TWI498993B - Method for automatically positioning first die on wafer - Google Patents

Method for automatically positioning first die on wafer Download PDF

Info

Publication number
TWI498993B
TWI498993B TW100140900A TW100140900A TWI498993B TW I498993 B TWI498993 B TW I498993B TW 100140900 A TW100140900 A TW 100140900A TW 100140900 A TW100140900 A TW 100140900A TW I498993 B TWI498993 B TW I498993B
Authority
TW
Taiwan
Prior art keywords
die
image
wafer
capturing unit
axis
Prior art date
Application number
TW100140900A
Other languages
Chinese (zh)
Other versions
TW201320232A (en
Inventor
I Hsing Tsai
Original Assignee
I Hsing Tsai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I Hsing Tsai filed Critical I Hsing Tsai
Priority to TW100140900A priority Critical patent/TWI498993B/en
Publication of TW201320232A publication Critical patent/TW201320232A/en
Application granted granted Critical
Publication of TWI498993B publication Critical patent/TWI498993B/en

Links

Description

首顆晶粒之自動定位方法Automatic positioning method of the first die

本發明係關於一種首顆晶粒之自動定位方法,特別是關於一種以自動化之步進移動及影像定位方式在晶圓上快速且準確的尋找首顆晶粒之方法。The invention relates to a method for automatically positioning a first die, in particular to a method for quickly and accurately finding a first die on a wafer by automated step movement and image positioning.

現今,半導體封裝產業為了滿足各種高密度封裝的需求,逐漸發展出各種不同型式的封裝設計,其中常用來承載半導體晶片的封裝載板(carrier)包含具有多層印刷電路的封裝基板(substrate)以及由金屬板衝壓或蝕刻而成的導線架(leadframe)。再者,封裝用之半導體晶片係來自於晶圓廠製造之晶圓,該晶圓具有一半導體基板並且在其表面形成有許多IC電路布局。在進行封裝前,該晶圓通常先被固定在一承載膠帶(tape)上,再接著進行晶圓切割(wafer saw),以切割出數個晶粒(die/chip),此時這些晶粒尚未彼此分離。接著,已切割過之晶圓被運送至測試廠進行測試,以先取得一晶圓圖(map)之記錄檔,以記錄良品及不良品的位置。隨後,已測試過之晶圓再運送至封裝廠中,並搭配該晶圓圖來以機械手臂將良品晶粒逐一取出,並固定(die attach)至封裝基板或導線架上之晶片承載區。隨後,再進行打線、封膠、單離等後段封裝作業後,即可得到半導體封裝產品。Nowadays, in order to meet the needs of various high-density packages, the semiconductor packaging industry has gradually developed various types of package designs, in which a package carrier commonly used to carry semiconductor wafers includes a package substrate having a plurality of printed circuits and A leadframe stamped or etched from a metal sheet. Furthermore, the semiconductor wafer for packaging is from a wafer manufactured by a fab having a semiconductor substrate and having a plurality of IC circuit layouts formed on the surface thereof. Before being packaged, the wafer is usually first fixed on a tape, followed by wafer sawing to cut a number of dies (die/chip). Not yet separated from each other. The cut wafer is then shipped to the test facility for testing to obtain a map of the map to record the location of the good and defective products. Subsequently, the tested wafers are transported to the packaging factory, and the wafer map is used to take the good die one by one with the robot arm and die attach to the wafer carrying area on the package substrate or the lead frame. Then, after the post-packaging operation such as wire bonding, sealing, and single separation, the semiconductor package product can be obtained.

在以機械手臂吸取良品晶粒的步驟前,通常操作員必需預先找出依各晶圓產品預定的首顆晶粒之位置,以便使機械手臂由該首顆晶粒處開始進行吸取動作。請參照第1圖所示,其揭示現有在晶圓上定位首顆晶粒之方法的概要示意圖,該方法主要是先以操作員目視判斷一晶圓10上具有缺槽(V notch)之一缺槽晶粒11的位置,接著再沿著該晶圓10的周緣逆時針(或順時針)依序目視計算晶粒數量,在累計到一預定數量後,即可目視找到一首顆晶粒12之位置,接著只要在該首顆晶粒12旁之二顆無效晶粒13、14標示記號後,即可得知該首顆晶粒12之確切位置。最後,只要使機械手臂之控制電腦讀取晶圓圖並使機械手臂由該首顆晶粒12開始吸取晶粒,整個吸取晶粒之動作即不致發生錯誤吸取不正確位置之晶粒的問題。Before the step of sucking the good grain by the robot arm, the operator usually needs to find out in advance the position of the first die according to each wafer product, so that the robot arm starts the suction operation from the first die. Referring to FIG. 1 , it discloses a schematic diagram of a conventional method for positioning a first die on a wafer. The method mainly firstly visually judges one of the wafers 10 having a missing groove (V notch). The position of the slab die 11 is followed by a counterclockwise (or clockwise) sequential calculation of the number of crystal grains along the circumference of the wafer 10. After accumulating a predetermined number, a crystal grain can be visually found. At the position of 12, the exact position of the first die 12 can be known by marking the two invalid dies 13, 14 next to the first die 12. Finally, as long as the control computer of the robot arm reads the wafer map and the robot arm starts to suck the crystal grains from the first die 12, the entire action of sucking the crystal grains does not cause the problem of erroneously sucking the crystal grains in the incorrect position.

然而,上述現有在晶圓上定位首顆晶粒之方法在實際操作上仍具有下述問題,例如:當晶粒尺寸較大時,雖操作員目視尋找晶粒較不致發生誤判問題,但是其人工定位作業耗時較多。再者,當晶粒尺寸微小化並且小於10×10mm時,操作員目視尋找晶粒則容易因尺寸過小及晶粒數量過多,而容易誤判首顆晶粒12之位置。一旦誤判首顆晶粒12之位置,後續機械手臂之整個吸取晶粒動作將會吸取不正確位置之晶粒,因而導致整批固晶後之半成品全部必需重工(rework)或銷毀,進而大幅降低整體封裝良率。However, the above-mentioned conventional method of positioning the first die on the wafer still has the following problems in practical operation. For example, when the grain size is large, although the operator visually searches for the crystal grain, the misjudgment problem is not caused, but Manual positioning operations take more time. Furthermore, when the grain size is miniaturized and less than 10×10 mm, it is easy for the operator to look for the crystal grains to be too small and the number of crystal grains is too large, and it is easy to misjudge the position of the first crystal grain 12. Once the position of the first die 12 is misjudged, the entire sucking die action of the subsequent robot arm will absorb the die at the incorrect position, thus causing all the semi-finished products after the whole batch of solid crystals to be reworked or destroyed, thereby greatly reducing Overall package yield.

故,有必要提供一種首顆晶粒之自動定位方法,以解決習用技術所存在的問題。Therefore, it is necessary to provide an automatic positioning method for the first die to solve the problems of the conventional technology.

本發明之主要目的在於提供一種首顆晶粒之自動定位方法,其使用移動式承載台、影像擷取單元及影像處理裝置,該移動式承載台自動步進移動晶圓;該影像擷取單元在晶圓上由缺槽晶粒開始先沿X軸依序擷取預定格數之各晶粒影像,再沿Y軸依序擷取預定格數之各晶粒影像;該影像處理裝置則對各晶粒影像進行分析及座標定位,以便藉此快速且準確的定位尋找出首顆晶粒之正確位置,進而有利於提升定位首顆晶粒之準確性及加速定位作業。The main purpose of the present invention is to provide an automatic positioning method for a first die, which uses a mobile carrier, an image capturing unit, and an image processing device, and the mobile carrier automatically moves the wafer step by step; the image capturing unit On the wafer, the die images of the predetermined number of cells are sequentially taken along the X-axis by the vacant die, and then the predetermined number of grain images are sequentially captured along the Y-axis; the image processing device is Each grain image is analyzed and coordinated to find the correct position of the first die by using this fast and accurate positioning, which is beneficial to improve the accuracy of positioning the first die and accelerate the positioning operation.

本發明之次要目的在於提供一種首顆晶粒之自動定位方法,其係在以移動式承載臺步進移動晶圓之期間,利用影像擷取單元擷取各格晶粒之影像來進行自動影像分析,以定義出各格晶粒之座標位置,同時可以在判斷座標位置有誤時進行位置補償動作,因而有利於確保每一格移動作業之正確性。A secondary object of the present invention is to provide an automatic positioning method for a first die, which is to automatically capture an image of each die by using an image capturing unit during stepwise movement of the wafer by the mobile carrier. Image analysis is used to define the coordinate position of each grain, and at the same time, the position compensation action can be performed when it is judged that the coordinate position is wrong, which is beneficial to ensure the correctness of each moving operation.

本發明之另一目的在於提供一種首顆晶粒之自動定位方法,其係具有標準定位模式與快速定位模式可供選擇,以便在處理數片同一規格之晶圓時,可以利用快速定位模式來加速處理第二片或以後之晶圓,以快速自動定位出各晶圓上首顆晶粒之位置,因而有利於加速定位 作業。Another object of the present invention is to provide a method for automatically positioning a first die, which has a standard positioning mode and a fast positioning mode, so that when processing a plurality of wafers of the same specification, a fast positioning mode can be utilized. Accelerate the processing of the second or subsequent wafers to quickly and automatically locate the position of the first die on each wafer, thus facilitating accelerated positioning operation.

為達上述之目的,本發明提供一種首顆晶粒之自動定位方法,其包含下列步驟:(S01)、將一晶圓固定在一移動式承載臺上,其中該晶圓包含數顆晶粒及數道切割溝槽,該些晶粒之長寬尺寸小於10×10毫米(mm),該些晶粒中包含一缺槽晶粒d0 ;(S02)、使一影像擷取單元對位於該晶圓之缺槽晶粒d0 ,利用該影像擷取單元擷取該缺槽晶粒d0 之影像,及藉由一影像處理裝置進行影像分析並將該缺槽晶粒d0 之位置定義為座標位置(0,0);(S03)、使該移動式承載台及晶圓相對該影像擷取單元沿X軸步進位移一格晶粒之距離,利用該影像擷取單元擷取鄰接在該缺槽晶粒d0 內側之下一晶粒d1 之影像,及藉由該影像處理裝置進行影像分析並將該晶粒d1 之座標位置定義為(1,0);(S04)、若沿X軸欲移動之晶粒總格數m等於1,則進行下一步驟(S05);若沿X軸欲移動之晶粒總格數m為2或以上之整數,則以相似步驟(S03)之方式沿X軸依序擷取數顆晶粒d2 ...dm 之影像,以便將該些晶粒d2 ...dm 之座標位置分別定義為(2,0)...(m,0);(S05)、使該移動式承載台及晶圓相對該影像擷取單元沿Y軸步進位移一格晶粒之距離,利用該影像擷取單元擷取鄰接在該晶粒dm 旁側之另一晶粒dm+1 之影 像,及藉由該影像處理裝置進行影像分析並將該晶粒dm+1 之座標位置定義為(m,1);(S06)、若沿Y軸欲移動之晶粒總格數n等於1,則進行下一步驟(S07);若沿Y軸欲移動之晶粒總格數n為2或以上之整數,則以相似步驟(S05)之方式沿Y軸依序擷取數顆晶粒dm+2 ...dm+n 之影像,以便將該些晶粒dm+2 ...dm+n 之座標位置分別定義為(m,2)...(m,n);以及(S07)、將座標位置為(m,n)之該晶粒dm+n 定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒上分別標示一輔助定位記號。To achieve the above objective, the present invention provides a method for automatically positioning a first die, comprising the steps of: (S01), fixing a wafer on a mobile carrier, wherein the wafer comprises a plurality of crystal grains And a plurality of dicing trenches, wherein the dies have a length and width dimension of less than 10×10 mm (mm), and the dies include a slab die d 0 ; (S02), and an image capturing unit is located 0 d grains notched groove of the wafer, with which the image capturing unit captures d 0 of missing video slot die, and by an image processing apparatus for image analysis and position of the slot die lack d 0 The coordinate position (0, 0) is defined as (S03), and the distance between the movable carrier and the wafer relative to the image capturing unit is stepwise shifted along the X axis by a die, and the image capturing unit is used to capture Adjacent to an image of a die d 1 under the vacant die d 0 , and image analysis by the image processing device and defining a coordinate position of the die d 1 as (1, 0); (S04 If the total number m of crystal grains to be moved along the X axis is equal to 1, proceed to the next step (S05); if the total number m of crystal grains to be moved along the X axis is 2 or more Integer embodiment, similar places step (S03) of sequentially capturing the X-axis the number of dies D ... d m 2 of the image, so that the more the grain D 2 ... d m of position coordinates are defined (2,0)...(m,0); (S05), using the image by shifting the movable carrier and the wafer relative to the image capturing unit by a step along the Y axis. The capturing unit captures an image of another die d m+1 adjacent to the die d m , and performs image analysis by the image processing device and defines a coordinate position of the die d m+1 as (m, 1); (S06), if the total number of grains n to be moved along the Y axis is equal to 1, proceed to the next step (S07); if the total number of grains n to be moved along the Y axis is 2 Or an integer above, in the similar step (S05), sequentially capture images of several crystal grains d m+2 ... d m+n along the Y-axis to form the crystal grains d m+2 . The coordinate positions of ..d m+n are defined as (m, 2)...(m,n); and (S07), and the crystal grain d m+n whose coordinate position is (m,n) is defined as A first die is marked with an auxiliary positioning mark on two invalid crystal grains on the side of the first die.

做為本發明之一實施例,步驟(S01)之該晶圓係先貼在一支撐框之一承載膠帶上,再與該支撐框及承載膠帶一起固定在該移動式承載臺上。As an embodiment of the present invention, the wafer of the step (S01) is first attached to a carrier tape of a support frame, and then fixed on the mobile platform together with the support frame and the carrier tape.

做為本發明之一實施例,在步驟(S03)至(S06)中,在使該移動式承載台及晶圓相對該影像擷取單元步進位移時,係藉由該移動式承載台移動該晶圓,同時保持該影像擷取單元固定不動;或是保持該移動式承載台及晶圓固定不動,同時移動該影像擷取單元。In an embodiment of the present invention, in steps (S03) to (S06), when the mobile carrier and the wafer are stepped and displaced relative to the image capturing unit, the mobile carrier is moved by the mobile carrier. The wafer is held while the image capturing unit is stationary; or the mobile carrier and the wafer are held stationary while the image capturing unit is moved.

做為本發明之一實施例,在步驟(S03)至(S06)中,每當利用該影像擷取單元擷取一顆晶粒之影像時,該影像即被傳送到該影像處理裝置,該影像處理裝置自動省略分析該影像之一中間方塊區域,而僅分析該影像之一周邊方框區域,其中:若該周邊方框區域包含相交排列之四條該切割溝槽 的影像,則判斷該晶粒之影像正確無誤,並結束定義該晶粒之座標位置的動作;或者若該周邊方框區域不包含相交排列之四條該切割溝槽的完整影像,則判斷該晶粒之影像不正確,此時使該移動式承載台及晶圓相對該影像擷取單元微幅移動以進行位置補償,並利用該影像擷取單元重新擷取該晶粒之影像,直到該影像處理裝置分析並判斷該晶粒之影像正確無誤為止。As an embodiment of the present invention, in steps (S03) to (S06), each time an image of a die is captured by the image capturing unit, the image is transmitted to the image processing device. The image processing device automatically omits the analysis of one of the intermediate block regions of the image, and analyzes only one of the peripheral frame regions of the image, wherein: if the peripheral frame region includes four intersecting rows of the cutting trenches The image is judged to be correct and the action of defining the coordinate position of the die is ended; or if the peripheral frame region does not include the complete image of the four intersecting grooves, the crystal is judged The image of the particle is not correct. At this time, the mobile carrier and the wafer are slightly moved relative to the image capturing unit for position compensation, and the image capturing unit is used to retrieve the image of the die until the image is captured. The processing device analyzes and determines that the image of the die is correct.

做為本發明之一實施例,在步驟(S07)之後另包含下述步驟:(S08)、使一機械手臂對位到該晶圓之首顆晶粒,並由該首顆晶粒開始進行吸取晶粒之動作。As an embodiment of the present invention, after the step (S07), the method further includes the following steps: (S08), aligning a robot arm to the first die of the wafer, and starting from the first die The action of sucking the crystal grains.

做為本發明之一實施例,在步驟(S08)之後另包含下述步驟:(S09)、移除該晶圓,並在同一該移動式承載臺上放置同一規格之第二片晶圓;(S10)、將步驟(S02)之缺槽晶粒d0 兩側沿X軸延伸之其中二條該切割溝槽定義為X軸之二移動基準線,以便直接使該移動式承載台及晶圓相對該影像擷取單元準確的沿X軸進行m格晶粒距離之移動;(S11)、將步驟(S05)之晶粒dm 兩側沿Y軸延伸之其中二條該切割溝槽定義為Y軸之二移動基準線,以便直接使該移動式承載台及晶圓相對該影像擷取單元準確的沿Y軸進行n格晶粒距離之移動;以及 (S12)、在沿X、Y軸移動後將該影像擷取單元對位到及擷取到影像之晶粒dm+n 直接定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒上分別標示一輔助定位記號。As an embodiment of the present invention, after the step (S08), the method further comprises the steps of: (S09), removing the wafer, and placing a second wafer of the same specification on the same mobile carrier; (S10), wherein two of the cutting grooves extending along the X-axis on both sides of the slab die d 0 of the step (S02) are defined as two X-axis moving reference lines to directly make the mobile stage and the wafer not be accurately along the X axis of the image capturing unit moving distance m grid grains; wherein the two cutting trenches defined (S11), the crystal grains extending step (S05) of D m on both sides of the Y-axis as Y The second axis moves the reference line to directly move the mobile carrier and the wafer relative to the image capturing unit to the n-grain distance along the Y-axis; and (S12), moving along the X and Y axes Then, the image dm +n which is aligned to and captured by the image capturing unit is directly defined as a first crystal grain, and one of the two invalid crystal grains on the side of the first crystal grain is respectively marked with one Auxiliary positioning mark.

做為本發明之一實施例,步驟(S07)或(S12)係利用雷射光刻、油墨蓋印、墨筆或刀刻之方式在該無效晶粒上標示該輔助定位記號。As an embodiment of the present invention, the step (S07) or (S12) marks the auxiliary positioning mark on the invalid crystal by means of laser lithography, ink stamping, ink pen or knife cutting.

做為本發明之一實施例,該晶圓為用以生產半導體或光電元件之晶圓,例如該晶圓選自矽晶圓、砷化鎵晶圓或藍寶石晶圓。As an embodiment of the present invention, the wafer is a wafer for producing a semiconductor or a photovoltaic element, for example, the wafer is selected from a germanium wafer, a gallium arsenide wafer, or a sapphire wafer.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如「上」、「下」、「前」、「後」、「左」、「右」、「內」、「外」或「側面」等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。The above and other objects, features and advantages of the present invention will become more <RTIgt; Furthermore, the directional terms mentioned in the present invention, such as "upper", "lower", "before", "after", "left", "right", "inside", "outside" or "side", etc. Just refer to the direction of the additional schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.

本發明於下述較佳實施例將提供一種首顆晶粒之自動定位方法,該方法是在晶圓完成測試之後及以機械手臂進行吸取晶粒之前實施,以便自動定位晶圓找出首顆晶粒之位置,如此機械手臂之控制電腦即可開始讀取晶圓圖,並使機械手臂由首顆晶粒開始按順序吸取晶粒, 以進行後續固晶(die attach)作業。本發明將於下文利用第2至8圖逐一詳細說明較佳實施例之上述各步驟的實施細節及其原理。The present invention will provide an automatic positioning method for the first die in the following preferred embodiment, which is performed after the wafer is tested and before the die is sucked by the robot arm, so as to automatically locate the wafer to find the first one. The position of the die, so that the control computer of the robot arm can start reading the wafer map, and the robot arm picks up the die sequentially from the first die. For subsequent die attach operations. The present invention will be described in detail below with reference to Figures 2 through 8 in detail detailing the implementation of the above-described steps of the preferred embodiment and its principles.

請參照第2、3、3A圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S01)係:將一晶圓20固定在一移動式承載台30上。在本步驟中,該晶圓20通常是指用以生產半導體元件(如各種IC)或光電元件(如太陽能電池或LED)而使用之晶圓,例如矽晶圓、砷化鎵晶圓或藍寶石晶圓,但並不限於此。當該晶圓20所包含之晶粒(die)的長x寬之尺寸小於10×10毫米(mm)時,本發明特別適用於在該晶圓20上自動定位出首顆晶粒。再者,該晶圓20包含數顆晶粒及數道切割溝槽21、22,該切割溝槽21、22係分別指沿該晶圓20之X軸及Y軸切割出之溝槽,該切割溝槽21、22可以交叉排列,並定義出許多晶粒之區域,且在該些晶粒中係包含一缺槽晶粒d0 。該缺槽晶粒d0 係指位於該晶圓20周緣且具有一V形缺口(V notch)之晶粒,其可用以做為定位各晶粒座標位置之基準點。Referring to FIGS. 2, 3, and 3A, the first step (S01) of the method for automatically positioning the first die of the preferred embodiment of the present invention is to fix a wafer 20 on a mobile carrier 30. In this step, the wafer 20 generally refers to a wafer used to produce semiconductor components (such as various ICs) or photovoltaic components (such as solar cells or LEDs), such as germanium wafers, gallium arsenide wafers or sapphire. Wafer, but not limited to this. When the size of the length x width of the die included in the wafer 20 is less than 10 x 10 millimeters (mm), the present invention is particularly suitable for automatically positioning the first die on the wafer 20. Moreover, the wafer 20 includes a plurality of dies and a plurality of dicing trenches 21 and 22, wherein the dicing trenches 21 and 22 respectively refer to trenches cut along the X-axis and the Y-axis of the wafer 20, respectively. cutting grooves 21, 22 can be intersected, and to define many regions of the die, and die system contains a notched groove d 0 in the plurality of grains. The vacant die d 0 refers to a die located on the periphery of the wafer 20 and having a V-notch (V notch), which can be used as a reference point for locating the position of each die.

另外,在本步驟中,該移動式承載台30係至少具有沿X軸及Y軸移動之二維移動機構,且通常該晶圓20係先貼在一支撐框32之一承載膠帶31上之後,接著再與該支撐框32及承載膠帶31一起固定在該移動式承載台30上。值得注意的是,本發明所指之X軸及Y軸僅是指二個相互垂直之方向,其較佳係指分別與該切割溝 槽21、22平行或約略保持平行的兩個延伸方向,該X軸及Y軸亦可表示為橫向與縱向,或水平方向與垂直方向等。In addition, in this step, the mobile carrier 30 has at least a two-dimensional moving mechanism that moves along the X-axis and the Y-axis, and usually the wafer 20 is first attached to one of the supporting frames 32 on the carrying tape 31. Then, it is fixed to the mobile platform 30 together with the support frame 32 and the carrier tape 31. It should be noted that the X-axis and the Y-axis referred to in the present invention refer only to two mutually perpendicular directions, and preferably refer to the respective cutting grooves. The grooves 21, 22 are parallel or approximately parallel to the two extending directions, and the X-axis and the Y-axis can also be expressed as a lateral direction and a longitudinal direction, or a horizontal direction and a vertical direction.

請參照第2、3及3A圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S02)係:使一影像擷取單元40對位於該晶圓20之缺槽晶粒d0 ,利用該影像擷取單元40擷取該缺槽晶粒d0 之影像41,及藉由一影像處理裝置50進行影像分析並將該缺槽晶粒d0 之位置定義為座標位置(0,0)。在本步驟中,該影像擷取單元40係位於該晶圓20之上方,並保持一段預定距離(例如1至50公分),且如第3及3A圖所示,本步驟首先係由一操作員以手動的方式調整該移動式承載台30或該影像擷取單元40之位置,以使該影像擷取單元40對位於該晶圓20之缺槽晶粒d0 ,接著利用該影像擷取單元40擷取該缺槽晶粒d0 (及其鄰近區域)之影像41,隨後再藉由該影像處理裝置50(例如個人電腦、筆記型電腦或伺服器電腦等)將該影像41中包含V形缺口影像特徵之晶粒區域定義為該缺槽晶粒d0 ,並將該缺槽晶粒d0 之位置(例如其中心點位置)定義為座標位置(0,0)。Referring to FIG. 2, FIG. 3 and FIG. 3A, the step (S02) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: causing an image capturing unit 40 to face the missing slot of the wafer 20. d 0 grains, using the image capturing unit 40 fetches the missing video slot die d 0 of 41, 50 and image analysis by an image processing apparatus and the position of the slot die of d 0 is defined as the lack of coordinates Position (0,0). In this step, the image capturing unit 40 is located above the wafer 20 and maintained at a predetermined distance (for example, 1 to 50 cm), and as shown in FIGS. 3 and 3A, this step is first performed by an operation. The position of the mobile carrier 30 or the image capturing unit 40 is manually adjusted so that the image capturing unit 40 pairs the missing die d 0 of the wafer 20, and then the image is captured. The unit 40 captures the image 41 of the slotted die d 0 (and its adjacent area), and then includes the image 41 by the image processing device 50 (for example, a personal computer, a notebook computer, or a server computer). The grain area of the V-shaped notch image feature is defined as the slab die d 0 , and the position of the vacant grain d 0 (for example, its center point position) is defined as a coordinate position (0, 0).

請參照第2、4、4A及4B圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S03)係:使該移動式承載台30及晶圓20相對該影像擷取單元40沿X軸步進位移一格晶粒之距離,利用該影像擷取單元40擷取鄰接在該缺槽晶粒d0 內側之下一晶粒d1 之影像, 及藉由該影像處理裝置50進行影像分析並將該晶粒d1 之座標位置定義為(1,0)。在本步驟中,該晶粒d1 即為不計該缺槽晶粒d0 的第1次移動後的第1顆晶粒,本發明係藉由該移動式承載台30來移動該晶圓20,同時保持該影像擷取單元40固定不動;但在另一實施方式中,也可能是保持該移動式承載台30及晶圓20固定不動,但移動該影像擷取單元40。該晶粒d1 係指鄰接在該缺槽晶粒d0 徑向內側之最接近的一顆晶粒。在步進位移後,該影像擷取單元40之取像窗口將沿X軸步進位移一格晶粒之距離(例如10mm),也就是其取像窗口對位到鄰接在該缺槽晶粒d0 內側之下一晶粒d1 之區域。此時,可擷取該晶粒d1 (及其鄰近區域)之影像41,其中要將該晶粒d1 之座標位置定義為(1,0)之詳細步驟係如下所述:首先,將該晶粒d1 (及其鄰近區域)之影像41傳送到該影像處理裝置50,接著該影像處理裝置50自動省略分析該影像之一中間方塊區域43(如第4B圖所示),而僅分析該影像之一周邊方框區域42,其中:(1)若該周邊方框區域42包含相交排列之四條該切割溝槽21、22的影像,則判斷該晶粒d1 之影像正確無誤,並結束定義該晶粒d1 之座標位置為(1,0)的動作;或者(2)若該周邊方框區域42不包含相交排列之四條該切割溝槽21、22的完整影像,則判斷該晶粒d1 之影像41不正確,此時使該移動式承載台30及晶圓20相對該影像擷取單元 40微幅移動以進行位置補償,並接著再利用該影像擷取單元40重新擷取該晶粒d1 之影像41,直到該影像處理裝置50分析並判斷該晶粒d1 之影像41正確無誤足以供定義出座標位置為(1,0)為止。再者,上述自動省略分析該影像之中間方塊區域43的用意在於直接省略不分析較不可能存在切割溝槽之無意義中央區域,以便相對減少影像分析之工作負擔,並可相對加速影像分析速度。Referring to FIGS. 2, 4, 4A and 4B, the step (S03) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: making the mobile carrier 30 and the wafer 20 face the image. The capturing unit 40 is stepped along the X-axis by a distance of a die, and the image capturing unit 40 captures an image of a die d 1 adjacent to the inner side of the missing die d 0 , and by using the image The image processing device 50 performs image analysis and defines the coordinate position of the crystal grain d 1 as (1, 0). In this step, the die d 1 is the first die after the first movement of the missing die d 0 , and the present invention moves the wafer 20 by the mobile carrier 30 . At the same time, the image capturing unit 40 is kept stationary; but in another embodiment, it is also possible to keep the mobile carrier 30 and the wafer 20 fixed, but move the image capturing unit 40. The crystal grain d 1 refers to the closest one crystal grain adjacent to the radially inner side of the vacant crystal grain d 0 . After the step displacement, the image capturing window of the image capturing unit 40 is stepped along the X axis by a distance of a grain (for example, 10 mm), that is, the image capturing window is aligned to the adjacent die. A region of the grain d 1 below the inner side of d 0 . At this time, the image 41 of the die d 1 (and its adjacent region) can be captured, wherein the detailed steps of defining the coordinate position of the die d 1 as (1, 0) are as follows: First, The image 41 of the die d 1 (and its adjacent region) is transmitted to the image processing device 50, and then the image processing device 50 automatically omits the analysis of one of the intermediate block regions 43 of the image (as shown in FIG. 4B), and only A peripheral block area 42 of the image is analyzed, wherein: (1) if the peripheral block area 42 includes images of the four intersecting rows of the cutting grooves 21, 22, it is determined that the image of the die d 1 is correct. And ending the action of defining the coordinate position of the die d 1 as (1, 0); or (2) determining if the peripheral block region 42 does not include the complete image of the four intersecting rows of the cutting grooves 21, 22 The image 41 of the die d 1 is incorrect. At this time, the mobile carrier 30 and the wafer 20 are slightly moved relative to the image capturing unit 40 for position compensation, and then the image capturing unit 40 is used again. The image 41 of the die d 1 is captured until the image processing device 50 analyzes and determines the shadow of the die d 1 Like 41 is correct enough to define the coordinate position as (1,0). Furthermore, the above-mentioned automatic omitting of the intermediate block area 43 of the image is intended to directly omit the meaningless central area where the cutting groove is less likely to exist, so as to relatively reduce the workload of image analysis and relatively accelerate the speed of image analysis. .

請參照第2及5圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S04)係:若沿X軸欲移動之晶粒總格數m等於1,則進行下一步驟(S05);若沿X軸欲移動之晶粒總格數m為2或以上之整數,則以相似步驟(S03)之方式沿X軸依序擷取數顆晶粒d2 ...dm 之影像,以便將該些晶粒d2 ...dm 之座標位置分別定義為(2,0)...(m,0)。在本步驟中,該晶粒d2 ...dm 即為不計該缺槽晶粒d0 的第2...m次移動後的第2...m顆晶粒,欲移動之晶粒總格數m係根據該晶圓20預設之首顆晶粒的座標位置(x,y)之x值來設定的。若為第1種情況(m等於1)則在完成步驟(S03)後即可直接進行步驟(S05);若為第2種情況(m為2或以上之整數)則在完成步驟(S03)後則繼續進行類似步驟(S03)之步進位移、影像定位及位置補償等動作,例如:在步驟(S03)後,接著使該移動式承載台30及晶圓20相對該影像擷取單元40沿X軸再步進移動一格晶粒之距離(例如10mm),並利 用該影像擷取單元40擷取鄰接在該晶粒d1 內側之下一晶粒d2 之影像,及藉由該影像處理裝置50進行影像分析並將該晶粒d2 之座標位置定義為(2,0);接著,並以相似上述步驟之方式沿X軸依序擷取數顆晶粒d3 、d4 ...dm 之影像,以便藉由該影像處理裝置50將該些晶粒d3 、d4 ...dm 之座標位置分別定義為(3,0)、(4,0)...(m,0),此時m例如為3或以上之正整數。Referring to FIGS. 2 and 5, the first step (S04) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: if the total number of grains m to be moved along the X axis is equal to 1, then proceeding The next step (S05); if the total number m of crystal grains to be moved along the X axis is an integer of 2 or more, a plurality of crystal grains d 2 are sequentially drawn along the X axis in a similar step (S03). ..d image of m, the more grain to d 2 ... D m of position coordinates are defined as (2,0) ... (m, 0 ). In this step, the crystal grains d 2 ... d m are the second ... m crystal grains after the second ... m movement of the missing groove crystal d 0 , the crystal to be moved The total number m of particles is set based on the x value of the coordinate position (x, y) of the first crystal grain preset by the wafer 20. In the case of the first case (m is equal to 1), the step (S05) can be directly performed after the completion of the step (S03); if the second case (m is an integer of 2 or more), the step (S03) is completed. Then, the steps of stepping displacement, image positioning and position compensation of the similar step (S03) are continued. For example, after the step (S03), the mobile platform 30 and the wafer 20 are then moved relative to the image capturing unit 40. And further moving the distance of a die (for example, 10 mm) along the X axis, and using the image capturing unit 40 to capture an image of a die d 2 adjacent to the inner side of the die d 1 , and by using the image The image processing device 50 performs image analysis and defines a coordinate position of the crystal grain d 2 as (2, 0); and then sequentially extracts a plurality of crystal grains d 3 and d 4 along the X axis in a manner similar to the above steps. ... d m of the image, so that the d 50 of these grains by the image processing apparatus 3, d 4 ... d m of position coordinates are defined as (3,0), (4,0) .. (m, 0), where m is, for example, a positive integer of 3 or more.

請參照第2及6圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S05)係:使該移動式承載台30及晶圓20相對該影像擷取單元40沿Y軸步進位移一格晶粒之距離,利用該影像擷取單元40擷取鄰接在該晶粒dm 旁側之另一晶粒dm+1 之影像,及藉由該影像處理裝置進行影像分析並將該晶粒dm+1 之座標位置定義為(m,1)。在本步驟中,該晶粒dm+1 即為不計該缺槽晶粒d0 的第m+1次移動後的第m+1顆晶粒,該晶粒dm+1 係指鄰接在該晶粒dm 其中一側(如第6圖之晶粒dm 的下側或上側)之最接近的一顆晶粒。本步驟除了是沿Y軸移動外,其步進位移、影像定位及位置補償等動作及原理則皆相似於步驟(S03),故於此不再予詳細描述。Referring to FIGS. 2 and 6, the step (S05) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: making the mobile carrier 30 and the wafer 20 opposite to the image capturing unit 40. The image capturing unit 40 is used to capture the image of another die d m+1 adjacent to the die d m , and the image processing device is used. Image analysis was performed and the coordinate position of the grain d m+1 was defined as (m, 1). In this step, the die d m+1 is the m+1th die after the m+1th movement of the missing die d 0 , and the die d m+1 is adjacent to The closest one of the crystal grains d m on one side (such as the lower side or the upper side of the crystal grains d m of Fig. 6). In addition to moving along the Y axis, the steps and principles of step displacement, image positioning and position compensation are similar to the steps (S03), and therefore will not be described in detail herein.

請參照第2及7圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S06)係:若沿Y軸欲移動之晶粒總格數n等於1,則進行下一步驟(S07);若沿Y軸欲移動之晶粒總格數n為2或以上之整數,則以相似步驟(S05)之方式沿Y軸依序擷取數顆晶粒dm+2 ...dm+n 之影像,以便將該些晶粒dm+2 ...dm+n 之座標位置分別定義為(m,2)...(m,n)。在本步驟中,該晶粒dm+2 ...dm+n 即為不計該缺槽晶粒d0 的第m+2...m+n次移動後的第m+2...m+n顆晶粒,欲移動之晶粒總格數n係根據該晶圓20預設之首顆晶粒的座標位置(x,y)之y值來設定的。若為第1種情況(n等於1)則在完成步驟(S05)後即可直接進行步驟(S07);若為第2種情況(n為2或以上之整數)則在完成步驟(S05)後則繼續進行類似步驟(S05)之步進位移、影像定位及位置補償等動作,例如:在步驟(S05)後,接著使該移動式承載台30及晶圓20相對該影像擷取單元40沿Y軸再步進移動一格晶粒之距離(例如10mm),並利用該影像擷取單元40擷取鄰接在該晶粒dm+1 下側(或上側)之下一晶粒dm+2 之影像,及藉由該影像處理裝置50進行影像分析並將該晶粒dm+2 之座標位置定義為(m,2);接著,並以相似上述步驟之方式沿Y軸依序擷取數顆晶粒dm+3 、dm+4 ...dm+n 之影像,以便藉由該影像處理裝置50將該些晶粒dm+3 、dm+4 ...dm+n 之座標位置分別定義為(m,3)、(m,4)...(m,n),此時m例如為3或以上之正整數。Referring to FIGS. 2 and 7, the step (S06) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: if the total number of grains n to be moved along the Y axis is equal to 1, then proceeding The next step (S07); if the total number n of crystal grains to be moved along the Y-axis is an integer of 2 or more, sequentially picking a plurality of crystal grains d m+ along the Y-axis in a similar step (S05) 2 ... d m + n of images, some of the grains to d m + 2 ... d m + n are defined as the coordinate position (m, 2) ... (m , n). In this step, the crystal grains d m+2 ... d m+n are the m+2 after the m+2...m+n movement of the missing groove crystal d 0 . .m+n grains, the total number of grains n to be moved is set according to the y value of the coordinate position (x, y) of the first grain of the wafer 20 preset. In the case of the first case (n is equal to 1), the step (S07) can be directly performed after the completion of the step (S05); if the second case (n is an integer of 2 or more), the step (S05) is completed. Then, the steps of stepping displacement, image positioning, and position compensation in a similar step (S05) are continued. For example, after the step (S05), the mobile carrier 30 and the wafer 20 are then opposed to the image capturing unit 40. then a stepping movement distance of the Y-axis lattice crystal (e.g. 10mm), and using the image capturing unit 40 to retrieve the next adjacent grain in the die d m d m + 1 the lower side (or upper side) of the +2 image, and image analysis by the image processing device 50 and defining the coordinate position of the die d m+2 as (m, 2); and then sequentially following the Y-axis in a manner similar to the above steps Extracting images of a plurality of crystal grains d m+3 , d m+4 ... d m+n , so that the crystal grains d m+3 , d m+4 ... The coordinate positions of d m+n are defined as (m, 3), (m, 4), ... (m, n), respectively, where m is, for example, a positive integer of 3 or more.

請參照第2及8圖所示,本發明較佳實施例之首顆晶粒之自動定位方法的步驟(S07)係:將座標位置為(m,n)之該晶粒dm+n 定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒dx1 、dx2 上分別標示一輔助定位記號。在本步驟中,當該移動式承載台30及晶圓20相對該影 像擷取單元40已依序沿X軸及Y軸分別步進移動了m格及n格晶粒距離後,表示已相對應的完成了m次及n次之「步進位移與影像定位」之自動化動作,其中每一次自動化動作中則可能包含或不包含位置補償這一選擇性動作。最後,本步驟係可利用雷射光刻、油墨蓋印、墨筆或刀刻之方式(例如使用油性墨水的簽字筆)在該二無效晶粒dx1 、dx2 上標示該輔助定位記號,此標記動作可以選擇使用自動化機具或以人工來完成。Referring to FIGS. 2 and 8, the first step (S07) of the method for automatically positioning the first die of the preferred embodiment of the present invention is: defining the die d m+n with a coordinate position of (m, n) It is a die, and an auxiliary positioning mark is respectively marked on the two invalid crystal grains d x1 and d x2 on the side of the first die. In this step, when the mobile carrier 30 and the wafer 20 have been sequentially moved along the X-axis and the Y-axis along the X-axis and the Y-axis, respectively, the m- and n-grain distances are sequentially shifted. Correspondingly, the automatic actions of "step displacement and image positioning" of m times and n times are completed, and each of the automatic actions may or may not include the selective action of position compensation. Finally, in this step, the auxiliary positioning marks can be marked on the two invalid crystal grains d x1 , d x2 by means of laser lithography, ink stamping, ink pen or knife engraving (for example, a pen using oily ink). Marking actions can be done using automated tools or manually.

在步驟(S07)之後則可另包含下述步驟:(S08)、使一機械手臂(未繪示)對位到該晶圓20之首顆晶粒,並由該首顆晶粒開始進行吸取晶粒之動作。值得注意的是,本發明上述步驟(S01)至(S07)係屬於一種標準定位模式之流程作業方式,本發明另亦提供一種快速定位模式可供選擇,以便在處理數片同一規格之晶圓20時,可以利用快速定位模式來加速處理第二片或以後之晶圓20,以快速自動定位出各晶圓20上首顆晶粒之位置,因而有利於加速定位作業。After the step (S07), the method further includes the following steps: (S08), aligning a robot arm (not shown) to the first die of the wafer 20, and starting from the first die The action of the grain. It should be noted that the above steps (S01) to (S07) of the present invention belong to a standard positioning mode flow operation mode, and the present invention also provides a fast positioning mode to be selected for processing a plurality of wafers of the same specification. At 20 o'clock, the fast positioning mode can be used to accelerate the processing of the second or subsequent wafers 20 to quickly and automatically locate the position of the first die on each wafer 20, thereby facilitating the acceleration of the positioning operation.

該快速定位模式即在步驟(S08)之後另包含下述步驟:(S09)、移除該晶圓20,並在同一該移動式承載臺上放置同一規格之第二片晶圓20;(S10)、將步驟(S02)之缺槽晶粒d0 兩側沿X軸延伸之其中二條該切割溝槽21定義為X軸之二移動基準綫,以便直接使該移動式承載台30及晶圓20相對該影 像擷取單元40準確的沿X軸進行m格晶粒距離之移動;(S11)、將步驟(S05)之晶粒dm 兩側沿Y軸延伸之其中二條該切割溝槽22定義為Y軸之二移動基準綫,以便直接使該移動式承載台30及晶圓20相對該影像擷取單元40準確的沿Y軸進行n格晶粒距離之移動;以及(S12)、在沿X、Y軸移動後將該影像擷取單元40對位到及擷取到影像之晶粒dm+n 直接定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒dx1 、dx2 上分別標示一輔助定位記號。The quick positioning mode further includes the following steps after the step (S08): (S09), removing the wafer 20, and placing a second wafer 20 of the same specification on the same mobile carrier; (S10) And two of the cutting grooves 21 extending along the X-axis on both sides of the slab die d 0 of the step (S02) are defined as two X-axis moving reference lines to directly make the mobile stage 30 and the wafer 20 m grid moving die 40 relatively accurate distance along the X axis of the image capturing unit; (S11), the extension of the die step (S05) of D m on both sides along the Y axis wherein the two cutting grooves 22 Defined as a moving reference line of the Y axis, so as to directly move the mobile carrier 30 and the wafer 20 relative to the image capturing unit 40 along the Y axis by n grain distance; and (S12), After moving along the X and Y axes, the image dm +n that is aligned to and captured by the image capturing unit 40 is directly defined as a first crystal grain, and two of the first side of the first crystal grain. An auxiliary positioning mark is respectively indicated on the invalid crystal grains d x1 and d x2 .

如上所述,相較於現有以人工目測方式在晶圓上定位首顆晶粒之方法耗時較多且容易因尺寸過小及晶粒數量過多而導致誤判首顆晶粒位置等缺點,第2至8圖之本發明係使用該移動式承載台30、影像擷取單元40及影像處理裝置50,該移動式承載台30自動步進移動一晶圓20;該影像擷取單元40在該晶圓20上由一缺槽晶粒d0 開始先沿X軸依序擷取預定格數之各晶粒影像,再沿Y軸依序擷取預定格數之各晶粒影像;該影像處理裝置50則對各晶粒影像進行分析及座標定位,以便藉此快速且準確的定位尋找出首顆晶粒之正確位置,進而有利於提升定位首顆晶粒之準確性及加速定位作業。再者,本發明也可在以該移動式承載台30步進移動該晶圓20之期間,利用該影像擷取單元40擷取各格晶粒之影像來進行自動影像分析,以定義出各格晶粒之座標位置,同時可以在判斷座標位置有誤時進行位置 補償動作,因而有利於確保每一格移動作業之正確性。另外,本發明係具有標準定位模式與快速定位模式可供選擇,以便在處理數片同一規格之晶圓20時,可以利用快速定位模式來加速處理第二片或以後之晶圓20,以快速自動定位出各晶圓20上首顆晶粒之位置,因而有利於加速定位作業。As described above, the method of locating the first die on the wafer by manual visual inspection is time consuming and is prone to misjudgment of the first die position due to the small size and excessive number of crystal grains. The present invention uses the mobile carrier 30, the image capturing unit 40, and the image processing device 50. The mobile carrier 30 automatically moves a wafer 20 stepwise; the image capturing unit 40 is in the crystal On the circle 20, a die image of a predetermined number of cells is sequentially taken along the X axis by a slotted die d 0 , and then a predetermined number of grain images are sequentially captured along the Y axis; the image processing device 50, the image analysis and coordinate positioning of each grain image, in order to quickly and accurately locate the correct position of the first die, thereby improving the accuracy of positioning the first die and speeding up the positioning operation. Furthermore, in the present invention, during the step of moving the wafer 20 by the mobile carrier 30, the image capturing unit 40 is used to capture images of the respective crystal grains for automatic image analysis to define each The coordinate position of the grid and the position compensation action can be performed when it is judged that the coordinate position is wrong, which is beneficial to ensure the correctness of each movement operation. In addition, the present invention has a standard positioning mode and a fast positioning mode to select, so that when processing a plurality of wafers 20 of the same specification, the fast positioning mode can be utilized to accelerate the processing of the second or subsequent wafers 20 to quickly The position of the first die on each wafer 20 is automatically located, thereby facilitating the acceleration of the positioning operation.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10‧‧‧晶圓10‧‧‧ wafer

11‧‧‧缺槽晶粒11‧‧‧Slotted grains

12‧‧‧首顆晶粒12‧‧‧First grain

13‧‧‧無效晶粒13‧‧‧Invalid grain

14‧‧‧無效晶粒14‧‧‧Invalid grain

20‧‧‧晶圓20‧‧‧ wafer

21‧‧‧切割溝槽21‧‧‧ cutting trench

22‧‧‧切割溝槽22‧‧‧Cutting trench

30‧‧‧移動式承載台30‧‧‧Mobile carrier

31‧‧‧承載膠帶31‧‧‧ Carrying tape

32‧‧‧支撐框32‧‧‧Support frame

40‧‧‧影像擷取單元40‧‧‧Image capture unit

41‧‧‧影像41‧‧‧Image

42‧‧‧周邊方框區域42‧‧‧ perimeter box area

43‧‧‧中間方塊區域43‧‧‧Intermediate square area

50‧‧‧影像處理裝置50‧‧‧Image processing device

d0 ‧‧‧缺槽晶粒d 0 ‧‧‧ vacant grains

d1 、dm 、dm+1 、dm+n ‧‧‧晶粒d 1 , d m , d m+1 , d m+n ‧‧‧ grains

dx1 、dx2 ‧‧‧無效晶粒d x1 , d x2 ‧‧‧ invalid grain

第1圖:現有在晶圓上定位首顆晶粒之方法的概要示意圖。Figure 1: Schematic diagram of a conventional method of locating the first die on a wafer.

第2圖:本發明較佳實施例首顆晶粒之自動定位方法的步驟(S01)相關設備之概要示意圖。Fig. 2 is a schematic view showing the steps (S01) of the apparatus for automatically positioning the first die of the preferred embodiment of the present invention.

第3圖:本發明較佳實施例之步驟(S02)之操作示意圖。Figure 3 is a schematic illustration of the operation of the step (S02) of the preferred embodiment of the present invention.

第3A圖:本發明較佳實施例之步驟(S02)擷取之缺槽晶粒影像之概要示意圖。FIG. 3A is a schematic diagram showing the image of the missing groove crystal obtained by the step (S02) of the preferred embodiment of the present invention.

第4圖:本發明較佳實施例之步驟(S03)之操作示意圖。Figure 4 is a schematic illustration of the operation of the step (S03) of the preferred embodiment of the present invention.

第4A圖:本發明較佳實施例之步驟(S03)擷取之下一晶粒影像之概要示意圖。Figure 4A is a schematic diagram showing the acquisition of a grain image under the step (S03) of the preferred embodiment of the present invention.

第4B圖:本發明較佳實施例分析處理第4A圖之晶粒影像處理之概要示意圖。FIG. 4B is a schematic diagram showing the processing of the grain image processing of FIG. 4A in the preferred embodiment of the present invention.

第5、6、7及8圖:本發明較佳實施例之步驟(S04)、(S05)、(S06)及(S07)之操作示意圖。Figures 5, 6, 7, and 8 are schematic views of the operations of steps (S04), (S05), (S06), and (S07) of the preferred embodiment of the present invention.

20‧‧‧晶圓20‧‧‧ wafer

d0 ‧‧‧缺槽晶粒d 0 ‧‧‧ vacant grains

dm+n ‧‧‧晶粒d m+n ‧‧‧ grain

dx1 ‧‧‧無效晶粒d x1 ‧‧‧Invalid grain

dx2 ‧‧‧無效晶粒d x2 ‧‧‧Invalid grain

Claims (9)

一種首顆晶粒之自動定位方法,其包含步驟:(S01)、將一晶圓固定在一移動式承載臺上,其中該晶圓包含數顆晶粒及數道切割溝槽,該些晶粒之長寬尺寸小于10×10毫米,該些晶粒中包含一缺槽晶粒d0 ;(S02)、使一影像擷取單元對位於該晶圓之缺槽晶粒d0 ,利用該影像擷取單元擷取該缺槽晶粒d0 之影像,及藉由一影像處理裝置進行影像分析並將該缺槽晶粒d0 之位置定義為座標位置(0,0);(S03)、使該移動式承載台及晶圓相對該影像擷取單元沿X軸步進位移一格晶粒之距離,利用該影像擷取單元擷取鄰接在該缺槽晶粒d0 內側之下一晶粒d1 之影像,及藉由該影像處理裝置進行影像分析並將該晶粒d1 之座標位置定義為(1,0);(S04)、若沿X軸欲移動之晶粒總格數m等於1,則進行下一步驟(S05);若沿X軸欲移動之晶粒總格數m為2或以上之整數,則以相似步驟(S03)之方式沿X軸依序擷取數顆晶粒d2 ...dm 之影像,以便將該些晶粒d2 ...dm 之座標位置分別定義為(2,0)...(m,0);(S05)、使該移動式承載台及晶圓相對該影像擷取單元沿Y軸步進位移一格晶粒之距離,利用該影像擷取單元擷取鄰接在該晶粒dm 旁側之另一晶粒dm+1 之影像,及藉由該影像處理裝置進行影像分析並將該晶 粒dm+1 之座標位置定義為(m,1);(S06)、若沿Y軸欲移動之晶粒總格數n等於1,則進行下一步驟(S07);若沿Y軸欲移動之晶粒總格數n為2或以上之整數,則以相似步驟(S05)之方式沿Y軸依序擷取數顆晶粒dm+2 ...dm+n 之影像,以便將該些晶粒dm+2 ...dm+n 之座標位置分別定義為(m,2)...(m,n);以及(S07)、將座標位置為(m,n)之該晶粒dm+n 定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒上分別標示一輔助定位記號;其中在步驟(S03)至(S06)中,每當利用該影像擷取單元擷取一顆晶粒之影像時,該影像即被傳送到該影像處理裝置,該影像處理裝置自動省略分析該影像之一中間方塊區域,而僅分析該影像之一周邊方框區域,其中:若該周邊方框區域包含相交排列之四條該切割溝槽的影像,則判斷該晶粒之影像正確無誤,並結束定義該晶粒之座標位置的動作;或者若該周邊方框區域不包含相交排列之四條該切割溝槽的完整影像,則判斷該晶粒之影像不正確,此時使該移動式承載台及晶圓相對該影像擷取單元微幅移動以進行位置補償,並利用該影像擷取單元重新擷取該晶粒之影像,直到該影像處理裝置分析並判斷該晶粒之影像正確無誤為止。An automatic positioning method for a first die, comprising the steps of: (S01), fixing a wafer on a mobile loading platform, wherein the wafer comprises a plurality of crystal grains and a plurality of cutting grooves, the crystals The grain has a length and width dimension of less than 10×10 mm, and the die includes a slab die d 0 ; (S02), and an image capturing unit pair is located on the slab die d 0 of the wafer, and the The image capturing unit captures the image of the missing die d 0 , and performs image analysis by an image processing device and defines the position of the missing die d 0 as a coordinate position (0, 0); (S03) And moving the mobile carrier and the wafer to the image capturing unit along the X-axis by a distance of one crystal grain, and the image capturing unit is used to draw adjacent to the inner side of the missing die d 0 d of die image 1, and image processing performed by the image analysis apparatus and the die d is defined as position coordinate of (1,0); (S04), if the die to be moved along the X axis the total grid If the number m is equal to 1, the next step (S05) is performed; if the total number m of crystal grains to be moved along the X axis is an integer of 2 or more, along the X in a similar step (S03) Sequentially capturing images the number of dies D ... d m of 2, so that the more the grain D 2 ... d m of position coordinates are defined as (2,0) ... (m, 0 ) (S05), the distance between the movable carrier and the wafer relative to the image capturing unit is stepwise displaced along the Y axis by a lattice, and the image capturing unit is used to draw adjacent to the side of the die d m An image of another die d m+1 and image analysis by the image processing device and defining a coordinate position of the die d m+1 as (m, 1); (S06), if along the Y axis If the total number of grains n to be moved is equal to 1, the next step (S07) is performed; if the total number n of crystal grains to be moved along the Y axis is an integer of 2 or more, the method is similar (S05). sequentially fetching the Y-axis the number of dies d m 2 ... d m + + n of the image, so that the some grains d m + 2 ... d m + n are defined as the coordinate position (m , 2)...(m,n); and (S07), the crystal grain d m+n whose coordinate position is (m,n) is defined as a first crystal grain, and is next to the first crystal grain An auxiliary positioning mark is respectively indicated on the two invalid crystal grains on the side; wherein in the steps (S03) to (S06), each of the image capturing units is used to take a crystal grain When the image is imaged, the image is transmitted to the image processing device, and the image processing device automatically omits the analysis of one of the middle block regions of the image, and analyzes only one of the surrounding frame regions of the image, wherein: if the peripheral box region contains Intersecting the four images of the cutting groove, determining that the image of the die is correct, and ending the action of defining the coordinate position of the die; or if the peripheral box region does not include four intersecting rows of the cutting trench The image of the die is determined to be incorrect, and the mobile carrier and the wafer are slightly moved relative to the image capturing unit for position compensation, and the image capturing unit is used to retrieve the image. The image of the die is until the image processing device analyzes and determines that the image of the die is correct. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中步驟(S01)之該晶圓係先貼在一支撑框之一承載膠帶上,再與該支撑框及承載膠帶一起固定在該移動式承載臺上。 The method for automatically positioning a first die according to claim 1, wherein the wafer of the step (S01) is first attached to a carrier tape of a support frame, and then together with the support frame and the carrier tape It is fixed on the mobile platform. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中在步驟(S03)至(S06)中,在使該移動式承載台及晶圓相對該影像擷取單元步進位移時,係藉由該移動式承載台移動該晶圓,同時保持該影像擷取單元固定不動。 The method for automatically positioning a first die according to claim 1, wherein in the steps (S03) to (S06), the mobile carrier and the wafer are stepped relative to the image capturing unit. When the wafer is moved by the mobile carrier, the image capturing unit is kept stationary. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中在步驟(S03)至(S06)中,在使該移動式承載台及晶圓相對該影像擷取單元步進位移時,係保持該移動式承載台及晶圓固定不動,同時移動該影像擷取單元。 The method for automatically positioning a first die according to claim 1, wherein in the steps (S03) to (S06), the mobile carrier and the wafer are stepped relative to the image capturing unit. When the mobile carrier and the wafer are fixed, the image capturing unit is moved. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中在步驟(S07)之後另包含步驟:(S08)、使一機械手臂對位到該晶圓之首顆晶粒,並由該首顆晶粒開始進行吸取晶粒之動作。 The method for automatically positioning the first die according to claim 1, wherein after the step (S07), the method further comprises: (S08), aligning a robot arm to the first die of the wafer, And the action of sucking the crystal grains is started by the first crystal grain. 如申請專利範圍第5項所述之首顆晶粒之自動定位方法,其中在步驟(S08)之後另包含步驟:(S09)、移除該晶圓,並在同一該移動式承載臺上放置同一規格之第二片晶圓;(S10)、將步驟(S02)之缺槽晶粒d0 兩側沿X軸延伸之其中二條該切割溝槽定義為X軸之二移動基準綫, 以便直接使該移動式承載台及晶圓相對該影像擷取單元準確的沿X軸進行m格晶粒距離之移動;(S11)、將步驟(S05)之晶粒dm 兩側沿Y軸延伸之其中二條該切割溝槽定義為Y軸之二移動基準綫,以便直接使該移動式承載台及晶圓相對該影像擷取單元準確的沿Y軸進行n格晶粒距離之移動;以及(S12)、在沿X、Y軸移動後將該影像擷取單元對位到及擷取到影像之晶粒dm+n 直接定義為一首顆晶粒,並在該首顆晶粒旁側之二顆無效晶粒上分別標示一輔助定位記號。The method for automatically positioning a first die according to claim 5, wherein after the step (S08), the method further comprises the steps of: (S09), removing the wafer, and placing the same on the mobile platform; a second wafer of the same specification; (S10), wherein two of the cutting grooves extending along the X-axis on both sides of the missing die d 0 of the step (S02) are defined as two moving reference lines of the X-axis, so as to be directly And moving the mobile carrier and the wafer to the image capturing unit to accurately move the m-grain distance along the X-axis; (S11), extending the two sides of the die d m of the step (S05) along the Y-axis Two of the cutting grooves are defined as two moving reference lines of the Y axis, so as to directly move the mobile loading platform and the wafer relative to the image capturing unit along the Y axis by n grain distance; and (S12 After moving along the X and Y axes, the image dm +n that is aligned to and captured by the image capturing unit is directly defined as a first crystal grain, and is adjacent to the first crystal grain. An auxiliary positioning mark is respectively indicated on the two invalid crystal grains. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中步驟(S07)係利用雷射光刻、油墨蓋印、墨筆或刀刻之方式在該無效晶粒上標示該輔助定位記號。 For the automatic positioning method of the first die as described in claim 1, wherein the step (S07) marks the auxiliary crystal on the invalid crystal by laser lithography, ink stamping, ink pen or knife etching. Positioning token. 如申請專利範圍第6項所述之首顆晶粒之自動定位方法,其中步驟(S12)係利用雷射光刻、油墨蓋印、墨筆或刀刻之方式在該無效晶粒上標示該輔助定位記號。 For the automatic positioning method of the first die as described in claim 6, wherein the step (S12) marks the auxiliary crystal on the invalid crystal by laser lithography, ink stamping, ink pen or knife etching. Positioning token. 如申請專利範圍第1項所述之首顆晶粒之自動定位方法,其中該晶圓選自矽晶圓、砷化鎵晶圓或藍寶石晶圓。 The method for automatically positioning a first die according to claim 1, wherein the wafer is selected from the group consisting of a germanium wafer, a gallium arsenide wafer, or a sapphire wafer.
TW100140900A 2011-11-09 2011-11-09 Method for automatically positioning first die on wafer TWI498993B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100140900A TWI498993B (en) 2011-11-09 2011-11-09 Method for automatically positioning first die on wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100140900A TWI498993B (en) 2011-11-09 2011-11-09 Method for automatically positioning first die on wafer

Publications (2)

Publication Number Publication Date
TW201320232A TW201320232A (en) 2013-05-16
TWI498993B true TWI498993B (en) 2015-09-01

Family

ID=48872621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140900A TWI498993B (en) 2011-11-09 2011-11-09 Method for automatically positioning first die on wafer

Country Status (1)

Country Link
TW (1) TWI498993B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105678782A (en) * 2016-01-22 2016-06-15 英华达(上海)科技有限公司 Transformation method and system for image coordinate system and machinery coordinate system
TWI602260B (en) * 2016-12-28 2017-10-11 梭特科技股份有限公司 Chip positioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW348293B (en) * 1996-01-31 1998-12-21 Texas Instruments Inc Method and apparatus for aligning the position of die on a wafer table a method for determining the position of a die on a wafer table after a wafer has been cut includes stepping the wafer table a series of one die lengths diagonally.
JP2006332417A (en) * 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd Pickup device and pickup method for chip
US20080188016A1 (en) * 2007-02-02 2008-08-07 Texas Instruments, Inc. Die detection and reference die wafermap alignment
TW200905774A (en) * 2007-07-31 2009-02-01 King Yuan Electronics Co Ltd Method for marking wafer, method for marking failed die, method for aligning wafer and wafer test equipment
US7895736B2 (en) * 2006-03-22 2011-03-01 Panasonic Corporation Method and apparatus for electronic component mounting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW348293B (en) * 1996-01-31 1998-12-21 Texas Instruments Inc Method and apparatus for aligning the position of die on a wafer table a method for determining the position of a die on a wafer table after a wafer has been cut includes stepping the wafer table a series of one die lengths diagonally.
JP2006332417A (en) * 2005-05-27 2006-12-07 Matsushita Electric Ind Co Ltd Pickup device and pickup method for chip
US7895736B2 (en) * 2006-03-22 2011-03-01 Panasonic Corporation Method and apparatus for electronic component mounting
US20080188016A1 (en) * 2007-02-02 2008-08-07 Texas Instruments, Inc. Die detection and reference die wafermap alignment
TW200905774A (en) * 2007-07-31 2009-02-01 King Yuan Electronics Co Ltd Method for marking wafer, method for marking failed die, method for aligning wafer and wafer test equipment

Also Published As

Publication number Publication date
TW201320232A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP6282194B2 (en) Wafer processing method
KR101683576B1 (en) Wafer handler comprising a vision system
US9047671B2 (en) Platelike workpiece with alignment mark
TWI498993B (en) Method for automatically positioning first die on wafer
US11295996B2 (en) Systems and methods for bonding semiconductor elements
JP6004761B2 (en) Dicing method
JP4436641B2 (en) Alignment method in cutting equipment
JP6498073B2 (en) Method for detecting misalignment of cutting blade
KR20110122447A (en) Method for aligning semiconductor wafer
JP5126231B2 (en) Semiconductor element selection and acquisition method, semiconductor device manufacturing method, and semiconductor device
CN110587835A (en) Cutting method of grating silicon wafer
CN103117207B (en) The automatic positioning method of first crystal grain
JP2015112698A (en) Processing method
JP7191473B2 (en) KEY PATTERN DETECTION METHOD AND DEVICE
US20220288738A1 (en) Processing apparatus
JP5602548B2 (en) Machining position detection method
KR102409885B1 (en) Method of aligning wafers, method of bonding wafers using the same, and apparatus for performing the same
KR20170036222A (en) Method of inspecting dies
JP5686542B2 (en) Detection method of line to be divided
CN104900560B (en) The crystal grain that high-aspect-ratio crystal grain can be picked picks device and method
KR20230135654A (en) Inspection device, mounting device, inspection method, and storage medium
TW202232052A (en) Notch detecting method
JP2022126996A (en) Processing device
JP2022190380A (en) Processing device
US20180350097A1 (en) Apparatus and method of determining a bonding position of a die