TWI495239B - Voltage converter combined with one bootstrap capacitor and one coupled inductor - Google Patents

Voltage converter combined with one bootstrap capacitor and one coupled inductor Download PDF

Info

Publication number
TWI495239B
TWI495239B TW102139783A TW102139783A TWI495239B TW I495239 B TWI495239 B TW I495239B TW 102139783 A TW102139783 A TW 102139783A TW 102139783 A TW102139783 A TW 102139783A TW I495239 B TWI495239 B TW I495239B
Authority
TW
Taiwan
Prior art keywords
output
switching element
capacitor
coupled
side winding
Prior art date
Application number
TW102139783A
Other languages
Chinese (zh)
Other versions
TW201519562A (en
Inventor
Kuo Ing Hwu
wen zhuang Jiang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW102139783A priority Critical patent/TWI495239B/en
Publication of TW201519562A publication Critical patent/TW201519562A/en
Application granted granted Critical
Publication of TWI495239B publication Critical patent/TWI495239B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

具靴帶電容及耦合電感之升壓轉換裝置Boost converter with capacitor and coupled inductor

本發明是有關於一種升壓轉換器,特別是指一種可降低漏感並回收能量的具靴帶電容及耦合電感之升壓轉換裝置。The present invention relates to a boost converter, and more particularly to a boost converter having a bootstrap capacitor and a coupled inductor that can reduce leakage inductance and recover energy.

升壓轉換裝置廣泛應用於例如:HID光驅動器、不斷電系統、太陽能電池系統及燃料電池系統等領域,以太陽能電池為例,需要升壓轉換裝置將低電壓轉換為高電壓,然後用直流交流轉換器轉換為交流電壓輸出。Boost converters are widely used in applications such as HID optical drives, uninterruptible power systems, solar cell systems, and fuel cell systems. For example, solar cells require a boost converter to convert low voltage to high voltage and then DC. The AC converter is converted to an AC voltage output.

傳統的升壓轉換裝置常用推動式(Boost)或返馳式(Flyback),也有其他類型的升壓轉換裝置,但各自有其缺失,有的升壓轉換裝置具有高轉換效能,但是漏電感伴隨電壓突波且電路相當複雜,有的升壓轉換裝置是浮接輸出且伴隨複雜電路,使得電路分析不易。Conventional boost converters are commonly used for boost or flyback. There are other types of boost converters, but each has its own missing. Some boost converters have high conversion efficiency, but the leakage inductance is accompanied. The voltage surge and the circuit are quite complicated. Some boost converters are floating outputs and accompany complex circuits, making circuit analysis difficult.

發明人在先前所提出的的升壓轉換裝置具有良好的電壓轉換效能,為了能降低漏感並快速回收能量,擬提出一種不同於先前提出的電壓轉換效能且相較前述升壓轉換裝置更可降低漏感並快速回收能量的電路架構。The inventor has a good voltage conversion performance in the previously proposed boost converter, and in order to reduce the leakage inductance and quickly recover the energy, it is proposed to have a voltage conversion performance different from that previously proposed and more comparable to the aforementioned boost converter. A circuit architecture that reduces leakage inductance and quickly recovers energy.

因此,本發明之目的,即在提供一種可降低漏感並回收能量的具靴帶電容及耦合電感之升壓轉換裝置。Accordingly, it is an object of the present invention to provide a boost converter having a bootstrap capacitor and a coupled inductor that reduces leakage inductance and recovers energy.

於是,本發明具靴帶電容及耦合電感之升壓轉換裝置包含一電荷幫浦、一升壓電路及一輸出電路。Therefore, the boost converter of the present invention has a charge pump, a boost circuit and an output circuit.

該電荷幫浦用以接收一輸入電壓,具有一第一開關元件、一串接該第一開關元件之第一端的第二開關元件、一以陽極端連接該第一開關元件之第二端的幫浦二極體,及一靴帶電容,該靴帶電容具有一第一端及一第二端,該靴帶電容的第一端電性連接該幫浦二極體的陰極端,該靴帶電容的第二端電性連接該第一開關元件及該第二開關元件之間。The charge pump is configured to receive an input voltage, having a first switching element, a second switching element connected in series with the first end of the first switching element, and an anode end connected to the second end of the first switching element The pump diode has a capacitor with a first end and a second end, and the first end of the sleeve is electrically connected to the cathode end of the pump diode, the boot The second end of the capacitor is electrically connected between the first switching element and the second switching element.

該升壓電路電性連接該電荷幫浦,具有一傳導電容一耦合電感,該耦合電感具有一初級側繞組及一次級側繞組,該傳導電容的一端耦接該輸入電壓及該傳導電容的另一端耦接該第一開關元件之第二端,該初級側繞組的打點端耦接該輸入電壓及該初級側繞組的非打點端耦接該第一開關元件之第一端,該次級側繞組的非打點端耦接該幫浦二極體的陽極端及該次級側繞組的打點端耦接該第一開關元件之第二端。The boosting circuit is electrically connected to the charge pump, and has a conductive capacitor and a coupled inductor. The coupled inductor has a primary side winding and a primary side winding. One end of the conductive capacitor is coupled to the input voltage and the conductive capacitor. The first end of the first switching element is coupled to the first end of the first switching element, and the non-injecting end of the primary side winding is coupled to the first end of the first switching element, the secondary side The non-doped end of the winding is coupled to the anode end of the pump diode and the dot end of the secondary side winding is coupled to the second end of the first switching element.

該輸出電路具有一輸出電感、一輸出電容及一輸出電阻,該輸出電感之一端耦接該幫浦二極體之陰極端,該輸出電感之另一端分別連接於該輸出電容及該輸出電阻,並藉由該第一開關元件的控制端及該第二開關元件 的控制端分別接受波寬調整控制訊號驅動該升壓電路並經由該輸出電路產生該輸入電壓升壓後的輸出電壓。The output circuit has an output inductor, an output capacitor and an output resistor. One end of the output inductor is coupled to the cathode end of the pump diode, and the other end of the output inductor is respectively connected to the output capacitor and the output resistor. And by the control end of the first switching element and the second switching element The control terminal receives the bandwidth adjustment control signal to drive the booster circuit, respectively, and generates an output voltage boosted by the input voltage via the output circuit.

本發明之功效在於:藉由初級側繞組及次級側繞組可降低漏感並回收能量,且配合輸出電感使得輸出電流非脈動式,其結果使得輸出電流漣波及輸出電壓漣波可顯著地降低。The effect of the invention is that the leakage inductance is recovered and the energy is recovered by the primary side winding and the secondary side winding, and the output current is matched with the output inductor so that the output current is non-pulsating, and as a result, the output current chopping and the output voltage chopping can be significantly reduced. .

100‧‧‧升壓轉換裝置100‧‧‧Boost converter

11‧‧‧電荷幫浦11‧‧‧Charge pump

12‧‧‧升壓電路12‧‧‧Boost circuit

13‧‧‧輸出電路13‧‧‧Output circuit

21‧‧‧電壓分壓器21‧‧‧Voltage divider

22‧‧‧類比數位轉換器22‧‧‧ Analog Digital Converter

23‧‧‧FPGA控制器23‧‧‧FPGA Controller

24‧‧‧半橋閘極驅動器24‧‧‧Half Bridge Gate Driver

C1 ‧‧‧傳導電容C 1 ‧‧‧conductive capacitor

C2 ‧‧‧靴帶電容C 2 ‧‧‧boot with capacitor

Co ‧‧‧輸出電容C o ‧‧‧output capacitor

Lo ‧‧‧輸出電感L o ‧‧‧Output inductor

D1 ‧‧‧幫浦二極體D 1 ‧‧‧ pumping diode

Np ‧‧‧初級側繞組N p ‧‧‧ primary side winding

NS ‧‧‧次級側繞組N S ‧‧‧secondary winding

Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance

S1 ‧‧‧第一開關元件S 1 ‧‧‧first switching element

S2 ‧‧‧第二開關元件S 2 ‧‧‧Second switching element

Vi ‧‧‧輸入電壓V i ‧‧‧ input voltage

Vo ‧‧‧輸出電壓V o ‧‧‧output voltage

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是說明本發明的具靴帶電容及耦合電感之升壓轉換裝置之較佳實施例的電路圖;圖2是說明本發明的具靴帶電容及耦合電感之升壓轉換裝置之較佳實施例於第一狀態的模擬電路圖;圖3是說明本發明的具靴帶電容及耦合電感之升壓轉換裝置之較佳實施例於第二狀態的模擬電路圖;圖4及圖5是說明本發明各元件在額定負載及輕載的電壓/電流時序波形圖;圖6及圖7是說明次級側繞組的電流INs 及磁化電感的電流ILm 的關係圖;圖8是說明磁化電感Lm的邊界條件的示意圖;圖9是說明輸出電感Lo的邊界條件的示意圖;圖10是說明本發明的具靴帶電容及耦合電感之升壓轉換裝置之較佳實施例的控制系統的方塊圖;及圖11至圖13是說明在額定負載下,輸出電流Io=1.25安 培的實驗波形。Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a circuit diagram illustrating a preferred embodiment of a boost converter device with a captive capacitor and a coupled inductor of the present invention. 2 is an analog circuit diagram illustrating a preferred embodiment of a boost converter device with a bootstrap capacitor and a coupled inductor in a first state; FIG. 3 is a diagram illustrating a boost of a bootband capacitor and a coupled inductor according to the present invention; FIG. 4 and FIG. 5 are waveform diagrams illustrating the voltage/current timing of the components of the present invention at rated load and light load; FIGS. 6 and 7 are diagrams illustrating the secondary side. A diagram showing the relationship between the current I Ns of the winding and the current I Lm of the magnetizing inductance; FIG. 8 is a schematic diagram illustrating the boundary condition of the magnetizing inductance Lm; FIG. 9 is a schematic diagram illustrating the boundary condition of the output inductor Lo; A block diagram of a control system of a preferred embodiment of a boost converter having a capacitor with a capacitor and a coupled inductor; and Figs. 11 through 13 are experimental waveforms illustrating an output current Io = 1.25 amps at rated load.

參閱圖1,本發明之較佳實施例中,一具靴帶電容及耦合電感之升壓轉換裝置100包含一電荷幫浦11、一升壓電路12及一輸出電路13。Referring to FIG. 1, in a preferred embodiment of the present invention, a boost converter 100 with a bootstrap capacitor and a coupled inductor includes a charge pump 11, a boost circuit 12, and an output circuit 13.

該電荷幫浦11用以接收一輸入電壓Vi ,具有一第一開關元件S1 、一串接該第一開關元件S1 之第一端的第二開關元件S2 、一以陽極端連接該第一開關元件S1 之第二端的幫浦二極體D1 ,及一靴帶電容C2 ,該靴帶電容C2 具有一第一端及一第二端,該靴帶電容C2 的第一端電性連接該幫浦二極體D1 的陰極端,該靴帶電容C2 的第二端電性連接該第一開關元件S1 及該第二開關元件S2 之間。The charge pump 11 for receiving an input voltage V i, having a first switching element S 1, a series of the first switching element S 1 of a first end of the second switching element S 2, an anode terminal connected to the first switching element S 1 of the second end of the pump diode D 1, and a bootstrap capacitor C 2, the bootstrap capacitor C 2 having a first end and a second end, the bootstrap capacitor C 2 a first terminal electrically connected to the cathode terminal to help pump the diode D 1, the second terminal of the bootstrap capacitor C 2 electrically connected between two of the first switching element S 1 and the second switching element S.

該升壓電路12電性連接該電荷幫浦11,具有一傳導電容C1 及一耦合電感,耦合電感具有一初級側繞組Np 及一次級側繞組NS ,該傳導電容C1 的一端耦接該輸入電壓Vi 及該傳導電容C1 的另一端耦接該第一開關元件S1 之第二端,該初級側繞組Np 的打點端耦接該輸入電壓Vi 及該初級側繞組Np 的非打點端耦接該第一開關元件S1 之第一端,該次級側繞組NS 的非打點端耦接該幫浦二極體D1 的陽極端及該次級側繞組NS 的打點端耦接該第一開關元件S1 之第二端。The boosting circuit 12 is electrically connected to the charge pump 11 and has a conductive capacitor C 1 and a coupled inductor. The coupled inductor has a primary side winding N p and a primary side winding N S , and one end of the conductive capacitor C 1 is coupled. The other end of the input voltage V i and the conductive capacitor C 1 is coupled to the second end of the first switching element S 1 , and the dot end of the primary side winding N p is coupled to the input voltage V i and the primary winding The non-tapping end of the N p is coupled to the first end of the first switching element S 1 , and the non-injecting end of the secondary side winding N S is coupled to the anode end of the pump diode D 1 and the secondary winding The dot end of the N S is coupled to the second end of the first switching element S 1 .

該輸出電路13具有一輸出電感Lo 、一輸出電容Co 及一輸出電阻Ro ,該輸出電感Lo 之一端耦接該幫浦二極體D1 之陰極端,該輸出電感Lo 之另一端分別連接於該輸出電容Co 及該輸出電阻Ro ,並藉由該第一開關元件S1 的控 制端及該第二開關元件S2 的控制端分別接受波寬調整控制訊號驅動而該輸入電壓Vi 升壓後的輸出電壓Vo 由該輸出電路13輸出。The output circuit 13 has an output inductor L o , an output capacitor C o and an output resistor R o . One end of the output inductor L o is coupled to the cathode terminal of the pump diode D 1 , and the output inductor L o The other end is connected to the output capacitor C o and the output resistor R o , respectively, and the control terminal of the first switching element S 1 and the control end of the second switching element S 2 are respectively driven by the wave width adjustment control signal. The output voltage V o boosted by the input voltage V i is output by the output circuit 13.

參閱圖2及圖3,為了便於分析,相關設定條件如下:(1)耦合電感為一理想變壓器並聯一磁化電感(inductor Lm )於初級側繞組;(2)本電路架構操作於正電流模式,因此,流經磁化電感Lm 及輸出電感Lo 之電流為正;(3)各開關元件之間的空白時間(blanking time)忽略;(4)所有開關元件及二極體為理想元件;(5)所有電容之容值大到足夠令其保持在固定電壓;(6)忽略切換漣波。Referring to Figure 2 and Figure 3, for the convenience of analysis, the relevant setting conditions are as follows: (1) The coupled inductor is an ideal transformer in parallel with a magnetizing inductance (inductor L m ) in the primary side winding; (2) the circuit architecture operates in a positive current mode. Therefore, the current flowing through the magnetizing inductance L m and the output inductor L o is positive; (3) the blanking time between the switching elements is ignored; (4) all switching elements and diodes are ideal components; (5) The capacitance of all capacitors is large enough to keep it at a fixed voltage; (6) Ignore switching chopping.

本較佳實施例為連續導通模式(Continuous Conduction Mode;CCM)下共有兩種狀態。以下分析包含介紹各狀態的功率流(power flow)方向,並列出對應直流輸入電壓Vi及直流輸出電壓Vo的關係式,第一開關元件S1 、第二開關元件S2 的導通週期分別是1-D及D,其中的D代表波寬調整控制訊號的直流靜止責任週期(DC quiescent duty cycle)。The preferred embodiment has two states in a continuous conduction mode (CCM). The following analysis includes the power flow direction of each state, and lists the relationship between the DC input voltage Vi and the DC output voltage Vo. The conduction periods of the first switching element S 1 and the second switching element S 2 are respectively 1 -D and D, where D represents the DC quiescent duty cycle of the bandwidth adjustment control signal.

I.第一狀態:I. First state:

參閱圖2、圖4及圖5,在此狀態為第一開關元件S1 不導通及第二開關元件S2 導通;初級側繞組Np 施加輸入電壓Vi ,如公式1,造成磁化電感Lm 被激磁,感應次級側繞組NS 的電壓為輸入電壓Vi 乘以匝數比(Ns /Np );同時,幫浦二極體D1 被逆偏(reverse-biased),輸出電感Lo 電壓為負值:VC2 -Vo ,如公式2,使得輸出電感Lo 去磁化, 因此,電壓VC2 提供給負載。Referring to FIG. 2, 4 and 5, in this state, the first switching element S 1 is not turned on and the second switching element S 2 is turned on; the primary winding N p applying an input voltage V i, Equation 1, resulting in the magnetizing inductance L m is excited, and the voltage of the secondary side winding N S is induced by the input voltage V i multiplied by the turns ratio (N s /N p ); meanwhile, the pump diode D 1 is reverse-biased, and the output The inductance L o voltage is a negative value: V C2 -V o , as Equation 2, such that the output inductance L o is demagnetized, and therefore, the voltage V C2 is supplied to the load.

v Np =V i 公式1 v Np = V i formula 1

v Lo =V C2 -V o 公式2 v Lo = V C2 - V o Equation 2

II.第二狀態:II. Second state:

參閱圖3、圖4及圖5,在此狀態為第一開關元件S1 導通及第二開關元件S2 不導通;初級側繞組Np 施加輸入電壓-VC1 ,如公式3,藉此造成磁化電感Lm 被去磁化,感應次級側繞組NS 的電壓為VC1 xNs /Np ;幫浦二極體D1 被順偏(forward-biased),靴帶電容C2 的電壓充電為Vi +VC1 +Vi xNs /Np ,,輸出電感Lo 的電壓為正值:Vi +VC1 +VC2 -Vo ,如公式4,使得輸出電感Lo 被磁化,因此,電壓Vi +VC1 +VC2 一起提供給負載。Referring to Figure 3, 4 and 5, in this state, the first switching element S 1 is turned on and the second switching element S 2 is not turned on; the primary winding N p input voltage is applied -V C1, as shown in equation 3, thereby causing The magnetizing inductance L m is demagnetized, and the voltage of the secondary side winding N S is induced to be V C1 xN s /N p ; the pump diode D 1 is forward-biased, and the voltage of the shoe capacitor C 2 is charged. For V i +V C1 +V i xN s /N p , the voltage of the output inductor L o is positive: V i +V C1 +V C2 -V o , as Equation 4, so that the output inductance L o is magnetized, Therefore, the voltage V i +V C1 +V C2 is supplied together to the load.

v Np =-V C 1 公式3 v Np =- V C 1 Equation 3

v Lo =V i +V C 1 +V C 2 -V o 公式4 v Lo = V i + V C 1 + V C 2 - V o Equation 4

磁化電感Lm 在開關週期應用伏秒平衡定律(voltage-second balance principle)可得到公式5,公式5可改寫為公式6。The magnetizing inductance L m applies the voltage-second balance principle in the switching cycle to obtain the formula 5, and the formula 5 can be rewritten as the formula 6.

V i ×D +(-V C 1 )×(1-D )=0 公式5 V i × D +(- V C 1 )×(1- D )=0 Equation 5

相同的,輸出電感Lo 在開關週期應用伏秒平衡定律可得到公式7,公式8為C2 的跨壓。Similarly, the output inductor L o applies the volt-second equilibrium law during the switching cycle to obtain Equation 7, which is the crossover of C 2 .

(V C 2 -V o D +(V i +V C 1 +V C 2 -V o )×(1-D )=0 公式7( V C 2 - V o D +( V i + V C 1 + V C 2 - V o )×(1- D )=0 Equation 7

最後,依據公式6、7及8,電壓轉換效能(增益)之計算公式如公式9所示。Finally, according to Equations 6, 7, and 8, the calculation formula of the voltage conversion efficiency (gain) is as shown in Equation 9.

以下介紹磁化電感Lm 操作在如公式10的電流區間的邊界條件,其中的電流I Lm 是表示對應於電流i Lm 的直流成分及△i Lm 是表示對應於電流i Lm 的交流成分。磁化電感Lm 的電流I Lm 的表示式如公式11至13。The following describes the boundary condition of the magnetizing inductance L m operating in the current interval as in Equation 10, wherein the current I Lm is a direct current component corresponding to the current i Lm and Δ i Lm is an alternating current component corresponding to the current i Lm . The current I Lm of the magnetizing inductance L m is expressed by the formulas 11 to 13.

為了方便分析,假設輸入功率等於輸出功率,依據電感的伏秒平衡(voltage-second balance)定理及電容的安秒平衡(ampere-second balance)定理,電感電壓的直流成分及電容電流的直流成分均為0。For the convenience of analysis, it is assumed that the input power is equal to the output power. According to the voltage-second balance theorem of the inductor and the ampere-second balance theorem of the capacitor, the DC component of the inductor voltage and the DC component of the capacitor current are both Is 0.

參閱圖6及圖7,電流i Ns ,I Ns 的直流成分等於 輸出電流I o 的直流成分;同樣的,電流i Lm ,I Lm 的直流成分等於輸入電流I i 進入耦合電感的初級側,加上電流i Np ,I Np 的直流成分。輸出電流I o 可表示為V o /R o ,將公式13的輸出電流I o V o /R o 取代,如公式14。△i Lm 可表示為公式15。Referring to Figures 6 and 7, the DC components of the currents i Ns , I Ns are equal to the DC components of the output current I o ; similarly, the DC components of the currents i Lm , I Lm are equal to the input current I i entering the primary side of the coupled inductor, plus The DC component of the current i Np , I Np . The output current I o can be expressed as V o / R o , and the output current I o of Equation 13 is replaced by V o / R o , as in Equation 14. Δ i Lm can be expressed as Formula 15.

當邊界條件為2I Lm i Lm ,磁化電感L m 操作於正電流區,因此,改寫公式如公式16,其中的n為該次級側繞組及該初級側繞組的匝數比Ns /NpWhen the boundary condition is 2 I Lm Δ i Lm , the magnetizing inductance L m operates in the positive current region, and therefore, the formula is rewritten as Equation 16, where n is the turns ratio N s /N p of the secondary side winding and the primary side winding.

其中,among them, And .

參閱圖8,為責任週期D 及自訂參數K crit 1 (D )在公式16中的n設定為3的關係圖,可知K 1 大於自訂參數K crit 1 (D ),磁化電感L m 操作於正電流區;否則,部分電流i Lm 進入負電流區。Referring to FIG. 8, a relationship diagram in which the duty cycle D and the custom parameter K crit 1 ( D ) are set to 3 in Equation 16 shows that K 1 is greater than the custom parameter K crit 1 ( D ), and the magnetizing inductance L m is operated. In the positive current region; otherwise, part of the current i Lm enters the negative current region.

以下介紹輸出電感Lo 操作在如公式17的電流 區間的邊界條件,其中的電流I Lo 是表示對應於電流i Lo 的直流成分及△i Lo 是表示對應於電流i Lo 的交流成分。電流I Lo 等於輸出電流I o ,可表示為V o /R o ,如公式18。電流△i Lo 可表示為公式19及20。The following describes the boundary condition of the output inductor L o operating in the current interval as in Equation 17, where the current I Lo is indicative of the DC component corresponding to the current i Lo and Δ i Lo is the AC component corresponding to the current i Lo . The current I Lo is equal to the output current I o , which can be expressed as V o / R o , as in Equation 18. The current Δ i Lo can be expressed as Equations 19 and 20.

當邊界條件為2I Lo i Lo ,輸出電感L o 操作於正電流區,因此,改寫公式如公式21。When the boundary condition is 2 I Lo Δ i Lo , the output inductor L o operates in the positive current region, and therefore, the formula is rewritten as Equation 21.

其中,among them, And .

參閱圖9,為責任週期D 及自訂參數K crit 2 (D )在公式16中的n設定為3的關係圖,可知K 2 大於自訂參數K crit 2 (D ),輸出電感L o 操作於正電流區;否則,部分電流i Lm 進入負電流區。Referring to FIG. 9, a relationship diagram in which the duty cycle D and the custom parameter K crit 2 ( D ) are set to 3 in Equation 16 shows that K 2 is greater than the custom parameter K crit 2 ( D ), and the output inductor L o is operated. In the positive current region; otherwise, part of the current i Lm enters the negative current region.

參閱圖10,本較佳實施例的具靴帶電容及耦合電感之升壓轉換裝置100所配合的一控制系統包括一電壓 分壓器21、一類比數位轉換器22、一FPGA控制器23及一半橋閘極驅動器24,詳細技術原理,FPGA控制器23負責整個系統的時序控制與開關控制時序,處理回授補償並算出控制力再去執行比例積分微分(Proportional Integral;簡稱PI)的控制包含在額定負載(rated load)可調整的比例增益參數(proportional gain)kp 及整數增益(integral gain)ki ,由於電壓分壓器21、類比數位轉換器22、FPGA控制器23及半橋閘極驅動器24為現有技術且非本發明重點,在此不詳述其原理。Referring to FIG. 10, a control system of the boost converter device 100 with a bootstrap capacitor and a coupled inductor includes a voltage divider 21, an analog-to-digital converter 22, an FPGA controller 23, and Half bridge gate driver 24, detailed technical principle, FPGA controller 23 is responsible for the timing control and switching control timing of the whole system, processing feedback compensation and calculating control power to perform proportional integral differentiation (referred to as PI) control including The proportional gain gain k p and the integral gain k i at the rated load due to the voltage divider 21, the analog-to-digital converter 22, the FPGA controller 23, and the half bridge gate The pole driver 24 is prior art and is not the focus of the present invention, and its principle will not be described in detail herein.

本較佳實施例中的各元件的規格如下:(i)輸入電壓Vi 為12伏特;(ii)額定輸出電壓Vo 為48伏特;(iii)輸出額定電流(Io,rated )/功率(Po,rated )為1.25A/60W;(iv)最小輸出額定電流(Io,min )/功率(Po,min )為0.1A/7.2W;(v)開關頻率fs 為100kHz;(vi)輸出電容Co 選用二個470μF/100V的並聯電容;(vii)第一開關元件S1 及第二開關元件S2 的型號皆為STP120NF;(viii)幫浦二極體D1 的型號為V20120C及靴帶電容C2 選用二個100μF/100V的並聯電容;(ix)FPGA控制器23的型號為EP1C3T100;(x)類比數位轉換器22的型號為ADC7476;(xi)半橋閘極驅動器24採用的型號為IR2011;(xii)傳導電容C1 為兩個680μF/50V的串聯電容;(xiii)耦合電感Lm 為Core:PC40EER40-Z;N p N s =1:3;L m =44.8μH;L l 1 =0.498μH;k ≒0.989;及(xiv)輸出電感為Core:PC40EER35-Z;Lo =136μH。The specifications of the components in the preferred embodiment are as follows: (i) the input voltage V i is 12 volts; (ii) the nominal output voltage V o is 48 volts; (iii) the output rated current (I o,rated ) / power (P o,rated ) is 1.25A/60W; (iv) minimum output rated current (I o,min ) / power (P o,min ) is 0.1A/7.2W; (v) switching frequency f s is 100kHz; (vi) The output capacitor C o selects two 470μF/100V shunt capacitors; (vii) the first switching element S 1 and the second switching element S 2 are all of the type STP120NF; (viii) the pump diode D 1 Model V20120C and bootstrap capacitor C 2 select two 100μF/100V shunt capacitors; (ix) FPGA controller 23 is EP1C3T100; (x) analog digital converter 22 is ADC7476; (xi) half bridge gate The pole driver 24 is of the type IR2011; (xii) the conduction capacitor C 1 is two series capacitors of 680 μF / 50 V; (xiii) the coupled inductor L m is Core: PC40EER40-Z; N p : N s = 1:3; L m = 44.8 μH; L l 1 =0.498 μH; k ≒ 0.989; and (xiv) the output inductance is Core: PC40EER35-Z; L o = 136 μH.

參閱圖11至圖13,是在額定負載(rated load)下,輸出電流I o =1.25安培的實驗波形,從各波形可知本發明可穩定的運作;其中,圖11是本發明的具靴帶電容及耦合電感之升壓轉換裝置100之第一開關元件S 1 的閘極驅動訊號v gs 1 、第二開關元件S 2 的閘極驅動訊號v gs 2 、初級側繞組Np 及漏感的電流i Np +i Lm 及次級側繞組NS 的電流i Ns 的波形圖;圖12是第一開關元件S 1 的閘極驅動訊號v gs 1 、第二開關元件S 2 的閘極驅動訊號v gs 2 、輸出電感Lo 電壓v Lo 及輸出電感L。電流i Lo 的波形圖;及圖13是第一開關元件S 1 的閘極驅動訊號v gs 1 、第二開關元件S 2 的閘極驅動訊號v gs 2 、傳導電容C1 電壓V C 1 及靴帶電容C2 電壓V C 2 的波形圖。Referring to FIGS. 11 to 13, under rated load (rated load), the output current I o = 1.25 amperes experimental waveforms, it is understood the present invention can stably operate from each waveform; wherein FIG. 11 is a device according to the present invention bootstrap the boost converter and the capacitive means coupled inductor 100. the first switching element S 1 of the gate electrode drive signal v gs 1, a second switching element S 2 of the gate electrode drive signal v gs 2, the primary winding N p and the leakage inductance A waveform diagram of a current i Ns of the current i Np + i Lm and the secondary side winding N S ; FIG. 12 is a gate driving signal v gs 1 of the first switching element S 1 and a gate driving signal of the second switching element S 2 v gs 2 , output inductor L o voltage v Lo and output inductor L. I Lo current waveform diagram; and FIG. 13 is a first switching element S gate drive signal v 1 of gs 1, a second switching element gate drive signal S v 2 is gs 2, conductive capacitor C 1 and the voltage V C 1 The shoe has a waveform of the capacitor C 2 voltage V C 2 .

傳導電容C1 及靴帶電容C2 被串接的初級側繞組Np 及次級側繞組NS 所充電,對應地使得傳導電容C1 電壓V C 1 及靴帶電容C2 電壓V C 2 的雜訊變小,此外,磁化電感L m 是設計為操作在正電流區,但在真實可以量測到電流為i Lm +i Np 在某些時間點具有負電流值。The conduction capacitor C 1 and the shoe strap capacitor C 2 are charged by the series-connected primary side winding N p and the secondary side winding N S , correspondingly causing the conduction capacitance C 1 voltage V C 1 and the boot band capacitance C 2 voltage V C 2 The noise is reduced. In addition, the magnetizing inductance L m is designed to operate in the positive current region, but the current can be measured as i Lm + i Np has a negative current value at some point in time.

綜上所述,本發明之具靴帶電容及耦合電感之升壓轉換裝置100藉由耦合電感的初級側繞組Np 及次級側繞組NS 可降低漏感並回收能量,且配合輸出電感Lo 使得輸出電流非脈動式,其結果使得輸出電流漣波及輸出電壓漣波可顯著地降低,相較以往的升壓轉換裝置更可降低漏感並快速回收能量,故確實能達成本發明之目的。In summary, the boost converter 100 with the capacitor and the coupled inductor of the present invention can reduce the leakage inductance and recover the energy by the primary side winding N p and the secondary side winding N S of the coupled inductor, and cooperate with the output inductor. Lo makes the output current non-pulsating type, and as a result, the output current chopping and the output voltage chopping can be remarkably reduced, and the leakage inductance can be reduced and the energy can be quickly recovered compared with the conventional boost converter, so that the object of the present invention can be achieved. .

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明 申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, according to the present invention. The simple equivalent changes and modifications made by the scope of the patent application and the contents of the patent specification are still within the scope of the invention.

100‧‧‧升壓轉換裝置100‧‧‧Boost converter

11‧‧‧電荷幫浦11‧‧‧Charge pump

12‧‧‧升壓電路12‧‧‧Boost circuit

13‧‧‧輸出電路13‧‧‧Output circuit

C1 ‧‧‧傳導電容C 1 ‧‧‧conductive capacitor

C2 ‧‧‧靴帶電容C 2 ‧‧‧boot with capacitor

Co ‧‧‧輸出電容C o ‧‧‧output capacitor

Lo ‧‧‧輸出電感L o ‧‧‧Output inductor

D1 ‧‧‧幫浦二極體D 1 ‧‧‧ pumping diode

Np ‧‧‧初級側繞組N p ‧‧‧ primary side winding

NS ‧‧‧次級側繞組N S ‧‧‧secondary winding

Ro ‧‧‧輸出電阻R o ‧‧‧ output resistance

S1 ‧‧‧第一開關元件S 1 ‧‧‧first switching element

S2 ‧‧‧第二開關元件S 2 ‧‧‧Second switching element

Vi ‧‧‧輸入電壓V i ‧‧‧ input voltage

Vo ‧‧‧輸出電壓V o ‧‧‧output voltage

Claims (2)

一種具靴帶電容及耦合電感之升壓轉換裝置,包含:一電荷幫浦,用以接收一輸入電壓,具有一第一開關元件、一串接該第一開關元件之第一端的第二開關元件、一以陽極端連接該第一開關元件之第二端的幫浦二極體,及一靴帶電容,該靴帶電容具有一第一端及一第二端,該靴帶電容的第一端電性連接該幫浦二極體的陰極端,該靴帶電容的第二端電性連接該第一開關元件及該第二開關元件之間;一升壓電路,電性連接該電荷幫浦,具有一傳導電容一耦合電感,該耦合電感具有一初級側繞組及一次級側繞組,該傳導電容的一端耦接該輸入電壓及該傳導電容的另一端耦接該第一開關元件之第二端,該初級側繞組的打點端耦接該輸入電壓及該初級側繞組的非打點端耦接該第一開關元件之第一端,該次級側繞組的非打點端耦接該幫浦二極體的陽極端及該次級側繞組的打點端耦接該第一開關元件之第二端;及一輸出電路,具有一輸出電感、一輸出電容及一輸出電阻,該輸出電感之一端耦接該幫浦二極體之陰極端,該輸出電感之另一端分別連接於該輸出電容及該輸出電阻;藉此,該第一開關元件的控制端及該第二開關元件的控制端分別接受一波寬調整控制訊號驅動該升壓電路並經由該輸出電路產生該輸入電壓升壓後的輸出電壓。A boost converter device with a capacitor with a capacitor and a coupled inductor, comprising: a charge pump for receiving an input voltage, having a first switching element, and a second connected in series with the first end of the first switching element a switching element, a pump diode connected to the second end of the first switching element with an anode end, and a boot capacitor having a first end and a second end One end is electrically connected to the cathode end of the pump diode, and the second end of the shoe capacitor is electrically connected between the first switching element and the second switching element; a boosting circuit electrically connecting the electric charge The pump has a conductive capacitor-coupled inductor having a primary side winding and a primary side winding. One end of the conductive capacitor is coupled to the input voltage, and the other end of the conductive capacitor is coupled to the first switching element. a second end, the dot end of the primary side winding is coupled to the input voltage, and the non-injecting end of the primary side winding is coupled to the first end of the first switching element, and the non-doping end of the secondary side winding is coupled to the gang The anode end of the diode and the time The dot end of the side winding is coupled to the second end of the first switching element; and an output circuit has an output inductor, an output capacitor and an output resistor, and one end of the output inductor is coupled to the cathode of the pump diode Extremely, the other end of the output inductor is respectively connected to the output capacitor and the output resistor; thereby, the control end of the first switching element and the control end of the second switching element respectively receive a wave width adjustment control signal to drive the liter And compressing the circuit and generating an output voltage boosted by the input voltage via the output circuit. 如請求項1所述的具靴帶電容及耦合電感之升壓轉換裝置,其電壓轉換效能之公式為 其中,Vo 為輸出電壓,Vi 為輸入電壓,D為該波寬調整控制訊號的直流靜止責任週期,Ns /Np 為該次級側繞組及該初級側繞組的匝數比。The boost conversion device with a bootstrap capacitor and a coupled inductor according to claim 1 has a voltage conversion performance formula Where V o is the output voltage, V i is the input voltage, D is the DC static duty cycle of the wave width adjustment control signal, and N s /N p is the turns ratio of the secondary side winding and the primary side winding.
TW102139783A 2013-11-01 2013-11-01 Voltage converter combined with one bootstrap capacitor and one coupled inductor TWI495239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102139783A TWI495239B (en) 2013-11-01 2013-11-01 Voltage converter combined with one bootstrap capacitor and one coupled inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102139783A TWI495239B (en) 2013-11-01 2013-11-01 Voltage converter combined with one bootstrap capacitor and one coupled inductor

Publications (2)

Publication Number Publication Date
TW201519562A TW201519562A (en) 2015-05-16
TWI495239B true TWI495239B (en) 2015-08-01

Family

ID=53721089

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139783A TWI495239B (en) 2013-11-01 2013-11-01 Voltage converter combined with one bootstrap capacitor and one coupled inductor

Country Status (1)

Country Link
TW (1) TWI495239B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI554014B (en) * 2015-06-01 2016-10-11 遠東科技大學 High step-up dc power converter
TWI693783B (en) * 2018-10-09 2020-05-11 遠東科技大學 Dc-dc converter with step-up/down ability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122728A (en) * 1990-12-26 1992-06-16 Hughes Aircraft Company Coupled inductor type dc to dc converter with single magnetic component
TW200541193A (en) * 2004-06-10 2005-12-16 Wei Zheng Zhong High-efficiency DC/DC converter with high voltage gain
TW201025808A (en) * 2008-12-17 2010-07-01 Univ Nat Taipei Technology High boost converter
CN202353467U (en) * 2011-10-24 2012-07-25 杭州浙阳电气有限公司 High-gain converter with single switch tube based on coupling inductance voltage-multiplying unit
TW201334387A (en) * 2012-02-09 2013-08-16 Darfon Electronics Corp Direct current/direct current converter
TW201336218A (en) * 2012-02-24 2013-09-01 Sinpro Electronics Co Ltd Power conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122728A (en) * 1990-12-26 1992-06-16 Hughes Aircraft Company Coupled inductor type dc to dc converter with single magnetic component
TW200541193A (en) * 2004-06-10 2005-12-16 Wei Zheng Zhong High-efficiency DC/DC converter with high voltage gain
TW201025808A (en) * 2008-12-17 2010-07-01 Univ Nat Taipei Technology High boost converter
CN202353467U (en) * 2011-10-24 2012-07-25 杭州浙阳电气有限公司 High-gain converter with single switch tube based on coupling inductance voltage-multiplying unit
TW201334387A (en) * 2012-02-09 2013-08-16 Darfon Electronics Corp Direct current/direct current converter
TW201336218A (en) * 2012-02-24 2013-09-01 Sinpro Electronics Co Ltd Power conversion device

Also Published As

Publication number Publication date
TW201519562A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
US9997988B2 (en) Zero-crossing detection circuit
US9088211B2 (en) Buck-boost converter with buck-boost transition switching control
US9318960B2 (en) High efficiency and low loss AC-DC power supply circuit and control method
JP5760143B2 (en) Battery charger for electric vehicles
US9385603B2 (en) Control method and control circuit for switching power supply
TWI495239B (en) Voltage converter combined with one bootstrap capacitor and one coupled inductor
US11114931B2 (en) AC-DC power converter
CN112532021A (en) Input parallel output series multi-converter switching power supply
Lu et al. Design and implementation of a bidirectional DC-DC forward/flyback converter with leakage energy recycled
TWI565207B (en) Isolated high-step-up dc-dc converter
TWI412221B (en) High boost ratio converter
TW201501458A (en) AC-DC power conversion device and control method thereof
TWI455465B (en) High pressurization device
Hwu et al. An isolated high step-up converter with continuous input current and LC snubber
JP2014011950A (en) Common core power factor improvement resonance type converter
TWI444811B (en) High boost ratio circuit
TWI443949B (en) Single - Phase AC - DC Power Converter with Electrical Isolation
TWI489753B (en) Combined boost converter
TWI501532B (en) Isolated voltage-boosting converter
CN213547169U (en) Centralized charging device for multiple groups of batteries
TWI450485B (en) High boost ratio device
TWI440290B (en) Boost converter
TWI389439B (en) Power conversion device
TWI448059B (en) Low voltage to high voltage device
TWI459700B (en) Step - down converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees