TWI494632B - Projector and optical component adjustment system thereof - Google Patents

Projector and optical component adjustment system thereof Download PDF

Info

Publication number
TWI494632B
TWI494632B TW102117547A TW102117547A TWI494632B TW I494632 B TWI494632 B TW I494632B TW 102117547 A TW102117547 A TW 102117547A TW 102117547 A TW102117547 A TW 102117547A TW I494632 B TWI494632 B TW I494632B
Authority
TW
Taiwan
Prior art keywords
lens
alignment structure
alignment
center
outer cover
Prior art date
Application number
TW102117547A
Other languages
Chinese (zh)
Other versions
TW201445209A (en
Inventor
Yen Sung Wang
Original Assignee
Omnivision Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omnivision Tech Inc filed Critical Omnivision Tech Inc
Priority to TW102117547A priority Critical patent/TWI494632B/en
Publication of TW201445209A publication Critical patent/TW201445209A/en
Application granted granted Critical
Publication of TWI494632B publication Critical patent/TWI494632B/en

Links

Landscapes

  • Lens Barrels (AREA)

Description

投影機及其光學元件調整系統Projector and its optical component adjustment system

本發明有關於一種對準系統,特定而言係有關於一種應用於投影機之光學元件調整系統。The present invention relates to an alignment system, and more particularly to an optical component adjustment system for use in a projector.

成像系統的晶圓級陣列提供垂直(即沿光軸)整合能力和平行組件的優點。人們知道傳統的晶圓級成像系統苦於缺乏精確的整合與平行組件。由於光學元件相對於一光軸的厚度不均勻或系統性偏差(包括位移和旋轉),光學元件的偏移可能顯著降低整個陣列之一或多成像系統之完整性。在該共同基底之旋轉失調中,光學元件之偏移正比於從基板旋轉中心至光學元件的距離。例如,一毫弧度(0.0573度)的一旋轉錯位,對一個300毫米基板可導致基板周邊附近的光學元件產生150微米偏移,從而大幅降低成像系統的品質。傳統的晶圓級技術一般只能以幾微米的機械公差來對齊,而不能以光學公差來對齊(即,大約為相關電磁能量波長),這是精密成像系統製造上需要的對齊精度。Wafer-level arrays of imaging systems provide the advantages of vertical (ie, along the optical axis) integration capabilities and parallel components. It is known that traditional wafer level imaging systems suffer from the lack of precise integration and parallel components. Due to non-uniform or systematic deviations (including displacement and rotation) of the optical element relative to an optical axis, the offset of the optical element can significantly reduce the integrity of one or more imaging systems of the entire array. In the rotational offset of the common substrate, the offset of the optical element is proportional to the distance from the center of rotation of the substrate to the optical element. For example, a rotational misalignment of one milliradian (0.0573 degrees) can cause a 150 micron offset to an optical component near the perimeter of the substrate for a 300 mm substrate, thereby significantly reducing the quality of the imaging system. Conventional wafer level techniques are generally only aligned with mechanical tolerances of a few microns, and cannot be aligned with optical tolerances (ie, approximately the wavelength of the associated electromagnetic energy), which is the alignment accuracy required for precision imaging system fabrication.

在投影機的系統中,光學元件的偏移會大幅降低成像系統的品質。參考第一圖,其顯示透鏡的中心對準光軸(optical axial)之示意圖。在傳統的對準方法中,調整系統包括二個螺栓(screws)10、20以及可形變的彈簧(deforming springs)30、40。利用螺栓10、20以及可形變的彈簧30、40以進行水平與垂直(X-Y軸)位置的調整與定位。利用影像顯示來觀察透鏡的中心是否對準光軸。光軸於設計上顯示為一較小的圓形圖樣41,光軸中心則為圓形圖樣41的中心,透鏡則顯示為一較大的圓形圖樣42。舉例而言,在未調整之前透鏡有一偏移(lens shift),若透鏡(中心)比較偏向(-Y)的方向,則螺栓10往上旋轉而使彈簧40變為較鬆的狀態,使得大圓形中心的Y軸位置與小圓形中心的Y軸位置重合;若透鏡(中心)比較偏向(-X)的方向,則螺栓20往左旋轉而使彈簧30變為較鬆的狀態,使得大圓形中心的X軸位置與小圓形中心的X軸位置重合,如圖一所示。當大圓形中心位置與小圓形中心位置重合,即表示透鏡的中心已完成對準光軸。接 下來,利用紫外光膠(UV glue)將調整系統之螺栓10、20固定,以完成對準程序。雖然,利用旋轉螺栓以放鬆或旋緊彈簧而校準透鏡的方法方便、簡易,然而彈簧30、40於一段時間之後會由於金屬疲勞而產生形變,透鏡因而再次產生偏移。成像品質因而產生影響。In a projector system, the offset of the optical components can significantly degrade the quality of the imaging system. Referring to the first figure, it shows a schematic view of the center of the lens aligned with the optical axis. In a conventional alignment method, the adjustment system includes two screws 10, 20 and deformable springs 30, 40. The bolts 10, 20 and the deformable springs 30, 40 are utilized for adjustment and positioning of the horizontal and vertical (X-Y axis) positions. Use the image display to see if the center of the lens is aligned with the optical axis. The optical axis is shown as a smaller circular pattern 41, the center of the optical axis is the center of the circular pattern 41, and the lens is shown as a larger circular pattern 42. For example, the lens has a lens shift before it is adjusted. If the lens (center) is biased in the direction of (-Y), the bolt 10 is rotated upward to make the spring 40 looser. The Y-axis position of the center of the circle coincides with the Y-axis position of the center of the small circle; if the lens (center) is oriented in the direction of (-X), the bolt 20 is rotated to the left to make the spring 30 looser. The X-axis position of the center of the large circle coincides with the X-axis position of the center of the small circle, as shown in Figure 1. When the center position of the large circle coincides with the center position of the small circle, it means that the center of the lens has completed the alignment of the optical axis. Connect Next, the bolts 10, 20 of the adjustment system are fixed by UV glue to complete the alignment procedure. Although the method of aligning the lens by loosening or tightening the spring with a rotating bolt is convenient and simple, the springs 30, 40 may be deformed due to metal fatigue after a period of time, and the lens is again deflected. The quality of the image thus has an effect.

有鑑於上述缺點,發明人乃針對該些缺點研究改進之道,終於有本發明產生。In view of the above shortcomings, the inventors have studied the improvement of these shortcomings, and finally the present invention has been produced.

本發明之主要目的在於提供一種光學元件調整系統,可以避免由於彈簧金屬疲勞而產生形變,使得透鏡再次產生偏移的情況之缺失。SUMMARY OF THE INVENTION A primary object of the present invention is to provide an optical element adjustment system which can avoid deformation due to spring metal fatigue and cause a lack of displacement of the lens again.

本發明之另一目的在於提供一種光學元件調整系統,其可經由多次的旋轉調整系統之構件,以完成光軸的對準。Another object of the present invention is to provide an optical component adjustment system that can adjust the alignment of the optical axis via a plurality of rotational adjustment system components.

本發明之又一目的在於提供一種光學元件調整系統,其可經由旋轉以及線性滑動調整系統之構件,以完成光軸的對準。It is yet another object of the present invention to provide an optical component adjustment system that can adjust the alignment of the optical axis via rotation and linear sliding adjustment of the components of the system.

為達成上述目的及功效,本發明之光學元件調整系統,包括:一第一對準結構,具有一第一鏤空空間以容納一透鏡,第一對準結構的質心位置與其中心位置不相同;一第二對準結構,具有一第二鏤空空間以容納第一對準結構,第二對準結構的質心位置與其中心位置不相同;以及一固定結構,用以承載第二對準結構。In order to achieve the above object and effect, the optical component adjustment system of the present invention comprises: a first alignment structure having a first hollow space for accommodating a lens, the centroid position of the first alignment structure being different from the center position thereof; A second alignment structure has a second hollow space to accommodate the first alignment structure, a center of mass position of the second alignment structure is different from a center position thereof, and a fixed structure for carrying the second alignment structure.

依上述光學元件調整系統,其中第一對準結構具有一第一類齒輪式結構配置於其週邊,第二對準結構具有一第二類齒輪式結構配置於其週邊。In the above optical component adjustment system, the first alignment structure has a first type of gear structure disposed at a periphery thereof, and the second alignment structure has a second type of gear structure disposed at a periphery thereof.

依上述光學元件調整系統,其中第一對準結構包括一第一部分與一第二部分,第一部分用以包覆透鏡,第二部分具有第一類齒輪式結構,用以旋轉第一對準結構。According to the above optical component adjustment system, wherein the first alignment structure includes a first portion for covering the lens, and the second portion has a first type of gear structure for rotating the first alignment structure .

依上述光學元件調整系統,其中第二對準結構包覆第一對準結構之第一部分,而不包覆第一對準結構之第二部分。According to the above optical element adjustment system, wherein the second alignment structure covers the first portion of the first alignment structure without covering the second portion of the first alignment structure.

依上述光學元件調整系統,其中固定結構具有一凹槽以容納第二對準結構。According to the optical element adjustment system described above, the fixing structure has a recess to accommodate the second alignment structure.

根據本發明之另一觀點,光學元件調整系統,包括:對準結構,具有一第一鏤空空間以容納一透鏡,對準結構的質心位置與其中心位置不相同;以及一固定結構,用以承載對準結構,固定結構具有一第二鏤空空間,使 得對準結構得以於第二鏤空空間之中旋轉與線性滑行。According to another aspect of the present invention, an optical component adjustment system includes: an alignment structure having a first hollow space to accommodate a lens, a center of mass position of the alignment structure being different from a center position thereof; and a fixed structure for Carrying an alignment structure, the fixed structure has a second hollow space, so that The alignment structure is allowed to rotate and linearly slide in the second hollow space.

依上述光學元件調整系統,其中對準結構具有類齒輪式結構,用以旋轉對準結構。According to the optical element adjustment system described above, the alignment structure has a gear-like structure for rotating the alignment structure.

上述光學元件調整系統可以應用於一投影機。The above optical element adjustment system can be applied to a projector.

為使本發明的上述目的、功效及特徵可獲致更具體的暸解,茲依下列附圖說明如下:In order to achieve a more specific understanding of the above objects, effects and features of the present invention, the following figures are illustrated as follows:

10、20‧‧‧螺栓10, 20‧‧‧ bolts

30、40‧‧‧彈簧30, 40‧‧ ‧ spring

41、42‧‧‧圓形圖樣41, 42‧‧‧ round pattern

100‧‧‧投影機100‧‧‧Projector

101‧‧‧第一發光二極體(LED)模組101‧‧‧First Light Emitting Diode (LED) Module

102‧‧‧第二發光二極體模組102‧‧‧Second light-emitting diode module

103‧‧‧第三發光二極體模組103‧‧‧3rd LED Module

104‧‧‧第一光準直器104‧‧‧First light collimator

105‧‧‧第二光準直器105‧‧‧Second light collimator

106‧‧‧第三光準直器106‧‧‧ Third Light Collimator

107‧‧‧固定裝置(板)107‧‧‧Fixed devices (boards)

108‧‧‧透鏡陣列108‧‧‧ lens array

109、112‧‧‧聚光透鏡109, 112‧‧‧ concentrating lens

110‧‧‧高反射率光學鍍膜片110‧‧‧High reflectivity optical coating

111、113‧‧‧濾光鏡111, 113‧‧‧ filter

114‧‧‧稜鏡模組114‧‧‧稜鏡 Module

115‧‧‧偏振膜(板)115‧‧‧Polarizing film (plate)

116‧‧‧顯示模組116‧‧‧Display module

117‧‧‧投影鏡頭組117‧‧‧Projection lens set

120、140‧‧‧透鏡120, 140‧‧‧ lens

121‧‧‧第一旋轉外罩121‧‧‧First rotating cover

121a‧‧‧第一類齒輪式結構121a‧‧‧First gear type structure

121b‧‧‧第一部分121b‧‧‧Part I

121c‧‧‧第二部分121c‧‧‧Part II

122‧‧‧第二旋轉外罩122‧‧‧Second rotating cover

122a‧‧‧第二類齒輪式結構122a‧‧‧Second gear type structure

123‧‧‧固定外罩或機體123‧‧‧Fixed cover or body

130‧‧‧初始中心(透鏡中心)130‧‧‧Initial Center (Lens Center)

131‧‧‧第一位移處131‧‧‧First displacement

132‧‧‧中心132‧‧‧ Center

133‧‧‧中心133‧‧‧ Center

141‧‧‧透鏡外罩141‧‧‧ lens housing

141a‧‧‧類齒輪式結構141a‧‧ class gear structure

141b‧‧‧第一部分141b‧‧‧ part one

141c‧‧‧第二部分141c‧‧‧Part II

141d‧‧‧第三部分141d‧‧‧Part III

142‧‧‧固定外罩或機體142‧‧‧Fixed cover or body

第一圖係習知技術之一透鏡中心對準光軸之示意圖。The first figure is a schematic diagram of one of the conventional techniques for aligning the lens center with the optical axis.

第二圖係一例子的投影機之結構圖。The second figure is a structural diagram of an example projector.

第三圖係本發明之第一實施例之光學元件調整系統之上視圖。The third drawing is a top view of the optical element adjusting system of the first embodiment of the present invention.

第四圖係本發明之第一實施例之光學元件調整系統之前視圖。The fourth drawing is a front view of the optical element adjustment system of the first embodiment of the present invention.

第五圖係本發明之第一實施例之光學元件調整系統之後視圖。The fifth drawing is a rear view of the optical element adjusting system of the first embodiment of the present invention.

第六圖係本發明之第一實施例之光學元件調整系統之立體圖。Figure 6 is a perspective view of an optical element adjustment system of a first embodiment of the present invention.

第七圖係本發明之第一實施例之光學元件對準之示意圖。The seventh drawing is a schematic view of the alignment of the optical elements of the first embodiment of the present invention.

第八圖係本發明之第二實施例之光學元件調整系統之上視圖。The eighth drawing is a top view of the optical element adjusting system of the second embodiment of the present invention.

第九圖係本發明之第二實施例之光學元件調整系統之立體圖。Figure 9 is a perspective view of an optical element adjustment system of a second embodiment of the present invention.

第十圖係本發明之第二實施例之光學元件對準之示意圖。The tenth drawing is a schematic view of the alignment of the optical elements of the second embodiment of the present invention.

此處本發明將針對發明具體實施例及其觀點加以詳細描述,此類描述為解釋本發明之結構或步驟流程,其係供以說明之用而非用以限制本發明之申請專利範圍。因此,除說明書中之具體實施例與較佳實施例外,本發明亦可廣泛施行於其他不同的實施例中。The invention is described in detail herein with reference to the particular embodiments of the invention, and the description of the invention. Therefore, the present invention may be widely practiced in other different embodiments in addition to the specific embodiments and preferred embodiments of the specification.

參考第二圖,其為一例子的投影機之結構圖。本發明之光學元件調整系統可以應用一投影機之中。第二圖之投影機100的結構只是其中一個實施例,其他不同元件配置所構成的投影機結構,也可以應用於本發明。首先,在投影機100之中,提供一種以發光二極體為基礎之光源模組,其可使用在可攜式投影機中。投影機100更包括一透鏡陣列(lens array)108、一聚光透鏡(condenser lens)109與112、一高反射率光學鍍膜片110、濾光鏡(filter)111與113、一稜鏡模組114、一偏振膜(板)115、一顯示模組116以及一投影鏡頭組(projection lens)117。光源模組具有第一發光二極體(LED)模組101、第二發光二極體模組102、第三發光二極體模組103、第一光準直器(collimator)104、第二光準直器105以及第三光準直器106。舉例而言,第一發光二極體模組101用以發出紅光(R),第一發光二極體模組101用以發出藍光(G),第三發光二極體模組103用以發出綠光(B)。因此,藉由第一發光二極體模組101、第二發光二極體模組102以及第三發光二極體模組103,可發出形成全彩色投影所需的R、G、B三原色。第一光準直器104係與第一發光二極體模組101光學連接,用以將第一發光二極體模組101所發出的大角度的紅光以及藍光予以準直,以達到收光的效果;類似地,第二光準直器105係與第二發光二極體模組102光學連接,用以準直第二發光二極體模組102所發出的藍光;第三光準直器106係與第三發光二極體模組103光學連接,用以準直第三發光二極體模組103所發出的綠光。因此,藉由第一光準直器104、第二光準直器105以及第三光準直器106這三個光準直器即能達到將R、G、B光準直的效果。上述發光二極體模組以及光準直器的數量與配置可以依不同的情況、目的或應用而有所調整。第一光準直器104、第二光準直器105以及第三光準直器106可以固定或配置於一固定裝置(板)107中。Referring to the second figure, it is a structural diagram of a projector of an example. The optical component adjustment system of the present invention can be applied to a projector. The structure of the projector 100 of the second figure is only one of the embodiments, and the projector structure constituted by other different component configurations can also be applied to the present invention. First, among the projector 100, a light source module based on a light emitting diode is provided, which can be used in a portable projector. The projector 100 further includes a lens array 108, a condenser lens 109 and 112, a high reflectivity optical plate 110, filters 111 and 113, and a module. 114, a polarizing film (board) 115, a display module 116, and a projection lens group (projection Lens) 117. The light source module has a first light emitting diode (LED) module 101, a second light emitting diode module 102, a third light emitting diode module 103, a first light collimator 104, and a second The light collimator 105 and the third light collimator 106. For example, the first LED module 101 is used to emit red light (R), the first LED module 101 is used to emit blue light (G), and the third LED module 103 is used. Green light (B). Therefore, the first light-emitting diode module 101, the second light-emitting diode module 102, and the third light-emitting diode module 103 can emit three primary colors of R, G, and B required for forming a full-color projection. The first light collimator 104 is optically connected to the first LED module 101 for collimating the large-angle red light and blue light emitted by the first LED module 101 to achieve the collection. The second light collimator 105 is optically connected to the second light emitting diode module 102 for collimating the blue light emitted by the second light emitting diode module 102; The straight 106 is optically connected to the third LED module 103 for collimating the green light emitted by the third LED module 103. Therefore, the three light collimators of the first optical collimator 104, the second optical collimator 105, and the third optical collimator 106 can achieve the effect of collimating the R, G, and B lights. The number and configuration of the above-mentioned light-emitting diode modules and optical collimators can be adjusted according to different situations, purposes or applications. The first optical collimator 104, the second optical collimator 105, and the third optical collimator 106 may be fixed or disposed in a fixture (board) 107.

舉例而言,第一發光二極體模組101、第二發光二極體模組102以及第三發光二極體模組103為配置有發光二極體矩陣陣列之光源(array LED matrix light source)。透鏡陣列108,光學連接具有第一發光二極體模組101、第二發光二極體模組102、第三發光二極體模組103、第一光準直器104、第二光準直器105以及第三光準直器106之光源模組。聚光透鏡109配置於一調整機殼(adjustment housing)之中,光學連接透鏡陣列108以將通過透鏡陣列108的R、G、B光進一步聚光。高反射率光學鍍膜片110,光學連接聚光透鏡109以反射濾經過聚光透鏡109之後的紅光、藍光與綠光。高反射率光學鍍膜片110可以將水平的R、G、B光的經由其反射而成為垂直的R、G、B光。由水平光轉為垂直光可使得後續的元件得以往上配置,以縮小投影機的長度尺寸。For example, the first LED module 101, the second LED module 102, and the third LED module 103 are light sources (array LED matrix light source). ). The lens array 108 has an optical diode assembly 101, a second LED module 102, a third LED module 103, a first optical collimator 104, and a second optical collimation. The light source module of the device 105 and the third light collimator 106. The concentrating lens 109 is disposed in an adjustment housing, and optically connects the lens array 108 to further condense the R, G, and B light passing through the lens array 108. The high reflectivity optical plate 110 is optically coupled to the concentrating lens 109 to reflect red, blue, and green light after filtering through the concentrating lens 109. The high-reflectance optical plate 110 can reflect horizontal R, G, and B light to be perpendicular to R, G, and B light. The conversion from horizontal to vertical allows subsequent components to be configured in the past to reduce the length of the projector.

濾光鏡111係與高反射率光學鍍膜片110光學連接,用以過濾經由高反射率光學鍍膜片110反射後的紅光、藍光以及綠光。另一聚光透鏡112配置於一調整機殼之中,光學連接濾光鏡111以將通過濾光鏡111的R、G、B光進一步聚光。另一濾光鏡113係與聚光透鏡112光學連接,用以過濾經由聚光透鏡112之後的紅光、藍光以及綠光,以提供進一步的處理。在一實施例中, 上述濾光鏡較佳者為一雙色向濾光鏡(dichroic filter)。本發明之濾光鏡之數量以及配置位置得以視實際的需要或應用狀況而調整。The filter 111 is optically coupled to the high-reflectance optical plate 110 for filtering red, blue, and green light reflected by the high-reflectance optical plate 110. The other condensing lens 112 is disposed in an adjustment casing, and optically connects the filter 111 to further condense the R, G, and B lights passing through the filter 111. Another filter 113 is optically coupled to the concentrating lens 112 for filtering red, blue, and green light after passing through the concentrating lens 112 to provide further processing. In an embodiment, Preferably, the filter is a dichroic filter. The number and arrangement of the filters of the present invention can be adjusted depending on actual needs or application conditions.

稜鏡模組114包括二個稜鏡組合而成,光學連接濾光鏡113。經由稜鏡模組114將聚集、過濾後的光折向偏振膜(板)115,經過偏振膜(板)115到達顯示模組116以顯像,或者由稜鏡模組114將光折向投影鏡頭組117,而加以聚焦以供成像於一外界投影面。偏振膜(板)115例如為四分之一波片(quarter-wave plate)。稜鏡模組114例如為偏振分光稜鏡(polarizing beam splitter:PBS)。The cymbal module 114 includes two cymbals combined to optically connect the filter 113. The collected and filtered light is deflected to the polarizing film (plate) 115 via the germanium module 114, passed through the polarizing film (plate) 115 to the display module 116 for visualization, or the light is projected by the germanium module 114. The lens group 117 is focused for imaging on an external projection surface. The polarizing film (plate) 115 is, for example, a quarter-wave plate. The 稜鏡 module 114 is, for example, a polarizing beam splitter (PBS).

第一發光二極體(LED)模組101、第二發光二極體模組102以及第三發光二極體模組103所發出的光在投影機100中操作,需要最佳化光軸的照度(axial illumination)與光效率(light efficiency),才能達到較佳的投影效果。如此必須要有較佳的光學對準才有辦法達到上述目的。The light emitted by the first light emitting diode (LED) module 101, the second light emitting diode module 102, and the third light emitting diode module 103 is operated in the projector 100, and the optical axis needs to be optimized. Aurora illumination and light efficiency can achieve better projection results. There must be a better optical alignment in order to achieve the above objectives.

參考第三圖,其係本發明之第一實施例之光學元件調整系統之上視圖。本發明之光學元件調整系統或裝置可以應用於調整或對準上述投影機100的聚光透鏡109與112,或其他的透鏡;或者是應用於其他具有光學元件(透鏡)的電子產品。類似地,本發明也是利用影像顯示來觀察透鏡的中心是否對準光軸。光軸於設計上顯示為一較小的圓形圖樣41,透鏡則顯示為一較大的圓形圖樣42。在本實施例之光學元件調整系統或裝置中,僅透過多次的旋轉調整系統之構件即可完成光軸的對準。對準完成之後,再利用一螺栓10將調整系統固定。在本實施例中,調整系統或裝置無需使用彈簧,因此可以避免由於彈簧金屬疲勞而產生形變,使得透鏡再次產生偏移的情況。本實施例之光學元件調整系統或裝置包括第一旋轉外罩(第一對準結構)121、第二旋轉外罩(第二對準結構)122以及一固定外罩(固定結構)或機體123。第一旋轉外罩121、第二旋轉外罩122以及固定外罩或機體123均為剛性體(rigid body),其剛性結構較能保有結構上的不變性。其中第一旋轉外罩121為內部的透鏡120的外罩(lens housing),包覆透鏡120。第一旋轉外罩121具有一與透鏡120大小相當或略大的第一鏤空區域(空間)以容納及接收透鏡120。舉例而言,透鏡120為一圓形,第一鏤空區域為與透鏡120大小相當的圓形區域。第一旋轉外罩121的質心位置與中心位置不一致。第一旋轉外罩121的質心位置與透鏡120的中心位置不一致,亦即第一旋轉外罩121的質心位置與第一鏤空區域的中心不一致。經由第一鏤空區域,透鏡120附著於第一旋轉外罩121之中,使得透鏡120得以隨著第一旋轉外罩121 的旋轉而旋轉,如第四圖所示。舉例而言,透鏡120可以利用紫外光膠(UV glue)而附著於第一旋轉外罩121之中。第四圖為本實施例之光學元件調整系統或裝置之前視圖(front view)。第一旋轉外罩121具有第一類齒輪式結構(gear-like)121a配置於其週邊。舉例而言,第一旋轉外罩121可以經由撥轉圓周上的第一類齒輪式結構(gear-like)121a而旋轉,如第五圖所示。第一類齒輪式結構121a之齒數的數量多寡端視實際的應用而決定。依照撥轉的齒數以決定透鏡120中心偏移光軸的位置。如此,則透鏡120可以隨著第一旋轉外罩121之旋轉而旋轉,使得其透鏡120中心位置得以改變。第五圖為本實施例之光學元件調整系統或裝置之後視圖(back view)。第一旋轉外罩121的質心位置是偏離其中心的(off center),使得其旋轉軸(rotational axis)也是偏離中心的。Referring to the third drawing, it is a top view of the optical element adjusting system of the first embodiment of the present invention. The optical element adjustment system or apparatus of the present invention can be applied to adjust or align the concentrating lenses 109 and 112 of the projector 100 described above, or other lenses; or to other electronic products having optical elements (lenses). Similarly, the present invention also utilizes image display to see if the center of the lens is aligned with the optical axis. The optical axis is shown as a smaller circular pattern 41 and the lens is shown as a larger circular pattern 42. In the optical element adjustment system or apparatus of the present embodiment, alignment of the optical axis can be accomplished only by a plurality of components of the rotation adjustment system. After the alignment is completed, the adjustment system is fixed by a bolt 10. In the present embodiment, the adjustment system or device does not require the use of a spring, so that deformation due to fatigue of the spring metal can be avoided, causing the lens to be displaced again. The optical component adjustment system or apparatus of the present embodiment includes a first rotating housing (first alignment structure) 121, a second rotating housing (second alignment structure) 122, and a fixed housing (fixed structure) or body 123. The first rotating outer cover 121, the second rotating outer cover 122, and the fixed outer cover or the body 123 are all rigid bodies, and the rigid structure can maintain structural invariance. The first rotating cover 121 is a lens housing of the inner lens 120 and covers the lens 120. The first rotating housing 121 has a first hollowed out area (space) that is sized or slightly larger than the lens 120 to receive and receive the lens 120. For example, the lens 120 is a circle, and the first hollow region is a circular region sized to correspond to the lens 120. The centroid position of the first rotating outer cover 121 does not coincide with the center position. The centroid position of the first rotating outer cover 121 does not coincide with the central position of the lens 120, that is, the centroid position of the first rotating outer cover 121 does not coincide with the center of the first hollowed out area. The lens 120 is attached to the first rotating housing 121 via the first hollow region such that the lens 120 is enabled with the first rotating housing 121 Rotate and rotate as shown in the fourth figure. For example, the lens 120 may be attached to the first rotating housing 121 by means of UV glue. The fourth figure is a front view of the optical element adjustment system or apparatus of the present embodiment. The first rotating outer cover 121 has a first type of gear-like structure 121a disposed at its periphery. For example, the first rotating outer cover 121 can be rotated via a first type of gear-like 121a on the dial circumference, as shown in the fifth figure. The number of teeth of the first type of gear type structure 121a is determined by the actual application. The position of the optical axis of the center of the lens 120 is determined in accordance with the number of teeth to be rotated. As such, the lens 120 can be rotated as the first rotating housing 121 rotates such that its center position of the lens 120 is changed. The fifth figure is a back view of the optical element adjustment system or apparatus of the present embodiment. The centroid position of the first rotating outer cover 121 is off center, such that its rotational axis is also off center.

第二旋轉外罩122為外部的調整外罩(adjustment housing),包覆第一旋轉外罩121。第二旋轉外罩122具有一與第一旋轉外罩121大小相當的第二鏤空區域(空間)以容納及接收第一旋轉外罩121。第一旋轉外罩121通常為圓形,第二鏤空區域為與第一旋轉外罩121大小相當的圓形區域。第二旋轉外罩122的質心位置與透鏡120中心不一致,第二旋轉外罩122的質心位置也與第一鏤空區域的中心、第二鏤空區域的中心不一致。第二旋轉外罩122的質心位置是偏離其中心的。類似地,第二旋轉外罩122可以透過撥轉圓周上的第二類齒輪式結構122a而旋轉,如第四圖或第五圖所示。第二類齒輪式結構122a之齒數的數量端視實際的應用而決定。依照撥轉的齒數而決定透鏡120中心偏移的位置。第一旋轉外罩121與第二旋轉外罩122可以獨立地旋轉。透鏡120即透過第一旋轉外罩121與第二旋轉外罩122的旋轉而改變其中心位置。因此,利用第一旋轉外罩121以及第二旋轉外罩122獨立地旋轉,得以調整透鏡120中心的位置,以對準光軸。The second rotating outer cover 122 is an external adjustment housing that covers the first rotating outer cover 121. The second rotating outer cover 122 has a second hollowed out area (space) sized to correspond to the first rotating outer cover 121 to receive and receive the first rotating outer cover 121. The first rotating outer cover 121 is generally circular, and the second hollowed out area is a circular area sized to correspond to the first rotating outer cover 121. The centroid position of the second rotating outer cover 122 does not coincide with the center of the lens 120, and the centroid position of the second rotating outer cover 122 also does not coincide with the center of the first hollowed out area and the center of the second hollowed out area. The centroid position of the second rotating outer cover 122 is offset from its center. Similarly, the second rotating outer cover 122 can be rotated by dialing the second type of gear structure 122a on the circumference, as shown in the fourth or fifth figure. The number of teeth of the second type of gear type structure 122a is determined depending on the actual application. The position at which the center of the lens 120 is offset is determined in accordance with the number of teeth that are dialed. The first rotating outer cover 121 and the second rotating outer cover 122 can be rotated independently. The lens 120 changes its center position by the rotation of the first rotating outer cover 121 and the second rotating outer cover 122. Therefore, the first rotating housing 121 and the second rotating housing 122 are independently rotated, and the position of the center of the lens 120 can be adjusted to align the optical axis.

固定外罩(fixed housing)或機體(engine body)123具有一凹槽,例如半圓凹槽(half circle groove),用以容納、接收與承載第二旋轉外罩122,如第四圖或第五圖所示。A fixed housing or engine body 123 has a recess, such as a half circle groove, for receiving, receiving and carrying the second rotating housing 122, as shown in the fourth or fifth figure. Show.

參考第六圖,其係為第一實施例之光學元件調整系統或裝置之立體圖。從第六圖可知,透鏡120嵌入於第一旋轉外罩121內部。第一旋轉外罩121包括第一部分121b與第二部分121c。第一部分121b即第四圖之前視圖中所看到的第一旋轉外罩121,此部分為包覆透鏡120的包覆部分。第二部分121c 即第五圖之後視圖中所看到的第一旋轉外罩121,此部分為具有第一類齒輪式結構121a以旋轉第一旋轉外罩121的旋轉部分。第二旋轉外罩122包覆第一旋轉外罩121之包覆部分(第一部分121b),而不包覆第一旋轉外罩121之旋轉部分(第二部分121c)。第一類齒輪式結構121a與第二類齒輪式結構122a彼此平行。因此,第一旋轉外罩121與第二旋轉外罩122可以獨立地旋轉。固定外罩或機體123係一個固定裝置(結構),作為第一旋轉外罩121與第二旋轉外罩122旋轉的不動的基礎。第一旋轉外罩(內部的外罩)121係沿著(相對於)第二旋轉外罩(外部的外罩)122而旋轉。第二旋轉外罩(外部的外罩)122則沿著(相對於)固定外罩或機體123而旋轉。上述旋轉動作係透過第一類齒輪式結構121a上的齒輪以及第二類齒輪式結構122a上的齒輪來執行。第一旋轉外罩121與第二旋轉外罩122可以獨立地旋轉,因此第一旋轉外罩121與第二旋轉外罩122有其各自的旋轉軸。每一旋轉軸是偏離中心的。Referring to the sixth drawing, it is a perspective view of the optical element adjustment system or apparatus of the first embodiment. As can be seen from the sixth figure, the lens 120 is embedded inside the first rotating outer cover 121. The first rotating housing 121 includes a first portion 121b and a second portion 121c. The first portion 121b is the first rotating outer cover 121 as seen in the front view of the fourth figure, which is the cladding portion of the cover lens 120. The second part 121c That is, the first rotating outer cover 121 seen in the rear view of the fifth figure is a rotating portion having the first type of gear structure 121a for rotating the first rotating outer cover 121. The second rotating outer cover 122 covers the covered portion (first portion 121b) of the first rotating outer cover 121 without covering the rotating portion (second portion 121c) of the first rotating outer cover 121. The first type of gear structure 121a and the second type of gear structure 122a are parallel to each other. Therefore, the first rotating outer cover 121 and the second rotating outer cover 122 can be rotated independently. The fixed outer cover or body 123 is a fixed device (structure) as a stationary basis for the rotation of the first rotating outer cover 121 and the second rotating outer cover 122. The first rotating outer cover (internal outer cover) 121 is rotated along (relative to) the second rotating outer cover (outer outer cover) 122. The second rotating outer cover (outer outer cover) 122 is rotated along (relative to) the fixed outer cover or body 123. The above-described rotational operation is performed by the gears on the first type of gear structure 121a and the gears on the second type of gear structure 122a. The first rotating outer cover 121 and the second rotating outer cover 122 can rotate independently, and thus the first rotating outer cover 121 and the second rotating outer cover 122 have their respective rotating shafts. Each axis of rotation is off-center.

參考第七圖,其係本發明之第一實施例之光學元件對準之示意圖。其中第二旋轉外罩122進行第一次旋轉,而第一旋轉外罩121進行第二次旋轉。舉例而言,在未調整、對準光軸之前,透鏡120有一偏移(lens shift),亦即透鏡120之初始中心130相對於固定外罩或機體123之中心132有一位移量,透鏡120之初始中心130相對於第二旋轉外罩(調整外罩)122之中心133也有一位移量,如第七圖所示。第一位移量與第二位移量不同。在第一次旋轉中,第二旋轉外罩122沿著(相對於)固定外罩或機體123而旋轉,透鏡中心130從初始的偏移位置移動至第一位移處131,圖中虛線可視為透鏡中心130於X軸與Y軸的移動量(軌跡)。在第二次旋轉中,第一旋轉外罩121沿著(相對於)第二旋轉外罩122而旋轉,透鏡中心130從第一位移處131移動至第二位移處,圖中虛線可視為透鏡中心130從第一位移處131移動於X軸與Y軸的移動量(軌跡)。當第二位移處與第二旋轉外罩(調整外罩)122之中心133重合,即完成透鏡中心130的對準。第二次旋轉主要是將第一次旋轉之後,第一位移處與光軸中心於X軸與Y軸的位置偏移之差作調整與補償,以完成對準。由於第一旋轉外罩121與第二旋轉外罩122是獨立的旋轉,所以透過第一旋轉外罩121與第二旋轉外罩122的旋轉,透鏡120中心的偏移可以互相補償、抵銷或調整,以對準光軸中心。Referring to the seventh drawing, which is a schematic view of the alignment of the optical elements of the first embodiment of the present invention. The second rotating outer cover 122 performs the first rotation, and the first rotating outer cover 121 performs the second rotation. For example, the lens 120 has a lens shift before the optical axis is adjusted and aligned, that is, the initial center 130 of the lens 120 has a displacement relative to the center 132 of the fixed cover or the body 123, and the initial of the lens 120. The center 130 also has a displacement relative to the center 133 of the second rotating housing (adjusting housing) 122, as shown in the seventh diagram. The first amount of displacement is different from the second amount of displacement. In the first rotation, the second rotating outer cover 122 rotates (relatively) to the fixed outer cover or the body 123, and the lens center 130 moves from the initial offset position to the first displacement 131, and the broken line in the figure can be regarded as the lens center. The amount of movement (track) of the X-axis and the Y-axis. In the second rotation, the first rotating outer cover 121 rotates (relatively) with respect to the second rotating outer cover 122, and the lens center 130 moves from the first displacement 131 to the second displacement, and the broken line in the figure can be regarded as the lens center 130. The amount of movement (track) of the movement from the first displacement 131 to the X-axis and the Y-axis. When the second displacement coincides with the center 133 of the second rotating outer cover (adjusting cover) 122, the alignment of the lens center 130 is completed. The second rotation is mainly to adjust and compensate the difference between the position of the first displacement and the position of the optical axis at the X-axis and the Y-axis after the first rotation to complete the alignment. Since the first rotating outer cover 121 and the second rotating outer cover 122 are independently rotated, the rotation of the first rotating outer cover 121 and the second rotating outer cover 122 can offset, offset or adjust the offset of the center of the lens 120 to Quasi-optical axis center.

參考第八圖,其係本發明之第二實施例之光學元件調整系統之上 視圖。本實施例之光學元件調整系統或裝置可以應用於調整或對準上述投影機100的聚光透鏡109與112,或其他的透鏡;或者是應用於其他具有光學元件(透鏡)的電子產品。相同地,利用影像顯示來觀察透鏡的中心是否對準光軸。光軸於設計上顯示為一較小的圓形圖樣41,透鏡則顯示為一較大的圓形圖樣42。在本實施例之光學元件調整系統或裝置中,透過旋轉調整系統之構件以及線性移動調整系統之構件,以可完成光軸的對準。對準完成之後,再利用一螺栓10將調整系統固定。相同地,在本實施例中,調整系統或裝置無需使用彈簧,因此可以避免由於彈簧金屬疲勞而產生形變,使得透鏡再次產生偏移的情況。本實施例之光學元件調整系統或裝置包括一透鏡外罩(對準結構)141以及一固定外罩(結構)或機體142。透鏡外罩141以及固定外罩或機體142均為剛性體,其剛性結構較能保有結構上的不變性。其中透鏡外罩141為內部的透鏡140的外罩,包覆透鏡140。透鏡外罩141具有一與透鏡140大小相當或略大的第一鏤空區域(空間)以容納及接收透鏡140。固定外罩或機體142具有一第二鏤空空間,使得透鏡外罩141得以於固定外罩或機體142之第二鏤空空間中旋轉與線性滑行。舉例而言,透鏡140為一圓形,第一鏤空區域為與透鏡140大小相當的圓形區域。透鏡外罩141的質心位置與透鏡140中心不一致,亦即透鏡外罩141的質心位置與第一鏤空區域的中心不一致。經由第一鏤空區域,透鏡140附著於透鏡外罩141之中,使得透鏡140得以隨著透鏡外罩141而旋轉或移動,如第八圖所示。舉例而言,透鏡140可以利用紫外光膠而附著於透鏡外罩141之中。第九圖之左上圖示為本實施例之光學元件調整系統或裝置之前視圖。舉例而言,透鏡外罩141可以經由撥轉圓周上的類齒輪式結構141a而旋轉,如第九圖之左上圖示所示。類齒輪式結構141a之齒數的數量多寡、大小端視實際的應用而決定。依照撥轉的齒數以決定透鏡140中心偏移光軸的位置。如此,則透鏡140可以隨著透鏡外罩141之旋轉而旋轉,使得其透鏡140中心位置得以改變。第九圖之左下圖示為本實施例之光學元件調整系統或裝置之後視圖。透鏡外罩141的質心位置是偏離其中心的,使得其旋轉軸也是偏離中心的。在旋轉透鏡外罩141之後,接著線性移動透鏡外罩141之第二部分141c,以完成光軸的對準,參考第九圖左下圖示。Referring to the eighth figure, which is above the optical element adjustment system of the second embodiment of the present invention view. The optical element adjustment system or apparatus of the present embodiment can be applied to adjust or align the condensing lenses 109 and 112 of the projector 100 described above, or other lenses; or to other electronic products having optical elements (lenses). Similarly, image display is used to see if the center of the lens is aligned with the optical axis. The optical axis is shown as a smaller circular pattern 41 and the lens is shown as a larger circular pattern 42. In the optical element adjustment system or apparatus of the present embodiment, the components of the rotation adjustment system and the members of the linear movement adjustment system are transmitted to complete the alignment of the optical axis. After the alignment is completed, the adjustment system is fixed by a bolt 10. Similarly, in the present embodiment, the adjustment system or device does not require the use of a spring, so that deformation due to fatigue of the spring metal can be avoided, causing the lens to be displaced again. The optical component adjustment system or apparatus of the present embodiment includes a lens housing (alignment structure) 141 and a fixed housing (structure) or body 142. The lens housing 141 and the fixed housing or the body 142 are both rigid bodies, and the rigid structure can maintain structural invariance. The lens housing 141 is an outer cover of the inner lens 140 and covers the lens 140. The lens housing 141 has a first hollowed out area (space) that is sized or slightly larger than the lens 140 to accommodate and receive the lens 140. The fixed outer cover or body 142 has a second hollow space such that the lens housing 141 can be rotated and linearly slid in the second hollow space of the fixed outer cover or body 142. For example, the lens 140 is a circle, and the first hollow region is a circular region sized to correspond to the lens 140. The centroid position of the lens housing 141 does not coincide with the center of the lens 140, that is, the centroid position of the lens housing 141 does not coincide with the center of the first hollow area. Through the first hollow region, the lens 140 is attached to the lens housing 141 such that the lens 140 is rotated or moved with the lens housing 141 as shown in the eighth diagram. For example, the lens 140 can be attached to the lens housing 141 using an ultraviolet glue. The left side of the ninth diagram illustrates a front view of the optical component adjustment system or apparatus of the present embodiment. For example, the lens housing 141 can be rotated via a gear-like structure 141a on the dial circumference, as shown in the upper left illustration of the ninth figure. The number of teeth of the gear-like structure 141a is determined by the number of teeth, and the size is determined depending on the actual application. The position of the optical axis of the lens 140 is determined in accordance with the number of teeth to be rotated. As such, the lens 140 can be rotated as the lens housing 141 rotates such that its center position of the lens 140 is changed. The lower left view of the ninth diagram illustrates a rear view of the optical component adjustment system or apparatus of the present embodiment. The centroid position of the lens housing 141 is offset from its center such that its axis of rotation is also off-center. After rotating the lens housing 141, the second portion 141c of the lens housing 141 is then linearly moved to complete the alignment of the optical axis, as illustrated in the lower left diagram of the ninth figure.

參考第九圖右邊圖示,其係為本發明之第二實施例之光學元件調整系統或裝置之立體圖。從第九圖右邊圖示可知,透鏡140嵌入於透鏡外罩141 內部。透鏡外罩141包括第一部分141b、第二部分141c與第三部分141d。第一部分141b即第九圖左下圖示、第九圖右圖示之前視圖中所看到的包覆透鏡140的包覆部分。第二部分141c即第九圖左下圖示、第九圖右圖示之前視圖中所看到的可線性移動透鏡外罩141之可線性移動部分。第三部分141d即第九圖右邊圖示之立體圖中所看到的可旋轉移動透鏡外罩141之可旋轉移動部分。第三部分141d為具有類齒輪式結構141a(未圖示於第九圖左下圖示、第九圖右圖示)以旋轉透鏡外罩141的可旋轉移動部分。因此,可旋轉移動部分與可旋轉移動部分可以獨立地移動。固定外罩或機體142係一個固定裝置,作為透鏡外罩141移動的不動的基礎。透鏡外罩141係沿著(相對於)固定外罩或機體142而旋轉與線性移動。上述旋轉動作係透過類齒輪式結構141a上的齒輪來執行,其旋轉軸是偏離中心的。Referring to the right side of the ninth diagram, which is a perspective view of an optical component adjustment system or apparatus of a second embodiment of the present invention. As can be seen from the diagram on the right side of the ninth figure, the lens 140 is embedded in the lens housing 141. internal. The lens housing 141 includes a first portion 141b, a second portion 141c, and a third portion 141d. The first portion 141b, that is, the lower left diagram of the ninth diagram, and the right diagram of the ninth diagram illustrate the covered portion of the cover lens 140 as seen in the front view. The second portion 141c, i.e., the lower left diagram of the ninth diagram, and the right diagram of the ninth diagram, illustrate the linearly movable portion of the linearly movable lens housing 141 as seen in the front view. The third portion 141d is a rotatable moving portion of the rotatable moving lens housing 141 as seen in the perspective view of the right side of the ninth diagram. The third portion 141d is a rotatable moving portion having a gear-like structure 141a (not shown in the lower left diagram of the ninth diagram and the right diagram of the ninth diagram) to rotate the lens housing 141. Therefore, the rotatable moving portion and the rotatable moving portion can move independently. The fixed outer cover or body 142 is a fixed device that serves as a stationary basis for the movement of the lens housing 141. The lens housing 141 is rotated and linearly moved relative to (relative to) the fixed housing or body 142. The above-described rotational motion is performed by a gear on the gear-like structure 141a, and its rotational axis is off-center.

參考第十圖,其係本發明之第二實施例之光學元件對準之示意圖。其中透鏡外罩141進行旋轉,而後進行線性移動。舉例而言,在未調整、對準光軸之前,透鏡140有一偏移,亦即透鏡140之初始中心相對於固定外罩或機體142之中心有一位移量,透鏡140之初始中心相對於透鏡外罩141(調整外罩)之中心也有一位移量。第一位移量與第二位移量不同。參考第十圖下邊的左圖,十字形代表預定的光軸中心。在旋轉中,透鏡外罩141沿著(相對於)固定外罩或機體142而旋轉,使得透鏡中心對準光軸中心的平行(X)軸,如第十圖下邊的中圖。然後,在線性移動中,透鏡外罩141之第二部分141c沿著(相對於)固定外罩或機體142而滑動(線性移動),使得透鏡中心對準光軸中心,如第十圖下邊的右圖。亦即透鏡中心與光軸中心重合,即完成透鏡中心的對準。線性移動主要是將旋轉之後,透鏡中心與光軸中心於X軸的位置偏移之差作調整與補償,以完成對準。Referring to the tenth embodiment, it is a schematic view of the alignment of the optical elements of the second embodiment of the present invention. The lens housing 141 is rotated and then linearly moved. For example, before the optical axis is adjusted and aligned, the lens 140 has an offset, that is, the initial center of the lens 140 has a displacement relative to the center of the fixed housing or the body 142, and the initial center of the lens 140 is opposite to the lens housing 141. There is also a displacement in the center of the (adjustment cover). The first amount of displacement is different from the second amount of displacement. Referring to the left diagram below the tenth figure, the cross shape represents the predetermined optical axis center. In rotation, the lens housing 141 rotates (relatively) to the fixed housing or body 142 such that the center of the lens is aligned with the parallel (X) axis of the center of the optical axis, as in the middle view of the lower portion of the tenth figure. Then, in linear movement, the second portion 141c of the lens housing 141 slides (linearly moves) (relatively) to the fixed housing or body 142 such that the center of the lens is aligned with the center of the optical axis, as shown in the lower right of the tenth figure. . That is, the center of the lens coincides with the center of the optical axis, that is, the alignment of the center of the lens is completed. The linear movement is mainly to adjust and compensate the difference between the position of the lens and the position of the optical axis at the X axis after the rotation to complete the alignment.

上述旋轉動作或線性滑行動作可以利用手動或自動的方式來操控。上述旋轉動作或線性滑行動作可以利用機械齒合的方式來實施,也可以利用電力或磁力的方式來實施。在利用電力或磁力的實施例子中,第一對準結構與第二對準結構中可以不用類齒輪結構或凹槽結構。The above rotating action or linear sliding action can be manipulated manually or automatically. The above-described rotation operation or linear sliding operation may be performed by means of mechanical toothing, or may be performed by electric power or magnetic force. In an embodiment in which electrical power or magnetic force is utilized, a gear-like structure or a groove structure may not be used in the first alignment structure and the second alignment structure.

上述敘述係為本發明之較佳實施例。此領域之技藝者應得以領會其係用以說明本發明而非用以限定本發明所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡熟悉此領域之技藝者,在 不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本發明所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。The above description is a preferred embodiment of the invention. Those skilled in the art should be able to understand the invention and not to limit the scope of the patent claims claimed herein. The scope of patent protection is subject to the scope of the patent application and its equivalent fields. Anyone who is familiar with this field, Modifications or modifications made by the spirit of the present invention are intended to be included within the scope of the appended claims.

120‧‧‧透鏡120‧‧‧ lens

121‧‧‧第一旋轉外罩121‧‧‧First rotating cover

121b‧‧‧第一部分121b‧‧‧Part I

121c‧‧‧第二部分121c‧‧‧Part II

122‧‧‧第二旋轉外罩122‧‧‧Second rotating cover

122a‧‧‧第二類齒輪式結構122a‧‧‧Second gear type structure

123‧‧‧固定外罩或機體123‧‧‧Fixed cover or body

Claims (4)

一種光學元件調整系統,包括:一第一對準結構,具有一第一鏤空空間以容納一透鏡,該第一對準結構的質心位置與其中心位置不相同;一第二對準結構,具有一第二鏤空空間以容納該第一對準結構,該第二對準結構的質心位置與其中心位置不相同;以及一固定結構,用以承載該第二對準結構,其中該第一對準結構具有一第一類齒輪式結構配置於其週邊,其中該第一對準結構包括一第一部分與一第二部分,該第一部分用以包覆該透鏡,該第二部分具有該第一類齒輪式結構,用以旋轉該第一對準結構,其中該第二對準結構包覆該第一對準結構之該第一部分,而不包覆該第一對準結構之該第二部分,使該第一對準結構與該第二對準結構得以獨立旋轉。 An optical component adjustment system comprising: a first alignment structure having a first hollow space to accommodate a lens, the first alignment structure having a centroid position different from a center position thereof; and a second alignment structure having a second hollow space to accommodate the first alignment structure, the centroid position of the second alignment structure is different from the center position thereof; and a fixed structure for carrying the second alignment structure, wherein the first pair The quasi-structure has a first type of gear structure disposed at a periphery thereof, wherein the first alignment structure includes a first portion and a second portion, the first portion is for covering the lens, and the second portion has the first portion a gear-like structure for rotating the first alignment structure, wherein the second alignment structure covers the first portion of the first alignment structure without covering the second portion of the first alignment structure The first alignment structure and the second alignment structure are independently rotated. 如請求項第1項所述之光學元件調整系統,其中該第二對準結構具有一第二類齒輪式結構配置於其週邊。 The optical component adjustment system of claim 1, wherein the second alignment structure has a second type of gear structure disposed at a periphery thereof. 一種投影機,包括一光學元件調整系統,其特徵在於該光學元件調整系統包括:一第一對準結構,具有一第一鏤空空間以容納一透鏡,該第一對準結構的質心位置與其中心位置不相同;一第二對準結構,具有一第二鏤空空間以容納該第一對準結構,該第二對準結構的質心位置與其中心位置不相同;以及一固定結構,用以承載該第二對準結構,其中該第一對準結構具有一第一類齒輪式結構配置於其週邊,其中該第一對準結構包括一第一部分與一第二部分,該第一部分用以包覆該透鏡,該第二部分具有該第一類齒輪式結構,用以旋轉該第一對準結構,其中該第二對準結構包覆該第一對準結構之該第一 部分,而不包覆該第一對準結構之該第二部分,使該第一對準結構與該第二對準結構得以獨立旋轉。 A projector comprising an optical component adjustment system, wherein the optical component adjustment system comprises: a first alignment structure having a first hollow space to accommodate a lens, the centroid position of the first alignment structure being The central alignment is different; a second alignment structure has a second hollow space to accommodate the first alignment structure, the second alignment structure has a centroid position different from the center position thereof; and a fixed structure for Carrying the second alignment structure, wherein the first alignment structure has a first type of gear structure disposed at a periphery thereof, wherein the first alignment structure includes a first portion and a second portion, the first portion is used for Encapsulating the lens, the second portion having the first type of gear structure for rotating the first alignment structure, wherein the second alignment structure covers the first portion of the first alignment structure The portion, without covering the second portion of the first alignment structure, causes the first alignment structure and the second alignment structure to rotate independently. 如請求項第3項所述之投影機,其中該第二對準結構具有一第二類齒輪式結構配置於其週邊。 The projector of claim 3, wherein the second alignment structure has a second type of gear structure disposed at a periphery thereof.
TW102117547A 2013-05-17 2013-05-17 Projector and optical component adjustment system thereof TWI494632B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102117547A TWI494632B (en) 2013-05-17 2013-05-17 Projector and optical component adjustment system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102117547A TWI494632B (en) 2013-05-17 2013-05-17 Projector and optical component adjustment system thereof

Publications (2)

Publication Number Publication Date
TW201445209A TW201445209A (en) 2014-12-01
TWI494632B true TWI494632B (en) 2015-08-01

Family

ID=52707021

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102117547A TWI494632B (en) 2013-05-17 2013-05-17 Projector and optical component adjustment system thereof

Country Status (1)

Country Link
TW (1) TWI494632B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649170B1 (en) 2019-02-26 2020-05-12 Coretronic Corporation Light source assembly and projection apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424873A (en) * 1992-12-07 1995-06-13 Asahi Kogaku Kogyo Kabushiki Kaisha Lens centering apparatus
TW200413830A (en) * 2003-01-29 2004-08-01 Nucam Corp Method and mechanism for adjusting lens
TW200702763A (en) * 2005-07-13 2007-01-16 Ind Tech Res Inst Device for adjusting the axis of a lens
TW200734712A (en) * 2005-11-08 2007-09-16 Itt Mfg Enterprises Inc Collimated optical system
CN101546046A (en) * 2008-03-24 2009-09-30 亿光电子工业股份有限公司 Optical collimator module capable of adjusting optical shape and illumination module using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424873A (en) * 1992-12-07 1995-06-13 Asahi Kogaku Kogyo Kabushiki Kaisha Lens centering apparatus
TW200413830A (en) * 2003-01-29 2004-08-01 Nucam Corp Method and mechanism for adjusting lens
TW200702763A (en) * 2005-07-13 2007-01-16 Ind Tech Res Inst Device for adjusting the axis of a lens
TW200734712A (en) * 2005-11-08 2007-09-16 Itt Mfg Enterprises Inc Collimated optical system
CN101546046A (en) * 2008-03-24 2009-09-30 亿光电子工业股份有限公司 Optical collimator module capable of adjusting optical shape and illumination module using same

Also Published As

Publication number Publication date
TW201445209A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
JP6923529B2 (en) Non-telecentric light emitting micropixel array light modulator
US6381072B1 (en) Lenslet array systems and methods
CN102439509B (en) Passive alignment method and its application in micro projection devices
KR101390624B1 (en) Position detection apparatus, imprint apparatus, and position detection method
US10012834B2 (en) Exit pupil-forming display with reconvergent sheet
US7349604B2 (en) Method and apparatus for aligning optical components
US20140268068A1 (en) Light source unit, lighting apparatus and image projection apparatus
CN105324631A (en) Integrated structured-light projector
CN107077053B (en) Light source device and projector
CN1975569A (en) Method of manufacturing gray scale mask and microlens, microlens, spatial light modulating apparatus and projector
WO2014073152A1 (en) Light source unit, light source device, and image display device
JP2014085623A (en) Light source unit, light source device and image display device
JP2017523609A (en) Apparatus for emitting light having a plurality of wavelengths, method for manufacturing the apparatus, use of a positioning module, method for combining light beams, and apparatus for emitting light having a plurality of wavelengths
JP2016024195A (en) Seamless fusion type lighting device of telecentric bright field and annular dark field
TWI526771B (en) Light source system
WO1999038046A1 (en) Lenslet array systems and methods
US20130222875A1 (en) Projection display apparatus
CN109581827A (en) Photoetching projection objective lens optimal focal plane detection device and method
TWI494632B (en) Projector and optical component adjustment system thereof
TW201333620A (en) Light source system
JP2015099317A (en) Projection optical device and image projection device
CN208537888U (en) The adjustment mechanism and projection arrangement of optical element module
CN107450274A (en) Lamp optical system and the lithographic equipment using the lamp optical system
CN103528541B (en) Three-dimension measuring system
CN101807009A (en) Illumination uniformity compensating device and lithography machine provided therewith