(譬如準分子雷射光束)可以從載體基板外的區域經由載體基板而朝向可撓性基板來照射,以便傳送熱能到可撓性基板。也就是說,因為雷射源可能相對於載體基板而定位於外部,譬如超出載體基板背對可撓性基板的底部表面,所以雷射源的雷射光束輸出會通過載體基板的厚度以便抵達並聚焦於可撓性基板上,藉此傳送熱能到可撓性基板。據此,相對於熱產生器120(亦即接觸可撓性基板210並且位在載體基板110和可撓性基板210之結構內的熱源),在載體基板外部的雷射源則需要介質(亦即載體基板)以便轉移能量。 In contrast, if the flexible substrate on the carrier substrate is heated by a laser source, such as with respect to the heat generator 120 of the exemplary embodiment, the laser beam (such as a quasi-molecular laser beam) can The region outside the carrier substrate is irradiated toward the flexible substrate via the carrier substrate to transfer thermal energy to the flexible substrate. That is, since the laser source may be positioned externally with respect to the carrier substrate, such as beyond the bottom surface of the carrier substrate facing away from the flexible substrate, the laser beam output of the laser source will pass through the thickness of the carrier substrate to reach and Focusing on the flexible substrate thereby transferring thermal energy to the flexible substrate. Accordingly, the laser source outside the carrier substrate requires the medium relative to the heat generator 120 (ie, the heat source contacting the flexible substrate 210 and located within the structure of the carrier substrate 110 and the flexible substrate 210). That is, the carrier substrate) to transfer energy.
舉例而言,熱產生器120可以用傳導層來建構,譬如可以包括傳導層,而於電壓施加條件下造成焦耳加熱。然而,熱產生器120的組態及其產熱原理並不限於上述的例子,而可以應用其他的組態來立即產生熱以及熱分解部分的可撓性基板210。 For example, the heat generator 120 can be constructed with a conductive layer, such as a conductive layer, to cause Joule heating under voltage application conditions. However, the configuration of the heat generator 120 and its heat generation principle are not limited to the above examples, and other configurations may be applied to immediately generate the heat and thermal decomposition portions of the flexible substrate 210.
熱產生器120可以包括金屬或金屬氧化物。舉例而言,熱產生器120可以包括鉬(Mo)、鈦(Ti)、銅(Cu)、銀(Ag)、鉻(Cr)當中至少一者做為金屬和 /或氧化銦錫(indium tin oxide,ITO)、氧化銦鋅(indium zinc oxide,IZO)當中至少一者做為金屬氧化物。 Heat generator 120 can include a metal or metal oxide. For example, the heat generator 120 may include at least one of molybdenum (Mo), titanium (Ti), copper (Cu), silver (Ag), and chromium (Cr) as the metal and / or at least one of indium tin oxide (ITO), indium zinc oxide (IZO) as a metal oxide.
參見圖2F,載體基板110和熱產生器120可以形成為具有大於可撓性基板210的面積,如此則熱產生器120的末端(譬如熱產生器120面對可撓性基板210的上表面而在熱產生器120之二相對邊緣的部分)可以暴露於可撓性基板210的外部。連接於外部電源供應器(未顯示)的二襯墊130可以接觸熱產生器120的暴露末端以施加電壓(譬如具有脈衝波形的電壓)至熱產生器120。 Referring to FIG. 2F, the carrier substrate 110 and the heat generator 120 may be formed to have an area larger than that of the flexible substrate 210, such that the end of the heat generator 120 (eg, the heat generator 120 faces the upper surface of the flexible substrate 210) Portions of the opposite edges of the heat generator 120 may be exposed to the outside of the flexible substrate 210. A second pad 130 connected to an external power supply (not shown) may contact the exposed end of the heat generator 120 to apply a voltage (such as a voltage having a pulsed waveform) to the heat generator 120.
熱產生器120的暴露末端和其上的二襯墊130可以沿著載體基板110的方向(譬如沿著圖中的x軸)而面對彼此,並且可以於截面方向形成為長棒狀,譬如襯墊130可以沿著熱產生器120及其暴露末端的整個長度而沿著y軸來延伸。據此,由於襯墊130接觸熱產生器120的相對末端,故均勻電流於一方向上(譬如沿著圖中x軸方向)流過載體基板110的熱產生器120,藉此導致於熱產生器120中產生焦耳熱。 The exposed end of the heat generator 120 and the two pads 130 thereon may face each other along the direction of the carrier substrate 110 (such as along the x-axis in the drawing), and may be formed into a long rod shape in the cross-sectional direction, such as The liner 130 can extend along the y-axis along the entire length of the heat generator 120 and its exposed ends. Accordingly, since the pad 130 contacts the opposite ends of the heat generator 120, a uniform current flows in one direction (e.g., along the x-axis direction in the drawing) through the heat generator 120 of the carrier substrate 110, thereby causing the heat generator Joule heat is generated in 120.
熱產生器120根據電阻值和脈衝條件而在多種溫度下產生熱,譬如熱產生器120可以產生大於1000℃的熱。熱產生器120的溫度可以設定在以下範圍:適於控制熱以快速通過可撓性基板210的預定部分,並且立即分解預定部分至預定的熱穿透深度,而不影響形成於可撓性基板210上的驅動電路230和發光元件240。 The heat generator 120 generates heat at a plurality of temperatures depending on the resistance value and the pulse condition, for example, the heat generator 120 can generate heat of more than 1000 °C. The temperature of the heat generator 120 may be set to a range suitable for controlling heat to quickly pass through a predetermined portion of the flexible substrate 210, and immediately decomposing the predetermined portion to a predetermined heat penetration depth without affecting formation on the flexible substrate The drive circuit 230 and the light-emitting element 240 on 210.
舉例而言,熱產生器120於操作S50的加熱溫度可以設定在大約300℃到大約900℃的範圍裡。當熱產生器120的加熱溫度低於300℃時,於可撓性基板210之底部區域的熱分解可能會不均勻,譬如可能分解不足的材料,藉此使得可撓性基板210難以分解。當熱產生器120的加熱溫度高於900℃時,可撓性基板210可能會過熱,藉此造成形成於可撓性基板210上的薄膜電晶體劣化。 For example, the heating temperature of the heat generator 120 at operation S50 can be set in the range of about 300 ° C to about 900 ° C. When the heating temperature of the heat generator 120 is lower than 300 ° C, thermal decomposition in the bottom region of the flexible substrate 210 may be uneven, such as a material that may be decomposed, thereby making the flexible substrate 210 difficult to decompose. When the heating temperature of the heat generator 120 is higher than 900 ° C, the flexible substrate 210 may be overheated, thereby causing deterioration of the thin film transistor formed on the flexible substrate 210.
熱產生器120可以於載體基板110上形成均勻的厚度,以於整個熱產生器120上產生均勻的焦耳熱。 The heat generator 120 can form a uniform thickness on the carrier substrate 110 to produce uniform Joule heat across the heat generator 120.
可以考慮可撓性基板210的熱穿透深度來控制施加於熱產生器120之電壓的脈衝時間。當可撓性基板210的厚度為大約10微米時,熱穿透深度可以小於大約1微米。於此情況,可以把提供熱至可撓性基板210所造成之驅動電路230和發光元件240的劣化實質降到最低。 The pulse time of the voltage applied to the heat generator 120 can be controlled in consideration of the heat penetration depth of the flexible substrate 210. When the thickness of the flexible substrate 210 is about 10 microns, the thermal penetration depth can be less than about 1 micron. In this case, deterioration of the drive circuit 230 and the light-emitting element 240 caused by the supply of heat to the flexible substrate 210 can be substantially minimized.
上述根據範例性具體態樣的分開過程可以稱為焦耳加熱感應升離(Joule heating induced lift-off,JILO)過程。於使用JILO過程的本範例性具體態樣,焦耳熱是藉由施加電壓至熱產生器120而產生。由於熱產生器120接觸可撓性基板210的預定區域,故從熱產生器120轉移到可撓性基板210之預定區域的焦耳熱會穿透可撓性基板210到預定的深度,譬如之前所討論的,此係根據電壓脈衝時間。因為可撓性基板210被熱穿透的部分(譬如可撓性基板210和熱產生器120之間的整個接觸表面)會分解,所以可撓性基板210從熱產生器120分開。分開過程也可以在幾微秒(μs)內來進行於寬和/或大的基板上,並且對可撓性基板210上的驅動電路230和發光元件240造成極少或沒有熱和/或機械損傷。 The separation process according to the exemplary embodiment described above may be referred to as a Joule heating induced lift-off (JILO) process. In this exemplary aspect of using the JILO process, Joule heat is generated by applying a voltage to the heat generator 120. Since the heat generator 120 contacts a predetermined area of the flexible substrate 210, the Joule heat transferred from the heat generator 120 to a predetermined area of the flexible substrate 210 penetrates the flexible substrate 210 to a predetermined depth, such as before As discussed, this is based on the voltage pulse time. Since the portion of the flexible substrate 210 that is thermally penetrated (for example, the entire contact surface between the flexible substrate 210 and the heat generator 120) is decomposed, the flexible substrate 210 is separated from the heat generator 120. The separation process can also be performed over a few microseconds (μs) on a wide and/or large substrate with little or no thermal and/or mechanical damage to the driver circuit 230 and the light-emitting elements 240 on the flexible substrate 210. .
相對而言,當雷射光束用於分開過程時,驅動電路和發光元件可能由於雷射的強度而受損,此乃由於可撓性基板和上面形成的諸層非常薄,儘管控制雷射光束強度和聚焦深度亦然。再者,使用雷射可能由於雷射系統的花費而增加成本,並且可能由於可用的雷射光束數目有限以及必須掃描雷射光束而增加製造時間。 In contrast, when a laser beam is used in the separation process, the driving circuit and the light-emitting element may be damaged due to the intensity of the laser, since the flexible substrate and the layers formed thereon are very thin, although the laser beam is controlled. The intensity and depth of focus are also the same. Furthermore, the use of lasers may increase costs due to the expense of the laser system and may increase manufacturing time due to the limited number of laser beams available and the necessity to scan the laser beam.
圖3A到圖3C示範圖1所示之製造可撓性顯示裝置的第二方法階段截面圖。現在將參考圖1和圖3A~3C來敘述根據第二範例性具體態樣之製造可撓性顯示裝置的方法。 3A to 3C are cross-sectional views showing a second method stage of manufacturing the flexible display device shown in Fig. 1. A method of manufacturing a flexible display device according to a second exemplary embodiment will now be described with reference to FIGS. 1 and 3A to 3C.
參見圖3A,於操作S10,可以製備載體基板110,並且熱產生器120可以採類似第一範例性具體態樣(圖2A)的方式而形成於載體基板110上。於操作S20,可撓性基板211可以藉由依序沉積犧牲層21、避免水氣滲透層22、主體層23於(譬如直接於)熱產生器120上而形成於熱產生器120上。換言之,可撓性基板211可以包括多層,亦即可撓性基板211可以包括犧牲層21、避免水氣滲透層22、主體層23。犧牲層21可以形成於(譬如直接於)熱產生器120上以接觸熱產生器120。 Referring to FIG. 3A, a carrier substrate 110 may be prepared in operation S10, and the heat generator 120 may be formed on the carrier substrate 110 in a manner similar to the first exemplary embodiment (FIG. 2A). In operation S20, the flexible substrate 211 can be formed on the heat generator 120 by sequentially depositing the sacrificial layer 21, avoiding the water vapor permeation layer 22, and the body layer 23 on (eg, directly) the heat generator 120. In other words, the flexible substrate 211 may include a plurality of layers, that is, the flexible substrate 211 may include the sacrificial layer 21, the moisture barrier layer 22, and the body layer 23. A sacrificial layer 21 may be formed (eg, directly) to the heat generator 120 to contact the heat generator 120.
犧牲層21和主體層23可以由與第一範例性具體態樣之可撓性基板210相同的塑膠膜所做成,並且塑膠膜可以藉由披覆液態聚合材料再熱硬化而製造。舉例而言,犧牲層21可以形成為不如主體層23那麼厚,譬如犧牲層21的厚度可以等於或大於可撓性基板210的熱穿透深度。主體層23可以形成為具有與第一範例性具體態樣之可撓性基板210相同的厚度。 The sacrificial layer 21 and the main body layer 23 may be made of the same plastic film as the flexible substrate 210 of the first exemplary embodiment, and the plastic film may be fabricated by reheating and hardening the liquid polymer material. For example, the sacrificial layer 21 may be formed to be less thick than the body layer 23, such as the thickness of the sacrificial layer 21 may be equal to or greater than the thermal penetration depth of the flexible substrate 210. The body layer 23 may be formed to have the same thickness as the flexible substrate 210 of the first exemplary embodiment.
避免水氣滲透層22可以包括鋁(Al)、鉬(Mo)、鈦(Ti)、銅(Cu)、銀(Ag)、鉻(Cr)當中至少一者做為金屬層,並且它可以經由濺鍍而形成。避免水氣滲透層22控制外面溼氣通過可撓性基板211而滲入發光元件240。也就是說,於第二範例性具體態樣,阻障層220和避免水氣滲透層22皆抑制溼氣和氧滲入發光元件240,藉此增加阻擋溼氣和氧的效率。 The water vapor permeable layer 22 may include at least one of aluminum (Al), molybdenum (Mo), titanium (Ti), copper (Cu), silver (Ag), and chromium (Cr) as a metal layer, and it may be via Formed by sputtering. The moisture permeation layer 22 is prevented from controlling the outside moisture to permeate into the light-emitting element 240 through the flexible substrate 211. That is, in the second exemplary embodiment, the barrier layer 220 and the water vapor barrier layer 22 are both inhibited from infiltrating moisture and oxygen into the light-emitting element 240, thereby increasing the efficiency of blocking moisture and oxygen.
如之前參考圖2C所言,於操作S30,阻障層220和驅動電路230可以形成於可撓性基板211上。於操作S40,發光元件240和包封構件250可以形成於驅動電路230上,其對應於第一範例性具體態樣。 As previously described with reference to FIG. 2C, the barrier layer 220 and the driving circuit 230 may be formed on the flexible substrate 211 in operation S30. In operation S40, the light emitting element 240 and the encapsulation member 250 may be formed on the driving circuit 230, which corresponds to the first exemplary embodiment.
參見圖3B和圖3C,於操作S50,電壓施加於熱產生器120以產生焦耳熱。接觸熱產生器120之部分或全部的犧牲層21可以被焦耳熱所熱分解,並且可撓性基板211的避免水氣滲透層22可以從熱產生器120分開以完成可撓性顯示裝置201。犧牲層21未被熱分解的部分可以保留或不保留在避免水氣滲透層22的 表面上。熱產生器120的電阻、加熱溫度、脈衝條件對應於(亦即相同於)第一範例性具體態樣。 Referring to FIGS. 3B and 3C, at operation S50, a voltage is applied to the heat generator 120 to generate Joule heat. The sacrificial layer 21 of some or all of the contact heat generator 120 may be thermally decomposed by Joule heat, and the moisture barrier layer 22 of the flexible substrate 211 may be separated from the heat generator 120 to complete the flexible display device 201. The portion of the sacrificial layer 21 that is not thermally decomposed may or may not remain in the water vapor permeable layer 22 On the surface. The resistance, heating temperature, and pulse conditions of the heat generator 120 correspond to (i.e., are identical to) the first exemplary embodiment.
範例: example:
現在將要敘述製造根據第一範例性具體態樣之可撓性顯示裝置的範例性過程以及熱傳導率的模擬結果。 An exemplary process for manufacturing a flexible display device according to the first exemplary embodiment and a simulation result of thermal conductivity will now be described.
玻璃基板用於載體基板110,並且以單層鉬(Mo)所建構的熱產生器120形成於玻璃基板上。聚亞醯胺膜用於可撓性基板210。聚亞醯胺膜是大約10微米厚,並且在高於350℃的溫度硬化。聚亞醯胺膜形成之後的過程則對應於一般的OLED顯示器的製程。具有脈衝波形的電壓施加於熱產生器120以進行熱傳導率模擬。 A glass substrate is used for the carrier substrate 110, and a heat generator 120 constructed of a single layer of molybdenum (Mo) is formed on the glass substrate. A polyimide film is used for the flexible substrate 210. The polyimide film is about 10 microns thick and hardens at temperatures above 350 °C. The process after the formation of the polyimide film corresponds to the process of a general OLED display. A voltage having a pulse waveform is applied to the heat generator 120 for thermal conductivity simulation.
圖4顯示當電壓施加於熱產生器時所測量的熱分布模擬結果。於圖4,「PI基板」是聚亞醯胺膜(亦即可撓性基板),「傳導層」是熱產生器,而「玻璃」是做為載體基板的玻璃基板。 Figure 4 shows the simulation results of the heat distribution measured when a voltage is applied to the heat generator. In Fig. 4, the "PI substrate" is a polyimide film (that is, a flexible substrate), the "conductive layer" is a heat generator, and the "glass" is a glass substrate as a carrier substrate.
參見圖4,熱產生器的最大溫度是600℃,並且聚亞醯胺膜和熱產生器之間的介面溫度是450℃,其高於聚亞醯胺膜的熔點(360℃)。因此,由於部分的聚亞醯胺膜被熱所分解,所以聚亞醯胺膜(亦即可撓性基板)從熱產生器分開。 Referring to Fig. 4, the maximum temperature of the heat generator is 600 ° C, and the interface temperature between the polyimide film and the heat generator is 450 ° C, which is higher than the melting point (360 ° C) of the polyimide film. Therefore, since a part of the polyimide film is decomposed by heat, the polyimide film (that is, the flexible substrate) is separated from the heat generator.
圖5顯示可以從熱產生器和載體基板分離之可撓性顯示裝置的照片。聚亞醯胺膜於此過程期間所測量的熱穿透深度乃小於0.5微米。因為熱穿透深度對整個聚亞醯胺膜的比例非常小,所以當焦耳加熱溫度高到足以熔化可撓性基板時,驅動電路和發光元件沒有發生熱或機械損傷。 Figure 5 shows a photograph of a flexible display device that can be separated from the heat generator and the carrier substrate. The depth of thermal penetration measured by the polyimide film during this process is less than 0.5 microns. Since the ratio of the heat penetration depth to the entire polyimide film is very small, when the Joule heating temperature is high enough to melt the flexible substrate, the driving circuit and the light-emitting element are not thermally or mechanically damaged.
圖6顯示上述根據第一範例性具體態樣之過程所完成的可撓性顯示裝置200之可撓性基板210表面的掃描式電子顯微鏡(scanning electron microscopy,SEM)照片,而圖7~8顯示其原子力顯微鏡(atomic force microscopy,AFM)照片。 6 shows a scanning electron microscope (scanning electron microscope) on the surface of the flexible substrate 210 of the flexible display device 200 according to the above first exemplary embodiment. Microscopy, SEM) photos, and Figures 7-8 show their atomic force microscopy (AFM) photos.
圖6到圖8所示的可撓性基板表面指出接觸熱產生器120之後藉由產生焦耳熱而從熱產生器120分開之可撓性基板的外表面。於根據第二範例性具體態樣之可撓性顯示裝置201的情形,犧牲層21的表面也具有與圖6和圖7相同的特性。圖6是放大了130,000倍。 The surface of the flexible substrate shown in FIGS. 6 to 8 indicates the outer surface of the flexible substrate separated from the heat generator 120 by the generation of Joule heat after contacting the heat generator 120. In the case of the flexible display device 201 according to the second exemplary embodiment, the surface of the sacrificial layer 21 also has the same characteristics as those of FIGS. 6 and 7. Figure 6 is an enlargement of 130,000 times.
製備根據比較性範例的可撓性顯示裝置,亦即應用雷射掃描過程來加熱可撓性基板,而圖9和圖10分別顯示根據比較性範例的可撓性顯示裝置之可撓性基板表面的SEM照片和AFM照片。圖9和圖10所示的可撓性基板表面代表接觸載體基板之後藉由雷射光束而從載體基板分開之可撓性基板的外表面。圖9是放大了130,000倍。 A flexible display device according to a comparative example is prepared, that is, a laser scanning process is applied to heat the flexible substrate, and FIGS. 9 and 10 respectively show a flexible substrate surface of the flexible display device according to the comparative example. SEM photos and AFM photos. The surface of the flexible substrate shown in Figures 9 and 10 represents the outer surface of the flexible substrate separated from the carrier substrate by the laser beam after contacting the carrier substrate. Figure 9 is enlarged by 130,000 times.
根據比較性範例的可撓性顯示裝置是以相同於根據本範例性具體態樣之可撓性顯示裝置的過程而製造,例外之處在於載體基板上形成的是可撓性基板而不是熱產生器,並且從載體基板的外部朝向可撓性基板來掃描雷射光束以分開載體基板和可撓性基板。 The flexible display device according to the comparative example is manufactured in the same process as the flexible display device according to the present exemplary embodiment, with the exception that a flexible substrate is formed on the carrier substrate instead of heat generation. And scanning the laser beam from the outside of the carrier substrate toward the flexible substrate to separate the carrier substrate and the flexible substrate.
參見圖6到圖8,關於根據第一範例性具體態樣之使用JILO過程的可撓性顯示裝置,可撓性基板乃實現為具有極均勻的表面而粗糙度小很多。此表面特性是由JILO過程特性所造成,其中可撓性基板的整個表面藉由瞬間熱分解而同時從載體基板分開。 Referring to FIGS. 6 through 8, with respect to the flexible display device using the JILO process according to the first exemplary embodiment, the flexible substrate is realized to have a very uniform surface with a much smaller roughness. This surface property is caused by the JILO process characteristics in which the entire surface of the flexible substrate is simultaneously separated from the carrier substrate by instantaneous thermal decomposition.
關於根據本範例性具體態樣的可撓性顯示裝置,可撓性基板表面(譬如可撓性基板210的外部)的均方根(root mean squared,RMS)粗糙度是在1奈米到15奈米範圍裡。可撓性基板的RMS粗糙度受到許多因素而變化,例如可撓性基板的類型、熱產生器電阻、加熱溫度、施加於熱產生器的電壓脈衝時間,而通常為大於大約1奈米和小於大約15奈米。圖7的AFM分析所測量之可撓性基板 的RMS粗糙度實質為大約2.5奈米,而圖8的AFM分析所測量之可撓性基板的RMS粗糙度實質為大約7.5奈米。 With respect to the flexible display device according to the present exemplary embodiment, the root mean squared (RMS) roughness of the surface of the flexible substrate (such as the exterior of the flexible substrate 210) is from 1 nm to 15 In the nano range. The RMS roughness of a flexible substrate varies by many factors, such as the type of flexible substrate, heat generator resistance, heating temperature, voltage pulse time applied to the heat generator, and is typically greater than about 1 nm and less. About 15 nm. Flexible substrate measured by AFM analysis of Figure 7 The RMS roughness is substantially about 2.5 nm, while the RMS roughness of the flexible substrate measured by the AFM analysis of Figure 8 is substantially about 7.5 nm.
參見圖9和圖10,於根據比較性範例之使用雷射掃描過程的可撓性顯示裝置,可撓性基板具有的RMS粗糙度乃大於20奈米,其所實現的表面要比根據本範例性具體態樣的可撓性基板來得更粗糙而較不均勻。圖10所示AFM表面所測量之可撓性基板表面的RMS粗糙度實質為大約30奈米。 Referring to FIG. 9 and FIG. 10, in the flexible display device using the laser scanning process according to the comparative example, the flexible substrate has an RMS roughness of more than 20 nm, and the surface achieved is compared with the example according to the present example. The flexible substrate of the specific aspect is rougher and less uniform. The RMS roughness of the surface of the flexible substrate measured on the AFM surface shown in Figure 10 is substantially about 30 nm.
根據比較性範例之可撓性基板的表面特性乃相依於雷射掃描特性,其中可撓性基板的熱分解深度並非固定不變,此乃因為當控制雷射光束強度和聚焦深度時,其精確度有所受限,以及可撓性基板的表面是依序地(亦即部分地)於雷射掃描方向上熱分解。 The surface characteristics of the flexible substrate according to the comparative example are dependent on the laser scanning characteristics, wherein the thermal decomposition depth of the flexible substrate is not fixed, because the precision of the laser beam intensity and the depth of focus is controlled. The degree is limited, and the surface of the flexible substrate is thermally decomposed sequentially (i.e., partially) in the direction of the laser scanning.
現在將敘述根據本範例性具體態樣的可撓性顯示裝置在JILO過程之前和之後的薄膜電晶體特性改變。表1顯示JILO過程進行之前所測量的薄膜電晶體特性,而圖11顯示的圖形指出薄膜電晶體在JILO過程進行之前和之後的轉移特性。 The change in film crystal characteristics of the flexible display device according to this exemplary embodiment before and after the JILO process will now be described. Table 1 shows the film transistor characteristics measured before the JILO process was carried out, and the graph shown in Fig. 11 indicates the transfer characteristics of the film transistor before and after the JILO process.
JILO過程之前,薄膜電晶體的電荷移動率(μFET)測量為90.4平方公分/伏特秒,門檻電壓測量為-2.9伏特,而s斜率(亦即次門檻斜率)測量為0.32伏特/十(V/decade)。JILO過程之後,如圖11所示,檢查發現薄膜電晶體的門檻電壓和s斜率並未改變。上述結果顯示JILO過程不會對薄膜電晶體的表現造成有意義的損傷。 Prior to the JILO process, the charge mobility (μFET) of the thin film transistor was measured to be 90.4 cm ^ 2 / volt second, the threshold voltage was measured to be -2.9 volts, and the s slope (ie, the secondary threshold slope) was measured to be 0.32 volts / tens (V / Decade). After the JILO process, as shown in FIG. 11, it was found that the threshold voltage and s slope of the thin film transistor did not change. The above results show that the JILO process does not cause significant damage to the performance of the thin film transistor.
圖12顯示的圖形是偏壓溫度應力(bias temperature stress,BTS)測試結果,其指出薄膜電晶體在JILO過程進行之後的轉移特性。BTS測試是在Vg=15伏特、600秒、85℃的偏壓應力條件下進行。 The graph shown in Figure 12 is a bias temperature stress (BTS) test result indicating the transfer characteristics of the thin film transistor after the JILO process. The BTS test was carried out under bias stress conditions of Vg = 15 volts, 600 seconds, and 85 °C.
參見圖12,相較於應力之前的情況,觀察到在Vds=5.1伏特和0.1伏特的偏壓應力條件下有0.1伏特的門檻電壓移動。此數值類似於一般形成於玻璃基板上的低溫多晶矽(low temperature poly-silicon,LTPS)薄膜電晶體。則JILO過程對薄膜電晶體的可靠度影響極小。 Referring to Fig. 12, a threshold voltage shift of 0.1 volt was observed under bias stress conditions of Vds = 5.1 volts and 0.1 volts as compared to the case before stress. This value is similar to a low temperature poly-silicon (LTPS) thin film transistor generally formed on a glass substrate. The JILO process has minimal impact on the reliability of the thin film transistor.
圖13A顯示的圖形指出薄膜電晶體在JILO過程進行之後的轉移特性,其顯示高汲極電流(high drain current,HDC)應力測試結果。圖13B顯示的圖形指出薄膜電晶體在JILO過程進行之後的遲滯。 The graph shown in Figure 13A indicates the transfer characteristics of the thin film transistor after the JILO process, which shows the high drain current (HDC) stress test results. Figure 13B shows a graph indicating the hysteresis of the thin film transistor after the JILO process.
於圖13A,HDC應力條件為Vgs=-15伏特、Vds=-20伏特、60秒。從圖13A的結果判定薄膜電晶體的電特性在HDC應力之後沒有改變。同時,於圖13B,JILO過程之後的門檻電壓移動實質為0.2伏特,其極類似於一般的LTPS薄膜電晶體。 In Figure 13A, the HDC stress conditions are Vgs = -15 volts, Vds = -20 volts, 60 seconds. From the results of Fig. 13A, it was judged that the electrical characteristics of the thin film transistor did not change after the HDC stress. Meanwhile, in FIG. 13B, the threshold voltage shift after the JILO process is substantially 0.2 volts, which is very similar to a general LTPS thin film transistor.
從上述測試結果發現根據本範例性具體態樣的JILO技術不影響薄膜電晶體的表現和可靠度,並且它適合大量生產。參見圖14和圖15,現在將敘述可撓性顯示裝置的內部組態。 From the above test results, it was found that the JILO technique according to this exemplary embodiment does not affect the performance and reliability of the thin film transistor, and it is suitable for mass production. Referring to Figures 14 and 15, the internal configuration of the flexible display device will now be described.
圖14顯示可撓性顯示裝置的像素組態佈局圖,而圖15顯示可撓性顯示裝置關於圖14之線A-A的截面圖。圖14和圖15顯示一種OLED顯示器做為可撓性顯示裝置的詳細範例。 Figure 14 shows a pixel configuration layout of the flexible display device, and Figure 15 shows a cross-sectional view of the flexible display device with respect to line A-A of Figure 14. 14 and 15 show a detailed example of an OLED display as a flexible display device.
參見圖14和圖15,根據第一範例性方法所形成的可撓性顯示裝置200可以包括多個像素,其各具有驅動電路230和有機發光元件240。驅動電路230包括切換薄膜電晶體30、驅動薄膜電晶體40、電容器50。閘極線61乃提供於可撓性基板210的一方向上,並且資料線62和共同電力線63以絕緣方式跨過閘極線61。 Referring to FIGS. 14 and 15, the flexible display device 200 formed according to the first exemplary method may include a plurality of pixels each having a driving circuit 230 and an organic light emitting element 240. The driving circuit 230 includes a switching thin film transistor 30, a driving thin film transistor 40, and a capacitor 50. The gate line 61 is provided in one direction of the flexible substrate 210, and the data line 62 and the common power line 63 are insulated across the gate line 61.
圖14示範的像素具有二薄膜電晶體30和40以及電容器50。再者,可撓性顯示裝置200的每個像素可以具有三個或更多個薄膜電晶體以及二個或更多個電容器,並且可以進一步具有額外的導線以用於各式各樣的組態。 The pixel illustrated in FIG. 14 has two thin film transistors 30 and 40 and a capacitor 50. Furthermore, each pixel of the flexible display device 200 may have three or more thin film transistors and two or more capacitors, and may further have additional wires for various configurations. .
切換薄膜電晶體30包括切換半導體層31、切換閘極32、切換源極33、切換汲極34。驅動薄膜電晶體40包括驅動半導體層41、驅動閘極42、驅動源極43、驅動汲極44。底部閘極結構的薄膜電晶體和圖15所示之頂部閘極結構的薄膜電晶體都可以用於薄膜電晶體。 Switching the thin film transistor 30 includes switching the semiconductor layer 31, switching the gate 32, switching the source 33, and switching the drain 34. The driving thin film transistor 40 includes a driving semiconductor layer 41, a driving gate 42, a driving source 43, and a driving drain 44. Both the thin film transistor of the bottom gate structure and the thin film transistor of the top gate structure shown in Fig. 15 can be used for the thin film transistor.
電容器50包括一對電容板51和52,其間則配置了層間絕緣層64。於此例,層間絕緣層64是以介電材料所形成。電容是由充入電容器50的電荷以及電容板51和52之間的電壓所決定。 The capacitor 50 includes a pair of capacitor plates 51 and 52 with an interlayer insulating layer 64 disposed therebetween. In this example, the interlayer insulating layer 64 is formed of a dielectric material. The capacitance is determined by the charge charged in the capacitor 50 and the voltage between the capacitor plates 51 and 52.
有機發光元件240包括像素電極25、形成於像素電極25上的有機發射層26、形成於有機發射層26上的共同電極27。像素電極25可以是電洞注射電極,並且共同電極27可以是電子注射電極。視驅動可撓性顯示裝置200的方法而定,反過來也是可允許的。電洞和電子從像素電極25和共同電極27注入有機發射層26。當激子(亦即注入的電洞和電子相結合)從激發態進入基態時遂發光。 The organic light emitting element 240 includes a pixel electrode 25, an organic emission layer 26 formed on the pixel electrode 25, and a common electrode 27 formed on the organic emission layer 26. The pixel electrode 25 may be a hole injection electrode, and the common electrode 27 may be an electron injection electrode. Depending on the method of driving the flexible display device 200, the reverse is also permissible. The holes and electrons are injected from the pixel electrode 25 and the common electrode 27 into the organic emission layer 26. When an exciton (ie, an injected hole and an electron combines) enters the ground state from an excited state, luminescence is emitted.
反射電極用於像素電極25,並且透明或半透明電極用於共同電極27;於此情況,有機發光元件240發光至包封構件250。透明或半透明電極用於像素電極25,並且反射電極用於共同電極27;於此情況,有機發光元件240把光送至可撓性基板210。 A reflective electrode is used for the pixel electrode 25, and a transparent or semi-transparent electrode is used for the common electrode 27; in this case, the organic light emitting element 240 emits light to the encapsulation member 250. A transparent or semi-transparent electrode is used for the pixel electrode 25, and a reflective electrode is used for the common electrode 27; in this case, the organic light-emitting element 240 sends light to the flexible substrate 210.
使用切換薄膜電晶體30做為選擇發光像素的切換器。切換閘極32連接於閘極線61。切換源極33連接於資料線62。切換汲極34配置成與切換源極33分開並且連接於一電容板51。 The switching thin film transistor 30 is used as a switch for selecting illuminating pixels. The switching gate 32 is connected to the gate line 61. The switching source 33 is connected to the data line 62. The switching gate 34 is configured to be separated from the switching source 33 and connected to a capacitor plate 51.
驅動薄膜電晶體40施加用於有機發光元件240的所選像素之有機發射層26的驅動電力到像素電極25。驅動閘極42連接於電容板51,後者連接於切換汲極34。驅動源極43和另一電容板52連接於共同電力線63。驅動汲極44經由接觸孔而連接於有機發光元件240的像素電極25。 The driving film transistor 40 applies driving power for the organic emission layer 26 of the selected pixel of the organic light emitting element 240 to the pixel electrode 25. The drive gate 42 is connected to a capacitor plate 51 which is connected to the switching gate 34. The driving source 43 and the other capacitor plate 52 are connected to the common power line 63. The driving drain 44 is connected to the pixel electrode 25 of the organic light emitting element 240 via a contact hole.
根據所述的組態,切換薄膜電晶體30是由施加於閘極線61的閘極電壓所操作,以把施加於資料線62的資料電壓傳送到驅動薄膜電晶體40。對應於從共同電力線63施加於驅動薄膜電晶體40的共同電壓以及切換薄膜電晶體30所傳送的資料電壓之間差異的電壓則儲存於電容器50,並且對應於儲存於電容器50之電壓的電流則流到有機發光元件240以發光。 According to the configuration described, the switching thin film transistor 30 is operated by the gate voltage applied to the gate line 61 to transfer the data voltage applied to the data line 62 to the driving thin film transistor 40. The voltage corresponding to the difference between the common voltage applied from the common power line 63 to the driving thin film transistor 40 and the data voltage transferred by the switching thin film transistor 30 is stored in the capacitor 50, and the current corresponding to the voltage stored in the capacitor 50 is then It flows to the organic light emitting element 240 to emit light.
根據範例性具體態樣,載體基板和可撓性基板可以在譬如幾微秒(μs)的短時間內輕易分開,並且可以不對可撓性基板上的薄膜電晶體和發光元件造成熱和/或機械損傷。此分開技術適合以大量生產來製造寬面積的可撓性顯示裝置。再者,可撓性顯示裝置可以使用既有的製造系統來製造,藉此避免了提供新製造系統的困難和成本。 According to an exemplary embodiment, the carrier substrate and the flexible substrate can be easily separated in a short time, such as a few microseconds (μs), and may not cause heat and/or heat to the thin film transistor and the light-emitting element on the flexible substrate. mechanical injury. This separate technique is suitable for manufacturing a wide area flexible display device in mass production. Furthermore, the flexible display device can be manufactured using an existing manufacturing system, thereby avoiding the difficulty and cost of providing a new manufacturing system.
在此已經揭示了範例性具體態樣;雖然採用了特定詞彙,但是使用它們是要僅以一般性和敘述性的意味來解讀,而無限制的目的。據此,熟於 此技藝者將會理解可以在形式和細節上做出多樣的改變,而不偏離底下申請專利範圍所列出之本發明的範圍裡。 Exemplary specific aspects have been disclosed herein; although specific vocabulary is employed, they are intended to be interpreted only in a generic and narrative sense without limitation. According to this, familiar with It will be understood by those skilled in the art that various changes can be made in the form and details without departing from the scope of the invention as set forth in the appended claims.
S10~S50‧‧‧操作 S10~S50‧‧‧ operation
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110021423 | 2011-03-10 | ||
KR1020110036862A KR101893530B1 (en) | 2011-03-10 | 2011-04-20 | Flexible display device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201237828A TW201237828A (en) | 2012-09-16 |
TWI503804B true TWI503804B (en) | 2015-10-11 |
Family
ID=47111510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100115132A TWI503804B (en) | 2011-03-10 | 2011-04-29 | Flexible display device and manufacturing method thereof |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101893530B1 (en) |
TW (1) | TWI503804B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI496693B (en) * | 2012-10-09 | 2015-08-21 | Innocom Tech Shenzhen Co Ltd | Layered flexible device and the method of fabricating a display apparatus using the same |
TWI518895B (en) | 2013-05-21 | 2016-01-21 | 財團法人工業技術研究院 | Thin-film device |
KR102021030B1 (en) | 2013-06-07 | 2019-09-16 | 삼성디스플레이 주식회사 | Flexible display apparatus and controlling method thereof |
KR20150035262A (en) * | 2013-09-27 | 2015-04-06 | 주식회사 엘지화학 | Organic light emitting device and method for preparing thereof |
EP3087558A4 (en) * | 2013-12-26 | 2017-06-21 | Intel Corporation | Method and apparatus for flexible electronic communicating device |
KR101631008B1 (en) | 2015-01-08 | 2016-06-16 | 경희대학교 산학협력단 | Flexible thin film transistor using 2d transition metal dichalcogenides, electronic devices and manufacturing method thereof |
KR102291670B1 (en) * | 2019-09-03 | 2021-08-23 | 한국생산기술연구원 | Method for flexible electric device |
CN112652240A (en) * | 2019-10-11 | 2021-04-13 | 群创光电股份有限公司 | Flexible display device and method for manufacturing flexible display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020050220A1 (en) * | 2000-08-14 | 2002-05-02 | Olivier Schueller | Deformable stamp for patterning three-dimensional surfaces |
TW558743B (en) * | 2001-08-22 | 2003-10-21 | Semiconductor Energy Lab | Peeling method and method of manufacturing semiconductor device |
US20040121146A1 (en) * | 2002-12-20 | 2004-06-24 | Xiao-Ming He | Composite barrier films and method |
TW200816462A (en) * | 2004-03-10 | 2008-04-01 | Seiko Epson Corp | Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment |
US20090269874A1 (en) * | 2005-09-14 | 2009-10-29 | Industrial Technology Research Institute | Method for fabricating flexible pixel array substrate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015377A (en) * | 2005-06-07 | 2007-01-25 | Fujifilm Holdings Corp | Functional film-containing structure and manufacturing method of functional film |
KR101010023B1 (en) * | 2008-12-15 | 2011-01-21 | 포항공과대학교 산학협력단 | Manufacturing method for flexible element using laser beam |
-
2011
- 2011-04-20 KR KR1020110036862A patent/KR101893530B1/en not_active Application Discontinuation
- 2011-04-29 TW TW100115132A patent/TWI503804B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020050220A1 (en) * | 2000-08-14 | 2002-05-02 | Olivier Schueller | Deformable stamp for patterning three-dimensional surfaces |
TW558743B (en) * | 2001-08-22 | 2003-10-21 | Semiconductor Energy Lab | Peeling method and method of manufacturing semiconductor device |
US20040121146A1 (en) * | 2002-12-20 | 2004-06-24 | Xiao-Ming He | Composite barrier films and method |
TW200816462A (en) * | 2004-03-10 | 2008-04-01 | Seiko Epson Corp | Thin film device supply body, method of fabricating thin film device, method of transfer, method of fabricating semiconductor device, and electronic equipment |
US20090269874A1 (en) * | 2005-09-14 | 2009-10-29 | Industrial Technology Research Institute | Method for fabricating flexible pixel array substrate |
Also Published As
Publication number | Publication date |
---|---|
KR20120103388A (en) | 2012-09-19 |
TW201237828A (en) | 2012-09-16 |
KR101893530B1 (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2498316B1 (en) | Method of manufacturing a flexible display device | |
TWI503804B (en) | Flexible display device and manufacturing method thereof | |
TWI387104B (en) | Light emitting apparatus and method of manufacturing the same | |
JP4612009B2 (en) | Organic light-emitting display device and method for manufacturing the same | |
TWI327776B (en) | Fixing a pixel defect in a display device | |
TWI277364B (en) | Method for manufacturing electro-optic device, electro-optic device and electronic apparatus | |
JP4499672B2 (en) | Organic EL device and manufacturing method thereof | |
US8556671B2 (en) | Frit sealing system and method of manufacturing organic light-emitting display (OLED) apparatus using the same | |
TW201251000A (en) | Organic light emitting diode display and manufacturing method of the same | |
CN102082150A (en) | Flexible display and method for manufacturing the same | |
JP2011113967A (en) | Organic light emitting display device, and method of manufacturing the same | |
KR101245220B1 (en) | Method of fabricating organic light emitting diodde display | |
JP2009224746A (en) | Structure of vertical-drive and parallel-drive organic light-emitting transistors | |
US20060267211A1 (en) | Manufacturing method of composite sheet material using ultrafast laser pulses | |
JP2004227852A (en) | Laser repair method of el display device | |
CN106816547B (en) | Organic light-emitting display device and its manufacturing method | |
GB2483352A (en) | Repairing short circuit manufacturing defects in OLED displays | |
JP2009271188A (en) | Organic electro-luminescence device and manufacturing method therefor | |
US9444071B2 (en) | Organic electroluminescent panel | |
JP2010181534A (en) | Substrate for display and method for manufacturing the same | |
JP2004055365A (en) | Electroluminescent display device | |
JP2010244866A (en) | Organic el display device | |
JP2006186155A (en) | Organic el device, and electronic appliance | |
TW200803607A (en) | Fabricating method of display panel | |
Ie et al. | P‐102: Audible OLED Device on Flexible PVDF Substrate with Laser Patterned ITO Electrode |