TWI495151B - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TWI495151B
TWI495151B TW100119178A TW100119178A TWI495151B TW I495151 B TWI495151 B TW I495151B TW 100119178 A TW100119178 A TW 100119178A TW 100119178 A TW100119178 A TW 100119178A TW I495151 B TWI495151 B TW I495151B
Authority
TW
Taiwan
Prior art keywords
aluminum
aluminum content
bragg reflection
light
reflection structure
Prior art date
Application number
TW100119178A
Other languages
Chinese (zh)
Other versions
TW201248911A (en
Inventor
Shao Kun Ma
Tsung Tai Kuo
Han Tsung Lai
Yi Ching Lee
Ming Ta Chin
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW100119178A priority Critical patent/TWI495151B/en
Publication of TW201248911A publication Critical patent/TW201248911A/en
Application granted granted Critical
Publication of TWI495151B publication Critical patent/TWI495151B/en

Links

Description

發光元件 Light-emitting element

本發明關於一種發光元件之製造方法,特別是關於一種利用溼氧製程形成高反射性之布拉格反射結構來增加發光元件亮度之製造方法。 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of fabricating a light-emitting element, and more particularly to a method of forming a highly reflective Bragg reflection structure using a wet oxygen process to increase the brightness of a light-emitting element.

目前磷化鋁鎵銦發光二極體所使用的成長基板為砷化鎵基板,其缺點為當活性層產生的光往下入射至砷化鎵基板時,由於其能隙較小因此入射至砷化鎵基板的光會被吸收而影響出光效率。 At present, the growth substrate used for the aluminum gallium indium phosphide LED is a gallium arsenide substrate, and the disadvantage is that when the light generated by the active layer is incident on the gallium arsenide substrate, the arsenic is incident due to the small energy gap. The light of the gallium substrate is absorbed to affect the light extraction efficiency.

為了解決上述缺點,通常會加入一布拉格反射結構(Distributed Bragg Reflector,DBR)於砷化鎵基板上,藉以反射入射向砷化鎵基板的光,並減少砷化鎵基板吸光,然而此種DBR反射結構只對於較接近垂直入射於砷化鎵基板的光能有效的反射,且反射率只有80%,並且反射光的波長範圍很小,因此效果不大。 In order to solve the above disadvantages, a Bragg Reflector (DBR) is usually added to the gallium arsenide substrate to reflect the light incident on the gallium arsenide substrate and reduce the absorption of the gallium arsenide substrate. However, such DBR reflection The structure is effective only for light energy that is closer to the vertical incidence of the gallium arsenide substrate, and the reflectance is only 80%, and the wavelength range of the reflected light is small, so the effect is not large.

本發明提供一發光元件之製造方法,包含:提供一基板;形成一第一布拉格反射結構於基板之上;形成一第二布拉格反射結構於第一布拉格反射結構之上;形成一發光結構於第二布拉格反射結構之上;形成一窗戶層於發光結構之上;形成一電流散佈層於窗戶層之上;提供一溼氧製程系統;分別形成一氧化區域於第一布拉格反射結構與第二布拉格反射結構,其中氧化區域係於溼氧製程系統中反應而成;及形成一電極於電流散佈層之上。 The present invention provides a method of fabricating a light-emitting device, comprising: providing a substrate; forming a first Bragg reflection structure on the substrate; forming a second Bragg reflection structure on the first Bragg reflection structure; forming a light-emitting structure a second Bragg reflection structure; forming a window layer on the light-emitting structure; forming a current spreading layer on the window layer; providing a wet oxygen process system; respectively forming an oxidation region in the first Bragg reflection structure and the second Prague a reflective structure in which an oxidized region is reacted in a wet oxygen process system; and an electrode is formed over the current spreading layer.

本發明提供一發光元件之製造方法,其中第一布拉格反射結構係由複數個第一半導體層與複數個第二半導體層交互堆疊所形成;第二布拉格反射結構係由複數個第三半導體層與複數個第四半導體層交互堆疊所形成。 The present invention provides a method of fabricating a light-emitting element, wherein a first Bragg reflection structure is formed by stacking a plurality of first semiconductor layers and a plurality of second semiconductor layers; the second Bragg reflection structure is composed of a plurality of third semiconductor layers and A plurality of fourth semiconductor layers are formed by alternately stacking.

本發明提供一發光元件之製造方法,其中第一布拉格反 射結構與第二布拉格反射結構具有高反射性,且具有電流侷限之效果。 The invention provides a method for manufacturing a light-emitting element, wherein the first Prague inverse The radiation structure and the second Bragg reflection structure are highly reflective and have a current limiting effect.

本發明揭示一種發光元件結構及其製造方法。為了使本發明之敘述更加詳盡與完備,可參照下列描述並配合第1圖至第4圖之圖式。 The invention discloses a light emitting element structure and a manufacturing method thereof. In order to make the description of the present invention more detailed and complete, reference is made to the following description in conjunction with the drawings of Figures 1 through 4.

首先如第1圖所示,本發明之發光元件結構為:於一n型砷化鎵(GaAs)基板1上利用MOCVD方法依序成長一第一布拉格反射結構2、一第二布拉格反射結構2’、一第一導電性半導體層3、一發光結構4、一第二導電性半導體層5、及一窗戶層6。其中第一布拉格反射結構2係由複數個第一半導體層2a與複數個第二半導體層2b交互堆疊所形成;第二布拉格反射結構2’係由複數個第三半導體層2a’與複數個第四半導體層2b’交互堆疊所形成。其中第一半導體層2a與第三半導體層2a’因鋁含量高,故容易於濕氧製程系統中發生氧化反應;相對地,第二半導體層2b與第四半導體層2b’因鋁含量低,故不易於濕氧製程系統中發生氧化反應。第一布拉格反射結構2及第二布拉格反射結構2’其組成材料分別可由高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量砷化鋁鎵(AlGaAs),高鋁含量磷化鋁銦(AlInP)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁(AlAs)/低鋁含量磷化鋁鎵銦(AlGaInP),或高鋁含量砷化鋁(AlAs)/低鋁含 量砷化鋁鎵(AlGaAs)交互堆疊所組成;其中高鋁含量化合物(例如高鋁含量砷化鋁鎵(AlGaAs)、高鋁含量砷化鋁鎵(AlGaAs)、高鋁含量磷化鋁銦(AlInP))中之鋁含量大於0.6,且第一布拉格反射結構2與第二布拉格反射結構2’之組成材料不同。例如:第一布拉格反射結構2組成材料為高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量磷化鋁鎵銦(AlGaInP),第二布拉格反射結構2’組成材料為高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量砷化鋁鎵(AlGaAs)。第一布拉格反射結構2與第二布拉格反射結構2’中每一層厚度為λ/4n,其中λ為發光元件之發光波長,n是折射係數。第一布拉格反射結構2與第二布拉格反射結構2’之組成材料不同,其折射係數也不同,由此所形成的布拉格反射結構之反射率不僅相較於傳統布拉格反射結構之反射率提高,且反射的波長涵蓋範圍較傳統布拉格反射結構為寬。 First, as shown in FIG. 1, the light-emitting device of the present invention has a structure in which a first Bragg reflection structure 2 and a second Bragg reflection structure 2 are sequentially grown by an MOCVD method on an n-type gallium arsenide (GaAs) substrate 1. ', a first conductive semiconductor layer 3, a light-emitting structure 4, a second conductive semiconductor layer 5, and a window layer 6. The first Bragg reflection structure 2 is formed by stacking a plurality of first semiconductor layers 2a and a plurality of second semiconductor layers 2b; the second Bragg reflection structure 2' is composed of a plurality of third semiconductor layers 2a' and a plurality of The four semiconductor layers 2b' are formed by alternate stacking. The first semiconductor layer 2a and the third semiconductor layer 2a' are easily oxidized in the wet oxygen process system because of the high aluminum content; relatively, the second semiconductor layer 2b and the fourth semiconductor layer 2b' are low in aluminum content. Therefore, it is not easy to generate an oxidation reaction in the wet oxygen process system. The first Bragg reflection structure 2 and the second Bragg reflection structure 2' may be composed of a high aluminum content aluminum gallium arsenide (AlGaAs)/low aluminum content aluminum gallium indium arsenide (AlGaInP), and a high aluminum content aluminum gallium arsenide ( AlGaAs) / low aluminum content aluminum gallium arsenide (AlGaAs), high aluminum content aluminum indium phosphide (AlInP) / low aluminum content aluminum gallium indium arsenide (AlGaInP), high aluminum content aluminum arsenide (AlAs) / low aluminum content Aluminum gallium indium phosphide (AlGaInP), or high aluminum content aluminum arsenide (AlAs) / low aluminum content Aluminium gallium arsenide (AlGaAs) alternating stacking; high aluminum content compounds (such as high aluminum content aluminum gallium arsenide (AlGaAs), high aluminum content aluminum gallium arsenide (AlGaAs), high aluminum content aluminum indium phosphide ( The aluminum content in AlInP)) is greater than 0.6, and the constituent materials of the first Bragg reflection structure 2 and the second Bragg reflection structure 2' are different. For example, the first Bragg reflection structure 2 is composed of a high aluminum content aluminum gallium arsenide (AlGaAs)/low aluminum content aluminum gallium indium arsenide (AlGaInP), and the second Bragg reflection structure 2' is composed of a high aluminum content aluminum arsenide. Gallium (AlGaAs) / low aluminum content aluminum gallium arsenide (AlGaAs). Each of the first Bragg reflection structure 2 and the second Bragg reflection structure 2' has a thickness of λ/4n, where λ is the emission wavelength of the light-emitting element, and n is the refractive index. The composition of the first Bragg reflection structure 2 and the second Bragg reflection structure 2' are different, and the refractive index thereof is also different, whereby the reflectance of the formed Bragg reflection structure is not only improved compared to the reflectance of the conventional Bragg reflection structure, and The wavelength of the reflection covers a wider range than the conventional Bragg reflection structure.

第一導電性半導體層3、發光結構4、第二導電性半導體層5可由磷化鋁鎵銦化合物所形成,且第一導電性半導體層3與第二導電性半導體層5導電性相反,例如:第一導電性半導體層3為n型磷化鋁鎵銦化合物所形成,第二導電性半導體層5為p型磷化鋁鎵銦化合物所形成。再於第二導電性半導體層5之上形成厚度至少30μm的p型磷化鎵窗戶層6,其功能除了可以增加光從發光元件側面取出的效率,且有改善電流分佈的效果;再於窗戶層6之上以蒸鍍法形成一電流散佈層7,其功能為增加電流分佈的效果,且組成材料為包含一種或一種以上之材料選自於氧化銦錫、氧化鎘錫、 氧化銻錫、氧化銦鋅、氧化鋅鋁以及氧化鋅錫所構成之群組。 The first conductive semiconductor layer 3, the light emitting structure 4, and the second conductive semiconductor layer 5 may be formed of an aluminum gallium indium phosphide compound, and the first conductive semiconductor layer 3 and the second conductive semiconductor layer 5 are opposite in conductivity, for example The first conductive semiconductor layer 3 is formed of an n-type aluminum gallium indium compound, and the second conductive semiconductor layer 5 is formed of a p-type aluminum gallium indium compound. Forming a p-type gallium phosphide window layer 6 having a thickness of at least 30 μm on the second conductive semiconductor layer 5, the function of which can increase the efficiency of light extraction from the side of the light-emitting element and improve the current distribution; Forming a current spreading layer 7 on the layer 6 by evaporation, the function of which is to increase the current distribution effect, and the constituent material is one or more materials selected from the group consisting of indium tin oxide, cadmium tin oxide, A group consisting of antimony tin oxide, indium zinc oxide, zinc aluminum oxide, and zinc tin oxide.

以上所述步驟形成之結構自電流散佈層7起由上往下至第一布拉格反射結構2,且暴露出砷化鎵(GaAs)基板1之表面,以形成一切割道10。再將形成切割道10後之元件結構放入第4圖所示溼氧製程系統之製程爐管14中,以進行濕氧製程。濕氧製程程序如下:以流量計11控制通入此系統之氮氣A流量,氮氣A經由第一段氣體管路13a進入一內裝水B之反應器16之中以產生氮氣氣泡C,且此反應器16之下具有一加熱器12。由反應器16所形成的氮氣及水蒸氣D經由第二段氣體管路13b進入內置元件結構之製程爐管14中,其中製程爐管14加熱至300-800℃。此時發光元件100的第一布拉格反射結構2之複數個第一半導體層2a(含高鋁含量化合物)及第二布拉格反射結構2’之複數個第三半導體層2a’(含高鋁含量化合物)分別與加熱的氣氣+水蒸氣D產生氧化反應。氧化反應會由第一半導體層2a及第三半導體層2a’(含高鋁含量化合物)之側壁及接近切割道10二側區域開始反應,因而形成氧化鋁(AlxOy)層2c及2c’以及未氧化的高鋁含量化合物;其中氧化鋁(AlxOy)層2c及2c’為折射率(n=1.6)較第一半導體層2a及第三半導體層2a’之折射率低的絕緣體。最後氧化反應後剩餘的氣體由第三段氣體管路13c進入排氣系統15而排出。此氧化反應速率隨著製程爐管14的溫度愈高而愈快,也隨著第一半導體層2a及第三半導體層2a’之鋁含量愈高而愈快。最後,分別於電流散佈層7之 上及砷化鎵(GaAs)基板1之下形成一第二電極8及第一電極9,即形成一發光元件100之結構,如第2圖所示。由第3圖為發光元件100之上視圖顯示:發光元件100外緣區域形成氧化鋁(AlxOy)層2c及2c’,內側為未產生氧化反應之第一半導體層2a及第三半導體層2a’。 The structure formed by the above steps is from the upper side to the first Bragg reflection structure 2 from the current spreading layer 7, and the surface of the gallium arsenide (GaAs) substrate 1 is exposed to form a scribe line 10. The component structure after the formation of the dicing street 10 is placed in the process tube 14 of the wet oxygen process system shown in Fig. 4 to carry out a wet oxygen process. The wet oxygen process procedure is as follows: the flow rate of nitrogen gas A into the system is controlled by the flow meter 11, and the nitrogen gas A enters a reactor 16 containing water B via the first gas line 13a to generate a nitrogen gas bubble C, and this There is a heater 12 below the reactor 16. The nitrogen and water vapor D formed by the reactor 16 enters the process tube 14 of the built-in element structure via the second stage gas line 13b, wherein the process tube 14 is heated to 300-800 °C. At this time, the plurality of first semiconductor layers 2a (containing a high aluminum content compound) of the first Bragg reflection structure 2 of the light-emitting element 100 and the plurality of third semiconductor layers 2a' of the second Bragg reflection structure 2' (containing a high aluminum content compound) ) an oxidation reaction with heated gas + water vapor D, respectively. The oxidation reaction starts from the side walls of the first semiconductor layer 2a and the third semiconductor layer 2a' (containing the high aluminum content compound) and the two side regions close to the scribe line 10, thereby forming the aluminum oxide (Al x O y ) layers 2c and 2c. And an unoxidized high aluminum content compound; wherein the alumina (Al x O y ) layers 2c and 2c' have a refractive index (n = 1.6) lower than that of the first semiconductor layer 2a and the third semiconductor layer 2a' Insulator. The gas remaining after the last oxidation reaction is discharged into the exhaust system 15 by the third-stage gas line 13c. The faster the oxidation reaction rate is as the temperature of the process tube 14 is higher, and the faster the aluminum content of the first semiconductor layer 2a and the third semiconductor layer 2a' is higher. Finally, a second electrode 8 and a first electrode 9 are formed on the current spreading layer 7 and under the gallium arsenide (GaAs) substrate 1, respectively, to form a structure of a light-emitting element 100, as shown in FIG. 3 is a top view of the light-emitting element 100 showing that the outer edge region of the light-emitting element 100 forms aluminum oxide (Al x O y ) layers 2c and 2c', and the inner side is the first semiconductor layer 2a and the third semiconductor which do not generate an oxidation reaction. Layer 2a'.

由於第一布拉格反射結構2與第二布拉格反射結構2’中之第一半導體層2a及第三半導體層2a’經由濕氧製程反應形成氧化鋁(AlxOy)層2c及2c’和未氧化的高鋁含量化合物後,因氧化鋁(AlxOy)層折射率之值1.6較第一半導體層2a,第三半導體層2a’(n>3)小,所形成的布拉格反射結構其反射率(接近100%)相較於傳統布拉格結構反射率(80%)為高,且波長涵蓋範圍較傳統布拉格反射結構為寬。因氧化鋁(AlxOy)層2c及2c’為一絕緣區域,所以電流會流經未氧化的高鋁含量化合物2a及2a’之區域,即電流在第一布拉格反射結構2與第二布拉格反射結構2’中被侷限在特定區域中。 Since the first and second semiconductor layers 2a and 2a of the first Bragg reflection structure 2 and the second Bragg reflection structure 2' are reacted by a wet oxygen process to form aluminum oxide (Al x O y ) layers 2c and 2c' and After the oxidized high aluminum content compound, the value of the refractive index of the alumina (Al x O y ) layer is smaller than that of the first semiconductor layer 2a and the third semiconductor layer 2a'(n>3), and the Bragg reflection structure formed is The reflectance (close to 100%) is higher than the conventional Bragg structure reflectance (80%), and the wavelength coverage is wider than the conventional Bragg reflection structure. Since the aluminum oxide (Al x O y ) layers 2c and 2c' are an insulating region, current flows through the regions of the unoxidized high aluminum content compounds 2a and 2a', that is, the current is in the first Bragg reflection structure 2 and the second The Bragg reflection structure 2' is confined to a specific area.

本發明所列舉之實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易知之修飾或變更皆不脫離本發明之精神與範圍。 The examples of the invention are intended to be illustrative only and not to limit the scope of the invention. Any changes or modifications of the present invention to those skilled in the art will be made without departing from the spirit and scope of the invention.

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧第一布拉格反射結構 2‧‧‧First Bragg reflection structure

2a‧‧‧第一半導體層 2a‧‧‧First semiconductor layer

2b‧‧‧第二半導體層 2b‧‧‧second semiconductor layer

2c‧‧‧氧化鋁層 2c‧‧‧ Alumina layer

2’‧‧‧第二布拉格反射結構 2'‧‧‧second Bragg reflection structure

2a’‧‧‧第三半導體層 2a’‧‧‧ Third semiconductor layer

2b’‧‧‧第四半導體層 2b’‧‧‧ fourth semiconductor layer

2c’‧‧‧氧化鋁層 2c’‧‧‧ Alumina layer

3‧‧‧第一導電性半導體層 3‧‧‧First conductive semiconductor layer

4‧‧‧發光結構 4‧‧‧Lighting structure

5‧‧‧第二導電性半導體層 5‧‧‧Second conductive semiconductor layer

6‧‧‧窗戶層 6‧‧‧Window layer

7‧‧‧電流散佈層 7‧‧‧current distribution layer

8‧‧‧第二電極 8‧‧‧second electrode

9‧‧‧第一電極 9‧‧‧First electrode

10‧‧‧切割道 10‧‧‧ cutting road

11‧‧‧流量計 11‧‧‧ Flowmeter

12‧‧‧加熱器 12‧‧‧heater

13、13a、13b、13c‧‧‧氣體管路 13, 13a, 13b, 13c‧‧‧ gas pipeline

14‧‧‧製程爐管 14‧‧‧Processing furnace tube

15‧‧‧排氣系統 15‧‧‧Exhaust system

16‧‧‧反應器 16‧‧‧Reactor

100‧‧‧發光元件 100‧‧‧Lighting elements

A‧‧‧氮氣 A‧‧‧nitrogen

B‧‧‧水 B‧‧‧Water

C‧‧‧氮氣氣泡 C‧‧‧ nitrogen bubbles

D‧‧‧氮氣及水蒸氣 D‧‧‧Nitrogen and water vapor

第1圖為本發明所揭示之溼氧製程前發光元件之結構剖面示意圖。 BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing the structure of a light-emitting element before wet oxygen processing according to the present invention.

第2圖為本發明所揭示之溼氧製程後發光元件之結構剖 面示意圖。 Figure 2 is a cross-sectional view showing the structure of the light-emitting element after the wet oxygen process disclosed in the present invention. Schematic diagram.

第3圖為本發明所揭示之溼氧製程後發光元件之結構上視圖。 Fig. 3 is a top view showing the structure of the light-emitting element after the wet oxygen process disclosed in the present invention.

第4圖為本發明所揭示之溼氧製程系統示意圖。 Figure 4 is a schematic view of the wet oxygen process system disclosed in the present invention.

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧第一布拉格反射結構 2‧‧‧First Bragg reflection structure

2a‧‧‧第一半導體層 2a‧‧‧First semiconductor layer

2b‧‧‧第二半導體層 2b‧‧‧second semiconductor layer

2c‧‧‧氧化鋁層 2c‧‧‧ Alumina layer

2’‧‧‧第二布拉格反射結構 2'‧‧‧second Bragg reflection structure

2a’‧‧‧第三半導體層 2a’‧‧‧ Third semiconductor layer

2b’‧‧‧第四半導體層 2b’‧‧‧ fourth semiconductor layer

2c’‧‧‧氧化鋁層 2c’‧‧‧ Alumina layer

3‧‧‧第一導電性半導體層 3‧‧‧First conductive semiconductor layer

4‧‧‧發光結構 4‧‧‧Lighting structure

5‧‧‧第二導電性半導體層 5‧‧‧Second conductive semiconductor layer

6‧‧‧窗戶層 6‧‧‧Window layer

7‧‧‧電流散佈層 7‧‧‧current distribution layer

8‧‧‧第二電極 8‧‧‧second electrode

9‧‧‧第一電極 9‧‧‧First electrode

10‧‧‧切割道 10‧‧‧ cutting road

100‧‧‧發光元件 100‧‧‧Lighting elements

Claims (9)

一發光元件之製造方法,包含:提供一基板;形成一第一布拉格反射結構位於該基板之上,其中該第一布拉格反射結構係由複數個第一半導體層與複數個第二半導體層交互堆疊所形成;形成一第二布拉格反射結構位於該第一布拉格反射結構之上,其中該第二布拉格反射結構係由複數個第三半導體層與複數個第四半導體層交互堆疊所形成;形成一發光結構位於該第二布拉格反射結構之上;形成一窗戶層位於該發光結構之上;形成一電流散佈層位於該窗戶層之上;進行一溼氧製程,以於該第一布拉格反射結構與該第二布拉格反射結構形成一氧化區域;及形成一電極於該電流散佈層之上;其中該第二布拉格反射結構的組成材料和該第一布拉格反射結構的組成材料不同。 A method of fabricating a light emitting device, comprising: providing a substrate; forming a first Bragg reflection structure on the substrate, wherein the first Bragg reflection structure is stacked by a plurality of first semiconductor layers and a plurality of second semiconductor layers Forming a second Bragg reflection structure on the first Bragg reflection structure, wherein the second Bragg reflection structure is formed by alternately stacking a plurality of third semiconductor layers and a plurality of fourth semiconductor layers; forming a light emission a structure is disposed on the second Bragg reflection structure; a window layer is formed on the light emitting structure; a current spreading layer is formed on the window layer; and a wet oxygen process is performed to the first Bragg reflection structure and the The second Bragg reflection structure forms an oxidized region; and an electrode is formed over the current spreading layer; wherein a constituent material of the second Bragg reflector structure is different from a constituent material of the first Bragg reflector structure. 如申請專利範圍第1項所述之發光元件之製造方法,其中該氧化區域係氧化該第一布拉格反射結構之該複數個第一半導體層所形成。 The method of manufacturing a light-emitting device according to claim 1, wherein the oxidized region is formed by oxidizing the plurality of first semiconductor layers of the first Bragg reflection structure. 如申請專利範圍第1項所述之發光元件之製造方法,其中該氧化區域係氧化該第二布拉格反射結構之該複數個第三半導體層所形成。 The method of manufacturing a light-emitting device according to claim 1, wherein the oxidized region is formed by oxidizing the plurality of third semiconductor layers of the second Bragg reflection structure. 如申請專利範圍第1項所述之發光元件之製造方法,其中形成該第一布拉格反射結構之第一半導體層/第二半導體層依序由高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量砷化鋁鎵(AlGaAs),高鋁含量磷化鋁銦(AlInP)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁(AlAs)/低鋁含量磷化鋁鎵銦(AlGaInP),或高鋁含量砷化鋁(AlAs)/低鋁含量砷化鋁鎵(AlGaAs)交互堆疊所組成,及/或該第二布拉格反射結構之第三半導體層/第四半導體層依序由高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁鎵(AlGaAs)/低鋁含量砷化鋁鎵(AlGaAs),高鋁含量磷化鋁銦(AlInP)/低鋁含量磷化鋁鎵銦(AlGaInP),高鋁含量砷化鋁(AlAs)/低鋁含量磷化鋁鎵銦(AlGaInP),或高鋁含量砷化鋁(AlAs)/低鋁含量砷化鋁鎵(AlGaAs)交互堆疊所組成。 The method for manufacturing a light-emitting device according to claim 1, wherein the first semiconductor layer/second semiconductor layer forming the first Bragg reflection structure is sequentially composed of a high aluminum content aluminum gallium arsenide (AlGaAs)/low aluminum Aluminium gallium indium arsenide (AlGaInP), high aluminum content aluminum gallium arsenide (AlGaAs) / low aluminum content aluminum gallium arsenide (AlGaAs), high aluminum content aluminum indium phosphide (AlInP) / low aluminum content aluminum phosphide Indium (AlGaInP), high aluminum content aluminum arsenide (AlAs) / low aluminum content aluminum gallium indium (AlGaInP), or high aluminum content aluminum arsenide (AlAs) / low aluminum content aluminum gallium arsenide (AlGaAs) alternately stacked And/or the third semiconductor layer/fourth semiconductor layer of the second Bragg reflection structure is sequentially composed of high aluminum content aluminum gallium arsenide (AlGaAs)/low aluminum content aluminum gallium indium arsenide (AlGaInP), high aluminum Aluminum gallium arsenide (AlGaAs) / low aluminum content aluminum gallium arsenide (AlGaAs), high aluminum content aluminum indium phosphide (AlInP) / low aluminum content aluminum gallium indium arsenide (AlGaInP), high aluminum content aluminum arsenide ( AlAs) / low aluminum content aluminum gallium indium arsenide (AlGaInP), or high aluminum content aluminum arsenide (AlAs) / low aluminum content aluminum gallium arsenide (AlGaAs) alternate stack. 如申請專利範圍第4項所述之發光元件之製造方法,其中高鋁含量化合物中之鋁含量大於0.6。 The method for producing a light-emitting device according to claim 4, wherein the aluminum content in the high aluminum content compound is more than 0.6. 如申請專利範圍第1項所述之發光元件之製造方法,其中該溼氧製程溫度為300~800℃。 The method for producing a light-emitting device according to claim 1, wherein the wet oxygen process temperature is 300 to 800 °C. 如申請專利範圍第6項所述之發光元件之製造方法,其中該溼氧製程係於具有水蒸氣之環境下進行。 The method for producing a light-emitting device according to claim 6, wherein the wet oxygen process is carried out in an environment having water vapor. 如申請專利範圍第1項所述之發光元件之製造方法,其中該氧化區域為一絕緣層。 The method of manufacturing a light-emitting device according to claim 1, wherein the oxidized region is an insulating layer. 如申請專利範圍第1項所述之發光元件之製造方法,其中該氧化區域為氧化鋁(AlxOy)。 The method for producing a light-emitting device according to claim 1, wherein the oxidized region is alumina (Al x O y ).
TW100119178A 2011-05-31 2011-05-31 Light-emitting device TWI495151B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100119178A TWI495151B (en) 2011-05-31 2011-05-31 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100119178A TWI495151B (en) 2011-05-31 2011-05-31 Light-emitting device

Publications (2)

Publication Number Publication Date
TW201248911A TW201248911A (en) 2012-12-01
TWI495151B true TWI495151B (en) 2015-08-01

Family

ID=48138862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119178A TWI495151B (en) 2011-05-31 2011-05-31 Light-emitting device

Country Status (1)

Country Link
TW (1) TWI495151B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111987203B (en) * 2015-06-23 2022-03-29 晶元光电股份有限公司 Semiconductor light emitting element
CN114361304A (en) * 2021-02-20 2022-04-15 兆劲科技股份有限公司 Light-emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355569A (en) * 2000-11-27 2002-06-26 国联光电科技股份有限公司 Structure of LED and its preparing process
TW536843B (en) * 2002-05-09 2003-06-11 Univ Nat Cheng Kung Light emitting diode with improved current spreading
TW558848B (en) * 2002-10-01 2003-10-21 Univ Chang Gung Light-emitting diode structure and the manufacture method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355569A (en) * 2000-11-27 2002-06-26 国联光电科技股份有限公司 Structure of LED and its preparing process
TW536843B (en) * 2002-05-09 2003-06-11 Univ Nat Cheng Kung Light emitting diode with improved current spreading
TW558848B (en) * 2002-10-01 2003-10-21 Univ Chang Gung Light-emitting diode structure and the manufacture method

Also Published As

Publication number Publication date
TW201248911A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
US8124985B2 (en) Semiconductor light emitting device and method for manufacturing the same
TW200525782A (en) Photonic crystal light emitting device
CN109716542B (en) Semiconductor device with a plurality of transistors
Liu et al. Optoelectronic devices based on the integration of halide perovskites with silicon-based materials
Sun et al. Light extraction enhancement of bulk GaN light-emitting diode with hemisphere-cones-hybrid surface
Zhang et al. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones
TWI528579B (en) Light emitting diode device
US10868213B2 (en) LED utilizing internal color conversion with light extraction enhancements
KR101101858B1 (en) Light emitting diode and fabrication method thereof
CN115602764A (en) Semiconductor device and semiconductor device package including the same
TWI714146B (en) Led utilizing internal color conversion with light extraction enhancements
TWI399871B (en) Optical device and the forming method thereof
CN108682727A (en) A kind of light-emitting diode chip for backlight unit and preparation method thereof
Guo et al. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO 2/Al 2 O 3 passivation layers and TiO 2/Al 2 O 3 DBR backside reflector
JP2022153366A (en) Semiconductor element and semiconductor element package including the same
TW201603315A (en) Light-emitting device
TWI495151B (en) Light-emitting device
TWI429110B (en) Light emitting device with autocloning photonic crystals and manufacturing method thereof
JP2009059851A (en) Semiconductor light emitting diode
Jeong et al. Optimal length of ZnO nanorods for improving the light-extraction efficiency of blue InGaN light-emitting diodes
TWI559570B (en) Light-emitting device
Park et al. Al2O3/AlN/Al-based backside diffuse reflector for high-brightness 370-nm AlGaN ultraviolet light-emitting diodes
CN107482098A (en) A kind of film LED chip structure
CN102832296B (en) The manufacture method of luminescence component
JP6109311B2 (en) Reflective contact layer system for optoelectronic components and method of manufacturing a reflective contact layer system for optoelectronic components