TWI499197B - Method of controlling motor and motor controlling system - Google Patents

Method of controlling motor and motor controlling system Download PDF

Info

Publication number
TWI499197B
TWI499197B TW100101949A TW100101949A TWI499197B TW I499197 B TWI499197 B TW I499197B TW 100101949 A TW100101949 A TW 100101949A TW 100101949 A TW100101949 A TW 100101949A TW I499197 B TWI499197 B TW I499197B
Authority
TW
Taiwan
Prior art keywords
data
current position
speed
movable element
motor
Prior art date
Application number
TW100101949A
Other languages
Chinese (zh)
Other versions
TW201201501A (en
Inventor
Yuji Ide
Michio Kitahara
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW201201501A publication Critical patent/TW201201501A/en
Application granted granted Critical
Publication of TWI499197B publication Critical patent/TWI499197B/en

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

電動機控制方法及裝置Motor control method and device

本發明是關於一種進行在工作母機等所使用的電動機的高精度定位的電動機控制方法及裝置。The present invention relates to a motor control method and apparatus for performing high-precision positioning of a motor used in a work machine or the like.

在使用電動機的工作母機等的電動機的定位裝置中,利用數位編碼器來檢測出電動機的活動元件的現在位置,而將電動機的活動元件定位在因應於位置指令的位置。在此種習知的裝置中,例如將位置指令作成零,而在指令位置停止電動機時,因位置檢測為依數位值所致的檢測,因此在活動元件經常地發生著編碼器的輸出的±1脈衝分量的變動。若連結電動機與負荷的機械系統為剛體時,則該變動是不會增幅,而不會產生大的問題。然而,若連結電動機與負荷的機械系統有剛性低的部分時,則視條件,該變動被增幅,而會產生共振於機械系統的微振動的情形。In a positioning device for a motor such as a work machine using a motor, a digital encoder is used to detect the current position of the movable element of the motor, and the movable element of the motor is positioned at a position corresponding to the position command. In such a conventional device, for example, when the position command is made to zero, and the motor is stopped at the command position, since the position detection is detection based on the digital value, the output of the encoder is often generated in the movable element. 1 fluctuation of the pulse component. If the mechanical system connecting the motor and the load is a rigid body, the change will not increase, and no major problem will occur. However, if there is a portion where the mechanical system connecting the motor and the load has a low rigidity, the fluctuation is increased depending on the condition, and a micro-vibration that resonates with the mechanical system occurs.

例如,有滾珠螺桿連結機構被連接於電動機的軸而構成機械系統時,則如第6(A)圖至第6(C)圖所示地,在滾珠螺桿連結機構的滾珠會產生彈性變形。第6(B)圖是未彈性變形的滾珠螺桿連結機構中的滾珠,而第6(A)圖及第6(C)圖是誇大描繪因振動而彈性變形的滾珠。第6(A)圖及第6(C)圖中的箭頭是表示振動時的移動方向。For example, when the ball screw coupling mechanism is connected to the shaft of the motor to constitute the mechanical system, the balls of the ball screw coupling mechanism are elastically deformed as shown in Figs. 6(A) to 6(C). Fig. 6(B) is a view showing a ball in a ball screw coupling mechanism that is not elastically deformed, and Figs. 6(A) and 6(C) are views exaggeratingly depicting a ball that is elastically deformed by vibration. Arrows in the sixth (A) and sixth (C) diagrams indicate the moving direction at the time of vibration.

依數位編碼器所為的電動機的活動元件的位置檢測, 是抽樣周期別地實行。所以一直到實行抽樣為止,在上次抽樣所檢測的位置作為活動元件的位置。結果,如第5圖所示地,相對於「實際的位置」具有延遲地檢測位置。又,算出速度時也成為依差分演算所致的延遲的原因,而速度也隨著依抽樣周期所決定的檢測粗糙度與時間滯後被檢測。速度控制系統是動作成如此被檢測的速度被抑制。又,被連接於電動機的滾珠螺桿的滾珠的動作,是依電動機的動作會再延遲彈性變形分量。所以,即使電動機的活動元件被停止在停止位置的狀況下,宏偉地觀看,在電動機以±1脈衝變動時,反轉滾珠的移動方向後[從第6(A)圖的狀態回到第6(B)圖的狀態時,或是從第6(C)圖回到第6(B)圖的狀態時],增幅滾珠從彈性變形恢復的速度的方式,習知的定位位置是有移動電動機的軸的情形。這時候,滾珠螺桿的滾珠重複彈性變形而微振動,從滾珠螺桿周邊發生機械聲音。此種微振動是關連於滾珠螺桿的劣化等之故,因而儘量抑制較佳。Position detection of the moving elements of the motor by the digital encoder, It is implemented in the sampling cycle. Therefore, the position detected by the last sampling is used as the position of the moving element until sampling is performed. As a result, as shown in Fig. 5, the position is detected with a delay with respect to the "actual position". Further, when the speed is calculated, the delay due to the difference calculation is also caused, and the speed is also detected along with the detection roughness and the time lag determined by the sampling period. The speed control system is such that the speed at which the motion is detected is suppressed. Further, the operation of the ball connected to the ball screw of the motor re-delays the elastic deformation component in accordance with the operation of the motor. Therefore, even if the movable element of the motor is stopped at the stop position, it is viewed magnificently, and when the motor is rotated by ±1 pulse, the direction of movement of the ball is reversed [from the state of Fig. 6(A) to the sixth (B) In the state of the figure, or when returning from the 6th (C) diagram to the state of the 6th (B) diagram], the speed at which the ball is recovered from the elastic deformation, the conventional positioning position is a moving motor The situation of the axis. At this time, the balls of the ball screw are repeatedly elastically deformed and slightly vibrated, and mechanical sound is generated from the periphery of the ball screw. Such microvibration is related to deterioration of the ball screw or the like, and thus it is preferable to suppress it as much as possible.

作為抑制該微振動的方法,有一種至機械系統不會共振為止降低電動機控制裝置的速度環路或位置環路的增益的方法。但是,在此種方法中,有降低應答特性,也降低伺服剛性的問題。作為其他方法,有一種將轉矩指令經陷波濾波器,而從轉矩指令將微振動的頻率成分除外的方法。但是,當插入陷波濾波器,則在比陷波頻率還要低的頻率中相位會滯後之故,因而會有在速度控制應答特性產生顛峰值,控制特性變壞的問題。As a method of suppressing the microvibration, there is a method of reducing the gain of the speed loop or the position loop of the motor control device until the mechanical system does not resonate. However, in such a method, there is a problem that the response characteristics are lowered and the servo rigidity is also lowered. As another method, there is a method in which a torque command is passed through a notch filter, and a frequency component of the microvibration is excluded from the torque command. However, when the notch filter is inserted, the phase is delayed at a frequency lower than the notch frequency, and thus there is a problem that the speed control response characteristic is peaked and the control characteristic is deteriorated.

又,作為其他抑制微振動的技術,有表示於專利文獻1所示的電動機控制裝置的技術。在表示於日本特開2007-252093號公報的裝置中,具備電動機停止判定電路與死區形成電路。電動機停止判定電路是位置指令資料為零,而若位置偏差資料在定位完成範圍內時,則判定電動機在停止狀態。死區形成電路是在電動機停止判定電路判定為電動機停止時,為了忽略從定位點因±1脈衝分量的變動所變化的轉矩指令分量,對於轉矩指令設置死區。Further, as another technique for suppressing microvibration, there is a technique of the motor control device shown in Patent Document 1. In the device disclosed in Japanese Laid-Open Patent Publication No. 2007-252093, a motor stop determination circuit and a dead zone forming circuit are provided. The motor stop determination circuit is zero in the position command data, and if the position deviation data is within the positioning completion range, it is determined that the motor is in the stop state. The dead zone forming circuit sets a dead zone for the torque command in order to ignore the torque command component that changes due to the fluctuation of the ±1 pulse component from the positioning point when the motor stop determination circuit determines that the motor is stopped.

在日本特開2007-252093號公報所述的習知技術中,在位置指令為零時於轉矩指令設置死區。由於存在死區,位於停止狀態的電動機的活動元件的位置若利用外力等,不進行+2脈衝或-2脈衝變化,就不會輸出轉矩。若設置此種死區,則在死區無法進行定位控制。由於此,在習知的裝置中,無法提昇定位精度。尤其是,在停止電動機時施加外力時,即使產生一脈衝分量的偏位,也無法進行定位控制。所以,在如工作母機需要高定位精度的用途上,若在控制電動機利用習知裝置,則有加工精度會降低的問題。In the prior art described in Japanese Laid-Open Patent Publication No. 2007-252093, a dead zone is set in the torque command when the position command is zero. Since there is a dead zone, if the position of the movable element of the motor in the stopped state is not subjected to +2 pulse or -2 pulse change by an external force or the like, the torque is not output. If such a dead zone is set, positioning control cannot be performed in the dead zone. Because of this, in the conventional device, the positioning accuracy cannot be improved. In particular, when an external force is applied when the motor is stopped, positioning control cannot be performed even if a deviation of a pulse component occurs. Therefore, in the case where the working machine requires high positioning accuracy, if the conventional motor is used to control the motor, there is a problem that the machining accuracy is lowered.

本發明的目的在提供一種在使用數位編碼器的電動機控制裝置中,即使在機械系統有剛性低的部分,也不會降低定位精度,而可抑制機械系統的微振動的電動機控制方 法及裝置。SUMMARY OF THE INVENTION An object of the present invention is to provide a motor control device capable of suppressing microvibration of a mechanical system even in a motor control device using a digital encoder, even in a portion where a mechanical system has a low rigidity, without lowering the positioning accuracy. Law and equipment.

在達成上述目的本發明的電動機控制方法中,由指令電動機的活動元件的移動位置的位置指令資料、及表示利用數位編碼器所檢測出的活動元件的現在位置資料,來演算偏差而生成位置偏差資料。又,演算這次抽樣的現在位置資料與上次抽樣的現在位置資料的差分而生成差分現在位置資料。又,依據差分現在位置資料來生成活動元件的現在速度資料。又,演算依據位置偏差資料所製作的速度指令資料與現在速度資料的偏差來生成速度偏差資料,依據該速度偏差資料來生成轉矩指令資料。又,依據轉矩指令資料來控制電動機的轉矩。尤其是,在本發明中,係利用當活動元件通過目標位置時,則差分現在位置資料的極性會變化的情形。因此首先判定差分現在位置資料的極性是否有變化。又,判定為極性有變化之後,將差分現在位置資料以1以上的整數亦即n抽樣周期的期間作為零來生成現在速度資料。In the motor control method according to the present invention, the position command data of the moving position of the movable element of the command motor and the current position data of the movable element detected by the digital encoder are used to calculate the deviation to generate the positional deviation. data. Further, the difference between the current position data of the sample and the current position data of the previous sample is calculated to generate the difference current position data. Further, the current velocity data of the active component is generated based on the difference current location data. Further, the calculation generates a speed deviation data based on the deviation between the speed command data created by the position deviation data and the current speed data, and generates torque command data based on the speed deviation data. Further, the torque of the motor is controlled in accordance with the torque command data. In particular, in the present invention, when the movable element passes through the target position, the polarity of the current position data changes. Therefore, it is first determined whether the polarity of the difference current position data has changed. Further, after it is determined that there is a change in polarity, the current speed data is generated by taking the difference current position data as zero, that is, an integer of 1 or more, that is, a period of n sampling periods.

理論上,差分現在位置資料的極性有變化時,即為活動元件通過作為目標的位置時。若位置指令資料為指令目標位置(定位點)時,則理論上,活動元件是目標位置。但是如習知技術般未設置死區時(繼續被控制時),則活動元件是處於以目標位置作為中心而以編碼器的輸出的±1脈衝內微細地搖晃的狀況。亦即,判定為有極性變化之 後,若立即依據差分現在位置資料來生成現在速度資料,則發生朝與極性有變化之前的移動方向相反之方向移動活動元件的轉矩。例如,以連結電動機與負荷的連結機構作彈性變形之程度地機械式剛性低時,則會發生欲把彈性變形恢復成原來的較大的相斥力。該相斥力是發揮增大朝著相反方向移動上述活動元件的轉矩的作用。結果,活動元件的移動量會變大,在最壞的情形下,發生共振,且發生以人類耳朵就可確認之程度的振動聲音。如本發明地,被判定為極性有變化之後,若將差分現在位置資料在1以上的整數亦即n抽樣周期之期間作為零,則在該期間中,現在速度資料是成為零,而在活動元件僅作用依據彈性變形的相斥力。在該n抽樣周期的期間,因依據彈性變形的相斥力所致的活動元件的位移即結束。又,在經過n抽樣周期之後,將差分現在位置資料從零回到實際資料。作成如此,則不管原因為如何,若無法控制的力在差分現在位置資料之極性反轉之後作用於活動元件時,則1以上的整數亦即n抽樣周期之期間,若將差分現在位置資料作為零,則可防止因無法控制的力的影響,活動元件的振動變大而發生噪音的情形。又,如習知技術地未設置死區之故,因而比習知還可提高定位精度。In theory, when the polarity of the difference current position data changes, it is when the moving element passes the target position. If the position command data is the command target position (positioning point), then in theory, the active component is the target position. However, when the dead zone is not set as in the prior art (when it is continuously controlled), the movable element is in a state of being finely shaken within ±1 pulse of the output of the encoder with the target position as the center. That is, it is determined that there is a polarity change Then, if the current velocity data is immediately generated based on the difference current position data, the torque of moving the movable element in a direction opposite to the moving direction before the change in polarity occurs. For example, when the mechanical rigidity is low to the extent that the connection mechanism connecting the motor and the load is elastically deformed, a large repulsive force to restore the elastic deformation to the original is generated. This repulsive force acts to increase the torque that moves the movable element in the opposite direction. As a result, the amount of movement of the movable element becomes large, and in the worst case, resonance occurs, and a vibration sound to a degree that can be confirmed by the human ear occurs. According to the present invention, if it is determined that there is a change in polarity, if the period of the differential current position data is 1 or more, that is, the period of the n sampling period, the speed data is zero and the activity is active during the period. The component acts only on the repulsive force of the elastic deformation. During the period of the n sampling period, the displacement of the movable element due to the repulsive force according to the elastic deformation ends. Also, after the n sampling period, the differential current position data is returned from zero to the actual data. In this case, regardless of the cause, if the uncontrollable force acts on the movable element after the polarity of the difference current position data is inverted, the integer value of 1 or more, that is, the period of the n sampling period, When it is zero, it is possible to prevent the vibration of the movable element from increasing due to the uncontrollable force and causing noise. Further, since the dead zone is not provided as in the prior art, the positioning accuracy can be improved as compared with the prior art.

n的數值並非為一定,若因應於配置在活動元件與負荷之間之作彈性變形的連結機構的機械性剛性來適當地設定即可。該n的設定基準是設定為所發生的活動元件的微振動不會受到連結機構的剛性影響的數值。作成如此,可 有效地發揮本發明的效果。The numerical value of n is not constant, and may be appropriately set in accordance with the mechanical rigidity of the connection mechanism that is elastically deformed between the movable element and the load. The setting criterion of n is a value set so that the microvibration of the movable element that is generated is not affected by the rigidity of the connection mechanism. Made this way, The effects of the present invention are effectively exerted.

又連結機構為一般性的剛性的滾珠螺桿連結機構時,則將n作成1就可以。在使用其他構造的連結機構時,則選擇適當的n值就可以。When the connection mechanism is a general rigid ball screw coupling mechanism, n may be set to 1. When using a connection mechanism of other construction, it is sufficient to select an appropriate value of n.

實施本發明的方法的電動機控制裝置是具備:以數位值輸出電動機的活動元件的現在位置的編碼器;位置偏差資料生成部;差分現在位置資料生成部;現在速度資料生成部;位置控制器;速度偏差資料生成部;速度控制器;及轉矩控制部。位置偏差資料生成部是由指令活動元件的移動位置的位置指令資料、及表示利用編碼器所檢測出的活動元件的現在位置的現在位置資料,來演算偏差而生成位置偏差資料。差分現在位置資料生成部是演算這次抽樣的現在位置資料與上次抽樣的現在位置資料的差分而生成差分現在位置資料。現在速度資料生成部是依據差分現在位置資料來生成活動元件的現在速度資料。位置控制器是依據位置偏差資料來生成速度指令資料。速度偏差資料生成部是演算現在速度資料與速度指令資料之偏差來生成速度偏差資料。速度控制器是依據速度偏差資料來生成轉矩指令資料。轉矩控制部是依據轉矩指令資料來控制電動機的轉矩。現在速度資料生成部是包括判定差分現在位置資料的極性是否有變化的極性判定部。又,現在速度資料生成部是當極性判定部判定極性有變化之後,立即將差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零而生成現在速度資料。依據本發明,可簡單且確實地實施 本發明的方法。A motor control device embodying the method of the present invention includes: an encoder that outputs a current position of a movable element of a motor with a digital value; a position deviation data generating unit; a difference current position data generating unit; a current speed data generating unit; and a position controller; Speed deviation data generating unit; speed controller; and torque control unit. The positional deviation data generating unit generates positional deviation data by calculating a deviation from the position command data indicating the movement position of the movable element and the current position data indicating the current position of the movable element detected by the encoder. The difference current position data generating unit calculates the difference between the current position data of the current sampling and the current position data of the previous sampling to generate the difference current position data. The velocity data generation unit now generates the current velocity data of the active component based on the difference current location data. The position controller generates speed command data based on the position deviation data. The speed deviation data generation unit calculates the deviation of the current speed data from the speed command data to generate the speed deviation data. The speed controller generates torque command data based on the speed deviation data. The torque control unit controls the torque of the motor based on the torque command data. The current speed data generating unit is a polarity determining unit that includes a determination as to whether or not the polarity of the difference current position data has changed. In addition, the current speed data generating unit generates the current speed data as zero immediately after the polarity determination unit determines that the polarity has changed, and immediately sets the difference current position data to an integer of 1 or more, that is, the n sampling period. According to the invention, it can be implemented simply and surely The method of the invention.

在本發明的裝置中,若在活動元件與負荷之間配置有作彈性變形的連結機構時,決定n值為所發生的活動元件的微振動不會受到連結機構的剛性影響的數值就可以。又,若連結機構為一般性的剛性的滾珠螺桿連結機構,則將n作為1就可以。In the device of the present invention, when a coupling mechanism that elastically deforms is disposed between the movable element and the load, the value of n is determined to be a numerical value that the microvibration of the movable element that is generated is not affected by the rigidity of the coupling mechanism. Further, if the connection mechanism is a general rigid ball screw coupling mechanism, n may be set to 1.

本發明當然也可適用在停止操作時,亦即位置指令資料為零時。這時候,也在判定極性有變化之後,將差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零來生成現在速度資料。The invention is of course also applicable when the operation is stopped, that is, when the position command data is zero. At this time, after determining that the polarity has changed, the current velocity data is generated by taking the difference current position data as an integer of 1 or more, that is, a period of the n sampling period as zero.

第1圖是表示實施本發明的電動機控制方法的電動機控制裝置的實施形態的一例子的構成的方塊圖。本實施形態的電動機控制裝置1是具備:以數位值進行輸出電動機M(包括旋轉型電動機及線性電動機的雙方)的活動元件(旋轉型電動機時為轉子)的現在位置的數位編碼器E;位置偏差資料生成部3;位置控制器5;差分現在位置資料生成部7;現在速度資料生成部9;速度偏差資料生成部15;速度控制器17;及轉矩控制部19。作為數位編碼器E,可使用光學式編碼器、磁性式編碼器等的公知編碼器。Fig. 1 is a block diagram showing a configuration of an example of an embodiment of a motor control device for carrying out the motor control method of the present invention. The motor control device 1 of the present embodiment is provided with a digital encoder E that outputs the current position of the movable element M (including both the rotary motor and the linear motor) of the movable motor M (including both the rotary motor and the linear motor) at a digital value; Deviation data generating unit 3; position controller 5; difference current position data generating unit 7, current speed data generating unit 9, speed deviation data generating unit 15, speed controller 17, and torque control unit 19. As the digital encoder E, a known encoder such as an optical encoder or a magnetic encoder can be used.

利用減法器所構成的位置偏差資料生成部3是由指令電動機M的活動元件的移動位置的位置指令資料、及表示 利用數位編碼器E所檢測的活動元件的現在位置的現在位置資料來演算偏差而生成位置偏差資料。The positional deviation data generating unit 3 formed by the subtractor is a position command data indicating the moving position of the movable element of the motor M, and The position deviation data is generated by calculating the deviation using the current position data of the current position of the moving element detected by the digital encoder E.

差分現在位置資料生成部7是利用數位編碼器E來演算這次抽樣的現在位置資料及上次抽樣的現在位置資料的差分來生成差分現在位置資料。因此,差分現在位置資料生成部7是具備:至少將來自數位編碼器E的輸出記憶上次抽樣分量與這次抽樣分量的記憶部;採取記憶於記憶部的上次資料與這次資料的差分的差分演算部;及記憶差分演算部的演算結果的結果記憶部所構成。The difference current position data generating unit 7 calculates the difference between the current position data of the current sampling and the current position data of the previous sampling by the digital encoder E to generate the difference current position data. Therefore, the difference current position data generating unit 7 includes a memory unit that memorizes at least the output from the digital encoder E and the current sample component, and the difference between the difference between the previous data stored in the memory unit and the current data. The calculation unit and the result memory unit of the calculation result of the memory difference calculation unit.

現在速度資料生成部9是依據差分現在位置資料生成部7所生成的差分現在位置資料來生成電動機M的活動元件的現在速度資料。現在速度資料生成部9是包括:判定差分現在位置資料生成部7所生成的差分現在位置資料的極性是否有變化的極性判定部11、與增益乘法部13。如第2(A)圖所示地,極性判定部11是利用以差分現在位置資料生成部7所生成的差分現在位置資料為以「0」位準作為基準是否為較大,判定極性是否有變化。表示於第2(A)圖的狀況是被輸入於位置偏差資料生成部3的位置指令資料為零時,表示活動元件雖些微惟有振動的狀況。在本實施形態中,如第2(B)圖所示地,現在速度資料生成部9是當極性判定部11判定極性有變化之後,立即將差分現在位置資料生成部7所輸出的差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零而生成現在速度資料。在第2(B)圖中,將此狀態稱為「插入磁滯 後的差分位置」。在此,「磁滯」是使用在「將前狀態作為後狀態插入事先決定的期間(維持)」的意思。在第2(B)圖的例子中,將極性反轉判定前的「0」狀態,在極性反轉判定後維持一抽樣周期分量。增益乘法部13是經常將所定增益相乘於差分現在位置資料生成部7所輸出的差分現在位置資料而輸出作為速度回饋。增益乘法部13是利用施以因應於數位編碼器E的分解能的增益,來算出速度回饋。The current speed data generating unit 9 generates the current speed data of the moving element of the motor M based on the difference current position data generated by the difference current position data generating unit 7. The current speed data generating unit 9 includes a polarity determining unit 11 and a gain multiplying unit 13 that determine whether or not the polarity of the difference current position data generated by the difference current position data generating unit 7 has changed. As shown in the second figure (A), the polarity determination unit 11 determines whether or not the polarity is determined by using the difference current position data generated by the difference current position data generation unit 7 as a reference based on the "0" level. Variety. The state shown in the second (A) diagram is a state in which the positional command data input to the positional deviation data generating unit 3 is zero, indicating that the movable element is slightly vibrated. In the present embodiment, as shown in the second figure (B), the current speed data generating unit 9 immediately sets the difference current position outputted by the difference current position data generating unit 7 after the polarity determining unit 11 determines that the polarity has changed. The data is generated as zero at the time of an integer of 1 or more, that is, a period of n sampling periods. In Figure 2(B), this state is called "insertion hysteresis" After the difference position." Here, "hysteresis" means that "the pre-state is inserted as a post-state (predetermined period)". In the example of the second (B) diagram, the "0" state before the polarity inversion determination is maintained by one sampling period component after the polarity inversion determination. The gain multiplying unit 13 multiplies the predetermined gain by the difference current position data output from the difference current position data generating unit 7 and outputs it as speed feedback. The gain multiplying unit 13 calculates the speed feedback by applying a gain in accordance with the decomposition energy of the digital encoder E.

位置控制器5是依據位置偏差資料生成部3所生成的位置偏差資料而生成速度指令資料。由減法器所成的速度偏差資料生成部15是演算現在速度資料生成部9的增益乘法部13所輸出的現在速度資料(速度回饋)與位置控制器5所輸出的速度指令資料的偏差,而輸出作為速度偏差資料。速度控制器17是依據速度偏差資料生成部15所輸出的速度偏差資料來生成轉矩指令資料。轉矩控制部19是依據所輸入的轉矩指令資料來控制活動元件的轉矩。The position controller 5 generates speed command data based on the positional deviation data generated by the positional deviation data generating unit 3. The speed deviation data generating unit 15 formed by the subtractor calculates the deviation between the current speed data (speed feedback) output from the gain multiplying unit 13 of the current speed data generating unit 9 and the speed command data outputted by the position controller 5, and The output is used as the speed deviation data. The speed controller 17 generates torque command data based on the speed deviation data output from the speed deviation data generating unit 15. The torque control unit 19 controls the torque of the movable element based on the input torque command data.

理論上,差分現在位置資料的極性有變化時,為電動機M的活動元件通過作為目的停止位置時。因應於被輸入於位置偏差資料生成部3(上位控制器所輸入的)的位置指令,理論上,活動元件是目標位置停止。但是實際上,活動元件是處於以目標位置作為中心而在數位編碼器E的輸出的±1脈衝內微細地搖動的狀況。所以,若極性判定部11判定極性的變化之後,當依據其後的差分現在位置資料使現在速度資料生成部9生成現在速度資料,則發生朝著 與極性變化之前的移動方向相反的方向移動活動元件的轉矩。如先前使用第6圖所述地,若作為連結電動機M與負荷的機械系統MS的連結機構為進行彈性變形的滾珠螺桿連結機構,則如第6(A)圖或第6(C)圖所示地,因機械系統的機械式剛性較低,因此發生將滾珠的彈性變形欲恢復成原來的較大的相斥力。該相斥力是發揮增大朝著相反方向移動上述活動元件的轉矩之作用。結果,活動元件的移動量會變大,在最壞時,會發生共振,而發生以人類耳朵可確認的程度的振動聲音。Theoretically, when the polarity of the difference current position data changes, the movable element of the motor M passes as the target stop position. In response to the position command input to the position deviation data generating unit 3 (input by the upper controller), the active element is theoretically stopped at the target position. However, actually, the movable element is in a state of being finely shaken within ±1 pulse of the output of the digital encoder E with the target position as the center. Therefore, when the polarity determination unit 11 determines the change in the polarity, the current speed data generation unit 9 generates the current speed data based on the difference difference current position data thereafter, and then the direction occurs. The torque of the movable element is moved in a direction opposite to the direction of movement before the polarity change. As described above with reference to Fig. 6, when the connection mechanism that connects the motor M and the mechanical system MS of the load is a ball screw coupling mechanism that elastically deforms, as shown in Fig. 6(A) or Fig. 6(C) Since the mechanical rigidity of the mechanical system is low, the elastic deformation of the ball is restored to the original large repulsive force. This repulsive force acts to increase the torque that moves the movable element in the opposite direction. As a result, the amount of movement of the movable element becomes large, and at the worst, resonance occurs, and a vibration sound to the extent that the human ear can confirm is generated.

在本實施形態中,極性判定部11為判定有極性變化之後,立即將差分現在位置資料生成部7所輸出的差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零。因此該抽樣周期期間中,現在速度資料是成為零。該期間,在活動元件作用著依據彈性變形的相斥力,惟在該n抽樣周期的期間,結束因依據彈性變形的相斥力所致的活動元件的位移。又,現在速度資料生成部9,是經過n抽樣周期之後,將差分現在位置資料從零回到實際的資料。作成如此,可防止因無法控制的力(依彈性變形所致的相斥力等)的影響,活動元件的振動變大而發生噪音的情形。In the present embodiment, the polarity determination unit 11 immediately sets the period of the n-sample period, which is an integer of one or more, which is the difference current position data output from the difference current position data generation unit 7, to zero. Therefore, during the sampling period, the current velocity data is zero. During this period, the movable element acts on the repulsive force according to the elastic deformation, but during the period of the n sampling period, the displacement of the movable element due to the repulsive force according to the elastic deformation is ended. Further, the current speed data generating unit 9 returns the difference current position data from zero to the actual data after the n sampling period. In this way, it is possible to prevent the vibration of the movable element from being increased due to the uncontrollable force (repulsive force due to elastic deformation, etc.), and noise is generated.

使用第2圖,更具體地加以具體地說明,表示於第2(A)圖的差分現在位置資料的極性有變化時,則第2(B)圖的插入磁滯後的差分現在位置資料是經過一抽樣周期之後有所變化。亦即,在電動機的活動元件的速度的 極性有變化時,則一抽樣分量(一抽樣周期分量),速度回饋並不被輸出。之後,在連續兩次抽樣有相同極性的值時才在速度回饋出現數值。因此,在時間上成為有一抽樣分量(一抽樣周期分量)的磁滯被插入的情形。藉此,在停止電動機時隨著編碼器的±1脈衝的變動進行控制的控制系統的動作成為延遲一抽樣分量(一抽樣周期分量)。所以,依據本實施形態,在會有以上述滾珠螺桿連結機構的滾珠增幅由彈性變形恢復的動作的方式移動電動機的活動元件的情形的控制系統中,檢測速度成為延遲一抽樣分量。結果,依照本實施形態,不會有滾珠螺桿連結機構的滾珠加速由彈性變形恢復的動作,而滾珠螺桿連結機構的微振動是被抑制。又,機械系統的剛性更低時,則藉由增加磁滯的脈衝數(n抽樣周期的n的數)來加以對應。Referring to Fig. 2, more specifically, when the polarity of the difference current position data in the second (A) figure is changed, the difference in the insertion magnetic lag of the second (B) figure is the position data. There is a change after a sampling period. That is, the speed of the moving parts of the motor When there is a change in polarity, there is a sample component (a sampling period component), and the speed feedback is not output. After that, the value is presented in the speed feedback when the samples of the same polarity are sampled twice in succession. Therefore, in the case where the hysteresis of a sampling component (a sampling period component) is inserted in time. Thereby, the operation of the control system that is controlled by the fluctuation of the ±1 pulse of the encoder when the motor is stopped becomes a delayed sampling component (a sampling period component). Therefore, according to the present embodiment, in the control system in which the movable element of the motor is moved so that the ball expansion of the ball screw coupling mechanism is restored by the elastic deformation, the detection speed is delayed by one sampling component. As a result, according to the present embodiment, the ball of the ball screw coupling mechanism does not accelerate the operation of recovering from the elastic deformation, and the microvibration of the ball screw coupling mechanism is suppressed. Further, when the rigidity of the mechanical system is lower, the number of pulses of hysteresis (the number of n of the n sampling period) is increased.

在本實施形態中,對於算出速度回饋的位置的差分演算結果,在速度的極性有變化時,插入有一控制抽樣(抽樣周期)的較短時間的磁滯。藉此,不會降低定位精度,而可抑制隨著機械系統的剛性低時所產生的彈性變形的微振動。又,可防止機械的劣化,而可實現依高伺服器應答所致的高精度的加工。In the present embodiment, for the difference calculation result of the position at which the speed feedback is calculated, when the polarity of the speed changes, a hysteresis of a short time for controlling the sampling (sampling period) is inserted. Thereby, the positioning accuracy is not lowered, and the microvibration which is elastically deformed when the rigidity of the mechanical system is low can be suppressed. Further, it is possible to prevent deterioration of the machine, and it is possible to realize high-precision machining due to high servo response.

第3(A)圖及第3(B)圖是表示朝著一方向移動時的定位點附近的轉矩指令與編碼器輸出的關係者。第3(A)圖是表示以與抽樣周期比較為較長時間(周期)觀看轉矩指令的變化時的轉矩指令。若以長時間(周期)觀看轉矩指令的變化,則轉矩指令的變化是成為與一抽樣周 期的期間將差分現在位置資料作為零的磁滯未被插入時的轉矩指令的變化相同。第3(B)圖是表示以抽樣周期相當的時間觀看轉矩指令的變化時的轉矩指令。第3(B)圖的情形是在一抽樣周期的期間插入有以差分現在位置資料作為零的磁滯。第4(A)圖及第4(B)圖是表示以實際的機械所計測的電動機停止時的活動元件的位置。第4(A)圖是無磁滯的情形,在該例子中產生±2脈衝的微振動。第4(B)圖是在一抽樣周期的期間插入以差分現在位置資料作為零的磁滯的情形,微振動被抑制。The third (A) and third (B) diagrams show the relationship between the torque command in the vicinity of the positioning point and the encoder output when moving in one direction. Fig. 3(A) is a diagram showing a torque command when the torque command is changed for a longer period of time (period) than the sampling period. If the torque command changes in a long time (cycle), the change in the torque command becomes a sampling week. The period of the period is the same as the change of the torque command when the differential current position data is zero and the hysteresis is not inserted. Fig. 3(B) is a view showing a torque command when the torque command is changed in a time corresponding to the sampling period. The case of the third (B) diagram is that a hysteresis with a difference current position data as zero is inserted during a sampling period. The fourth (A) and fourth (B) drawings show the positions of the movable elements when the motor is stopped by the actual machine. Fig. 4(A) shows the case of no hysteresis, in which case a microvibration of ±2 pulses is generated. Fig. 4(B) shows the case where the hysteresis with the difference current position data as zero is inserted during one sampling period, and the microvibration is suppressed.

(產業上可利用性)(industrial availability)

依照本發明,不管原因為如何,在差分現在位置資料的極性反轉之後無法控制之力作用於活動元件時,1以上的整數亦即n抽樣周期的期間,藉由將差分現在位置資料作成零,可防止因無法控制的力的影響使活動元件的振動變大而發生噪音的情形。又未設置如習知技術的死區之故,因而比習知可更提高定位精度。According to the present invention, regardless of the cause, when the force that cannot be controlled after the polarity inversion of the difference current position data is applied to the movable element, the integer of 1 or more, that is, the period of the n sampling period, is made zero by the difference current position data. It can prevent the vibration of the movable element from increasing due to the uncontrollable force and causing noise. The dead zone of the prior art is not provided, so that the positioning accuracy can be improved more than the conventional one.

1‧‧‧電動機控制裝置1‧‧‧Motor control unit

3‧‧‧位置偏差資料生成部3‧‧‧Location Deviation Data Generation Department

5‧‧‧位置控制器5‧‧‧Location Controller

7‧‧‧差分現在位置資料生成部7‧‧‧Differential Current Position Data Generation Department

9‧‧‧現在速度資料生成部9‧‧‧Speed data generation department now

11‧‧‧極性判定部11‧‧‧Polarity Determination Department

13‧‧‧增益乘法部13‧‧‧Gain Multiplication Department

15‧‧‧速度偏差資料生成部15‧‧‧Speed Deviation Data Generation Department

17‧‧‧速度控制器17‧‧‧Speed controller

19‧‧‧轉矩控制部19‧‧‧Torque Control Department

第1圖是表示實施本發明的電動機控制方法的電動機控制裝置實施形態的一例子的構成的方塊圖。Fig. 1 is a block diagram showing a configuration of an example of an embodiment of a motor control device for carrying out the motor control method of the present invention.

第2(A)圖至第2(C)圖是使用於第1圖的實施形態的動作的說明的時序圖。Figs. 2(A) to 2(C) are timing charts for explaining the operation of the embodiment of Fig. 1.

第3(A)圖及第3(B)圖是表示朝著一方向移動時的定位點附近的轉矩指令與編碼器輸出的關係的圖式。The third (A) and third (B) drawings are diagrams showing the relationship between the torque command in the vicinity of the positioning point and the encoder output when moving in one direction.

第4(A)圖及第4(B)圖是表示以實際機械所計測的停止電動機時的活動元件的位置的圖式。4(A) and 4(B) are diagrams showing the positions of the movable elements when the motor is stopped measured by the actual machine.

第5圖是用以說明本實施形態的電動機的活動元件的位置檢測動作的時序圖。Fig. 5 is a timing chart for explaining the position detecting operation of the movable element of the motor of the embodiment.

第6(A)圖至第6(C)圖是用以說明使用作為機械系統的滾珠螺桿連結機構的滾珠的彈性變形的圖式。6(A) to 6(C) are diagrams for explaining elastic deformation of a ball using a ball screw coupling mechanism as a mechanical system.

1‧‧‧電動機控制裝置1‧‧‧Motor control unit

3‧‧‧位置偏差資料生成部3‧‧‧Location Deviation Data Generation Department

5‧‧‧位置控制器5‧‧‧Location Controller

7‧‧‧差分現在位置資料生成部7‧‧‧Differential Current Position Data Generation Department

9‧‧‧現在速度資料生成部9‧‧‧Speed data generation department now

11‧‧‧極性判定部11‧‧‧Polarity Determination Department

13‧‧‧增益乘法部13‧‧‧Gain Multiplication Department

15‧‧‧速度偏差資料生成部15‧‧‧Speed Deviation Data Generation Department

17‧‧‧速度控制器17‧‧‧Speed controller

19‧‧‧轉矩控制部19‧‧‧Torque Control Department

M‧‧‧電動機M‧‧‧Motor

MS‧‧‧機械系統MS‧‧‧Mechanical system

E‧‧‧編碼器E‧‧‧Encoder

Claims (7)

一種電動機控制方法,其特徵為:由指令電動機的活動元件的移動位置的位置指令資料、及表示利用數位編碼器所檢測出的上述活動元件的現在位置的現在位置資料,來演算偏差而生成位置偏差資料,演算這次抽樣的現在位置資料與上次抽樣的現在位置資料的差分而生成差分現在位置資料,判定上述差分現在位置資料的極性是否有變化,依據上述差分現在位置資料來生成上述活動元件的現在速度資料,但是判定上述極性有變化之後,將上述差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零而生成上述活動元件的現在速度資料,演算依據上述位置偏差資料所製作的速度指令資料與上述現在速度資料的偏差而生成速度偏差資料,依據上述速度偏差資料而生成轉矩指令資料,依據上述轉矩指令資料來控制上述電動機的轉矩。 A motor control method characterized in that a position command data indicating a moving position of a movable element of a command motor and a current position data indicating a current position of the movable element detected by a digital encoder are used to calculate a deviation to generate a position Deviation data, calculating a difference between the current position data of the sample and the current position data of the last sample to generate a difference current position data, determining whether the polarity of the difference current position data is changed, and generating the movable element according to the difference current position data. The current velocity data, but after determining that the polarity is changed, the current velocity data of the movable element is generated by using the difference current position data as an integer of 1 or more, that is, the period of the n sampling period, and the calculation is based on the positional deviation data. The speed command data is generated from the current speed data to generate speed deviation data, the torque command data is generated based on the speed deviation data, and the torque of the motor is controlled based on the torque command data. 如申請專利範圍第1項所述的電動機控制方法,其中,在上述活動元件與負荷之間配置有作彈性變形的連結機構,上述n是被設定為所發生的上述活動元件的微振動不會受到上述連結機構的剛性影響的數值。 The motor control method according to claim 1, wherein a coupling mechanism that elastically deforms is disposed between the movable element and the load, and n is set to be a micro-vibration of the movable element that is generated. A value that is affected by the rigidity of the above-described linkage mechanism. 如申請專利範圍第2項所述的電動機控制方法, 其中,上述連結機構為滾珠螺桿連結機構,而上述n為1。 The motor control method as described in claim 2, The connection mechanism is a ball screw coupling mechanism, and the above n is 1. 一種電動機控制裝置,其特徵為:具備:以數位值輸出電動機的活動元件的現在位置的編碼器;及由指令上述活動元件的移動位置的位置指令資料、及表示利用上述編碼器所檢測出的上述活動元件的上述現在位置的現在位置資料,來演算偏差而生成位置偏差資料的位置偏差資料生成部;及演算這次抽樣的現在位置資料與上次抽樣的現在位置資料的差分而生成差分現在位置資料的差分現在位置資料生成部;及包括判定上述差分現在位置資料的極性是否有變化的極性判定部,依據上述差分現在位置資料來生成上述活動元件的現在速度資料,但是被判定上述極性有變化之後,將上述差分現在位置資料在1以上的整數亦即n抽樣周期的期間作為零而生成上述現在速度資料的現在速度資料生成部;及依據上述位置偏差資料來生成速度指令資料的位置控制器;及演算上述現在速度資料與上述速度指令資料的偏差而生成速度偏差資料的速度偏差資料生成部;及依據上述速度偏差資料來生成轉矩指令資料的速度控 制器;及依據上述轉矩指令資料來數位控制上述電動機的轉矩的轉矩控制部。 A motor control device comprising: an encoder that outputs a current position of a movable element of a motor with a digital value; and position command data for instructing a movement position of the movable element, and a detected by the encoder a positional deviation data generating unit that generates a positional deviation data by calculating a deviation of the current position data of the current position of the movable element; and calculating a difference between the current position data of the current sampling and the current position data of the last sampling to generate a difference current position a difference current position data generating unit of the data; and a polarity determining unit that determines whether or not the polarity of the difference current position data has changed, and generates the current speed data of the movable element based on the difference current position data, but determines that the polarity changes Then, the current speed data generating unit that generates the current speed data by using the difference current position data as an integer of 1 or more, that is, the period of the n sampling period, and a position controller for generating the speed command data based on the position deviation data ;and Operator information with said current speed deviation and the velocity command data to generate a velocity deviation data speed deviation data generating unit; generates a torque command and data in accordance with the speed deviation of the speed control information And a torque control unit that digitally controls the torque of the motor based on the torque command data. 如申請專利範圍第4項所述的電動機控制裝置,其中,在上述活動元件與負荷之間配置有作彈性變形的連結機構,上述n是被設定為所發生的上述活動元件的微振動不會受到上述連結機構的剛性影響的數值。 The motor control device according to claim 4, wherein a coupling mechanism that elastically deforms is disposed between the movable element and the load, and n is set to be a micro-vibration of the movable element that is generated. A value that is affected by the rigidity of the above-described linkage mechanism. 如申請專利範圍第5項所述的電動機控制裝置,其中,上述連結機構為滾珠螺桿連結機構,而上述n為1。 The motor control device according to claim 5, wherein the connection mechanism is a ball screw coupling mechanism, and the n is 1. 如申請專利範圍第4項所述之電動機控制裝置,其中:上述現在速度資料生成部,是當上述位置指令資料為零時,判定上述極性有發生變化後,將上述差分現在位置資料在n抽樣周期的期間作為零而生成上述現在速度資料。 The motor control device according to claim 4, wherein the current speed data generating unit determines that the difference current polarity has changed after the position command data is zero, and samples the difference current position data at n. The current speed data is generated as zero during the period of the cycle.
TW100101949A 2010-01-19 2011-01-19 Method of controlling motor and motor controlling system TWI499197B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009145A JP4880763B2 (en) 2010-01-19 2010-01-19 Motor control method and apparatus

Publications (2)

Publication Number Publication Date
TW201201501A TW201201501A (en) 2012-01-01
TWI499197B true TWI499197B (en) 2015-09-01

Family

ID=44439390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101949A TWI499197B (en) 2010-01-19 2011-01-19 Method of controlling motor and motor controlling system

Country Status (3)

Country Link
JP (1) JP4880763B2 (en)
CN (1) CN102158155B (en)
TW (1) TWI499197B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196716A (en) * 2016-04-28 2017-11-02 シャープ株式会社 Actuator control device, automatic machine, actuator control method, actuator control program and computer readable recording medium
JP6404868B2 (en) * 2016-07-27 2018-10-17 ファナック株式会社 MOTOR CONTROL DEVICE, MOTOR CONTROL METHOD, AND COMPUTER PROGRAM FOR DRIVING WITHOUT MOTOR POWER LINE
JP6717872B2 (en) * 2018-03-27 2020-07-08 ファナック株式会社 Motor controller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194508A (en) * 1985-02-25 1986-08-28 Nissan Motor Co Ltd Controller for manipulator
TW429336B (en) * 1999-06-04 2001-04-11 Yaskawa Denki Seisakusho Kk Position controller for motor
TW576014B (en) * 2001-09-04 2004-02-11 Yaskawa Electric Corp Mechanical model estimating equipment of motor control equipment
US20040180606A1 (en) * 2003-03-04 2004-09-16 Fanuc Ltd Synchronous control device
CN1831691A (en) * 2004-12-22 2006-09-13 东芝机械株式会社 Signal processing device, signal processing method, signal processing program, recording medium storing the program, speed detector and servomechanism
US20070007925A1 (en) * 2005-07-07 2007-01-11 Jun Yamane Digital speed controlling apparatus, digital motor controlling apparatus, paper conveying apparatus, digital speed control method, program for making computer execute this method, computer-readable recording medium, and image forming apparatus
JP2007252093A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Motor position control unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194508A (en) * 1985-02-25 1986-08-28 Nissan Motor Co Ltd Controller for manipulator
TW429336B (en) * 1999-06-04 2001-04-11 Yaskawa Denki Seisakusho Kk Position controller for motor
TW576014B (en) * 2001-09-04 2004-02-11 Yaskawa Electric Corp Mechanical model estimating equipment of motor control equipment
US20040180606A1 (en) * 2003-03-04 2004-09-16 Fanuc Ltd Synchronous control device
CN1831691A (en) * 2004-12-22 2006-09-13 东芝机械株式会社 Signal processing device, signal processing method, signal processing program, recording medium storing the program, speed detector and servomechanism
US20070007925A1 (en) * 2005-07-07 2007-01-11 Jun Yamane Digital speed controlling apparatus, digital motor controlling apparatus, paper conveying apparatus, digital speed control method, program for making computer execute this method, computer-readable recording medium, and image forming apparatus
JP2007252093A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Motor position control unit

Also Published As

Publication number Publication date
TW201201501A (en) 2012-01-01
JP4880763B2 (en) 2012-02-22
CN102158155A (en) 2011-08-17
JP2011151887A (en) 2011-08-04
CN102158155B (en) 2015-02-04

Similar Documents

Publication Publication Date Title
TWI514099B (en) Servo control device
JP5897644B2 (en) Robot control device
JP5028630B2 (en) Method and apparatus for controlling positioning mechanism
JP2007257515A (en) Method for controlling servo motor
JP2008210273A (en) Method of compensating friction, friction compensator, and motor control device
JP6457569B2 (en) Servo motor control device, servo motor control method, and servo motor control program
JP2003236787A (en) Drivingly controlling method and drivingly controlling device
JP5302639B2 (en) Servo control device
US10656616B2 (en) Control device, control system, and recording medium
TWI499197B (en) Method of controlling motor and motor controlling system
JP4453526B2 (en) Servo control device
JP2019181610A (en) Robot system for learning by use of motor encoder and sensor
US10175676B2 (en) Servomotor controller, servomotor control method, and computer-readable recording medium
TWI516888B (en) Servo control device
JPH0722873B2 (en) Position control device for feed axis
US10459422B2 (en) Servomotor control device, servomotor control method, and computer-readable recording medium
JP2004234205A (en) Numerical controller
CN109143968B (en) Control device, position control system, position control method, and recording medium
JP6333495B1 (en) Servo control device
JP4664576B2 (en) Servo control device
JP5460371B2 (en) Numerical controller
JP4507071B2 (en) Motor control device
JP5607309B2 (en) POSITIONING DEVICE, POSITIONING METHOD, AND POSITIONING PROGRAM
JP2011221596A (en) Positioning device and positioning method for positioning stage
JP2008253088A (en) Motor controller