TWI502945B - Method to determine an indicator value and apparatus to determine an indicator - Google Patents
Method to determine an indicator value and apparatus to determine an indicator Download PDFInfo
- Publication number
- TWI502945B TWI502945B TW100116108A TW100116108A TWI502945B TW I502945 B TWI502945 B TW I502945B TW 100116108 A TW100116108 A TW 100116108A TW 100116108 A TW100116108 A TW 100116108A TW I502945 B TWI502945 B TW I502945B
- Authority
- TW
- Taiwan
- Prior art keywords
- cfi
- determining
- pdsch
- frame
- value
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Description
本發明係主要關於一無線通訊網路架構中決定一控制格式指標(CFI)值的方法與裝置。The present invention is primarily directed to a method and apparatus for determining a Control Format Indicator (CFI) value in a wireless communication network architecture.
無線通訊系統廣泛地用以提供多樣通訊內容,如語音、數據等。這些系統可為多重存取系統,其可藉由分享可用系統資源(如頻寬與傳送能量)支援多重使用者通訊。這些多重存取系統可架構在各種技術上,包括分碼多重存取(code division multiple access,CDMA)、分時多重存取(Time Division Multiple Access,TDMA)、分頻多重存取(Frequency Division Multiple Access,FDMA)、3GPP長期演進技術(Long Term Evolution,LTE)無線存取、3GPP長期演進進階技術(Long Term Evolution Advanced,LTE-A)無線存取、正交分頻多重存取(Orthogonal Frequency Division Multiple Access,OFDMA)。Wireless communication systems are widely used to provide diverse communication content such as voice, data, and the like. These systems can be multiple access systems that support multiple user communications by sharing available system resources such as bandwidth and transmission energy. These multiple access systems can be implemented in a variety of technologies, including code division multiple access (CDMA), time division multiple access (TDMA), and frequency division multiple access (Frequency Division Multiple). Access, FDMA), 3GPP Long Term Evolution (LTE) radio access, 3GPP Long Term Evolution Advanced (LTE-A) radio access, Orthogonal Frequency Multiple Access (Orthogonal Frequency) Division Multiple Access, OFDMA).
在這些系統中,為每一副框標示控制格式指標(Control Format Indicator,以下簡稱CFI)需要額外的負荷。再者,重設置(reconfiguration)會經常發生在多媒體廣播群播服務單頻網路(Multi-media Broadcast over a Single Frequency Network,MBSFN)副框改變之時。此外,進化基地台eNBs間必須透過額外的互動或協調來維護每一進化基地台eNB的CFI資訊。In these systems, an additional load is required for each sub-frame to indicate a Control Format Indicator (CFI). Furthermore, reconfiguration often occurs when the sub-frame of the Multi-media Broadcast over a Single Frequency Network (MBSFN) is changed. In addition, the CFI information of each evolved base station eNB must be maintained through additional interaction or coordination between the evolved base stations eNBs.
因此,極需要一種有效地決定及處理CFI的方法與裝置。Therefore, there is a great need for a method and apparatus for efficiently determining and processing CFI.
本發明提供一種決定指標值的方法,適用於一無線通訊系統架構下,包括:配置複數系統裝置具有複數分量載波之載波聚合,如一用戶設備或一進化節點;在一第一分量載波上接收一實體下行共享通道(PDSCH);在一第二分量載波上傳送相對應之一實體下行鏈路控制通道(PDCCH);使用一無線資源控制(RRC)信號配置具有一初始值之一控制格式指標(CFI);以及設定CFI使得CFI用以決定PDSCH之一起始點。The present invention provides a method for determining an index value, which is applicable to a wireless communication system architecture, including: configuring a complex system device with carrier aggregation of a complex component carrier, such as a user equipment or an evolved node; receiving a first component carrier a physical downlink shared channel (PDSCH); transmitting a corresponding one of the physical downlink control channels (PDCCH) on a second component carrier; configuring a control format indicator having an initial value using a radio resource control (RRC) signal ( CFI); and setting the CFI so that the CFI is used to determine a starting point of the PDSCH.
本發明提供一種決定指標值的方法,適用於一無線通訊系統架構下,包括:配置複數系統裝置具有複數分量載波之載波聚合,如一用戶設備或一進化節點;在一第一分量載波上接收一PDSCH;在一第二分量載波上傳送相對應之一PDCCH;以及使用一RRC信號配置具有一初始值之一CFI。The present invention provides a method for determining an index value, which is applicable to a wireless communication system architecture, including: configuring a complex system device with carrier aggregation of a complex component carrier, such as a user equipment or an evolved node; receiving a first component carrier a PDSCH; transmitting a corresponding one of the PDCCHs on a second component carrier; and configuring a CFI having an initial value using an RRC signal.
本發明提供一種決定指標值的裝置,適用於一無線通訊系統架構下,包括:一第一模組,用以配置複數系統裝置具有複數分量載波之載波聚合,如一用戶設備或一進化節點;一第二模組,用以在一第一分量載波上接收一PDSCH;一第三模組,用以在一第二分量載波上傳送相對應之一PDCCH;一第四模組,用以使用一RRC信號配置具有一初始值之一CFI;以及一第五模組,用以設定該CFI使得該CFI用於決定該PDSCH之一起始點。The present invention provides a device for determining an index value, which is applicable to a wireless communication system architecture, and includes: a first module configured to configure carrier aggregation of a plurality of component carriers, such as a user equipment or an evolution node; a second module for receiving a PDSCH on a first component carrier; a third module for transmitting a corresponding one of the PDCCHs on a second component carrier; and a fourth module for using one The RRC signal configuration has a CFI of an initial value; and a fifth module for setting the CFI such that the CFI is used to determine a starting point of the PDSCH.
在本發明之實施例中的無線通訊系統與設備係為採用支援廣播服務之一種無線通訊系統,無線通訊系統廣泛地用來提供多樣的通訊服務,如語音、數據等,這些系統可建立在分碼多重存取(CDMA)、分時多重存取(TDMA)、正交分頻多重存取(OFDMA)、3GPP長期演進技術(LTE)無線存取、3GPP長期演進進階技術(LTE-A)、3GPP 2超行動寬頻(Ultra Mobile Broadband)、全球互通微波存取(WiMax)及其他調變技術上。The wireless communication system and device in the embodiment of the present invention is a wireless communication system that supports broadcast services, and the wireless communication system is widely used to provide various communication services, such as voice, data, etc., which can be established in points. Code Multiple Access (CDMA), Time Division Multiple Access (TDMA), Orthogonal Frequency Division Multiple Access (OFDMA), 3GPP Long Term Evolution (LTE) Radio Access, 3GPP Long Term Evolution Advanced Technology (LTE-A) , 3GPP 2 Ultra Mobile Broadband, Worldwide Interoperability for Microwave Access (WiMax) and other modulation technologies.
仔細而言,實施例中的無線通訊系統設備可設計成支援一或多數規格,如由第三代通信系統標準組織所制定的規格,其中包括文件3GPP TS 36.211 V.8.6.0(進化通用移動通訊系統陸面無線存取(以下簡稱E-UTRA)實體通道與調變)、3GPP TR 36.912 V.9.0.0(E-UTRA之提升可行性研究(LTE-A)(第九版))、以及3GPP TSG-RAN WG1 Meeting #61(正交載波CFI信號-R1-103052),上述的規格與文件明確地被納入本案中。In particular, the wireless communication system equipment in the embodiments can be designed to support one or more specifications, such as those specified by the third generation communication system standards organization, including the document 3GPP TS 36.211 V.8.6.0 (Evolution Universal Mobile) Communication System Land Surface Radio Access (hereinafter referred to as E-UTRA) Physical Channel and Modulation), 3GPP TR 36.912 V.9.0.0 (E-UTRA Enhancement Feasibility Study (LTE-A) (ninth edition)), And 3GPP TSG-RAN WG1 Meeting #61 (orthogonal carrier CFI signal - R1-103052), the above specifications and documents are explicitly included in this case.
第1圖係根據本發明之一實施例之多重存取無線通訊系統之示意圖。一存取網路100包括多重天線群,其中一天線群包括天線104與106,另一天線群包括天線108與110,另一天線群包括天線112與114。在第1圖中,每一天線群只包括兩天線,然而每一天線群可包括更多或更少的天線。存取端點116與天線112以及114進行通訊,其中天線112與114透過順向鏈路120傳送資訊至存取端點116,以及透過逆向鏈路118接收來自存取端點116的資訊。存取端點122與天線106以及108進行通訊,其中天線106與108透過順向鏈路126傳送資訊至存取端點122,以及透過逆向鏈路124接收來自存取端點122的資訊。在一分頻雙工系統中,通訊鏈路118、120、124與126可利用不同頻率通訊。舉例而言,順向鏈路120可使用不同於逆向鏈路118的頻率。1 is a schematic diagram of a multiple access wireless communication system in accordance with an embodiment of the present invention. An access network 100 includes multiple antenna groups, with one antenna group including antennas 104 and 106, another antenna group including antennas 108 and 110, and another antenna group including antennas 112 and 114. In Figure 1, each antenna group includes only two antennas, however each antenna group may include more or fewer antennas. Access endpoint 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to access endpoint 116 over forward link 120 and receive information from access endpoint 116 via reverse link 118. Access endpoint 122 is in communication with antennas 106 and 108, wherein antennas 106 and 108 transmit information to access endpoint 122 via forward link 126 and receive information from access endpoint 122 via reverse link 124. In a frequency division duplex system, communication links 118, 120, 124, and 126 can communicate using different frequencies. For example, forward link 120 can use a different frequency than reverse link 118.
每一天線群及/或用以通訊之區域被視為存取網路的一部分。在本實施例中,天線群被用以在存取網路100中之一部分區域與存取端點通訊。Each antenna group and/or area for communication is considered to be part of the access network. In this embodiment, the antenna group is used to communicate with the access endpoints in a portion of the access network 100.
在順向鏈路120與126之通訊中,存取網路110之傳送天線使用波束形成(beamforming)用以改進不同存取端點116與122之順向鏈路的信號雜訊比。再者,存取網路使用波束形成傳送至隨機分散之存取端點,與透過單一天線傳送至所有存取端點相較之下,其可減少在相鄰細胞中存取端點之干擾。In communication with the forward links 120 and 126, the transmit antennas of the access network 110 use beamforming to improve the signal to noise ratio of the forward links of the different access endpoints 116 and 122. Furthermore, the access network uses beamforming to transmit to randomly dispersed access endpoints, which reduces interference to access endpoints in adjacent cells as compared to all access endpoints transmitted through a single antenna. .
存取網路(AN)可為固定電台或基地台,其用以與端點通訊,也可與存取點、節點B、基地台、進化基地台、或進化節點B等通訊。存取端點(AT)可為用戶設備(UE)、無線通訊裝置、端點、或存取端點等。The access network (AN) can be a fixed station or a base station for communicating with an endpoint, or with an access point, a Node B, a base station, an evolution base station, or an evolved Node B. An Access Endpoint (AT) can be a User Equipment (UE), a wireless communication device, an endpoint, or an access endpoint, and the like.
第2圖為一多輸入多輸出(MIMO)系統200之一傳送系統210(亦可為一存取網路)與一接收系統250(亦可為一存取端點或用戶設備)的實施例。在傳送系統210中,資料串流(date stream)的流量資料(traffic data)係由資料源212提供至傳送資料處理器214。2 is an embodiment of a multiple input multiple output (MIMO) system 200, a transmission system 210 (which may also be an access network) and a receiving system 250 (which may also be an access endpoint or user equipment). . In the delivery system 210, traffic data for the date stream is provided by the data source 212 to the delivery data processor 214.
在此實施例中,每一資料串流都是經由各自的傳送天線來傳送,傳送資料處理器214用以根據為資料串所選擇之一特定編碼方式,為每一資料串進行格式化、編碼、以及分流流量資料,以便提供編碼資料。In this embodiment, each data stream is transmitted via a respective transmit antenna, and the transport data processor 214 is configured to format and encode each data string according to a particular coding mode selected for the data string. And diverting flow data to provide coded data.
每一資料串流的編碼資料係利用正交分頻多工技術與引導數據(pilot data)進行多工,引導數據是經由已知的方式進行處理之一已知的數據樣本,也可被用在接收系統對其估測通道響應。接著,根據為資料串流選用之一特定的調變方式(BPSK、QPSK、M-PSK或M-QAM),對每一資料串流之已多工的引導數據與加密資料進行調變,用以提供調變符元。每一資料串流的傳輸速率、編碼以及調變係由處理器230所執行的指令來決定。The encoded data of each data stream is multiplexed by using orthogonal frequency division multiplexing technology and pilot data, and the guiding data is processed by a known method, and can also be used. The receiving system evaluates the channel response. Then, according to a specific modulation mode (BPSK, QPSK, M-PSK or M-QAM) selected for the data stream, the multiplexed boot data and the encrypted data of each data stream are modulated, and used. To provide a modulation symbol. The transmission rate, coding, and modulation of each data stream is determined by instructions executed by processor 230.
接著,所有資料串流的調變符元被傳送到傳送多輸入多輸出處理器220,其可再更進一步對調變符元做處理(如正交分頻多工),傳送多輸入多輸出處理器220接著提供NT 個調變符元流給NT 個傳送器(TMTR)222a至222t。在某些實施例中,傳送多輸入多輸出處理器220在資料串流的符元與即將傳送之符元經由的天線上使用波束形成之權重方法。Then, all the data stream modulation symbols are transmitted to the transmission MIMO processor 220, which can further process the modulation symbols (such as orthogonal frequency division multiplexing), and transmit multiple input multiple output processing. 220 then provides N T modulation symbol stream number to the number N T transmitters (TMTR) 222a through 222t. In some embodiments, the transmit MIMO processor 220 uses a beamforming weighting method on the antenna of the data stream and the antenna through which the symbol to be transmitted passes.
每一傳送器222接收與處理各自的符元流,以便提供一或多個類比訊號,並且更進一步處理(如放大、濾波以及升頻)類比訊號,用以提供適合透過多輸入多輸出通道傳送的調變訊號,傳送器222a至222t之NT 個調變訊號各自經由NT 個天線224a至224t傳送。Each transmitter 222 receives and processes a respective symbol stream to provide one or more analog signals, and further processes (eg, amplifies, filters, and upconverts) analog signals to provide suitable transmission over multiple input multiple output channels. the modulation signal, the transmitter 222a through 222t number N T of each modulation signal via N T transmit antennas 224a through 224t.
接收系統250中,傳送的調變訊號經由NR 個天線252a至252r接收,且將經由每一天線252接收的訊號各自提供給接收器(RCVR)254a至254r。每一接收器254處理(如放大、濾波以及降頻)各自接收的訊號,將這些處理過的信號數位化用以提供樣本,並進一步處理樣本用以提供相對應之“所接收的”符元流。Receiving system 250, the modulated signal is transmitted via the N R receiving antennas 252a through 252r, and the received signal via each antenna 252 is provided to a respective receiver unit (RCVR) 254a through 254r. Each receiver 254 processes (eg, amplifies, filters, and downconverts) the respective received signals, digitizes the processed signals to provide samples, and further processes the samples to provide corresponding "received" symbols. flow.
接收資料處理器260根據一特別的接收處理技術,接收並處理NR 個接收器254的NR 個所接收的符元流,進而提供NT 個“偵測到的”符元流。接著,接收資料處理器260進行解調變、匯流以及解碼每一個偵測到的符元流,以還原資料串的流量資料。接收資料處理器260的處理過程與傳送系統210的傳送多輸入多輸出處理器220和傳送資料處理器214所執行的處理過程剛好相反。The receive data processor 260 receives a particular processing technique, receives and processes the symbols N R N R receivers 254 a received stream, thereby providing N T th "Detected" symbol stream. Then, the receiving data processor 260 performs demodulation, confluence, and decoding each detected symbol stream to restore the flow data of the data string. The processing of the receiving data processor 260 is the reverse of the processing performed by the transmitting multiplexed output processor 220 and the transport data processor 214 of the transport system 210.
處理器270週期性地決定使用哪一預編碼矩陣(下面討論),處理器270訂定一反向連結訊息(reverse link message),該反向連結訊息包括一矩陣索引(matrix index)部分以及一秩值(rank value)部分。The processor 270 periodically determines which precoding matrix to use (discussed below), and the processor 270 sets a reverse link message, the reverse link message including a matrix index portion and a Rank value part.
反向連結訊息包含多種與通訊連結及/或接收到的資料串流相關的訊息,該反向連結訊息接著由傳送資料處理器238進行處理,再經由調變器280調變,通過傳送器254a至254r處理,並回傳至傳送系統210,其中該傳送資料處理器238也接收來自資料源236之數個資料串流的流量資料。The reverse link message includes a plurality of messages related to the communication link and/or the received data stream, and the reverse link message is then processed by the transfer data processor 238 and modulated by the modulator 280 via the transmitter 254a. Processing to 254r and back to the delivery system 210, wherein the delivery data processor 238 also receives traffic data from a plurality of data streams of the data source 236.
在傳送系統210中,來自接收系統250的調變訊號由天線224接收,再通過接收器222處理,由解調器240解調,再由接收資料處理器242得到接收系統250所傳送的反向連結訊息。接著,由處理器230決定使用哪一預編碼矩陣,以決定波束形成之權重,再處理所得到的訊息。In the transmission system 210, the modulated signal from the receiving system 250 is received by the antenna 224, processed by the receiver 222, demodulated by the demodulator 240, and then received by the receiving data processor 242. Link message. Next, the processor 230 determines which precoding matrix to use to determine the weight of the beamforming and processes the resulting message.
記憶體232可用以暫時儲存經由處理器230緩衝/計算過之來自240或242之資料、儲存來自212之緩衝資料或儲存一些特定程式碼。記憶體272可用以暫時儲存經由處理器270緩衝/計算過之來自260之資料、儲存來自236之緩衝資料或儲存一些特定程式碼。The memory 232 can be used to temporarily store data from 240 or 242 buffered/calculated via the processor 230, store buffered data from 212, or store some specific code. The memory 272 can be used to temporarily store data from 260 buffered/calculated via the processor 270, store buffered data from 236, or store some specific code.
根據本發明之一實施例,第3圖係為一通訊設備之替代簡化方塊圖的示意圖。無線通訊系統中的通訊設備300可被用來實現第1圖中的用戶設備(或存取端點)116與122,且此無線通訊系統最好是使用長期演進技術的無線通訊系統。通訊設備300包括一輸入裝置302、一輸出裝置304、一控制電路306、一中央處理器308、一記憶體310、一程式碼312、以及一收發器314。控制電路306透過中央處理器308執行記憶體310中儲存的程式碼312,藉此控制通訊設備300的運作。通訊設備300可以接收由用戶透過輸入裝置302(如鍵盤或小型鍵盤)輸入的信號,亦可以透過輸出裝置304(如螢幕或放大器)輸出影像及聲音。收發器314用以接收及傳送無線訊號,傳遞所接收的訊號至控制電路306,並且在無線傳輸的狀態下輸出控制電路306產生的信號。3 is a schematic diagram of an alternative simplified block diagram of a communication device in accordance with an embodiment of the present invention. The communication device 300 in the wireless communication system can be used to implement the user equipment (or access endpoints) 116 and 122 in FIG. 1, and the wireless communication system is preferably a wireless communication system using long term evolution technology. The communication device 300 includes an input device 302, an output device 304, a control circuit 306, a central processing unit 308, a memory 310, a program code 312, and a transceiver 314. The control circuit 306 executes the code 312 stored in the memory 310 through the central processing unit 308, thereby controlling the operation of the communication device 300. The communication device 300 can receive signals input by the user through the input device 302 (such as a keyboard or a small keyboard), and can also output images and sound through the output device 304 (such as a screen or an amplifier). The transceiver 314 is configured to receive and transmit wireless signals, transmit the received signals to the control circuit 306, and output signals generated by the control circuit 306 in a state of wireless transmission.
根據本發明之一實施例,第4圖係為第3圖中之程式碼312之簡化方塊圖的示意圖。在此實施例中,程式碼312包括應用層400、第3層402、以及第2層404,且程式碼312耦接至第1層406。第3層402執行無線資源控制、第2層404執行鏈路控制、第1層406執行實體連結。4 is a schematic diagram of a simplified block diagram of the code 312 in FIG. 3, in accordance with an embodiment of the present invention. In this embodiment, the code 312 includes an application layer 400, a third layer 402, and a second layer 404, and the code 312 is coupled to the first layer 406. The third layer 402 performs radio resource control, the second layer 404 performs link control, and the first layer 406 performs physical connection.
對於長期演進技術或長期演進進階技術系統,第2層404可包括無線連結控制(RLC)層以及媒體存取控制(MAC)層。第3層402可包括無線資源控制(RRC)層。For Long Term Evolution or Long Term Evolution Advanced Technology Systems, Layer 2 404 may include a Radio Link Control (RLC) layer and a Medium Access Control (MAC) layer. Layer 3 402 can include a Radio Resource Control (RRC) layer.
第5圖為無線通訊系統之另一簡化方塊圖。無線通訊系統500包括無線傳送/接收單元(WTRU)530、進化節點(eNB) 510、以及移動管理實體/伺服器閘道(MME/S-GW)520。WTRU 530、進化節點510、以及MME/S-GW 520用以使用多輸入多輸出以及載波聚合技術執行探測參考信號(SRS)傳送。Figure 5 is another simplified block diagram of a wireless communication system. The wireless communication system 500 includes a wireless transmit/receive unit (WTRU) 530, an evolved node (eNB) 510, and a mobility management entity/server gateway (MME/S-GW) 520. The WTRU 530, the evolved node 510, and the MME/S-GW 520 are configured to perform sounding reference signal (SRS) transmission using multiple input multiple output and carrier aggregation techniques.
除了在典型WTRU中可找到的元件,WTRU 530包括具有一任選(optional)記憶體534之處理器或CPU 532、一或多個收發器5361 至536N 、以及天線538。CPU 532用以使用多輸入多輸出以及載波聚合技術執行探測參考信號(SRS)傳送。收發器5361 至536N 用以與CPU 532進行通訊,天線538用以促進無線傳送與接收。In addition to the elements found in a typical WTRU, the WTRU 530 includes a processor or CPU 532 having an optional memory 534, one or more transceivers 536 1 through 536 N , and an antenna 538. The CPU 532 is configured to perform sounding reference signal (SRS) transmission using multiple input multiple output and carrier aggregation techniques. Transceivers 536 1 through 536 N are used to communicate with CPU 532, which is used to facilitate wireless transmission and reception.
除了在典型進化節點中可找到的元件,進化節點510包括具有一任選記憶體514之處理器或CPU 512、一或多個收發器5161 至516M 、以及天線518。CPU 215用以使用多輸入多輸出以及載波聚合技術支援SRS傳送。收發器5161 至516M 用以與CPU 512進行通訊,天線518用以促進無線傳送與接收。CPU用以(1)判定哪一WTRU將傳送探測參考信號(SRS);(2)判定SRS傳送在WTRU之頻率以及時脈上的配置,也判定SRS傳送的類型與傳達資訊至WTRU;(3)接收SRS量測資訊;(4)處理SRS資訊以及告知排程器,使排程器能決定排程。進化節點520連接至MME/S-GW,MME/S-GW包括具有一任選記憶體524之處理器522。In addition to the elements found in a typical evolutionary node, the evolved node 510 includes a processor or CPU 512 having an optional memory 514, one or more transceivers 516 1 through 516 M , and an antenna 518. The CPU 215 is used to support SRS transmission using multiple input multiple output and carrier aggregation techniques. The transceivers 516 1 to 516 M are for communicating with the CPU 512 for facilitating wireless transmission and reception. The CPU is used to (1) determine which WTRU will transmit the sounding reference signal (SRS); (2) determine the configuration of the SRS transmission on the WTRU's frequency and clock, and also determine the type of SRS transmission and convey information to the WTRU; Receiving SRS measurement information; (4) processing SRS information and informing the scheduler to enable the scheduler to determine the schedule. The evolved node 520 is coupled to the MME/S-GW, and the MME/S-GW includes a processor 522 having an optional memory 524.
在下面討論中,本發明主要將在3GPP架構下描述。然而,可以了解的是任何熟習此技藝者可輕易使用3GPP2網路架構以及其他網路架構實現本發明。In the following discussion, the invention will primarily be described in the context of the 3GPP architecture. However, it will be appreciated that anyone skilled in the art can readily implement the present invention using the 3GPP2 network architecture and other network architectures.
在長期演進技術中,有實體上傳控制通道(簡稱PUCCH)、實體上傳共享通道(簡稱PUSCH)或探測參考信號(SRS)之具有單一天線與單一載波之單一傳送。每當SRS與PUCCH格式2/2a/2b在相同副框中傳送時,WTRU則不傳送SRS。每當SRS與確認/拒絕(ACK/NACK)及/或正SRS在相同副框中傳送時,除非參數simultaneous-AN-and-SRS為真,WTRU則不傳送SRS。在副框中WTRU是否支援PUCCH與SRS上ACK/NACK的傳送,則由更高層提供之參數simultaneous-AN-and-SRS決定。若在副框中WTRU支援PUCCH與SRS上ACK/NACK的傳送,則在細胞專用SRS副框WTRU使用縮短PUCCH格式傳送ACK/NACK以及SR,其中相對於SRS符元的ACK/NACK或SR符元被捨棄(punctured)。再者,為了讓進化節點eNodeB對每一上行鏈路執行對頻率排程的可靠通道估計,SRS(以及其他通道)之傳送能量為可控制的。In the long-term evolution technology, there is a single transmission of a single antenna and a single carrier, which is a physical upload control channel (PUCCH for short), a physical upload shared channel (PUSCH for short), or a sounding reference signal (SRS). The WTRU does not transmit the SRS whenever the SRS is transmitted in the same sub-box as PUCCH format 2/2a/2b. Whenever the SRS is transmitted in the same sub-frame as the ACK/NACK and/or the positive SRS, the WTRU does not transmit the SRS unless the parameter simultaneous-AN-and-SRS is true. Whether the WTRU supports the transmission of ACK/NACK on PUCCH and SRS in the sub-frame is determined by the parameter provided by the higher layer, simultaneous-AN-and-SRS. If the WTRU supports transmission of ACK/NACK on PUCCH and SRS in the secondary frame, the ACK/NACK and SR are transmitted in the cell-specific SRS sub-frame WTRU using the shortened PUCCH format, where the ACK/NACK or SR symbol relative to the SRS symbol Was punctured. Furthermore, in order for the evolved node eNodeB to perform reliable channel estimation for frequency scheduling for each uplink, the transmit energy of the SRS (and other channels) is controllable.
此外,在長期演進技術中,單一載波分頻多重存取(SC-FDMA)傳送被選作為上行鏈路。該特定實現為根據離散傅立葉轉換擴展正交分頻多重存取(DFT-S-OFDMA)。為了此應用目的,可交換使用。上行鏈路中之WTRU只有在FDMA中指定的副載波之有限相連的集合進行傳送。若在上行鏈路中整體OFDM信號或系統頻寬是由有益副載波1至100組成,在副載波1-12上第一WTRU被用以傳送其自己的信號,在副載波13-24上第二WTRU被用以傳送其自己的信號,以下類推。在同一時間進化節點接收來自一或多個WTRU之跨越整個傳送頻寬的組合上行鏈路信號,但每一WTRU只傳入可用傳送頻寬之一子集。3GPP無線第1層選擇有外加限制之OFDM形式─DFT-S OFDM為長期演進技術的上行鏈路中之傳送形式,該外加限制為WTRU之時間頻率資源一定要由連續頻率副載波之集合所組成。在長期演進技術的上行鏈路中沒有直流(DC)副載波(不同於下行鏈路)。WTRU可應用跳頻在一操作模式進行上行鏈路傳送。Furthermore, in the long term evolution technique, Single Carrier Frequency Division Multiple Access (SC-FDMA) transmission is selected as the uplink. This particular implementation is to extend orthogonal frequency division multiple access (DFT-S-OFDMA) according to discrete Fourier transform. For the purposes of this application, it can be used interchangeably. The WTRU in the uplink transmits only a limited set of subcarriers specified in the FDMA. If the overall OFDM signal or system bandwidth is comprised of beneficial subcarriers 1 through 100 in the uplink, the first WTRU is used to transmit its own signal on subcarriers 1-12, on subcarriers 13-24. The second WTRU is used to transmit its own signal, analogously. At the same time, the evolved node receives a combined uplink signal from one or more WTRUs spanning the entire transmit bandwidth, but each WTRU only passes in a subset of the available transmit bandwidth. 3GPP Radio Layer 1 selects an OFDM form with additional restrictions - DFT-S OFDM is a form of transmission in the uplink of Long Term Evolution technology, which is limited to the fact that the time-frequency resources of the WTRU must be composed of a set of consecutive frequency sub-carriers. . There is no direct current (DC) subcarrier (different from the downlink) in the uplink of Long Term Evolution technology. The WTRU may apply frequency hopping for uplink transmission in an operational mode.
WTRUs在實體上行鏈路共享通道(PUSCH)傳送上行鏈路資料(某些案例為控制資訊)。藉由進化節點使用上行鏈路准許以排程及控制PUSCH傳送,該上行鏈路排程在實體下行鏈路控制通道的格式為格式0。作為上行鏈路排程的一部分,WTRU接收在調變編碼集(MCS)、傳送能量控制(TPC)指令、上行鏈路資源分配(如已分配資源方塊的指數)等的資訊。接著,WTRU利用之相對應MCS及傳送功率在已分配之上行鏈路資源上傳送PUSCH,該傳送功率係藉由TPC指令控制。The WTRUs transmit uplink data on the Physical Uplink Shared Channel (PUSCH) (some cases are control information). The uplink grant is used to schedule and control PUSCH transmission by the evolved node, which is formatted in format 0 on the physical downlink control channel. As part of the uplink scheduling, the WTRU receives information such as modulation code set (MCS), transmit energy control (TPC) instructions, uplink resource allocation (e.g., an index of allocated resource blocks), and the like. The WTRU then transmits the PUSCH over the allocated uplink resources using the corresponding MCS and transmit power, the transmit power being controlled by the TPC command.
相似於長期演進技術的下行鏈路,通道估計之參考信號也需被用以在長期演進技術的上行鏈路中,使在進化節點之PUSCH(或PUCCH)能夠同步解調。這些參考信號為上行鏈路解調參考信號(DRS),總是與PUSCH(或PUCCH)一起傳送且使用一相同頻帶。Similar to the downlink of Long Term Evolution technology, the channel estimate reference signal also needs to be used in the uplink of the Long Term Evolution technology to enable simultaneous demodulation of the PUSCH (or PUCCH) at the evolved node. These reference signals are uplink demodulation reference signals (DRS) that are always transmitted with PUSCH (or PUCCH) and use the same frequency band.
為使進化節點能估計上行鏈路排程之上行鏈路通道品質,在上行鏈路中傳輸SRS。在頻域中,SRS傳送涵蓋對頻域排程有利之頻帶。當SRS將於副框中被傳送時,SRS會佔據副框最後的SC-FDMA符元。若WTRU在某一副框中傳送SRS,該副框之最後符元就不會被WTRU用以傳送PUSCH。為了使進化節點能執行每一上行鏈路頻率排程之可靠通道估計,SRS(及其他通道)之傳送能量為可控制的。In order for the evolved node to estimate the uplink channel quality of the uplink schedule, the SRS is transmitted in the uplink. In the frequency domain, SRS transmission covers bands that are advantageous for frequency domain scheduling. When the SRS is to be transmitted in the sub-frame, the SRS will occupy the last SC-FDMA symbol of the sub-frame. If the WTRU transmits an SRS in a sub-frame, the last symbol of the sub-frame will not be used by the WTRU to transmit the PUSCH. In order for the evolved node to perform reliable channel estimation for each uplink frequency schedule, the transmit energy of the SRS (and other channels) is controllable.
此外,從用戶設備的觀點來看,每一排程分量載波具有一傳輸方塊與混合式自動要求重傳實體(Hybrid Automatic Repeat Request)。每一傳輸方塊對應至一單一分量載波。用戶設備可在多重分量載波同步排程。控制區域大小的下行鏈路控制信號以及上行鏈路與下行鏈路資源指定的設計原則可如下列描述:(1)在分量載波上之實體下行鏈路控制通道(PDCCH)用以指定於同一分量載波之實體下行共享通道(PDSCH)以及在一單一連結上行鏈路分量載波之PUSCH資源,(2)分量載波上之PDCCH可指定給其中一分量載波PDSCH或PUSCH資源。In addition, from the perspective of the user equipment, each scheduling component carrier has a transmission block and a hybrid automatic repeat request entity (Hybrid Automatic Repeat Request). Each transmission block corresponds to a single component carrier. The user equipment can schedule the synchronization on multiple component carriers. The design criteria for the control region size of the downlink control signal and the uplink and downlink resource assignments can be as follows: (1) The physical downlink control channel (PDCCH) on the component carrier is used to specify the same component. The physical downlink shared channel (PDSCH) of the carrier and the PUSCH resource on a single connected uplink component carrier, and the PDCCH on the (2) component carrier may be assigned to one of the component carrier PDSCH or PUSCH resources.
在長期演進技術中,PDCCH與PDSCH在時域中進行多工。一般來說,PDCCH佔據前數個OFDM符元,其中該佔據符元之數量(CFI值)由PCFICH(實體控制格式指標通道)上之信號決定。在一實施例中,下列表格提供可能之數值:In the long term evolution technology, the PDCCH and the PDSCH are multiplexed in the time domain. In general, the PDCCH occupies the first few OFDM symbols, where the number of occupied symbols (CFI value) is determined by the signal on the PCFICH (Physical Control Format Indicator Channel). In an embodiment, the following table provides possible values:
在長期演進進階技術中,載波聚合使用跨載波排程,其具有以下特徵。若PDCCH因為干擾(如異質接取網路HetNet)而在自己的分量載波上不可靠時,PDSCH可由另一載波上之PDCCH排程。在該情況下,PCFICH可能為不可靠,也會導致錯誤起始點以及PDSCH解碼問題,有人提出可由RRC訊號或PDCCH訊號帶有該資訊。In the long-term evolution advanced technology, carrier aggregation uses cross-carrier scheduling, which has the following features. If the PDCCH is unreliable on its own component carrier due to interference (eg, heterogeneous access network HetNet), the PDSCH may be scheduled by the PDCCH on the other carrier. In this case, the PCFICH may be unreliable, and may also result in an error starting point and a PDSCH decoding problem. It has been suggested that the information may be carried by the RRC signal or the PDCCH signal.
關於該議題MBSFN副框會衍伸一些問題。因為MBSFN副框中之最大OFDM符元數目為2,因此有人提出在RRC配置中有外加資訊,讓用戶設備可知每一副框需應用哪一CFI,考量進化節點間之MBMS(多媒體廣播/群播服務)副框配置。The MBSFN sub-box on this topic will have some problems. Since the maximum number of OFDM symbols in the MBSFN sub-frame is 2, it has been proposed to have additional information in the RRC configuration, so that the user equipment can know which CFI needs to be applied to each sub-frame, and consider the MBMS (Multimedia Broadcast/Group) between the evolved nodes. Broadcast service) sub-frame configuration.
為每一副框發送CFI需要額外的負荷。再者,當MBSFN副框改變時,需要更頻繁的重設置。此外,需要進化節點間之更多互動或協調以互相維護CFI資訊。Sending a CFI for each sub-box requires an extra load. Furthermore, when the MBSFN sub-box changes, more frequent resetting is required. In addition, more interaction or coordination between evolved nodes is required to maintain CFI information with each other.
第6圖為根據本發明之實施例中決定CFI值之方法600的流程圖,此方法600係用以減少因為跨載波排程所造成的資源浪費,以及簡化決定跨載波排程之CFI的機制。Figure 6 is a flow diagram of a method 600 for determining a CFI value in accordance with an embodiment of the present invention for reducing resource waste due to cross-carrier scheduling and simplifying the mechanism for determining CFI for cross-carrier scheduling. .
此處所揭露之方法與裝置係用於決定一無線通訊系統中之CFI值。在一實施例中,該方法包括配置載波聚合複數分量載波至系統裝置,如用戶設備或進化節點。此外,該方法包括在一第一分量載波接收PDSCH。該方法也包括在一第二分量載波傳送一相對應之PDCCH。此外,該方法也包括使用一RRC訊號配置一初始值至CFI。該方法更包括設定CFI使得該CFI可用以決定PDSCH之起始點。The methods and apparatus disclosed herein are used to determine the CFI value in a wireless communication system. In an embodiment, the method includes configuring a carrier to aggregate a complex component carrier to a system device, such as a user equipment or an evolved node. Additionally, the method includes receiving a PDSCH on a first component carrier. The method also includes transmitting a corresponding PDCCH on a second component carrier. In addition, the method also includes configuring an initial value to CFI using an RRC signal. The method further includes setting the CFI such that the CFI is available to determine the starting point of the PDSCH.
步驟602中,配置複數系統裝置如用戶設備與進化節點具有複數分量載波之載波聚合。步驟604中,在一分量載波上接收PDSCH。在步驟606中,在不同分量載波上傳送一相對應之PDCCH。步驟608中,使用RRC訊號配置一初始值(如A)至CFI。在步驟610中,設定CFI使得該CFI可用以決定PDSCH之起始點。In step 602, a complex system device, such as a user equipment and a evolved node, has carrier aggregation of complex component carriers. In step 604, the PDSCH is received on a component carrier. In step 606, a corresponding PDCCH is transmitted on a different component carrier. In step 608, an initial value (such as A) is configured to CFI using the RRC signal. In step 610, the CFI is set such that the CFI is available to determine the starting point of the PDSCH.
在一實施例中,為一MBSFN副框設定CFI,將CFI設定為於初始值與一選定常數間之較小值。舉例而言,若使用RRC訊號設定CFI之初始值為A,且一選定之常數值為2,則對MBSFN而言CFI會被設定為min(A,2)或是值A與2間之較小值。在另一實施例中,對普通副框而言,CFI會被設定為該初始值。舉例而言,若使用RRC訊號設定CFI初始值為A,則對普通副框而言CFI會被設定為A。In one embodiment, the CFI is set for an MBSFN sub-frame and the CFI is set to a smaller value between the initial value and a selected constant. For example, if the initial value of the CFI is set to A using the RRC signal, and a selected constant value is 2, the CFI will be set to min(A, 2) or the value between A and 2 for MBSFN. Small value. In another embodiment, for a normal sub-frame, the CFI will be set to the initial value. For example, if the initial value of the CFI is set to A using the RRC signal, the CFI will be set to A for the normal sub-frame.
在另一實施例中,用以傳送PDSCH之第二分量載波之一MBSFN副框配置判定複數個MBSFN副框。在此實施例中,MBSFN副框配置搭載(carried on)在用以傳送PDSCH之分量載波之系統資訊方塊(SIB)上。In another embodiment, the MBSFN sub-frame configuration for transmitting one of the second component carriers of the PDSCH determines a plurality of MBSFN sub-frames. In this embodiment, the MBSFN sub-frame configuration is carried on a System Information Block (SIB) for transmitting component carriers of the PDSCH.
以上段落使用多種層面描述。顯然的,本文的教示可以多種方式實現,而在範例中揭露之任何特定架構或功能僅為一代表性之狀況。根據本文之教示,任何熟知此技藝之人士應理解在本文揭露之各層面可獨立實作或兩種以上之層面可以合併實作。舉例說明,某種裝置或某種方法可遵照前文中提到任何方式數目之層面來實作或實現。此外,一裝置之實作或一種方法之實現可用任何其他架構、或功能性、又或架構及功能性附加於或不同於在前文所討論的一種或多種層面上。再舉例說明以上觀點,在某些情況,併行之頻道可基於脈衝重複頻率所建立。又在某些情況,併行之頻道也可基於脈波位置或偏位所建立。在某些情況,併行之頻道可基於時序跳頻建立。在某些情況,併行之頻道可基於脈衝重複頻率、脈波位置或偏位、以及時序跳頻建立。The above paragraphs are described in various levels. Obviously, the teachings herein can be implemented in a variety of ways, and any particular architecture or function disclosed in the examples is merely representative. In light of the teachings herein, it will be understood by those skilled in the art that the various aspects disclosed herein can be implemented independently or two or more layers can be combined. By way of example, a certain device or a method may be implemented or implemented in a manner that is in any number of ways as referred to in the foregoing. In addition, implementation of a device or implementation of a method may be added to or different from one or more of the layers discussed above in any other architecture, or functionality, or architecture and functionality. Again, the above points are exemplified. In some cases, parallel channels can be established based on the pulse repetition frequency. In some cases, parallel channels can also be established based on pulse position or offset. In some cases, parallel channels can be established based on timing hopping. In some cases, parallel channels can be established based on pulse repetition frequency, pulse position or offset, and timing hopping.
熟知此技藝之人士將了解訊息及信號可用多種不同科技及技巧展現。舉例,在以上描述所有可能引用到之數據、指令、命令、訊息、信號、位元、符元、以及碼片(chip)可以伏特、電流、電磁波、磁場或磁粒、光場或光粒、或以上任何組合所呈現。Those skilled in the art will understand that messages and signals can be presented in a variety of different technologies and techniques. For example, all of the data, instructions, commands, messages, signals, bits, symbols, and chips that may be referenced above may be volts, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or light particles, Or presented in any combination of the above.
熟知此技藝之人士更會了解在此描述各種說明性之邏輯區塊、模組、處理器、裝置、電路、以及演算步驟與以上所揭露之各種情況可用電子硬體(例如用原始碼或其他技術設計之數位實施、類比實施、或兩者之組合)、與指示作連結之各種形式之程式或與指示作連結之設計碼(在內文中為方便而稱作”軟體”或”軟體模組”)、或兩者之組合。為清楚說明此硬體及軟體間之可互換性,多種具描述性之元件、方塊、模組、電路及步驟在以上之描述大致上以其功能性為主。此功能以硬體或軟體型式實作將視加注在整體系統上之特定應用及設計限制而定。熟知此技藝之人士可為每一特定應用將描述之功能以各種不同方法實作,但此實作之決策不應被解讀為偏離本文所揭露之範圍。Those skilled in the art will appreciate that various illustrative logical blocks, modules, processors, devices, circuits, and arithmetic steps are described herein with the various hardware disclosed above (eg, with source code or other Digital implementation of technical design, analogy implementation, or a combination of both), various forms of programming linked to instructions or design codes linked to instructions (referred to as "software" or "software modules" for convenience in the text) "), or a combination of both. To clearly illustrate the interchangeability of the hardware and software, a variety of descriptive elements, blocks, modules, circuits, and steps are generally described above in terms of functionality. This feature, implemented in hardware or software, will depend on the specific application and design constraints imposed on the overall system. The person skilled in the art can implement the described functions in a variety of different ways for each particular application, but the decision of this implementation should not be construed as a departure from the scope disclosed herein.
此外,多種各種說明性之邏輯區塊、模組、及電路以及在此所揭露之各種情況可實施在積體電路(IC)、存取終端、存取點;或由積體電路、存取終端、存取點執行。積體電路可由一般用途處理器、數位信號處理器(DSP)、特定應用積體電路(ASIC)、現場可編程閘列(FPGA)或其他可編程邏輯裝置、離散閘或電晶體邏輯、離散硬體元件、電子元件、光學元件、機械元件、或任何以上之組合之設計以完成在此文內描述之功能;並可能執行存在於積體電路內、積體電路外、或兩者皆有之執行碼或指令。一般用途處理器可能是微處理器,但也可能是任何常規處理器、控制器、微控制器、或狀態機。處理器可由電腦設備之組合所構成,例如:數位訊號處理器(DSP)及一微電腦之組合、多組微電腦、一組至多組微電腦以及一數位訊號處理器核心、或任何其他類似之配置。In addition, a variety of illustrative logical blocks, modules, and circuits, and the various aspects disclosed herein can be implemented in integrated circuits (ICs), access terminals, access points; or by integrated circuits, access Terminal, access point execution. The integrated circuit can be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hard Body elements, electronic components, optical components, mechanical components, or any combination thereof, are designed to perform the functions described herein; and may be performed within integrated circuits, integrated circuits, or both. Execution code or instruction. A general purpose processor may be a microprocessor, but could be any conventional processor, controller, microcontroller, or state machine. The processor may be comprised of a combination of computer devices, such as a combination of a digital signal processor (DSP) and a microcomputer, a plurality of sets of microcomputers, a set of at most groups of microcomputers, and a digital signal processor core, or any other similar configuration.
在此所揭露程序之任何具體順序或分層之步驟純為一舉例之方式。基於設計上之偏好,必須了解到程序上之任何具體順序或分層之步驟可被重新安排,然仍包含在此文件所揭露的範圍內。伴隨之方法權利要求以一示例順序呈現出各種步驟之元件,也因此不應被此所展示之特定順序或階層所限制。Any specific sequence or layering of the procedures disclosed herein is by way of example only. Based on design preferences, it must be understood that any specific order or layered steps of the program may be rearranged and still be included within the scope of this document. The accompanying claims are intended to be illustrative of a
與文中所揭露型式有關之方法或演算法之步驟可直接實施於一硬體,一處理器所執行之軟體模組,或兩者之組合。軟體模組(包括可執行之指令以及相關資料)以及其他資料可常駐於一資料紀憶體(例如隨機存取記憶體、快閃記憶體、唯讀記憶體、可抹除可編程唯讀記憶體、電子式可抹除可編程唯讀記憶體、暫存器、硬碟、可移除式磁碟、唯讀光碟、或在所知之技術中以任何其他型式存在之電腦可讀取儲存媒介)。一樣本儲存媒介可耦合至一台機器,例如一可由儲存媒介讀取資料(例如編碼)或編寫資料至儲存媒介之電腦/處理器(在本文中可能為了方便曾以”處理器”提及)。一樣本儲存媒介亦可整合至處理器。處理器及儲存媒介可駐於一特定應用積體電路(ASIC)。此特定應用積體電路可駐於用戶設備。或者,處理器及樣本儲存媒介可駐於一用戶設備之一離散組件。此外,在一些型式中,任何適合之電腦程式可包括內含一個至多個在本文中所揭露型式相關之編碼之電腦可讀取媒介所組成。在某些情況中,一個電腦程式產品可包括包裝材料層。The steps of the method or algorithm relating to the types disclosed herein may be directly implemented in a hardware, a software module executed by a processor, or a combination of both. Software modules (including executable instructions and related materials) and other data can be resident in a data memory (such as random access memory, flash memory, read-only memory, erasable programmable read-only memory) Body, electronic erasable programmable read-only memory, scratchpad, hard drive, removable disk, CD-ROM, or any other type of computer readable storage in the known technology medium). A sample storage medium can be coupled to a machine, such as a computer/processor that can read data (eg, code) from a storage medium or write data to a storage medium (referred to herein as "processor" for convenience) . A sample storage medium can also be integrated into the processor. The processor and the storage medium can reside in an application specific integrated circuit (ASIC). This particular application integrated circuit can reside in the user equipment. Alternatively, the processor and the sample storage medium may reside in a discrete component of a user device. Moreover, in some versions, any suitable computer program can include a computer readable medium having one or more codes associated with the types disclosed herein. In some cases, a computer program product may include a layer of packaging material.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
100...存取網路100. . . Access network
104、106、108、110、112、114、224a~224t、252a~252r、518、538...天線104, 106, 108, 110, 112, 114, 224a~224t, 252a~252r, 518, 538. . . antenna
116、122...存取端點116, 122. . . Access endpoint
118、124...逆向鏈路118, 124. . . Reverse link
120、126...順向鏈路120, 126. . . Forward link
200...多輸入多輸出系統200. . . Multiple input multiple output system
210...傳送系統210. . . Transfer system
212、236...資料源212, 236. . . Data source
214、238...傳送資料處理器214, 238. . . Transfer data processor
220...傳送多輸入多輸出處理器220. . . Transfer multiple input multiple output processor
222a~222t...傳送器/接收器222a~222t. . . Transmitter/receiver
230、270...處理器230, 270. . . processor
232、272、310、514、524、534...記憶體232, 272, 310, 514, 524, 534. . . Memory
240...解調器240. . . Demodulator
242、260...接收資料處理器242, 260. . . Receiving data processor
250...接收系統250. . . Receiving system
254a~254r...接收器/傳送器254a~254r. . . Receiver/transmitter
280...調變器280. . . Modulator
300...通訊設備300. . . Communication equipment
302...輸入裝置302. . . Input device
304...輸出裝置304. . . Output device
306...控制電路306. . . Control circuit
308...中央處理器308. . . CPU
312...程式碼312. . . Code
314、5161 ~516M 、5361 536N ...收發器314, 516 1 ~ 516 M , 536 1 536 N . . . transceiver
400...應用層400. . . Application layer
402...第3層402. . . Layer 3
404...第2層404. . . Level 2
406...第1層406. . . Tier 1
500...系統500. . . system
510...進化節點(eNB)510. . . Evolutionary node (eNB)
512、522、532...中央處理器512, 522, 532. . . CPU
520...移動管理實體/伺服器閘道(MME/S-GW)520. . . Mobile Management Entity/Server Gateway (MME/S-GW)
530...無線傳送/接收單元(WTRU)530. . . Wireless transmit/receive unit (WTRU)
600...方法600. . . method
602、604、606、608、610...步驟602, 604, 606, 608, 610. . . step
第1圖所示為多重存取無線網路系統之一實施例;Figure 1 shows an embodiment of a multiple access wireless network system;
第2圖所示為傳送系統之一實施例;Figure 2 shows an embodiment of a transport system;
第3圖所示為通訊設備之一實施例;Figure 3 shows an embodiment of a communication device;
第4圖所示為第3圖之程式碼之一實施例;Figure 4 shows an embodiment of the code of Figure 3;
第5圖所示為無線網路系統之另一實施例;Figure 5 shows another embodiment of a wireless network system;
第6圖所示為決定CFI值之方法之一實施例。Figure 6 shows an embodiment of a method for determining the CFI value.
600...方法600. . . method
602、604、606、608、610...步驟602, 604, 606, 608, 610. . . step
Claims (17)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33282510P | 2010-05-10 | 2010-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201215065A TW201215065A (en) | 2012-04-01 |
TWI502945B true TWI502945B (en) | 2015-10-01 |
Family
ID=44901856
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100116109A TW201210294A (en) | 2010-05-10 | 2011-05-09 | Method and apparatus or handling sounding reference signals and physical uplink control channel |
TW100116108A TWI502945B (en) | 2010-05-10 | 2011-05-09 | Method to determine an indicator value and apparatus to determine an indicator |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100116109A TW201210294A (en) | 2010-05-10 | 2011-05-09 | Method and apparatus or handling sounding reference signals and physical uplink control channel |
Country Status (2)
Country | Link |
---|---|
US (2) | US8625558B2 (en) |
TW (2) | TW201210294A (en) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9107077B2 (en) * | 2010-07-23 | 2015-08-11 | Broadcom Corporation | Method and system for time synchronization of WiMAX and LTE-TDD networks |
JP4938123B1 (en) | 2010-10-04 | 2012-05-23 | 株式会社エヌ・ティ・ティ・ドコモ | Radio base station apparatus, mobile terminal apparatus, radio communication method, and radio communication system |
JP2013545385A (en) * | 2010-10-28 | 2013-12-19 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for adjusting transmission power of measurement reference signal |
US9432992B2 (en) | 2010-11-08 | 2016-08-30 | Samsung Electronics Co., Ltd. | Method and device for receiving a subframe in different forms in a wireless communication system |
CN105578599A (en) * | 2010-11-16 | 2016-05-11 | 华为技术有限公司 | Transmission method and configuration indication method and device for measurement reference signal |
EP2704341B1 (en) * | 2011-04-25 | 2017-10-18 | LG Electronics Inc. | Efficient transmission of reference signals in wireless communication systems using carrier aggregation |
US8395985B2 (en) | 2011-07-25 | 2013-03-12 | Ofinno Technologies, Llc | Time alignment in multicarrier OFDM network |
WO2013055078A2 (en) * | 2011-10-09 | 2013-04-18 | 엘지전자 주식회사 | Method for setting starting position of data channel in wireless communication system and device using method |
US9166729B2 (en) * | 2011-12-14 | 2015-10-20 | Marvell World Trade Ltd. | Enhanced demodulation reference signal (DM-RS) design |
CN104969637B (en) | 2011-12-20 | 2018-08-10 | 马维尔国际贸易有限公司 | Method and apparatus for communication |
GB2498571A (en) | 2012-01-20 | 2013-07-24 | Intellectual Ventures Holding 81 Llc | Base station able to communicate with a second device type on a narrow subset frequency band contained within a first main band |
EP3937551A3 (en) | 2012-01-25 | 2022-02-09 | Comcast Cable Communications, LLC | Random access channel in multicarrier wireless communications with timing advance groups |
US9237537B2 (en) | 2012-01-25 | 2016-01-12 | Ofinno Technologies, Llc | Random access process in a multicarrier base station and wireless device |
US8526389B2 (en) | 2012-01-25 | 2013-09-03 | Ofinno Technologies, Llc | Power scaling in multicarrier wireless device |
US9325454B2 (en) * | 2012-02-24 | 2016-04-26 | Futurewei Technologies, Inc. | System and method for HARQ entity configuration |
US9674855B2 (en) | 2012-03-29 | 2017-06-06 | Qualcomm Incorporated | H-ARQ timing determination under cross-carrier scheduling in LTE |
US20130259008A1 (en) | 2012-04-01 | 2013-10-03 | Esmael Hejazi Dinan | Random Access Response Process in a Wireless Communications |
US11943813B2 (en) | 2012-04-01 | 2024-03-26 | Comcast Cable Communications, Llc | Cell grouping for wireless communications |
US8958342B2 (en) | 2012-04-17 | 2015-02-17 | Ofinno Technologies, Llc | Uplink transmission power in a multicarrier wireless device |
US8989128B2 (en) | 2012-04-20 | 2015-03-24 | Ofinno Technologies, Llc | Cell timing in a wireless device and base station |
US8964593B2 (en) | 2012-04-16 | 2015-02-24 | Ofinno Technologies, Llc | Wireless device transmission power |
US11252679B2 (en) | 2012-04-16 | 2022-02-15 | Comcast Cable Communications, Llc | Signal transmission power adjustment in a wireless device |
US11825419B2 (en) | 2012-04-16 | 2023-11-21 | Comcast Cable Communications, Llc | Cell timing in a wireless device and base station |
WO2013158511A1 (en) | 2012-04-16 | 2013-10-24 | Dinan Esmael Hejazi | Cell group configuration for uplink transmission in a multicarrier wireless device and base station with timing advance groups |
US11582704B2 (en) | 2012-04-16 | 2023-02-14 | Comcast Cable Communications, Llc | Signal transmission power adjustment in a wireless device |
US11622372B2 (en) | 2012-06-18 | 2023-04-04 | Comcast Cable Communications, Llc | Communication device |
US9084228B2 (en) | 2012-06-20 | 2015-07-14 | Ofinno Technologies, Llc | Automobile communication device |
US11882560B2 (en) | 2012-06-18 | 2024-01-23 | Comcast Cable Communications, Llc | Carrier grouping in multicarrier wireless networks |
US9107206B2 (en) | 2012-06-18 | 2015-08-11 | Ofinne Technologies, LLC | Carrier grouping in multicarrier wireless networks |
WO2015024215A1 (en) * | 2013-08-21 | 2015-02-26 | Qualcomm Incorporated | Pucch resource mapping an harq-ack feedback |
KR101611825B1 (en) * | 2013-11-08 | 2016-04-14 | 주식회사 케이티 | Methods for controlling transmit power in an uplink and apppartuses thereof |
KR102201284B1 (en) * | 2014-12-08 | 2021-01-11 | 엘지전자 주식회사 | Method and user equipment for transmitting pucch when more than five cells are used according to carrier aggregation |
US10075970B2 (en) | 2015-03-15 | 2018-09-11 | Qualcomm Incorporated | Mission critical data support in self-contained time division duplex (TDD) subframe structure |
US9936519B2 (en) * | 2015-03-15 | 2018-04-03 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure for wireless communications |
US10342012B2 (en) | 2015-03-15 | 2019-07-02 | Qualcomm Incorporated | Self-contained time division duplex (TDD) subframe structure |
US9814058B2 (en) | 2015-05-15 | 2017-11-07 | Qualcomm Incorporated | Scaled symbols for a self-contained time division duplex (TDD) subframe structure |
US9992790B2 (en) | 2015-07-20 | 2018-06-05 | Qualcomm Incorporated | Time division duplex (TDD) subframe structure supporting single and multiple interlace modes |
US10244527B2 (en) | 2015-12-18 | 2019-03-26 | Qualcomm Incorporated | Techniques for dropping uplink grants in carrier aggregation to mitigate intermodulation interference |
EP3301980B1 (en) * | 2016-09-28 | 2018-12-26 | Intel IP Corporation | Controlling an rf frontend using control format indicator prediction |
US10448385B2 (en) * | 2016-10-31 | 2019-10-15 | Qualcomm Incorporated | Configuration and transmission of a uplink short burst |
US10547422B2 (en) * | 2017-04-13 | 2020-01-28 | Qualcomm Incorporated | SRS transmission with implied RTS/CTS |
KR20200053511A (en) | 2017-09-21 | 2020-05-18 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | Wireless communication method and device |
CN111373682B (en) * | 2017-11-16 | 2023-06-02 | 上海诺基亚贝尔股份有限公司 | Communication method, device and computer readable storage medium |
US10772099B2 (en) * | 2018-02-16 | 2020-09-08 | Qualcomm Incorporated | Punctured sounding and partial bandwidth feedback |
US11071099B2 (en) * | 2018-04-05 | 2021-07-20 | Qualcomm Incorporated | Reliable indication of a control format indicator value |
US12040999B2 (en) * | 2018-08-10 | 2024-07-16 | Apple Inc. | Sounding reference signal (SRS) transmission framework |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200917752A (en) * | 2007-08-15 | 2009-04-16 | Qualcomm Inc | Rate matching of messages containing system parameters |
WO2010013961A2 (en) * | 2008-07-30 | 2010-02-04 | Lg Electronics Inc. | Method and apparatus of monitoring pdcch in wireless communication system |
TW201008316A (en) * | 2008-06-30 | 2010-02-16 | Qualcomm Inc | Method and apparatus for automatic handover optimization |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005510956A (en) * | 2001-11-28 | 2005-04-21 | ミレニアル・ネット | Network protocol for ad hoc wireless networks |
EP3547582B1 (en) * | 2007-03-19 | 2024-03-20 | Optis Wireless Technology, LLC | Radio bearer specific cqi reporting |
SG10201606444UA (en) * | 2008-02-04 | 2016-09-29 | Samsung Electronics Co Ltd | Control and data multiplexing in communication systems |
US8045508B2 (en) * | 2008-02-14 | 2011-10-25 | Lg Electronics Inc. | Rank feedback method for multiple-input multiple-output transmission |
DK2351445T3 (en) * | 2008-10-20 | 2015-10-26 | Interdigital Patent Holdings | carrier Aggregation |
CN102577209B (en) * | 2009-10-01 | 2017-04-05 | 交互数字专利控股公司 | Uplink control data transmission |
US8848520B2 (en) * | 2010-02-10 | 2014-09-30 | Qualcomm Incorporated | Aperiodic sounding reference signal transmission method and apparatus |
KR101328213B1 (en) * | 2010-02-12 | 2013-11-14 | 엘지전자 주식회사 | Method and apparatus of transmitting data in wireless communication system |
KR101807874B1 (en) * | 2010-03-05 | 2017-12-12 | 엘지전자 주식회사 | Method and apparatus of transmitting aperiodic sounding reference signal in wireless communication system |
US20110243056A1 (en) * | 2010-03-31 | 2011-10-06 | Yu-Chih Jen | Method for realizing MBMS under bandwidth aggregation, CoMP and relay operation |
CN106130708B (en) * | 2010-04-02 | 2019-06-28 | 交互数字专利控股公司 | Execute the method and multi-antenna wireless transmitter/receiver unit of SRS transmission |
EP2385649B1 (en) * | 2010-05-04 | 2012-10-03 | HTC Corporation | Method of carrier control format indication |
US9363769B2 (en) * | 2010-05-05 | 2016-06-07 | Qualcomm Incorporated | Methods and systems for SRS power scaling in carrier aggregation |
-
2011
- 2011-05-09 TW TW100116109A patent/TW201210294A/en unknown
- 2011-05-09 TW TW100116108A patent/TWI502945B/en active
- 2011-05-09 US US13/103,706 patent/US8625558B2/en active Active
- 2011-05-09 US US13/103,612 patent/US20110274063A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200917752A (en) * | 2007-08-15 | 2009-04-16 | Qualcomm Inc | Rate matching of messages containing system parameters |
TW201008316A (en) * | 2008-06-30 | 2010-02-16 | Qualcomm Inc | Method and apparatus for automatic handover optimization |
WO2010013961A2 (en) * | 2008-07-30 | 2010-02-04 | Lg Electronics Inc. | Method and apparatus of monitoring pdcch in wireless communication system |
Also Published As
Publication number | Publication date |
---|---|
US20110273994A1 (en) | 2011-11-10 |
TW201210294A (en) | 2012-03-01 |
US20110274063A1 (en) | 2011-11-10 |
US8625558B2 (en) | 2014-01-07 |
TW201215065A (en) | 2012-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI502945B (en) | Method to determine an indicator value and apparatus to determine an indicator | |
KR102648832B1 (en) | Resource configuraiton and data transmission and reception method and apparatus in wirelss cellular communication system | |
JP6845883B2 (en) | Methods and devices for buffering downlink data in consideration of cross-carrier scheduling in wireless communication systems. | |
JP7257213B2 (en) | Method and apparatus for slot format determination in wireless communication systems | |
JP6768685B2 (en) | Simplified HARQ management | |
TWI508595B (en) | Physical uplink control channel (pucch) resource mapping with transmit diversity | |
JP6431043B2 (en) | Method and apparatus for transmitting uplink control information in wireless connection system | |
ES2827218T3 (en) | Identification of modulation and coding schemes and channel quality indicators | |
JP5824566B2 (en) | Base station, user apparatus, communication method, and integrated circuit for allocating physical uplink control channel resources | |
RU2543490C2 (en) | Transmission of feedback information for data transmission on multiple carriers | |
CN102804675B (en) | For method and the device of the resource mapping of multi-carrier operation | |
US9237520B2 (en) | Method for transceiving contention-based uplink channel signal | |
CN103503507B (en) | The system and method for managing the inactive reference subframe for information feedback | |
US8767846B2 (en) | Joint layer 3 signalling coding for multicarrier operation | |
JP2020022159A (en) | Method and device for power saving method during pdsch (physical downlink shared channel) reception in radio communication system | |
CN113519137A (en) | Method and apparatus for multi-beam operation | |
US8665809B2 (en) | Systems and methods for sending power control information | |
CN107211375A (en) | For the up-link power control technology of the ultralow delay in LTE equipment | |
TWI577197B (en) | Method and apparatus of small cell enhancement in a wireless communication system | |
CN110999496A (en) | Method and apparatus for setting downlink control channel reception time in wireless communication system | |
TWI524788B (en) | Method and apparatus for channel state information measurement in a wireless communication system | |
KR20130109119A (en) | Method and device for transmitting control information | |
CN102948247A (en) | Contention- based wireless transmissions | |
KR20170110082A (en) | Uplink control channel for acknowledging increased number of downlink component carriers | |
US20220322415A1 (en) | Methods performed by user equipment or base station, user equipment and base station |