TWI495099B - Heterojunction bipolar transistor with improved current gain and a fabrication method thereof - Google Patents

Heterojunction bipolar transistor with improved current gain and a fabrication method thereof Download PDF

Info

Publication number
TWI495099B
TWI495099B TW101119723A TW101119723A TWI495099B TW I495099 B TWI495099 B TW I495099B TW 101119723 A TW101119723 A TW 101119723A TW 101119723 A TW101119723 A TW 101119723A TW I495099 B TWI495099 B TW I495099B
Authority
TW
Taiwan
Prior art keywords
layer
emitter
electrode
collector
base
Prior art date
Application number
TW101119723A
Other languages
Chinese (zh)
Other versions
TW201351638A (en
Inventor
H P Xiao
Galen Hsieh
Original Assignee
Win Semiconductors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Win Semiconductors Corp filed Critical Win Semiconductors Corp
Priority to TW101119723A priority Critical patent/TWI495099B/en
Publication of TW201351638A publication Critical patent/TW201351638A/en
Application granted granted Critical
Publication of TWI495099B publication Critical patent/TWI495099B/en

Links

Landscapes

  • Bipolar Transistors (AREA)

Description

具高電流增益之異質接面雙極電晶體結構及其製程方法Heterojunction bipolar crystal structure with high current gain and its manufacturing method

本發明係有關一種異質接面雙極電晶體改良結構及其製程方法,尤指一種採用了一p型摻雜緩衝層於異質接面雙極電晶體之集極層與基板之間,使元件達到高電流增益性質之異質接面雙極電晶體改良結構及其製程方法。The invention relates to a modified structure of a heterojunction bipolar transistor and a process method thereof, in particular to a component using a p-type doping buffer layer between a collector layer of a heterojunction bipolar transistor and a substrate A modified structure of a heterojunction bipolar transistor that achieves high current gain properties and a process method thereof.

高電流增益之異質接面雙極電晶體(Heterojunction Bipolar Transistor;HBT)具有高效率、高線性、高功率密度以及面積小等優點,常被應用在無線通訊作為微波功率放大器,是通訊電子市場非常重要的元件之一。High current gain Heterojunction Bipolar Transistor (HBT) has the advantages of high efficiency, high linearity, high power density and small area. It is often used in wireless communication as a microwave power amplifier, which is very important in the communication electronics market. One of the important components.

第1圖係為一傳統異質接面雙極電晶體之磊晶層結構剖面示意圖。該磊晶層結構係形成於一基板101上,依序包含一次集極層107、一集極層109、一基極層111、一射極層113、一射極覆蓋層115以及一射極接觸層117。Figure 1 is a schematic cross-sectional view showing the structure of an epitaxial layer of a conventional heterojunction bipolar transistor. The epitaxial layer structure is formed on a substrate 101, and includes a primary collector layer 107, a collector layer 109, a base layer 111, an emitter layer 113, an emitter cover layer 115, and an emitter. Contact layer 117.

透過磊晶依序成長該元件之層狀結構後,即可進行基極電極121、集極電極119與射極電極123之製程步驟。首先可利用傳統曝光顯影技術與蝕刻製程技術,定義出一基極電極接觸區以及一集極電極接觸區;透過控制蝕刻製程,可使基極電極接觸區之蝕刻製程終止於基極層111,而集極電極接觸區之蝕刻製程則蝕刻終止於次集極層107;基極電極121係設置在基極電極接觸區內,並且與該基極層111形成歐姆接觸;在集極電極接觸區內,設置該 集極電極119,並且與該次集極層107形成歐姆接觸。射極電極123則直接設置在射極接觸層117之上,並且形成歐姆接觸。After the layered structure of the element is sequentially grown by epitaxy, the process of the base electrode 121, the collector electrode 119 and the emitter electrode 123 can be performed. First, a conventional electrode exposure and etching process technology can be used to define a base electrode contact region and a collector electrode contact region. By controlling the etching process, the etching process of the base electrode contact region can be terminated at the base layer 111. The etching process of the collector electrode contact region is etched to terminate in the sub-collector layer 107; the base electrode 121 is disposed in the base electrode contact region and forms an ohmic contact with the base layer 111; in the collector electrode contact region Set this The collector electrode 119 is in ohmic contact with the sub-collector layer 107. The emitter electrode 123 is disposed directly over the emitter contact layer 117 and forms an ohmic contact.

以傳統異質接面雙極電晶體結構而言,達到高電流增益特性並不容易。一般認為元件的電流增益特性與集極或次集極層的晶體品質有很大的關連性。目前已知影響元件之電流增益有兩大因素。第一個因素是基板101中的晶格錯位(dislocation)缺陷,通常會在磊晶過程中往上傳遞延伸至次集極層,進而影響異質接面雙極電晶體之元件電流增益。第二個因素則是次集極層的高濃度摻雜。在一般情形下,為了改善電晶體之元件特性,必須降低集極電極119之電阻率,通常會透過提高次集極層107的n型掺雜濃度(通常該掺雜雜質為矽Si),但隨著掺雜濃度提高,該次集極層107之磊晶缺陷密度也隨著提高,進而導致電流增益下降。In the case of a conventional heterojunction bipolar transistor structure, achieving high current gain characteristics is not easy. It is generally believed that the current gain characteristics of the component are highly correlated with the crystal quality of the collector or subcollector. It is currently known that there are two major factors contributing to the current gain of an element. The first factor is the lattice dislocation defect in the substrate 101, which usually propagates up to the sub-collector during the epitaxy process, thereby affecting the component current gain of the heterojunction bipolar transistor. The second factor is the high concentration doping of the secondary collector layer. In general, in order to improve the element characteristics of the transistor, it is necessary to lower the resistivity of the collector electrode 119, usually by increasing the n-type doping concentration of the sub-collector layer 107 (usually the doping impurity is 矽Si), but As the doping concentration increases, the epitaxial defect density of the sub-collector layer 107 also increases, which in turn causes the current gain to decrease.

為解決上述第一個因素,先前技術已提出一種方法,可以有效抑制基板之晶格錯位缺陷往上延伸至元件層,進而改善元件的對電流增益。如第2圖所示,係為另一先前技術之異質接面雙極電晶體之磊晶層結構剖面示意圖。此結構基本上與第1圖所示之結構大致相同,惟,在該基板101與該次集極層107之間,設置一緩衝層103。此緩衝層103之材料係為氧摻雜之砷化鋁鎵(i-AlGaAs:O),藉此可以抑制基板101晶格錯位缺陷往上層元件之次集極層傳遞,進而使異質接面雙極電晶體維持高電流增益。In order to solve the above first factor, the prior art has proposed a method for effectively suppressing the lattice misalignment defects of the substrate from extending upward to the element layer, thereby improving the current gain of the element. As shown in FIG. 2, it is a schematic cross-sectional view of an epitaxial layer structure of another prior art heterojunction bipolar transistor. This structure is substantially the same as the structure shown in FIG. 1, except that a buffer layer 103 is provided between the substrate 101 and the sub-collector layer 107. The material of the buffer layer 103 is oxygen-doped aluminum gallium arsenide (i-AlGaAs: O), thereby suppressing the lattice misalignment defect of the substrate 101 to the sub-collector layer of the upper layer element, thereby making the heterojunction double The polar crystal maintains a high current gain.

對於上述之第二個因素,另一先前技術亦提出另一種元件結構,可改善因該次集極層107重度掺雜所導致元件電流增益下降的問題。如第3圖所示,係為該磊晶層結構剖面示意圖。其主要結構與第1圖所示之結構大致相同,惟,在該基板101與該次集 極層107之間,又設置一單原子掺雜層105。其中該單原子掺雜層105係為一厚度僅有單原子層之摻雜層(又稱為δ-doped layer或planer doping layer),而掺雜元素通常係為矽(Si),藉此可以抑制該次集極層107因重度掺雜所產生之缺陷,進而使該電晶體維持高電流增益。For the second factor described above, another prior art also proposes another element structure that can improve the problem of a decrease in component current gain due to heavy doping of the collector layer 107. As shown in Fig. 3, it is a schematic cross-sectional view of the epitaxial layer structure. The main structure is substantially the same as the structure shown in Fig. 1, except that the substrate 101 and the sub-set Between the pole layers 107, a single atom doped layer 105 is further disposed. The monoatomic doped layer 105 is a doped layer (also referred to as a δ-doped layer or a planar doping layer) having a thickness of only a single atomic layer, and the doping element is usually yttrium (Si). The defect of the collector layer 107 due to heavy doping is suppressed, and the transistor is maintained at a high current gain.

為了同時解決上述影響元件電流增益之兩大因素,本發明提出一種異質接面雙極電晶體之改良結構及其製程方法,不但可以抑制由基板101晶格錯位缺陷往元件結構層傳遞,並且可以抑制該次集極層107因重度掺雜所產生的缺陷。本發明之改良結構除了解決上述文題,亦可同時降低集極電極119之電阻率,進而提高元件之電流增益及元件特性的可靠度。In order to simultaneously solve the above two factors affecting the current gain of the component, the present invention provides an improved structure of a heterojunction bipolar transistor and a process method thereof, which can not only inhibit the transfer of the lattice displacement defect of the substrate 101 to the component structure layer, but also The defects of the collector layer 107 due to heavy doping are suppressed. In addition to solving the above problems, the improved structure of the present invention can simultaneously reduce the resistivity of the collector electrode 119, thereby improving the current gain of the device and the reliability of the device characteristics.

本發明之主要目的在於提供一種異質接面雙極電晶體改良結構及其製程方法,其中於基板及次集極層之間,增加一p型摻雜緩衝層,藉以吸收次集極層中在磊晶過程中因矽(Si)重度摻雜所產生之鎵(Ga)空缺,並抑制基板之晶格錯位缺陷往元件層傳遞。藉由選擇構成該p型摻雜緩衝層之適當材料及摻雜元素,並最佳化摻雜濃度,即可調整出所需特性之電晶體結構,同時亦可大幅降低其導通電阻率,進而提高元件之電流增益及元件特性的可靠度。The main object of the present invention is to provide a modified structure of a heterojunction bipolar transistor and a process method thereof, wherein a p-type doping buffer layer is added between the substrate and the sub-collector layer, thereby absorbing the sub-collector layer. During the epitaxial process, gallium (Ga) vacancies due to heavy doping of bismuth (Si) are suppressed, and lattice misalignment defects of the substrate are suppressed from being transmitted to the element layer. By selecting appropriate materials and doping elements constituting the p-type doping buffer layer and optimizing the doping concentration, the transistor structure of the desired characteristics can be adjusted, and the on-resistance can be greatly reduced, thereby further reducing the on-resistance. Improve the current gain of components and the reliability of component characteristics.

為了達到上述之目的,本發明提供一種異質接面雙極電晶體改良結構,由下而上依序包括一基板、一p型摻雜緩衝層、一次集極層、一集極層、一基極層及一射極層;於該基極層之一端,設置一基極電極;於該次集極層之一端設置一集極電極;於該射 極層上設置一射極電極。In order to achieve the above object, the present invention provides a modified structure of a heterojunction bipolar transistor, which comprises a substrate, a p-type doped buffer layer, a primary collector layer, a collector layer, and a base from bottom to top. a pole layer and an emitter layer; at one end of the base layer, a base electrode is disposed; and a collector electrode is disposed at one end of the collector layer; An emitter electrode is disposed on the pole layer.

本發明亦提供一種異質接面雙極電晶體改良結構之製程方法,包括以下步驟:於一基板上,依序形成一p型摻雜緩衝層、一次集極層、一集極層、一基極層及一射極層;以曝光顯影技術於射極層上定義出一基極電極接觸區,並對該基極電極接觸區進行蝕刻,透過控制蝕刻製程,使蝕刻製程終止於該基極層;於該基極電極接觸區之內,以曝光顯影技術定義一集極電極接觸區,並對該集極電極接觸區進行蝕刻,使蝕刻製程終止於該次集極層;在該基極電極接觸區內之基極層上,設置一基極電極,並使該基極電極與該基極層形成歐姆接觸;在該集極電極接觸區內之次集極層上,設置一集極電極,並使該集極電極與該次集極層形成歐姆接觸;以及在該射極層上,設置一射極電極,使該射極電極與該射極層形成歐姆接觸。The invention also provides a method for fabricating a modified structure of a heterojunction bipolar transistor, comprising the steps of: sequentially forming a p-type doped buffer layer, a primary collector layer, a collector layer, and a base on a substrate. a pole layer and an emitter layer; a base electrode contact region is defined on the emitter layer by exposure development, and the base electrode contact region is etched, and the etching process is controlled to terminate the etching process at the base a layer; a collector electrode contact region is defined by the exposure developing technique, and the collector electrode contact region is etched to terminate the etching process in the collector layer; at the base a base electrode is disposed on the base layer in the electrode contact region, and the base electrode is in ohmic contact with the base layer; and a collector is disposed on the sub-collector layer in the contact region of the collector electrode An electrode, and the collector electrode is in ohmic contact with the sub-collector; and an emitter electrode is disposed on the emitter layer to form an ohmic contact with the emitter layer.

於實施時,亦可在上述之結構與方法當中,於該射極層及該射極電極之間,設置一射極覆蓋層,並使該射極電極與該射極覆蓋層形成歐姆接觸。又,亦可在該射極層及該射極電極之間,設置一射極接觸層,並使該射極電極與該射極接觸層形成歐姆接觸,亦可在該射極層與該射極接觸層之間,設置一射極覆蓋層。In an implementation, in the above structure and method, an emitter cap layer is disposed between the emitter layer and the emitter electrode, and the emitter electrode is in ohmic contact with the emitter cap layer. In addition, an emitter contact layer may be disposed between the emitter layer and the emitter electrode, and the emitter electrode and the emitter contact layer may be in ohmic contact, and the emitter layer may be coupled to the emitter layer. An emitter cover layer is disposed between the contact layers.

於實施時,前述構成該p型摻雜緩衝層之半導體材料係可為 砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)、磷化銦鋁(InAlP)、磷砷化銦鎵(InGaAsP)或磷化鋁鎵銦(AlGaInP)。In implementation, the semiconductor material structure constituting the p-type doping buffer layer may be Gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), indium aluminum phosphide (InAlP), indium gallium arsenide (InGaAsP) or aluminum gallium indium phosphide (AlGaInP).

於實施時,前述構成該p型摻雜緩衝層之摻雜材料係可為碳(C)、鋅(Zn)、鎂(Mg)、鈹(Be)、硫(S)、碲(Te)、或以上材料之組合者。In the implementation, the doping material constituting the p-type doping buffer layer may be carbon (C), zinc (Zn), magnesium (Mg), beryllium (Be), sulfur (S), antimony (Te), Or a combination of the above materials.

於實施時,前述該p型摻雜緩衝層之較佳厚度係為大於10Å小於10000Å者。In the implementation, the preferred thickness of the p-type doped buffer layer is greater than 10 Å and less than 10,000 Å.

為對於本發明之特點與作用能有更深入之瞭解,茲藉實施例配合圖式詳述於後。For a better understanding of the features and functions of the present invention, the embodiments are described in detail below with reference to the drawings.

第4圖即為本發明之異質接面雙極電晶體改良結構之磊晶層結構剖面示意圖,其包含一基板201、一p型摻雜緩衝層203、一次集極層207、一集極層209、一基極層211、一射極層213、一集極電極219、一基極電極221以及一射極電極223。4 is a schematic cross-sectional view showing an epitaxial layer structure of the heterojunction bipolar transistor improved structure of the present invention, comprising a substrate 201, a p-type doping buffer layer 203, a primary collector layer 207, and a collector layer. 209, a base layer 211, an emitter layer 213, a collector electrode 219, a base electrode 221, and an emitter electrode 223.

在本發明之結構中,該基板201通常可為半絕緣之砷化鎵(GaAs)基板。該p型摻雜緩衝層203係透過磊晶成長技術形成於該基板201之上。習知之磊晶成長技術包括分子束磊晶(Molecular Beam Epitaxy,MBE)技術或金屬有機化學氣相沉積(Metal-organic Chemical Vapor Deposition,MOCVD)技術。該p型摻雜緩衝層材料可為砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)、磷化銦鋁(InAlP)、磷砷化銦鎵(InGaAsP)或磷化鋁鎵銦(AlGaInP);且其中該p型摻雜緩衝層之摻雜材料係可 為碳(C)、鋅(Zn)、鎂(Mg)、鈹(Be)、硫(S)、碲(Te)、或以上材料之組合者;且該p型摻雜緩衝層之厚度係為大於10Å小於10000Å者。形成該p型摻雜緩衝層203後,可接續磊晶成長該次集極層207於其上。通常該次集極層207是由n型砷化鎵(GaAs)所構成,通常都會摻雜高濃度之矽(Si)。該集極層209係形成於該次集極層207之上,通常該集極層209也是由n型砷化鎵(GaAs)所構成,且通常以矽(Si)為摻雜材料。該基極層211係形成於該集極層209之上,且由p型砷化鎵(GaAs)所構成,其摻雜材料通常是碳(C)或其他p型摻雜材料。最後以形成該射極層213於該基極層211之上完成該磊晶層結構的製作,該射極層213係由n型磷化銦鎵(InGaP)所構成,而摻雜材料通常是矽(Si)。In the construction of the present invention, the substrate 201 can typically be a semi-insulating gallium arsenide (GaAs) substrate. The p-type doped buffer layer 203 is formed on the substrate 201 by an epitaxial growth technique. Conventional epitaxial growth techniques include Molecular Beam Epitaxy (MBE) technology or Metal-organic Chemical Vapor Deposition (MOCVD) technology. The p-type doped buffer layer material may be gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), indium phosphide (InAlP), indium gallium arsenide (InGaAsP) or Aluminum gallium indium phosphide (AlGaInP); and wherein the doping material of the p-type doping buffer layer is a combination of carbon (C), zinc (Zn), magnesium (Mg), bismuth (Be), sulfur (S), cerium (Te), or the like; and the thickness of the p-type doping buffer layer is More than 10 Å less than 10000 Å. After the p-type doping buffer layer 203 is formed, the epitaxial layer 207 can be grown by epitaxial growth. Usually, the collector layer 207 is made of n-type gallium arsenide (GaAs), and is usually doped with a high concentration of germanium (Si). The collector layer 209 is formed on the sub-collector layer 207. Usually, the collector layer 209 is also made of n-type gallium arsenide (GaAs), and is usually doped with germanium (Si). The base layer 211 is formed on the collector layer 209 and is composed of p-type gallium arsenide (GaAs), and the doping material is usually carbon (C) or other p-type dopant material. Finally, the epitaxial layer structure is formed on the base layer 211 by forming the emitter layer 213. The emitter layer 213 is composed of n-type indium gallium phosphide (InGaP), and the doping material is usually矽 (Si).

第8圖係顯示本發明異質接面雙極電晶體改良結構之製程方法之一實施例之流程圖。如步驟A所示,先透過磊晶成長技術依序成長該元件之層狀結構,之後再如步驟B~F所示進行基極電極、集極電極與射極電極之製程步驟。首先可利用傳統曝光顯影技術於射極層213上定義出一基極電極接觸區,以乾式蝕刻或濕式化學蝕刻製程移除位於該基極電極接觸區內之射極層213,透過控制乾式蝕刻製程的時間或於濕式蝕刻製程中選用適當的溶液以達到射極與基極層材料間的選擇性蝕刻,使蝕刻終止於該基極層211;製作完成該基極電極接觸區之後,再於該基極電極接觸區之內以曝光顯影技術定義一集極電極接觸區;蝕刻位於該集極電極接觸區內之基極層211以及集極層209,並藉由控制蝕刻製程使蝕刻終止於次集極層207;在該基極電極接觸區內設置一基極電極221,並使該基極電極221與該基極層211形成歐姆接觸;在該集 極電極接觸區內設置一集極電極219,並使該集極電極219與該次集極層207形成歐姆接觸;在該射極層213上設置一射極電極223,並使該射極電極223與該射極層213形成歐姆接觸。Figure 8 is a flow chart showing one embodiment of a process for improving the structure of the heterojunction bipolar transistor of the present invention. As shown in step A, the layered structure of the element is sequentially grown by the epitaxial growth technique, and then the steps of the base electrode, the collector electrode and the emitter electrode are performed as shown in steps B to F. First, a base electrode contact region can be defined on the emitter layer 213 by using a conventional exposure and development technique, and the emitter layer 213 located in the contact region of the base electrode is removed by a dry etching or wet chemical etching process. Etching process time or selecting a suitable solution in the wet etching process to achieve selective etching between the emitter and the base layer material, so that the etching terminates at the base layer 211; after the base electrode contact region is completed, Forming a collector electrode contact region by exposure development technology within the base electrode contact region; etching the base layer 211 and the collector layer 209 located in the collector electrode contact region, and etching by controlling the etching process Terminating in the secondary collector layer 207; providing a base electrode 221 in the base electrode contact region, and causing the base electrode 221 to form an ohmic contact with the base layer 211; A collector electrode 219 is disposed in the contact region of the electrode, and the collector electrode 219 is in ohmic contact with the collector layer 207; an emitter electrode 223 is disposed on the emitter layer 213, and the emitter electrode is disposed 223 forms an ohmic contact with the emitter layer 213.

請參閱第5圖所示,係為本發明之另一實施例之剖面結構示意圖。其主要結構與第4圖所示之實施例大致相同,惟,在該射極層213與該射極電極223之間,設置一射極覆蓋層215,通常該射極覆蓋層215係以矽(Si)摻雜之n型砷化鎵(GaAs)構成為較佳,該射極覆蓋層215亦可由一n型砷化鋁鎵(AlGaAs)層或複數層n型砷化鎵層/砷化鋁鎵(GaAs/AlGaAs)層之混合組成所構成;因為射極覆蓋層215的設置,在製作該基極電極接觸區(第8圖之步驟B)時需增加一道蝕刻製程,先蝕刻位於該基極電極接觸區內之射極覆蓋層215,之後再蝕刻位於該基極電極接觸區內之射極層213;於該射極覆蓋層215上設置一射極電極223,並使該射極電極223與該射極覆蓋層215形成歐姆接觸。Please refer to FIG. 5, which is a schematic cross-sectional view of another embodiment of the present invention. The main structure is substantially the same as that of the embodiment shown in FIG. 4. However, an emitter cover layer 215 is disposed between the emitter layer 213 and the emitter electrode 223. Generally, the emitter cover layer 215 is 矽. (Si) doped n-type gallium arsenide (GaAs) is preferably formed. The emitter cap layer 215 may also be an n-type aluminum gallium arsenide (AlGaAs) layer or a plurality of layers of n-type gallium arsenide layer/arsenic. A mixture of aluminum gallium (GaAs/AlGaAs) layers is formed; because of the arrangement of the emitter cap layer 215, an etching process is added to the base electrode contact region (step B of FIG. 8), and the etching is performed first. An emitter cover layer 215 in the base electrode contact region, and then an emitter layer 213 located in the contact region of the base electrode; an emitter electrode 223 is disposed on the emitter cap layer 215, and the emitter is disposed Electrode 223 forms an ohmic contact with the emitter cap layer 215.

再請參閱第6圖所示,係為本發明之另一實施例之剖面結構示意圖。其主要結構與第4圖所示之實施例大致相同,惟,在該射極層213與該射極電極223之間,設置一射極接觸層217,通常該射極接觸層217是由n型砷化銦鎵(InGaAs)所構成,其摻雜材料以碲(Te)、矽(Si)等材料為較佳;在蝕刻位於該基極電極接觸區內之射極層213(第8圖之步驟B)之前,需增加一道蝕刻製程用以蝕刻該射極接觸層217;在此結構中,該射極電極223係與該射極接觸層217形成歐姆接觸。Referring to FIG. 6 again, it is a schematic cross-sectional view of another embodiment of the present invention. The main structure is substantially the same as that of the embodiment shown in FIG. 4, except that an emitter contact layer 217 is disposed between the emitter layer 213 and the emitter electrode 223. Generally, the emitter contact layer 217 is n. Indium gallium arsenide (InGaAs), the doping material is preferably made of bismuth (Te) or bismuth (Si); etching the emitter layer 213 in the contact region of the base electrode (Fig. 8 Prior to step B), an etching process is added to etch the emitter contact layer 217; in this configuration, the emitter electrode 223 is in ohmic contact with the emitter contact layer 217.

再請參閱第7圖所示,係為本發明之另一實施例之剖面結構示意圖。其主要結構與第6圖所示之實施例大致相同,惟,在該 射極層213與該射極接觸層217之間,設置一射極覆蓋層215,通常該射極覆蓋層215是由n型砷化鎵(GaAs)、n型砷化鋁鎵(AlGaAs)、或n型砷化鎵/砷化鋁鎵(GaAs/AlGaAs)之混合組成所構成,其摻雜材料以矽(Si)等材料為較佳;製作該基極電極接觸區時,在蝕刻位於該基極電極接觸區內之射極接觸層217以及位於該基極電極接觸區內之射極層213之間,需增加一道蝕刻製程,用以蝕刻位於該基極電極接觸區內之射極覆蓋層215。Referring to FIG. 7, FIG. 7 is a schematic cross-sectional view showing another embodiment of the present invention. The main structure is substantially the same as the embodiment shown in Fig. 6, but An emitter cap layer 215 is disposed between the emitter layer 213 and the emitter contact layer 217. Generally, the emitter cap layer 215 is made of n-type gallium arsenide (GaAs), n-type aluminum gallium arsenide (AlGaAs), Or a mixture of n-type gallium arsenide/aluminum gallium arsenide (GaAs/AlGaAs), the doping material is preferably a material such as germanium (Si); when the base electrode contact region is formed, the etching is located at the An emitter etching process is performed between the emitter contact layer 217 in the contact region of the base electrode and the emitter layer 213 in the contact region of the base electrode for etching the emitter cover in the contact region of the base electrode. Layer 215.

綜上所述,本發明確實可達到預期之目的,而提供一種於一緩衝層採用了一p型摻雜緩衝層以改善電流增益之異質接面雙極電晶體,大幅降低其導通電阻率,並可同時增強其放大器之放大效率,增加電流增益,本發明並提供生產具有良好元件可靠度之製程方法。其確具產業利用之價值,爰依法提出專利申請。In summary, the present invention can achieve the intended purpose, and provides a heterojunction bipolar transistor which uses a p-type doping buffer layer to improve current gain in a buffer layer, and greatly reduces its on-resistance. The amplification efficiency of the amplifier can be enhanced at the same time, and the current gain is increased. The present invention also provides a process method for producing good component reliability. It does have the value of industrial use, and patent applications are filed according to law.

又上述說明與圖式僅是用以說明本發明之實施例,凡熟於此業技藝之人士,仍可做等效的局部變化與修飾,其並未脫離本發明之技術與精神。The above description and drawings are merely illustrative of the embodiments of the present invention, and those of ordinary skill in the art can

101‧‧‧基板101‧‧‧Substrate

103‧‧‧緩衝層103‧‧‧buffer layer

105‧‧‧單原子摻雜層105‧‧‧monoatomic doped layer

107‧‧‧次集極層107‧‧‧ times collector

109‧‧‧集極層109‧‧‧ Collector

111‧‧‧基極層111‧‧‧ base layer

113‧‧‧射極層113‧‧ ‧ emitter layer

115‧‧‧射極覆蓋層115‧‧ ‧ emitter cover

117‧‧‧射極接觸層117‧‧ ‧ emitter contact layer

119‧‧‧集極電極119‧‧‧ Collector electrode

121‧‧‧基極電極121‧‧‧ base electrode

123‧‧‧射極電極123‧‧ ‧ emitter electrode

201‧‧‧基板201‧‧‧Substrate

203‧‧‧p型摻雜緩衝層203‧‧‧p type doping buffer layer

207‧‧‧次集極層207‧‧‧ times collector

209‧‧‧集極層209‧‧‧ Collector

211‧‧‧基極層211‧‧‧ base layer

213‧‧‧射極層213‧‧ ‧ emitter layer

215‧‧‧射極覆蓋層215‧‧ ‧ emitter cover

217‧‧‧射極接觸層217‧‧ ‧ emitter contact layer

219‧‧‧集極電極219‧‧‧ Collector electrode

221‧‧‧基極電極221‧‧‧ base electrode

223‧‧‧射極電極223‧‧ ‧ emitter electrode

第1圖 係為一傳統異質接面雙極電晶體之磊晶層結構剖面示意圖。Figure 1 is a schematic cross-sectional view showing the structure of an epitaxial layer of a conventional heterojunction bipolar transistor.

第2圖 係為另一先前技術之異質接面雙極電晶體之磊晶層結構剖面示意圖。Figure 2 is a schematic cross-sectional view showing the epitaxial layer structure of another prior art heterojunction bipolar transistor.

第3圖 係為再一先前技術之異質接面雙極電晶體之磊晶層結構剖面示意圖。Fig. 3 is a schematic cross-sectional view showing the structure of an epitaxial layer of a heterojunction bipolar transistor of the prior art.

第4~7圖 係為本發明之異質接面雙極電晶體改良結構之數種實施例之磊晶層結構剖面示意圖。4 to 7 are schematic cross-sectional views showing the structure of the epitaxial layer of several embodiments of the heterojunction bipolar transistor modified structure of the present invention.

第8圖 係為本發明異質接面雙極電晶體改良結構之製程方法之一實施例之流程圖。Figure 8 is a flow chart showing one embodiment of a process for improving the structure of a heterojunction bipolar transistor of the present invention.

201‧‧‧基板201‧‧‧Substrate

203‧‧‧p型摻雜緩衝層203‧‧‧p type doping buffer layer

207‧‧‧次集極層207‧‧‧ times collector

209‧‧‧集極層209‧‧‧ Collector

211‧‧‧基極層211‧‧‧ base layer

213‧‧‧射極層213‧‧ ‧ emitter layer

215‧‧‧射極覆蓋層215‧‧ ‧ emitter cover

217‧‧‧射極接觸層217‧‧ ‧ emitter contact layer

219‧‧‧集極電極219‧‧‧ Collector electrode

221‧‧‧基極電極221‧‧‧ base electrode

223‧‧‧射極電極223‧‧ ‧ emitter electrode

Claims (15)

一種異質接面雙極電晶體結構,包括:一基板;一p型摻雜緩衝層,係形成於該基板之上;一次集極層,係形成於該p型摻雜緩衝層之上;一集極層,係形成於該次集極層之上;一基極層,係形成於該集極層之上;一射極層,係形成於該基極層之上;一集極電極,係設置於該次集極層之一端;一基極電極,係設置於該基極層之一端;一射極電極,係設置於該射極層之上;其中該p型摻雜緩衝層之摻雜材料係選自於由下列所組成之群組:碳(C)、鋅(Zn)、鎂(Mg)、鈹(Be)、硫(S)、碲(Te)、以及上述材料之組合物。 A heterojunction bipolar transistor structure comprising: a substrate; a p-type doped buffer layer formed on the substrate; a primary collector layer formed on the p-type doped buffer layer; a collector layer is formed on the sub-collector layer; a base layer is formed on the collector layer; an emitter layer is formed on the base layer; a collector electrode, Is disposed at one end of the collector layer; a base electrode is disposed at one end of the base layer; an emitter electrode is disposed on the emitter layer; wherein the p-type doped buffer layer The doping material is selected from the group consisting of carbon (C), zinc (Zn), magnesium (Mg), beryllium (Be), sulfur (S), tellurium (Te), and combinations thereof. Things. 如申請專利範圍第1項所述之異質接面雙極電晶體結構,其中構成該p型摻雜緩衝層之材料係為砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)、磷化銦鋁(InAlP)、磷砷化銦鎵(InGaAsP)或磷化鋁鎵銦(AlGaInP)。 The heterojunction bipolar transistor structure according to claim 1, wherein the material constituting the p-type doping buffer layer is gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium phosphide. Gallium (InGaP), indium phosphide (InAlP), indium gallium arsenide (InGaAsP) or aluminum gallium indium phosphide (AlGaInP). 如申請專利範圍第1項所述之高電流增益異質接面雙極電晶體結構,其中該p型摻雜緩衝層之厚度係為大於10Å、小於10000Å者。 The high current gain heterojunction bipolar transistor structure according to claim 1, wherein the p-type doping buffer layer has a thickness greater than 10 Å and less than 10000 Å. 如申請專利範圍第1項所述之異質接面雙極電晶體結構,其中介於該射極層與該射極電極之間,更設置一射極覆蓋層。 The heterojunction bipolar transistor structure of claim 1, wherein an emitter cover layer is disposed between the emitter layer and the emitter electrode. 如申請專利範圍第4項所述之異質接面雙極電晶體結構,其中介於該射極覆蓋層與該射極電極之間,更設置一射極接觸層。 The heterojunction bipolar transistor structure of claim 4, wherein an emitter contact layer is disposed between the emitter cover layer and the emitter electrode. 如申請專利範圍第1項所述之異質接面雙極電晶體結構,其中介於該射極層與該射極電極之間,更設置一射極接觸層。 The heterojunction bipolar transistor structure of claim 1, wherein an emitter contact layer is disposed between the emitter layer and the emitter electrode. 一種異質接面雙極電晶體改良結構之製程方法,包括以下步驟:於一基板上,依序形成一p型摻雜緩衝層、一次集極層、一集極層、一基極層、一射極層;以曝光顯影技術定義出一基極電極接觸區,並對該基極電極接觸區進行蝕刻,透過控制蝕刻製程,使蝕刻終止於該基極層;於該基極電極接觸區之內,以曝光顯影技術定義出一集極電極接觸區,並對該集極電極接觸區進行蝕刻,透過控制蝕刻製程,使蝕刻終止於該次集極層;在該集極電極接觸區內設置一集極電極,並使該集極電極與該次集極層形成歐姆接觸;在該基極電極接觸區內,該基極層之上,設置一基極電極,並使該基極電極與該基極層形成歐姆接觸;以及在該射極層上,設置一射極電極。 A method for fabricating a modified structure of a heterojunction bipolar transistor comprises the steps of: sequentially forming a p-type doped buffer layer, a primary collector layer, a collector layer, a base layer, and a substrate on a substrate An emitter layer; a base electrode contact region is defined by exposure development technology, and the base electrode contact region is etched, and the etching process is terminated to control the etching process to terminate the base layer; and the base electrode contact region is a collector electrode contact region is defined by exposure development technology, and the collector electrode contact region is etched, and the etching process is terminated by the etching process to terminate the etching in the collector layer; a collector electrode, and the collector electrode is in ohmic contact with the sub-collector; in the base electrode contact region, a base electrode is disposed on the base layer, and the base electrode is The base layer forms an ohmic contact; and on the emitter layer, an emitter electrode is disposed. 如申請專利範圍第7項所述之製程方法,其中構成該p型摻雜緩衝層之材料係為砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)、磷化銦鋁(InAlP)、磷砷化銦鎵(InGaAsP)或磷化鋁鎵銦(AlGaInP)。 The process of claim 7, wherein the material constituting the p-type doping buffer layer is gallium arsenide (GaAs), aluminum gallium arsenide (AlGaAs), indium gallium phosphide (InGaP), phosphorus. Indium aluminum (InAlP), indium gallium arsenide (InGaAsP) or aluminum gallium indium phosphide (AlGaInP). 如申請專利範圍第7項所述之製程方法,其中該p型摻雜緩衝 層之摻雜材料係選自於由下列所組成之群組:碳(C)、鋅(Zn)、鎂(Mg)、鈹(Be)、硫(S)、碲(Te)、以及前述材料之組合物。 The process method of claim 7, wherein the p-type doping buffer The doping material of the layer is selected from the group consisting of carbon (C), zinc (Zn), magnesium (Mg), beryllium (Be), sulfur (S), tellurium (Te), and the foregoing materials. Composition. 如申請專利範圍第7項所述之製程方法,其中該p型摻雜緩衝層之厚度係大於10Å、小於10000Å者。 The process of claim 7, wherein the p-type doped buffer layer has a thickness greater than 10 Å and less than 10,000 Å. 如申請專利範圍第7項所述之製程方法,其中該射極電極係與該射極層形成歐姆接觸。 The process of claim 7, wherein the emitter electrode is in ohmic contact with the emitter layer. 如申請專利範圍第7項所述之製程方法,其中介於該射極層與該射極電極之間,更設置一射極覆蓋層。 The process of claim 7, wherein an emitter cover layer is disposed between the emitter layer and the emitter electrode. 如申請專利範圍第12項所述之製程方法,其中該射極電極係與該射極覆蓋層形成歐姆接觸。 The process of claim 12, wherein the emitter electrode is in ohmic contact with the emitter cap layer. 如申請專利範圍第12項所述之製程方法,其中介於該射極覆蓋層與該射極電極之間,更設置一射極接觸層,且該射極電極係與該射極接觸層形成歐姆接觸。 The process of claim 12, wherein an emitter contact layer is further disposed between the emitter cover layer and the emitter electrode, and the emitter electrode layer and the emitter contact layer are formed. Ohmic contact. 如申請專利範圍第7項所述之製程方法,其中介於該射極層與該射極電極之間,更設置一射極接觸層,且該射極電極係與該射極接觸層形成歐姆接觸。The process of claim 7, wherein an emitter contact layer is disposed between the emitter layer and the emitter electrode, and the emitter electrode layer and the emitter contact layer form an ohmic layer. contact.
TW101119723A 2012-06-01 2012-06-01 Heterojunction bipolar transistor with improved current gain and a fabrication method thereof TWI495099B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101119723A TWI495099B (en) 2012-06-01 2012-06-01 Heterojunction bipolar transistor with improved current gain and a fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101119723A TWI495099B (en) 2012-06-01 2012-06-01 Heterojunction bipolar transistor with improved current gain and a fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201351638A TW201351638A (en) 2013-12-16
TWI495099B true TWI495099B (en) 2015-08-01

Family

ID=50158136

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119723A TWI495099B (en) 2012-06-01 2012-06-01 Heterojunction bipolar transistor with improved current gain and a fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI495099B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI691085B (en) * 2018-11-20 2020-04-11 全新光電科技股份有限公司 Rugged heterojunction bipolar transistor structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567961A (en) * 1992-08-21 1996-10-22 Hitachi, Ltd. Semiconductor device
US20070090399A1 (en) * 2005-10-21 2007-04-26 Yu-Chung Chin BiFET semiconductor device having vertically integrated FET and HBT

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567961A (en) * 1992-08-21 1996-10-22 Hitachi, Ltd. Semiconductor device
US20070090399A1 (en) * 2005-10-21 2007-04-26 Yu-Chung Chin BiFET semiconductor device having vertically integrated FET and HBT

Also Published As

Publication number Publication date
TW201351638A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
JP5593050B2 (en) Semiconductor substrate, electronic device, and method for manufacturing semiconductor substrate
JP5575447B2 (en) Semiconductor substrate, electronic device, and method for manufacturing semiconductor substrate
JP5759680B2 (en) Semiconductor substrate, semiconductor substrate manufacturing method, and electronic device
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
JP2003297849A (en) Heterojunction bipolar transistor and manufacture method therefor
US9397204B2 (en) Heterojunction bipolar transistor with two base layers
US7915640B2 (en) Heterojunction semiconductor device and method of manufacturing
JP5597379B2 (en) Semiconductor substrate, electronic device, and method for manufacturing semiconductor substrate
JP2008004807A (en) Heterojunction bipolar transistor
TWI495099B (en) Heterojunction bipolar transistor with improved current gain and a fabrication method thereof
JP6254046B2 (en) Epitaxial wafer for heterojunction bipolar transistor and heterojunction bipolar transistor
JP2007189200A (en) Epitaxial wafer for transistor, and transistor
JP2013021024A (en) Transistor element
JP6200375B2 (en) Epitaxial wafer for heterojunction bipolar transistor and heterojunction bipolar transistor
CN117012814B (en) Epitaxial structure of InP-based heterojunction bipolar transistor and preparation method thereof
US20150380531A1 (en) Heterojunction bipolar transistor with improved current gain
JP2016092121A (en) Semiconductor device manufacturing method
JP2015095552A (en) Epitaxial wafer for heterojunction bipolar transistors, and heterojunction bipolar transistor element
WO2016098778A1 (en) Epitaxial wafer for semiconductor transistors, and semiconductor transistor
JP2007103925A (en) Semiconductor device and method for manufacturing the same
JP4158683B2 (en) Epitaxial wafer for heterojunction bipolar transistor
US20130341681A1 (en) Heterojunction bipolar transistor with improved current gain and a fabrication method thereof
JP5098193B2 (en) Heterojunction bipolar transistor
JP2009094148A (en) Heterojunction bipolar transistor
US20140057385A1 (en) Iii-v photovoltaic element and fabrication method