TWI493760B - Light emitting diode and chip on board thereof - Google Patents
Light emitting diode and chip on board thereof Download PDFInfo
- Publication number
- TWI493760B TWI493760B TW102104189A TW102104189A TWI493760B TW I493760 B TWI493760 B TW I493760B TW 102104189 A TW102104189 A TW 102104189A TW 102104189 A TW102104189 A TW 102104189A TW I493760 B TWI493760 B TW I493760B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- semiconductor epitaxial
- epitaxial layer
- package structure
- wafer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims description 149
- 229910052751 metal Inorganic materials 0.000 claims description 82
- 239000002184 metal Substances 0.000 claims description 82
- 239000000758 substrate Substances 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 44
- 229910052799 carbon Inorganic materials 0.000 claims description 42
- 229910000679 solder Inorganic materials 0.000 claims description 22
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical group [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910003460 diamond Inorganic materials 0.000 claims description 7
- 239000010432 diamond Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000010936 titanium Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 6
- 239000002019 doping agent Substances 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 150000001721 carbon Chemical group 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 claims 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims 1
- 230000005855 radiation Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 21
- 230000017525 heat dissipation Effects 0.000 description 21
- 239000000463 material Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229910002601 GaN Inorganic materials 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 229910005544 NiAg Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- YCKOAAUKSGOOJH-UHFFFAOYSA-N copper silver Chemical compound [Cu].[Ag].[Ag] YCKOAAUKSGOOJH-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 4
- MOFOBJHOKRNACT-UHFFFAOYSA-N nickel silver Chemical compound [Ni].[Ag] MOFOBJHOKRNACT-UHFFFAOYSA-N 0.000 description 4
- 239000010956 nickel silver Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 210000004508 polar body Anatomy 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/64—Heat extraction or cooling elements
- H01L33/641—Heat extraction or cooling elements characterized by the materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Description
本發明係關於一種發光二極體及其晶片板上封裝結構,尤指一種可以快速移除熱點(Hot spot)及提升輸出光率之發光二極體與使用其之晶片板上封裝結構。The invention relates to a light-emitting diode and a package structure on a wafer board, in particular to a light-emitting diode which can quickly remove a hot spot and enhance an output light rate and a package structure on a wafer board using the same.
西元1962年,通用電氣公司的尼克.何倫亞克(Nick Holonyak Jr.)開發出第一種實際應用的可見光發光二極體(Light Emitting Diode,LED),而隨著科技日益更新,各種色彩發光二極體開發也應蘊而生。而對於現今人類所追求永續發展為前提的情形下,發光二極體的低耗電量以及長效性的發光等優勢下,已逐漸取代日常生活中用來照明或各種電器設備的指示燈或光源等用途。更有甚者,發光二極體朝向多色彩及高亮度的發展,已應用在大型戶外顯示看板或交通號誌。In 1962, Nick of General Electric Company. Nick Holonyak Jr. developed the first practical application of Light Emitting Diode (LED), and with the ever-increasing technology, various color LEDs should also be developed. . Under the premise of the pursuit of sustainable development by human beings today, the low power consumption of LEDs and the long-lasting illumination have gradually replaced the indicators used in daily life for lighting or various electrical equipment. Or use of light sources. What's more, the development of light-emitting diodes towards multi-color and high brightness has been applied to large outdoor display billboards or traffic signs.
以習知藍光發光二極體為例,其銦摻雜氮化鎵係為一習知之多量子井(multiple quantum wells,MQW),其中,具有49個電子之銦原子因其遠大於晶格內的鎵原子及氮原子,而使得銦原子容易從晶格中分離,促使MQW產生缺陷而使得該藍光發光二極體無法作用。更具體地,存在於氮化鎵晶格中之銦原子會造成反壓電以及內應力的問題,其中,反壓電效應會驅使銦原子偏離其平衡位置,而內應力 則會造成銦原子產生差排。上述不可逆之劣化過程將使得該發光二極體之發光效率快速地下降。Taking the conventional blue light-emitting diode as an example, the indium-doped gallium nitride is a conventional multiple quantum wells (MQW), in which the indium atoms having 49 electrons are far larger than the inside of the crystal lattice. The gallium atom and the nitrogen atom make the indium atom easily separated from the crystal lattice, causing the MQW to generate defects and making the blue light emitting diode ineffective. More specifically, the indium atoms present in the gallium nitride crystal lattice cause inverse piezoelectric and internal stress problems, wherein the anti-piezoelectric effect drives the indium atoms away from their equilibrium positions, while the internal stress This will cause a difference in the indium atoms. The above irreversible degradation process will cause the luminous efficiency of the light-emitting diode to rapidly decrease.
於習知發光二極體中,當電子與電洞再結合時,約有1/3的能量以光子形式輻射,而約2/3的能量則轉換為熱能以晶格振動的方式逸散。據此,若發光二極體晶格中之熱能無法快速移除,將導致如上述之發光二極體劣化問題,而促使發光二極體發光效率快速降低,據此,申請人於所提出之中華民國專利申請號第100146548、100146551以及101120872號中均已揭露以類鑽碳與導電材料所組成之堆疊結構或多層結構可有效地改善發光二極體之散熱效率以及緩和或去除發光二極體受熱膨脹的不良影響。雖相關前案揭露其類鑽碳因其超硬材料之特徵,能快速地從發光二極體中移除熱量而達到整體散熱之目的。然而,實際上,如圖1所示,產生於MQW中,尺寸小於1奈米之熱點才是真正直接導致發光二極體劣化之原因。是以,申請人經詳加研究後,更具體提出藉由限制MQW與類鑽碳層之間距,從而透過聲子傳遞方式由發光二極體中快速移除熱點,而達到最佳化發光二極體之散熱效率,進而可維持發光二極體之發光效率。In conventional light-emitting diodes, when electrons and holes are recombined, about 1/3 of the energy is radiated in the form of photons, and about 2/3 of the energy is converted into heat energy to escape in a lattice vibration manner. Accordingly, if the thermal energy in the crystal lattice of the light-emitting diode cannot be quickly removed, the problem of deterioration of the light-emitting diode as described above is caused, and the luminous efficiency of the light-emitting diode is rapidly lowered, and accordingly, the applicant proposes In the Republic of China Patent Application Nos. 100146548, 100146551, and 101120872, it is disclosed that a stacked structure or a multilayer structure composed of a diamond-like carbon and a conductive material can effectively improve the heat dissipation efficiency of the light-emitting diode and alleviate or remove the light-emitting diode. Badly affected by thermal expansion. Although the related case reveals that its diamond-like carbon is characterized by its super-hard material, it can quickly remove heat from the light-emitting diode to achieve the overall heat dissipation. However, in fact, as shown in FIG. 1, the hot spot generated in the MQW and having a size smaller than 1 nm is the cause that directly causes the deterioration of the light-emitting diode. Therefore, after the applicant has studied in detail, it is more specifically proposed to limit the distance between the MQW and the diamond-like carbon layer, thereby quickly removing the hot spot from the light-emitting diode through the phonon transfer method, thereby achieving the optimal illumination. The heat dissipation efficiency of the polar body can further maintain the luminous efficiency of the light-emitting diode.
本發明之主要目的係在提供一種發光二極體,其透過調整多量子井層及碳化物層之結構設計,可在發光二極體運作產生熱量的過程中,透過超聲波方式散熱,快速移除 發光二極體中之熱點,以穩定發光二極體之晶格結構,從而達到最佳化發光二極體散熱效率,並維持其發光效率。The main object of the present invention is to provide a light-emitting diode which can adjust the structure of the multi-quantum well layer and the carbide layer to dissipate heat through the ultrasonic method during the operation of the light-emitting diode to generate heat. The hot spot in the light-emitting diode is used to stabilize the lattice structure of the light-emitting diode, thereby optimizing the heat-dissipating efficiency of the light-emitting diode and maintaining its luminous efficiency.
為達成上述目的,本發明之一態樣係提供一種發光二極體,包括:一基板;一半導體磊晶層,其位於該基板表面,該半導體磊晶層包括一第一半導體磊晶層、一活性中間層、以及一第二半導體磊晶層;一反射層,其夾置於該半導體磊晶層及該基板之間;一金屬層,其夾置於該反射層及該基板之間;以及一碳化物層,其夾置於該金屬層及該基板之間;其中,該活性中間層及該碳化物層間之距離可為1至10微米。To achieve the above object, an aspect of the present invention provides a light emitting diode comprising: a substrate; a semiconductor epitaxial layer on the surface of the substrate, the semiconductor epitaxial layer comprising a first semiconductor epitaxial layer, An active intermediate layer and a second semiconductor epitaxial layer; a reflective layer sandwiched between the semiconductor epitaxial layer and the substrate; a metal layer sandwiched between the reflective layer and the substrate; And a carbide layer interposed between the metal layer and the substrate; wherein the distance between the active intermediate layer and the carbide layer may be 1 to 10 microns.
於本發明上述發光二極體中,該活性中間層及該碳化物層間之距離較佳可為2微米。In the above light-emitting diode of the present invention, the distance between the active intermediate layer and the carbide layer may preferably be 2 μm.
於本發明上述發光二極體中,該反射層可為由銀、或鋁、或其合金所組成。然而,應了解的是,反射層之材質並不僅限於此,舉例而言,亦可為銦錫氧化物(indium tin oxide,ITO)、氧化鋁鋅(aluminum zinc oxide,AZO)、氧化鋅(ZnO)、石墨烯(graphene)、鎳(Ni)、鈷(Co)、鈀(Pd)、鉑(Pt)、金(Au)、鋅(Zn)、錫(Sn)、銻(Sb)、鉛(Pb)、銅(Cu)、銅銀(CuAg)、鎳銀(NiAg)、其合金、或其金屬混合物。上述銅銀(CuAg)與鎳銀(NiAg)等係指共晶金屬(eutectic metal),除了用於達到反射效果之外,也可以達到形成歐姆接觸(ohmic contact)的效用。In the above light-emitting diode of the present invention, the reflective layer may be composed of silver, or aluminum, or an alloy thereof. However, it should be understood that the material of the reflective layer is not limited thereto. For example, it may be indium tin oxide (ITO), aluminum zinc oxide (AZO), or zinc oxide (ZnO). ), graphene, nickel (Ni), cobalt (Co), palladium (Pd), platinum (Pt), gold (Au), zinc (Zn), tin (Sn), antimony (Sb), lead ( Pb), copper (Cu), copper silver (CuAg), nickel silver (NiAg), alloys thereof, or metal mixtures thereof. The above-mentioned copper-silver (CuAg) and nickel-silver (NiAg) and the like refer to a eutectic metal, and in addition to achieving a reflection effect, the effect of forming an ohmic contact can also be achieved.
於本發明上述發光二極體中,該金屬層可為鈦、鋯、鉬、或鎢,且該金屬層之厚度為5奈米至500奈米。再者, 該碳化物層則可為類鑽碳、石墨烯、或其組合,且該碳化物層之厚度可為5奈米至1000奈米。據此,該金屬層及該碳化物層可形成為相互堆疊之多層結構。於本發明之一態樣中,該金屬層及該碳化物層可各自獨立以1至10層相互堆疊,從而形成為一2至20層相互堆疊之多層結構。In the above light-emitting diode of the present invention, the metal layer may be titanium, zirconium, molybdenum, or tungsten, and the metal layer has a thickness of 5 nm to 500 nm. Furthermore, The carbide layer can then be diamond-like carbon, graphene, or a combination thereof, and the carbide layer can have a thickness of from 5 nanometers to 1000 nanometers. Accordingly, the metal layer and the carbide layer can be formed in a multi-layered structure stacked on each other. In one aspect of the invention, the metal layer and the carbide layer may each be independently stacked on each other in layers of 1 to 10 to form a multilayer structure in which 2 to 20 layers are stacked on each other.
於本發明上述發光二極體中,該金屬層及該碳化物層之形成方法並不特別限制,舉例而言,可以電弧沉積法或濺鍍法形成該金屬層或該碳化物層。於本發明之一態樣中,該碳化物層可以電弧沉積法形成於該金屬層上。於本發明之另一態樣中,該碳化物層則以濺鍍法形成於該金屬層上。In the above light-emitting diode of the present invention, the metal layer and the method of forming the carbide layer are not particularly limited. For example, the metal layer or the carbide layer may be formed by arc deposition or sputtering. In one aspect of the invention, the carbide layer can be formed on the metal layer by arc deposition. In another aspect of the invention, the carbide layer is formed on the metal layer by sputtering.
於本發明上述發光二極體中,該碳化物層係形成於基板及半導體磊晶層間,是以該碳化物層需具導電之功能,因此,當所選用之碳化物層為類鑽碳時,該類鑽碳需為一導電性之四面體結構,且該類鑽碳之碳原子含量高於95%以上,及該類鑽碳之25%以上碳原子具有一扭曲四面體鍵結結構。據此,使得介於半導體磊晶層及基板間之金屬層及碳化物層可具有導電之性質。In the above light-emitting diode of the present invention, the carbide layer is formed between the substrate and the semiconductor epitaxial layer, so that the carbide layer needs to have a function of conducting electricity, and therefore, when the selected carbide layer is diamond-like carbon. The carbon drilled material needs to be a conductive tetrahedral structure, and the carbon atom content of the drilled carbon is higher than 95%, and more than 25% of the carbon atoms of the drilled carbon have a twisted tetrahedral bond structure. Accordingly, the metal layer and the carbide layer interposed between the semiconductor epitaxial layer and the substrate can have electrically conductive properties.
於本發明上述發光二極體中,該第一半導體磊晶層係夾置於該反射層及該活性中間層之間,該活性中間層係夾置於該第一半導體磊晶層與該第二半導體磊晶層之間。於本發明之一態樣中,該發光二極體可為一直通式發光二極體,其第一半導體磊晶層可被該活性中間層及該第二半導體磊晶層完全覆蓋,其中,該第一半導體磊晶層、該反射 層、該金屬層及碳化物層具有相同電性,並且相互電性連接。該發光二極體更可包括一第二電極,其設置於該第二半導體磊晶層表面,其中,該第二電極與該第二半導體磊晶層具有相同電性,以相互電性連接。於本發明之一具體態樣中,該第一半導體磊晶層、該反射層、該金屬層及碳化物層為P型電性,而該第二半導體磊晶層及該第二電極為N型電性。據此,本發明之發光二極體即可形成一直通式發光二極體。In the above light-emitting diode of the present invention, the first semiconductor epitaxial layer is interposed between the reflective layer and the active intermediate layer, and the active intermediate layer is interposed between the first semiconductor epitaxial layer and the first Between two semiconductor epitaxial layers. In one aspect of the present invention, the light emitting diode may be a general-purpose light emitting diode, and the first semiconductor epitaxial layer may be completely covered by the active intermediate layer and the second semiconductor epitaxial layer, wherein The first semiconductor epitaxial layer, the reflection The layer, the metal layer and the carbide layer have the same electrical properties and are electrically connected to each other. The light emitting diode further includes a second electrode disposed on the surface of the second semiconductor epitaxial layer, wherein the second electrode and the second semiconductor epitaxial layer have the same electrical property to be electrically connected to each other. In one embodiment of the invention, the first semiconductor epitaxial layer, the reflective layer, the metal layer and the carbide layer are P-type electrical, and the second semiconductor epitaxial layer and the second electrode are N Type electrical. Accordingly, the light-emitting diode of the present invention can form a general-purpose light-emitting diode.
於本發明上述發光二極體中,該半導體磊晶層可含有一摻雜物,該摻雜物可為銦。據此,該半導體磊晶層之活性中間層可形成為一多量子井層(multiple quantum well layer),以提升發光二極體中電能轉換成光能的效率,但本發明並不以此為限。In the above light-emitting diode of the present invention, the semiconductor epitaxial layer may contain a dopant, and the dopant may be indium. Accordingly, the active intermediate layer of the semiconductor epitaxial layer can be formed into a multiple quantum well layer to improve the efficiency of converting electrical energy into light energy in the light emitting diode, but the present invention does not limit.
於本發明上述發光二極體中,該基板可包含一絕緣層、以及一電路基板,其中,該絕緣層之材質可選自由類鑽碳、氧化鋁、陶瓷、以及含鑽石之環氧樹脂所組群組之至少一者;該電路基板則可為一金屬板、一陶瓷板或一矽基板。In the above light-emitting diode of the present invention, the substrate may comprise an insulating layer and a circuit substrate, wherein the insulating layer may be made of diamond-like carbon, aluminum oxide, ceramic, and diamond-containing epoxy resin. At least one of the group; the circuit substrate can be a metal plate, a ceramic plate or a substrate.
一般而言,習知鑽石材料因其具有超硬材料之特性,能以15,000m/s之超聲波速度傳遞熱量,相當於5倍之銀熱傳速度,若應用於發光二極體中,可降低其平均溫度或能使其溫度分佈均勻,達到有效散熱之目的。而本發明之重要技術特徵即在於透過超聲波散熱方式,快速移除半導體磊晶層中之熱點,以最佳化發光二極體之發光效率。是以, 於上述本發明之發光二極體中,通常熱點產生位置為半導體磊晶層之活性中間層,因此,活性中間層與鑽石材料間之距離變得相當重要。舉例而言,於上述本發明發光二極體中,可選用類鑽碳作為該碳化物層並設置於半導體磊晶層及該基板間,使該類鑽碳可提供該半導體磊晶層一超聲波散熱功能,達到消除熱點之目的。此外,類鑽碳亦可為基板之絕緣層,只要類鑽碳與熱點之距離夠近,可使其具有超聲波散熱之功效即可,本發明並不特別限制其位置。In general, conventional diamond materials can transfer heat at an ultrasonic velocity of 15,000 m/s because of their characteristics of superhard materials, which is equivalent to 5 times the heat transfer rate of silver, and can be reduced if used in a light-emitting diode. The average temperature can evenly distribute its temperature to achieve effective heat dissipation. The important technical feature of the present invention is that the hot spot in the semiconductor epitaxial layer is quickly removed by the ultrasonic heat dissipation method to optimize the luminous efficiency of the light emitting diode. Yes, In the above-described light-emitting diode of the present invention, usually the hot spot is generated as an active intermediate layer of the semiconductor epitaxial layer, and therefore, the distance between the active intermediate layer and the diamond material becomes quite important. For example, in the above-mentioned light-emitting diode of the present invention, diamond-like carbon may be selected as the carbide layer and disposed between the semiconductor epitaxial layer and the substrate, so that the diamond-like carbon can provide the semiconductor epitaxial layer and the ultrasonic wave. The heat dissipation function achieves the purpose of eliminating hot spots. In addition, the diamond-like carbon may also be an insulating layer of the substrate, as long as the diamond-like carbon is close enough to the hot spot to have the effect of ultrasonic heat dissipation, and the position is not particularly limited in the present invention.
本發明之另一目的係在提供晶片板上封裝結構(chip on board,COB),其透過調整多量子井層及碳化物層之結構設計,使晶片板上封裝結構之發光二極體於運作產生熱量的過程中,透過超聲波方式散熱,快速移除發光二極體中之熱點,以穩定發光二極體之晶格結構,從而達到最佳化發光二極體散熱效率,並維持其發光效率。Another object of the present invention is to provide a chip on board (COB) for adjusting the structure of a multi-quantum well layer and a carbide layer to operate a light-emitting diode of a package structure on a wafer board. In the process of generating heat, the heat is dissipated by ultrasonic waves, and the hot spot in the light-emitting diode is quickly removed to stabilize the lattice structure of the light-emitting diode, thereby optimizing the heat-dissipating efficiency of the light-emitting diode and maintaining the luminous efficiency thereof. .
為達成上述目的,本發明之一態樣提供一種晶片板上封裝結構(chip on board,COB),包括:一電路載板,其係包括至少一電性連接墊;一半導體磊晶層,其位於該電路載板表面,該半導體磊晶層包括一第一半導體磊晶層、一活性中間層、以及一第二半導體磊晶層;一反射層,其夾置於該半導體磊晶層及該電路載板之間;一金屬層,其夾置於該反射層及該電路載板之間;以及一碳化物層,其夾置於該金屬層及該電路載板之間;其中,該活性中間層及該碳化物層間之距離可為1至10微米。To achieve the above object, an aspect of the present invention provides a chip on board (COB) comprising: a circuit carrier comprising at least one electrical connection pad; a semiconductor epitaxial layer; Located on the surface of the circuit carrier, the semiconductor epitaxial layer includes a first semiconductor epitaxial layer, an active intermediate layer, and a second semiconductor epitaxial layer; a reflective layer sandwiched between the semiconductor epitaxial layer and the Between the circuit carriers; a metal layer sandwiched between the reflective layer and the circuit carrier; and a carbide layer interposed between the metal layer and the circuit carrier; wherein the activity The distance between the intermediate layer and the carbide layer may be from 1 to 10 microns.
於本發明上述晶片板上封裝結構中,該活性中間層及該碳化物層間之距離較佳可為2微米。In the above wafer-on-package structure of the present invention, the distance between the active intermediate layer and the carbide layer may preferably be 2 μm.
於本發明上述晶片板上封裝結構中,該反射層可為由銀、或鋁、或其合金所組成。然而,應了解的是,反射層之材質並不僅限於此,舉例而言,亦可為銦錫氧化物(indium tin oxide,ITO)、氧化鋁鋅(aluminum zinc oxide,AZO)、氧化鋅(ZnO)、石墨烯(graphene)、鎳(Ni)、鈷(Co)、鈀(Pd)、鉑(Pt)、金(Au)、鋅(Zn)、錫(Sn)、銻(Sb)、鉛(Pb)、銅(Cu)、銅銀(CuAg)、鎳銀(NiAg)、其合金、或其金屬混合物。上述銅銀(CuAg)與鎳銀(NiAg)等係指共晶金屬(eutectic metal),除了用於達到反射效果之外,也可以達到形成歐姆接觸(ohmic contact)的效用。In the above wafer-on-package structure of the present invention, the reflective layer may be composed of silver, or aluminum, or an alloy thereof. However, it should be understood that the material of the reflective layer is not limited thereto. For example, it may be indium tin oxide (ITO), aluminum zinc oxide (AZO), or zinc oxide (ZnO). ), graphene, nickel (Ni), cobalt (Co), palladium (Pd), platinum (Pt), gold (Au), zinc (Zn), tin (Sn), antimony (Sb), lead ( Pb), copper (Cu), copper silver (CuAg), nickel silver (NiAg), alloys thereof, or metal mixtures thereof. The above-mentioned copper-silver (CuAg) and nickel-silver (NiAg) and the like refer to a eutectic metal, and in addition to achieving a reflection effect, the effect of forming an ohmic contact can also be achieved.
於本發明上述晶片板上封裝結構中,該金屬層可為鈦、鋯、鉬、或鎢,且該金屬層之厚度為5奈米至500奈米。再者,該碳化物層則可為類鑽碳、石墨烯、或其組合,且該碳化物層之厚度可為5奈米至1000奈米。據此,該金屬層及該碳化物層可形成為相互堆疊之多層結構。於本發明之一態樣中,該金屬層及該碳化物層可各自獨立以1至10層相互堆疊,從而形成為一2至20層相互堆疊之多層結構。In the above wafer-on-package structure of the present invention, the metal layer may be titanium, zirconium, molybdenum, or tungsten, and the metal layer has a thickness of 5 nm to 500 nm. Furthermore, the carbide layer may be diamond-like carbon, graphene, or a combination thereof, and the carbide layer may have a thickness of 5 nm to 1000 nm. Accordingly, the metal layer and the carbide layer can be formed in a multi-layered structure stacked on each other. In one aspect of the invention, the metal layer and the carbide layer may each be independently stacked on each other in layers of 1 to 10 to form a multilayer structure in which 2 to 20 layers are stacked on each other.
於本發明上述晶片板上封裝結構中,該金屬層及該碳化物層形成方法並不特別限制,舉例而言,可以電弧沉積法或濺鍍法形成該金屬層或該碳化物層。於本發明之一態樣中,該碳化物層可以電弧沉積法形成於該金屬層上。於 本發明之另一態樣中,該碳化物層則以濺鍍法形成於該金屬層上。In the above-described wafer-on-package structure of the present invention, the metal layer and the method of forming the carbide layer are not particularly limited. For example, the metal layer or the carbide layer may be formed by arc deposition or sputtering. In one aspect of the invention, the carbide layer can be formed on the metal layer by arc deposition. to In another aspect of the invention, the carbide layer is formed on the metal layer by sputtering.
於本發明上述晶片板上封裝結構中,由於該碳化物層係形成於電路載板及半導體磊晶層間,該碳化物層需具導電之功能,因此,當所選用之碳化物層為類鑽碳時,該類鑽碳需為一導電性之四面體結構,且該類鑽碳之碳原子含量高於95%以上,及該類鑽碳之25%以上碳原子具有一扭曲四面體鍵結結構。據此,使得介於半導體磊晶層及基板間之金屬層及碳化物層可具有導電之性質。In the above wafer-on-package structure of the present invention, since the carbide layer is formed between the circuit carrier and the semiconductor epitaxial layer, the carbide layer needs to have a conductive function, and therefore, when the selected carbide layer is drilled In the case of carbon, the drilled carbon needs to be a conductive tetrahedral structure, and the carbon atom content of the drilled carbon is higher than 95%, and more than 25% of the carbon atoms of the drilled carbon have a twisted tetrahedral bond. structure. Accordingly, the metal layer and the carbide layer interposed between the semiconductor epitaxial layer and the substrate can have electrically conductive properties.
於本發明上述晶片板上封裝結構中,該第二半導體磊晶層係夾置於該反射層及該活性中間層之間,該活性中間層係夾置於該第一半導體磊晶層與該第二半導體磊晶層之間,且該第一半導體磊晶層係部分未覆蓋該活性中間層及該第二半導體磊晶層,從而顯露部分該第一半導體磊晶層,以提供作為電性連接之用途。In the above wafer-on-package structure of the present invention, the second semiconductor epitaxial layer is interposed between the reflective layer and the active intermediate layer, and the active intermediate layer is interposed between the first semiconductor epitaxial layer and the Between the second semiconductor epitaxial layers, and the first semiconductor epitaxial layer portion does not cover the active intermediate layer and the second semiconductor epitaxial layer, thereby exposing a portion of the first semiconductor epitaxial layer to provide electrical The purpose of the connection.
於本發明上述晶片板上封裝結構中,該金屬層及該碳化物層所形成之多層結構可分別設置於該第二半導體磊晶層及該第一半導體磊晶層之表面,作為電極之用途以電性連接至該電路載板。具體而言,為使該半導體磊晶層可電性連接至該電路載板上,該第二半導體磊晶層及設置於其上之金屬層與碳化物層可為P型電性;而該第一半導體磊晶層及設置於其上之金屬層與碳化物層則可為N型電性。據此,可使該半導體磊晶層得以電性連接於該電路載板上。In the above-described wafer-on-package structure of the present invention, the metal layer and the multilayer structure formed by the carbide layer may be respectively disposed on the surface of the second semiconductor epitaxial layer and the first semiconductor epitaxial layer for use as an electrode. Electrically connected to the circuit carrier. Specifically, in order to electrically connect the semiconductor epitaxial layer to the circuit carrier, the second semiconductor epitaxial layer and the metal layer and the carbide layer disposed thereon may be P-type electrical; The first semiconductor epitaxial layer and the metal layer and the carbide layer disposed thereon may be N-type electrical. Accordingly, the semiconductor epitaxial layer can be electrically connected to the circuit carrier.
於本發明上述晶片板上封裝結構中,更可包括一焊接層,其設置於該電路載板及該碳化物層之間,從而使得該半導體磊晶層可穩固地電性連接至該電路載板。In the above-mentioned wafer-on-package structure of the present invention, a solder layer may be further disposed between the circuit carrier and the carbide layer, so that the semiconductor epitaxial layer can be stably electrically connected to the circuit carrier. board.
於本發明上述晶片板上封裝結構中,該半導體磊晶層可含有一摻雜物,該摻雜物可為銦。據此,該半導體磊晶層之活性中間層可形成為一多量子井層(multiple quantum well layer),以提升發光二極體中電能轉換成光能的效率,但本發明並不以此為限。In the above wafer-on-package structure of the present invention, the semiconductor epitaxial layer may contain a dopant, and the dopant may be indium. Accordingly, the active intermediate layer of the semiconductor epitaxial layer can be formed into a multiple quantum well layer to improve the efficiency of converting electrical energy into light energy in the light emitting diode, but the present invention does not limit.
於本發明上述晶片板上封裝結構中,該電路載板可包含一絕緣層、以及一電路基板,其中,該絕緣層之材質可選自由類鑽碳、氧化鋁、陶瓷、以及含鑽石之環氧樹脂所組群組之至少一者;該電路基板則可為一金屬板、一陶瓷板或一矽基板。In the above wafer-on-package structure of the present invention, the circuit carrier may include an insulating layer and a circuit substrate, wherein the insulating layer is made of a diamond-like carbon, alumina, ceramic, and diamond-containing ring. At least one of the group of oxygen resins; the circuit substrate may be a metal plate, a ceramic plate or a substrate.
一般而言,習知鑽石材料因其具有超硬材料之特性,能以15,000m/s之超聲波速度傳遞熱量,相當於5倍之銀熱傳速度,若應用於發光二極體中,可降低其平均溫度或能使其溫度分佈均勻,達到有效散熱之目的。而本發明之重要技術特徵即在於透過超聲波散熱方式,快速移除半導體磊晶層中之熱點,以最佳化發光二極體之發光效率。是以,於上述本發明之晶片板上封裝結構中,通常熱點產生位置為半導體磊晶層之活性中間層,因此,活性中間層與鑽石材料間之距離變得相當重要。舉例而言,於上述本發明晶片板上封裝結構中,可選用類鑽碳作為該碳化物層並設置於半導體磊晶層及該電路載板間,使該類鑽碳可提供該半 導體磊晶層一超聲波散熱功能,達到消除熱點之目的。此外,類鑽碳亦可為基板之絕緣層,只要類鑽碳與熱點之距離夠近,可使其具有超聲波散熱之功效即可,本發明並不特別限制其位置。In general, conventional diamond materials can transfer heat at an ultrasonic velocity of 15,000 m/s because of their characteristics of superhard materials, which is equivalent to 5 times the heat transfer rate of silver, and can be reduced if used in a light-emitting diode. The average temperature can evenly distribute its temperature to achieve effective heat dissipation. The important technical feature of the present invention is that the hot spot in the semiconductor epitaxial layer is quickly removed by the ultrasonic heat dissipation method to optimize the luminous efficiency of the light emitting diode. Therefore, in the above-described wafer-on-package structure of the present invention, generally, the hot spot is generated as an active intermediate layer of the semiconductor epitaxial layer, and therefore, the distance between the active intermediate layer and the diamond material becomes quite important. For example, in the above package structure of the wafer on-chip of the present invention, diamond-like carbon may be selected as the carbide layer and disposed between the semiconductor epitaxial layer and the circuit carrier, so that the diamond-like carbon can provide the half. The epitaxial layer of the conductor has an ultrasonic heat dissipation function to eliminate hot spots. In addition, the diamond-like carbon may also be an insulating layer of the substrate, as long as the diamond-like carbon is close enough to the hot spot to have the effect of ultrasonic heat dissipation, and the position is not particularly limited in the present invention.
再者,於上述本發明之晶片板上封裝結構中,該晶片板上封裝結構更可包括一基板,其係設置於該第一半導體磊晶層上。具體而言,可先於該基板上製備一覆晶式發光二極體,並以覆晶技術將該發光二極體透過一焊接層電性連接並封裝至該電路載板上,以形成該晶片板上封裝結構。因此,若該基板為一透明基板,則可保留於該半導體磊晶層上,反之則需移除。於本發明之一具體態樣中,該基板可為一藍寶石基板而保留於該半導體磊晶層上,但本發明並不僅限於此。Furthermore, in the above-described package structure on the wafer board of the present invention, the package structure on the wafer board may further include a substrate disposed on the first semiconductor epitaxial layer. Specifically, a flip-chip light-emitting diode can be prepared on the substrate, and the light-emitting diode is electrically connected through a solder layer and packaged onto the circuit carrier board by a flip chip technology to form the photodiode. The package structure on the wafer board. Therefore, if the substrate is a transparent substrate, it can remain on the semiconductor epitaxial layer, and vice versa. In one embodiment of the invention, the substrate may be a sapphire substrate and remain on the semiconductor epitaxial layer, but the invention is not limited thereto.
以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可基於不同觀點與應用,在不悖離本發明之精神下進行各種修飾與變更。The embodiments of the present invention are described by way of specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention.
本發明之實施例中該等圖式均為簡化之示意圖。惟該等圖示僅顯示與本發明有關之元件,其所顯示之元件非為 實際實施時之態樣,其實際實施時之元件數目、形狀等比例為一選擇性之設計,且其元件佈局型態可能更複雜。The drawings in the embodiments of the present invention are simplified schematic diagrams. However, the illustrations only show elements related to the present invention, and the components shown are not In actual implementation, the number of components, the shape, and the like in actual implementation are a selective design, and the component layout pattern may be more complicated.
本發明之目的係在於提供一種發光二極體,其透過調整發光二極體之結構設計,使其能利用超聲波方式散熱,快速移除活性中間層中之熱點,從而達到最佳化發光二極體散熱效率,並維持其發光效率。The object of the present invention is to provide a light-emitting diode which is designed to adjust the structure of the light-emitting diode so that it can be radiated by ultrasonic waves, and the hot spot in the active intermediate layer can be quickly removed, thereby optimizing the light-emitting diode. The body dissipates heat and maintains its luminous efficiency.
請參考圖2A至2E,係本發明實施例一之發光二極體1製備流程結構示意圖,其中,此實施例一所製備之發光二極體1為一直通式發光二極體。首先,如圖2A所示,提供一基板10,其包含一絕緣層1070、以及一電路基板1071。接著,如圖2B所示,於該基板10上方以濺鍍法形成一由兩層金屬層151及兩層碳化物層152相互堆疊形成之多層結構15,其中,該些金屬層151係為鈦、該些碳化物層152係為可導電之類鑽碳,且該些金屬層151及該些碳化物層152之厚度各自獨立為100奈米。接著,請參考圖2C,於該金屬層151上形成一反射層11,其中,該反射層11係為鋁。此外,因所製備之發光二極體1為直通式發光二極體,是以上述金屬層151、碳化物層152及反射層11需具有相同電性,於此實施例一中,該反射層11、該金屬層151及該碳化物層152係為P型電性。2A to 2E are schematic diagrams showing the structure of the preparation process of the light-emitting diode 1 according to the first embodiment of the present invention. The light-emitting diode 1 prepared in the first embodiment is a general-purpose light-emitting diode. First, as shown in FIG. 2A, a substrate 10 is provided which includes an insulating layer 1070 and a circuit substrate 1071. Next, as shown in FIG. 2B, a multilayer structure 15 formed by stacking two metal layers 151 and two carbide layers 152 on each other is formed by sputtering on the substrate 10, wherein the metal layers 151 are titanium. The carbide layers 152 are electrically conductive carbonaceous carbon, and the thicknesses of the metal layers 151 and the carbide layers 152 are each independently 100 nm. Next, referring to FIG. 2C, a reflective layer 11 is formed on the metal layer 151, wherein the reflective layer 11 is aluminum. In addition, since the light-emitting diode 1 is a straight-through light-emitting diode, the metal layer 151, the carbide layer 152, and the reflective layer 11 need to have the same electrical properties. In the first embodiment, the reflective layer 11. The metal layer 151 and the carbide layer 152 are P-type electrical.
請繼續參閱圖2D,於該反射層11上方形成一半導體磊晶層12,其中,該半導體磊晶層12包含一第一半導體磊晶層121、一活性中間層122、以及一第二半導體磊晶層123, 其中,該第一半導體磊晶層121、該活性中間層122與該第二半導體磊晶層123係層疊設置,該第一半導體磊晶層121係夾置於該反射層11及該活性中間層122之間,該活性中間層122係夾置於該第一半導體磊晶層121與該第二半導體磊晶層123之間。於此實施例一中,該半導體磊晶層12之材質為氮化銦鎵(InGaN),且該第一半導體磊晶層121係P型磊晶層,該第二半導體磊晶層123係N型磊晶層。在此,需注意的是,本發明之重要技術特徵在於透過碳化物層之結構設計,使其能利用超聲波方式進行散熱。因此,在此實施例一中,該活性中間層122與上述至少一碳化物層152間之距離係設計為2微米,從而使得作為碳化物層152之類鑽碳得以提供半導體磊晶層12藉由超聲波方式散熱,以15,000m/s之超聲波速度快速移除熱量,並減少產生於活性中間層122之熱點。此外,本發明半導體磊晶層12適用的材質不限於此,亦可以使用選用其他本領域中常用材質。再者,於此實施例一中,該活性中間層122為多量子井層,用以提升發光二極體1中電能轉換成光能的效率。Referring to FIG. 2D , a semiconductor epitaxial layer 12 is formed over the reflective layer 11 , wherein the semiconductor epitaxial layer 12 includes a first semiconductor epitaxial layer 121 , an active intermediate layer 122 , and a second semiconductor beam . Crystal layer 123, The first semiconductor epitaxial layer 121, the active intermediate layer 122 and the second semiconductor epitaxial layer 123 are stacked, and the first semiconductor epitaxial layer 121 is sandwiched between the reflective layer 11 and the active intermediate layer. Between 122, the active intermediate layer 122 is sandwiched between the first semiconductor epitaxial layer 121 and the second semiconductor epitaxial layer 123. In the first embodiment, the material of the semiconductor epitaxial layer 12 is indium gallium nitride (InGaN), and the first semiconductor epitaxial layer 121 is a P-type epitaxial layer, and the second semiconductor epitaxial layer 123 is N. Type epitaxial layer. Here, it should be noted that an important technical feature of the present invention is that the structure of the carbide layer is designed to enable heat dissipation by means of ultrasonic waves. Therefore, in the first embodiment, the distance between the active intermediate layer 122 and the at least one carbide layer 152 is designed to be 2 micrometers, so that the carbon as the carbide layer 152 can provide the semiconductor epitaxial layer 12 The heat is dissipated by ultrasonic waves, the heat is quickly removed at an ultrasonic velocity of 15,000 m/s, and the hot spots generated in the active intermediate layer 122 are reduced. In addition, the material suitable for the semiconductor epitaxial layer 12 of the present invention is not limited thereto, and other materials commonly used in the art may also be used. Furthermore, in the first embodiment, the active intermediate layer 122 is a multi-quantum well layer for improving the efficiency of converting electrical energy into light energy in the light-emitting diode 1.
最後,請參閱圖2E,係於該第二半導體磊晶層123上形成一第二電極13,其中,該第二電極係為N型電性。於此實施例一之發光二極體1中,該由金屬層151及碳化物層152形成之多層結構15係同時兼具作為電極之功能,且該反射層11、該金屬層151及該碳化物層152之電性與第一半導體磊晶層121同為P型電性;該第二半導體磊晶層123及該第二電 極13則同為N型電性,從而此實施例一所完成之發光二極體1為一直通式發光二極體。Finally, referring to FIG. 2E, a second electrode 13 is formed on the second semiconductor epitaxial layer 123, wherein the second electrode is N-type electrical. In the light-emitting diode 1 of the first embodiment, the multilayer structure 15 formed of the metal layer 151 and the carbide layer 152 simultaneously functions as an electrode, and the reflective layer 11, the metal layer 151, and the carbonization The electrical property of the object layer 152 is the P-type electrical property of the first semiconductor epitaxial layer 121; the second semiconductor epitaxial layer 123 and the second electrical The pole 13 is of the N-type electrical property, so that the light-emitting diode 1 completed in the first embodiment is a general-purpose light-emitting diode.
據此,如圖2A至圖2E所示,上述製得發光二極體1,其包括:一基板10,其包括一絕緣層1070、以及一電路基板1071;一半導體磊晶層12,其係位於基板10上,該半導體磊晶層12包括一第一半導體磊晶層121、一活性中間層122、以及一第二半導體磊晶層123,其中,該第一半導體磊晶層121係夾置於該基板10及該活性中間層122之間,該活性中間層122係夾置於該第一半導體磊晶層121與該第二半導體磊晶層123之間;一反射層11,其係夾置於該基板10及該半導體磊晶層12間;一由兩層金屬層151及兩層碳化物層152相互堆疊形成之多層結構15,其中,金屬層151係為鈦且位於多層結構15上方之金屬層151夾置於該反射層11及該基板10之間,碳化物層152係為一可導電之類鑽碳且位於多層結構15下方之碳化物層152夾置於該金屬層151及該基板10之間;其中,該活性中間層122及該碳化物層間之距離係為2微米,該第一半導體磊晶層121、該反射層11、該金屬層151及該碳化物層152係為P型電性,且該第二半導體磊晶層123則與該第二電極13同為N型電性。據此,即可製備完成此實施例一之發光二極體1,其為一直通式發光二極體。Accordingly, as shown in FIG. 2A to FIG. 2E, the light-emitting diode 1 is obtained, comprising: a substrate 10 including an insulating layer 1070, and a circuit substrate 1071; a semiconductor epitaxial layer 12, The semiconductor epitaxial layer 12 includes a first semiconductor epitaxial layer 121, an active intermediate layer 122, and a second semiconductor epitaxial layer 123. The first semiconductor epitaxial layer 121 is interposed. Between the substrate 10 and the active intermediate layer 122, the active intermediate layer 122 is interposed between the first semiconductor epitaxial layer 121 and the second semiconductor epitaxial layer 123; a reflective layer 11 is sandwiched Between the substrate 10 and the semiconductor epitaxial layer 12; a multilayer structure 15 formed by stacking two metal layers 151 and two carbide layers 152, wherein the metal layer 151 is titanium and is located above the multilayer structure 15 The metal layer 151 is interposed between the reflective layer 11 and the substrate 10. The carbide layer 152 is a conductive carbon and the carbide layer 152 under the multilayer structure 15 is sandwiched between the metal layer 151 and Between the substrates 10; wherein the active intermediate layer 122 and the carbide layer The first semiconductor epitaxial layer 121, the reflective layer 11, the metal layer 151, and the carbide layer 152 are P-type electrical, and the second semiconductor epitaxial layer 123 is the same The two electrodes 13 are all N-type electrical. According to this, the light-emitting diode 1 of the first embodiment can be prepared, which is a general-purpose light-emitting diode.
除上述實施例一之直通式發光二極體外,亦可將本發明之重要技術特徵應用於晶片板上封裝結構中,從而最佳化其發光效率。In addition to the straight-through light-emitting diode of the first embodiment, the important technical features of the present invention can also be applied to the package structure on the wafer board, thereby optimizing the luminous efficiency.
請參閱圖3A至3F,係本發明實施例二之晶片板上封裝結構300製備流程結構示意圖,其中,此實施例二係先製備所需之發光二極體3,其為一覆晶式發光二極體。3A to 3F are schematic diagrams showing the structure of a process for preparing a package structure 300 on a wafer board according to a second embodiment of the present invention. The second embodiment of the present invention first prepares a desired light-emitting diode 3, which is a flip-chip light-emitting device. Diode.
首先,如圖3A所示,提供一基板30。在此實施例三中,該基板30係為一藍寶石基板。接著,如圖3B所示,於該基板30上方形成一半導體磊晶層32,其中,該半導體磊晶層32包含一第一半導體磊晶層321、一活性中間層322、以及一第二半導體磊晶層323,其中,該第一半導體磊晶層321、該活性中間層322與該第二半導體磊晶層323係層疊設置,該第一半導體磊晶層321係夾置於該基板30及該活性中間層322之間,該活性中間層322係夾置於該第一半導體磊晶層321與該第二半導體磊晶層323之間。於完成該半導體磊晶層32後,係移除部分第二半導體磊晶層323及部分活性中間層322,以顯露其下之第一半導體磊晶層321。於此實施例二中,該半導體磊晶層32之材質為氮化銦鎵(InGaN),且該第一半導體磊晶層321係N型,該第二半導體磊晶層323係P型。此外,本發明半導體磊晶層32適用的材質不限於此,亦可以使用選用其他本領域中常用材質。再者,於此實施例二中,該活性中間層322為多量子井層,用以提升發光二極體3中電能轉換成光能的效率。First, as shown in FIG. 3A, a substrate 30 is provided. In the third embodiment, the substrate 30 is a sapphire substrate. Next, as shown in FIG. 3B, a semiconductor epitaxial layer 32 is formed over the substrate 30, wherein the semiconductor epitaxial layer 32 includes a first semiconductor epitaxial layer 321, an active intermediate layer 322, and a second semiconductor. The epitaxial layer 323, wherein the first semiconductor epitaxial layer 321 , the active intermediate layer 322 and the second semiconductor epitaxial layer 323 are stacked, and the first semiconductor epitaxial layer 321 is sandwiched between the substrate 30 and Between the active intermediate layers 322, the active intermediate layer 322 is interposed between the first semiconductor epitaxial layer 321 and the second semiconductor epitaxial layer 323. After the semiconductor epitaxial layer 32 is completed, a portion of the second semiconductor epitaxial layer 323 and a portion of the active intermediate layer 322 are removed to expose the first semiconductor epitaxial layer 321 thereunder. In the second embodiment, the material of the semiconductor epitaxial layer 32 is indium gallium nitride (InGaN), and the first semiconductor epitaxial layer 321 is N-type, and the second semiconductor epitaxial layer 323 is P-type. In addition, the material suitable for the semiconductor epitaxial layer 32 of the present invention is not limited thereto, and other materials commonly used in the art may also be used. Furthermore, in the second embodiment, the active intermediate layer 322 is a multi-quantum well layer for improving the efficiency of converting electrical energy into light energy in the light-emitting diode 3.
請繼續參閱圖3C,於該部分未移除之第二半導體磊晶層323上方形成一反射層31。於此實施例二中,該反射層31係為銀。然而,此形成反射層31的步驟,本發明所屬技術領域之通常知識者可依需要選擇性執行,換言之若不打算設置反射層,則可跳過形成反射層31之步驟而無需進行。Referring to FIG. 3C, a reflective layer 31 is formed over the second semiconductor epitaxial layer 323 which is not removed. In the second embodiment, the reflective layer 31 is silver. However, the step of forming the reflective layer 31 can be selectively performed as desired by those skilled in the art to which the present invention pertains. In other words, if the reflective layer is not intended to be provided, the step of forming the reflective layer 31 can be skipped without performing.
再者,請參閱圖3D,於該反射層31上以電弧沉積法形成由1層金屬層351及1層碳化物層352相互堆疊之多層結構35,其中,該金屬層351係為鈦且該碳化物層352係為可導電之類鑽碳。此外,於該顯露之第一半導體磊晶層321上係形成一第一電極34,該第一電極34之材質並不特別限制,只要能夠與該第一半導體磊晶層321形成電性連接即可。於此實施例二中,該第一電極34亦為由金屬層及碳化物層形成之多層結構(圖未顯示),並且透過調整其相互堆疊之層數使得該第一電極34及該碳化物層352形成一共平面。再者,考量該發光二極體3需電性連接至電路載板上,該第一電極34與該第一半導體磊晶層321係為N型電性;該金屬層351、該碳化物層352與該第二半導體磊晶層323係為P型電性。接著,如圖3E所示,於該第一電極34表面與該碳化物層352表面上,分別形成一第一金屬焊接層36以及第二金屬焊接層37,其中,該第一金屬焊接層36之表面與該第二金屬焊接層37之表面係形成一共平面。於本實施例中,該第一金屬焊接層36與該第二金屬焊接層37係由金層與金錫層構成,且該金錫層係一共晶導電材料層。In addition, referring to FIG. 3D, a multilayer structure 35 in which a metal layer 351 and a layer of carbide layer 352 are stacked on each other is formed on the reflective layer 31 by arc deposition, wherein the metal layer 351 is titanium and the metal layer 351 is titanium. The carbide layer 352 is a conductive carbon such as conductive carbon. In addition, a first electrode 34 is formed on the exposed first semiconductor epitaxial layer 321 . The material of the first electrode 34 is not particularly limited as long as it can be electrically connected to the first semiconductor epitaxial layer 321 . can. In the second embodiment, the first electrode 34 is also a multilayer structure (not shown) formed of a metal layer and a carbide layer, and the first electrode 34 and the carbide are adjusted by adjusting the number of layers stacked on each other. Layer 352 forms a coplanar plane. Furthermore, it is considered that the light-emitting diode 3 is electrically connected to the circuit carrier, and the first electrode 34 and the first semiconductor epitaxial layer 321 are N-type electrical; the metal layer 351 and the carbide layer 352 and the second semiconductor epitaxial layer 323 are P-type electrical. Next, as shown in FIG. 3E, a first metal solder layer 36 and a second metal solder layer 37 are formed on the surface of the first electrode 34 and the surface of the carbide layer 352, wherein the first metal solder layer 36 is formed. The surface is coplanar with the surface of the second metal solder layer 37. In this embodiment, the first metal solder layer 36 and the second metal solder layer 37 are composed of a gold layer and a gold tin layer, and the gold tin layer is a eutectic conductive material layer.
最後,請參閱圖3F,係將上述所製備之發光二極體3電性連接並封裝至一電路載板7上並利用雷射剝離技術(laser lift-off),移除該基板30,以製備此實施例二之晶片板上封裝結構300。如圖3F所示,晶片板上封裝結構300包括:一電路載板7;以及上述所製得之發光二極體3,其係經由該第一金屬焊接層36以及該第二金屬焊接層37電性連接該電路載板7,其中,該電路載板7包含一絕緣層70、一電路基板71、以及電性連接墊73。在此,需注意的是,本發明之重要技術特徵在於透過碳化物層使晶片板上封裝結構能透過超聲波方式進行散熱,是以,該活性中間層322係與該碳化物層352間之距離係設計為2微米,從而使得作為碳化物層352之類鑽碳得以藉由超聲波散熱的方式,以15,000m/s之超聲波速度快速移除產生於活性中間層322之熱點。Finally, referring to FIG. 3F, the light-emitting diode 3 prepared above is electrically connected and packaged onto a circuit carrier 7 and removed by a laser lift-off technique. The wafer board package structure 300 of this second embodiment is prepared. As shown in FIG. 3F, the on-wafer package structure 300 includes: a circuit carrier 7; and the above-described light-emitting diode 3 is formed through the first metal solder layer 36 and the second metal solder layer 37. The circuit carrier 7 is electrically connected to the circuit carrier 7 , wherein the circuit carrier 7 includes an insulating layer 70 , a circuit substrate 71 , and an electrical connection pad 73 . Here, it should be noted that an important technical feature of the present invention is that the package structure on the wafer board can be dissipated by ultrasonic waves through the carbide layer, so that the distance between the active intermediate layer 322 and the carbide layer 352 is The design is 2 micrometers, so that the drilled carbon, such as the carbide layer 352, can quickly remove the hot spot generated in the active intermediate layer 322 at an ultrasonic velocity of 15,000 m/s by means of ultrasonic heat dissipation.
此外,於該晶片板上封裝結構300中,可利用形成於電性連接墊73表面之焊料72,透過覆晶方式,使該第一金屬焊接層36以及該第二金屬焊接層37與該電路載板7之電性連接墊73達到電性連接。In addition, in the package structure 300 on the wafer board, the first metal solder layer 36 and the second metal solder layer 37 and the circuit can be formed by soldering through the solder 72 formed on the surface of the electrical connection pad 73. The electrical connection pads 73 of the carrier 7 are electrically connected.
據此,如圖3A至圖3F所示,上述製得之晶片板上封裝結構300,其包括:一電路載板7;一半導體磊晶層32,其係位於電路載板7上,該半導體磊晶層32包括一第一半導體磊晶層321、一活性中間層322、以及一第二半導體磊晶層323;一反射層31,其係夾置於該電路載板7及該第二半導體磊晶層323間,;一金屬層351,係夾置於該反射層31及 該電路載板7之間;一碳化物層352,係夾置於該金屬層351及該電路載板之間;以及一第一電極34,係設置於該部份顯露之第一半導體磊晶層321上;其中,該第二半導體磊晶層323係夾置於該反射層31及該活性中間層322之間,該活性中間層322係夾置於該第一半導體磊晶層321與該第二半導體磊晶層323之間,且該半導體磊晶層32係經由一第一金屬焊接層36以及一第二金屬焊接層37封裝於該電路載板7,並且該活性中間層322及該碳化物層352間之距離係為2微米。此外,該第一電極34與該第一半導體磊晶層321係為N型電性;該金屬層351、該碳化物層352與該第二半導體磊晶層323係為P型電性。Accordingly, as shown in FIG. 3A to FIG. 3F, the above-described wafer-on-board package structure 300 includes: a circuit carrier 7; a semiconductor epitaxial layer 32, which is located on the circuit carrier 7, the semiconductor The epitaxial layer 32 includes a first semiconductor epitaxial layer 321 , an active intermediate layer 322 , and a second semiconductor epitaxial layer 323 ; a reflective layer 31 is sandwiched between the circuit carrier 7 and the second semiconductor Between the epitaxial layers 323, a metal layer 351 is sandwiched between the reflective layer 31 and Between the circuit carriers 7; a carbide layer 352 is interposed between the metal layer 351 and the circuit carrier; and a first electrode 34 is disposed on the exposed portion of the first semiconductor epitaxial The second semiconductor epitaxial layer 323 is interposed between the reflective layer 31 and the active intermediate layer 322, and the active intermediate layer 322 is sandwiched between the first semiconductor epitaxial layer 321 and the Between the second semiconductor epitaxial layers 323, and the semiconductor epitaxial layer 32 is encapsulated on the circuit carrier 7 via a first metal solder layer 36 and a second metal solder layer 37, and the active intermediate layer 322 and the The distance between the carbide layers 352 is 2 microns. In addition, the first electrode 34 and the first semiconductor epitaxial layer 321 are N-type electrical; the metal layer 351, the carbide layer 352 and the second semiconductor epitaxial layer 323 are P-type electrical.
請參考圖4,其係此實施例三之晶片板上封裝結構400之結構示意圖。實施例三與上述實施例二之製備流程大致相似,所不同處在於,將所製備之發光二極體3電性連接並封裝於該電路載板7上後,由於所使用之基板30為藍寶石基板,因此,在不移除該基板30的情況下,同樣可製備完成一晶片板上封裝結構400。Please refer to FIG. 4 , which is a schematic structural diagram of the package structure 400 on the wafer board of the third embodiment. The third embodiment is substantially similar to the preparation process of the second embodiment, except that the prepared light-emitting diode 3 is electrically connected and packaged on the circuit carrier board 7, since the substrate 30 used is sapphire. The substrate, therefore, can be completed without removing the substrate 30.
據此,如圖4所示,此實施例三所製得之晶片板上封裝結構400,其包括:一電路載板7;一半導體磊晶層32,其係位於電路載板7上,該半導體磊晶層32包括一第一半導體磊晶層321、一活性中間層322、以及一第二半導體磊晶層323;一反射層31,其係夾置於該電路載板7及該第二半導體磊晶層323間,;一金屬層351,係夾置於該反射層31及 該電路載板7之間;一碳化物層352,係夾置於該金屬層351及該電路載板7之間;一第一電極34,係設置於該第一半導體磊晶層321上;以及一基板30,係設置於該第一半導體磊晶層321上;其中,該第二半導體磊晶層323係夾置於該反射層31及該活性中間層322之間,該活性中間層322係夾置於該第一半導體磊晶層321與該第二半導體磊晶層323之間,且該半導體磊晶層32係經由一第一金屬焊接層36以及一第二金屬焊接層37封裝於該電路載板7,並且該活性中間層322及該碳化物層352間之距離係為2微米。此外,該第一電極34與該第一半導體磊晶層321係為N型電性;該金屬層351、該碳化物層352與該第二半導體磊晶層323係為P型電性。Accordingly, as shown in FIG. 4, the wafer-on-board package structure 400 obtained in the third embodiment includes: a circuit carrier board 7; a semiconductor epitaxial layer 32, which is located on the circuit carrier board 7, The semiconductor epitaxial layer 32 includes a first semiconductor epitaxial layer 321 , an active intermediate layer 322 , and a second semiconductor epitaxial layer 323 ; a reflective layer 31 is sandwiched between the circuit carrier 7 and the second Between the semiconductor epitaxial layers 323, a metal layer 351 is sandwiched between the reflective layer 31 and a first carbide electrode 352 is disposed between the metal layer 351 and the circuit carrier 7; a first electrode 34 is disposed on the first semiconductor epitaxial layer 321; And a substrate 30 disposed on the first semiconductor epitaxial layer 321; wherein the second semiconductor epitaxial layer 323 is interposed between the reflective layer 31 and the active intermediate layer 322, the active intermediate layer 322 The first semiconductor epitaxial layer 321 is interposed between the first semiconductor epitaxial layer 321 and the second semiconductor epitaxial layer 323, and the semiconductor epitaxial layer 32 is encapsulated via a first metal solder layer 36 and a second metal solder layer 37. The circuit carrier 7 has a distance between the active intermediate layer 322 and the carbide layer 352 of 2 microns. In addition, the first electrode 34 and the first semiconductor epitaxial layer 321 are N-type electrical; the metal layer 351, the carbide layer 352 and the second semiconductor epitaxial layer 323 are P-type electrical.
實施例四與上述實施例二之製備流程大致相似,所不同處在於,所使用之電路載板之絕緣層係為一類鑽碳(與碳化物層之組成份相同)。據此,此實施例四所完成之晶片板上封裝結構將可同時透過碳化物層及絕緣層進行超聲波散熱。The fourth embodiment is substantially similar to the preparation process of the second embodiment described above, except that the insulating layer of the circuit carrier used is a type of drilled carbon (the same composition as the carbide layer). Accordingly, the package structure on the wafer board completed in the fourth embodiment can simultaneously perform ultrasonic heat dissipation through the carbide layer and the insulating layer.
此比較例一與實施例一大致相同,所不同處僅在於比較例一之直通式發光二極體中並不含有碳化物層。據此,比較例一所製得之直通式發光二極體將無法透過該碳化物層進行超聲波散熱。This first comparative example is substantially the same as the first embodiment except that the straight-through light-emitting diode of the first comparative example does not contain a carbide layer. Accordingly, the straight-through light-emitting diode obtained in Comparative Example 1 cannot transmit ultrasonic waves through the carbide layer.
此比較例與實施例二大致相同,所不同處僅在於比較例之晶片板上封裝結構中並不含有碳化物層。據此,比較例所製得之晶片板上封裝結構將無法透過該碳化物層進行超聲波散熱。This comparative example is substantially the same as that of the second embodiment except that the package structure on the wafer board of the comparative example does not contain a carbide layer. Accordingly, the package structure on the wafer board obtained by the comparative example cannot be ultrasonically dissipated through the carbide layer.
本試驗例一係於相同的通電發光的條件下,利用一近場光學顯微儀分析實施例一及比較例一所製備之直通式發光二極體之光場分佈,以顯示其熱點產生缺陷之狀況。請參考圖5A及5B係分別為實施例一及比較例一之光場分析結果圖,其中,於圖5A中並無觀察到有因未發光而產生之黑點,顯示實施例一之直通式發光二極體於通電發光(350毫安培,7分鐘)的情況下,並不會有因熱點產生的缺陷;反之,於圖5B中,則可發現於其中央處有因未發光而產生之黑點,顯示於相同條件下,比較例一之直通式發光二極體有因熱點產生的缺陷。In the test example, the light field distribution of the straight-through light-emitting diodes prepared in Example 1 and Comparative Example 1 was analyzed by a near-field optical microscope under the same conditions of energized light emission to show defects in hot spots. The situation. 5A and 5B are light field analysis results of Example 1 and Comparative Example 1, respectively, wherein no black spots due to non-luminescence are observed in FIG. 5A, and the straight-through formula of Example 1 is shown. In the case of light-emitting illuminating (350 mA, 7 minutes), there is no defect due to hot spots; otherwise, in FIG. 5B, it can be found at the center due to non-lighting. The black dots are shown under the same conditions, and the straight-through light-emitting diode of Comparative Example 1 has defects due to hot spots.
本試驗例二係於相同的通電發光的條件下,分析實施例二及比較例二之晶片板上封裝結構在持續通電發光(350毫安培)達16分鐘後之溫度,其中,實施例二之晶片板上封裝結構之溫度達61.12℃至68.21℃;而比較例二之溫度則為72.44℃至84.11℃,遠高於實施例二之溫度。因此,由此上 述結果可知,根據本發明所製造具有超聲波散熱功能之晶片板上封裝結構,可藉由類鑽碳以提供超聲波方式散熱,快速移除熱量,並減少產生於半導體磊晶層中之熱點。In the second test example, the temperature of the package structure on the wafer on the second embodiment and the second embodiment was continuously energized (350 mA) for 16 minutes under the same conditions of energized light emission, wherein the second embodiment The temperature of the package structure on the wafer board is 61.12 ° C to 68.21 ° C; and the temperature of Comparative Example 2 is 72.44 ° C to 84.11 ° C, which is much higher than the temperature of the second embodiment. Therefore, from this As can be seen from the results, the package structure on the wafer board having the ultrasonic heat dissipation function according to the present invention can dissipate heat by ultrasonic waves, rapidly remove heat, and reduce hot spots generated in the semiconductor epitaxial layer.
本試驗例三係於25℃下,利用T3Ster熱阻儀分析實施例二及比較例二所製備之晶片板上封裝結構,以顯示其導熱之狀況。請參考圖6A及6B,係各自獨立為實施例二及比較例二之熱阻分析結果圖,其中,橫軸為熱阻,單位為K/W;縱軸為熱容,單位為Ks/W。請參考圖6A,係本發明實施例二之熱阻分析結果,其中,該電路載板及發光二極體間之熱阻係為0.98K/W。請參考圖6B,係本發明比較例二之熱阻分析結果,顯示其電路載板及發光二極體間之熱阻係為1.51K/W。是以,當晶片板上封裝結構含有一由類鑽碳形成之碳化物層,且該碳化物層與活性中間層間之距離係為2微米時,將可有效降低兩者間之熱阻。In the third test example, the package structure on the wafer board prepared in Example 2 and Comparative Example 2 was analyzed by a T3Ster thermal resistance meter at 25 ° C to show the state of heat conduction. Please refer to FIG. 6A and FIG. 6B , which are diagrams of the thermal resistance analysis results of the second embodiment and the second comparative example, wherein the horizontal axis is the thermal resistance and the unit is K/W; the vertical axis is the heat capacity, and the unit is Ks/W. . Please refer to FIG. 6A , which is a thermal resistance analysis result according to Embodiment 2 of the present invention, wherein the thermal resistance between the circuit carrier and the LED is 0.98 K/W. Referring to FIG. 6B, the thermal resistance analysis result of the second comparative example of the present invention shows that the thermal resistance between the circuit carrier and the light-emitting diode is 1.51 K/W. Therefore, when the package structure on the wafer board contains a carbide layer formed of diamond-like carbon, and the distance between the carbide layer and the active intermediate layer is 2 micrometers, the thermal resistance between the two can be effectively reduced.
本試驗例四係於相同的通電發光條件下,利用一熱像分析儀分析實施例一及比較例一所製備之直通式發光二極體晶片之溫度分佈。請參考圖7A及7B,係分別為實施例一及比較例一之溫度分佈結果圖。如圖7A及7B所示,於相同通電發光條件下(350毫安培),實施例一之直通式發光二極體之溫度約為58℃至60℃;反之,比較例一之直通式發光二極體之溫度則約為73℃至76℃。因此,由此上述結果可 知,根據本發明所製造具有超聲波散熱功能之直通式發光二極體,可藉由類鑽碳以提供超聲波方式散熱,快速移除熱量,並減少產生於半導體磊晶層中之熱點。In the test example 4, the temperature distribution of the straight-through light-emitting diode wafers prepared in Example 1 and Comparative Example 1 was analyzed by a thermal image analyzer under the same energized light-emitting conditions. Please refer to FIG. 7A and FIG. 7B , which are the temperature distribution result diagrams of the first embodiment and the first comparative example, respectively. As shown in FIGS. 7A and 7B, under the same energized light-emitting condition (350 mA), the temperature of the straight-through light-emitting diode of the first embodiment is about 58 ° C to 60 ° C; otherwise, the straight-through light of the comparative example 1 The temperature of the polar body is about 73 ° C to 76 ° C. Therefore, the above results can be It is known that the straight-through light-emitting diode having the ultrasonic heat dissipation function manufactured according to the present invention can dissipate heat by ultrasonic waves, rapidly remove heat, and reduce hot spots generated in the semiconductor epitaxial layer.
本試驗例五係於相同的通電發光條件下,利用一熱像分析儀分析實施例四及比較例二所製備之晶片板上封裝結構之溫度分佈。請參考圖8A及8B,係分別為實施例四及比較例二之溫度分佈結果圖。如圖8A及8B所示,於相同通電發光條件下(700毫安培),實施例四之晶片板上封裝結構之溫度約為55℃至59℃;反之,比較例二之晶片板上封裝結構之溫度則約為65℃至77℃。因此,由此上述結果可知,當碳化物層及絕緣層同時含有類鑽碳時,兩者產生之協同效應將使得本發明所製備之晶片板上封裝結構具有更佳的散熱效果。據此,根據本發明所製造具有超聲波散熱功能之晶片板上封裝結構,確實可藉由類鑽碳以提供超聲波方式散熱,快速移除熱量,並減少產生於半導體磊晶層中之熱點。In the fifth test example, the temperature distribution of the package structure on the wafer board prepared in Example 4 and Comparative Example 2 was analyzed by a thermal image analyzer under the same energized light-emitting conditions. Please refer to FIGS. 8A and 8B , which are graphs of temperature distribution results of Example 4 and Comparative Example 2, respectively. As shown in FIGS. 8A and 8B, under the same energized lighting condition (700 mA), the temperature of the package structure on the wafer on the fourth embodiment is about 55 ° C to 59 ° C; otherwise, the package structure on the wafer board of Comparative Example 2 The temperature is about 65 ° C to 77 ° C. Therefore, from the above results, when the carbide layer and the insulating layer simultaneously contain diamond-like carbon, the synergistic effect produced by the two will make the package structure on the wafer board prepared by the invention have better heat dissipation effect. Accordingly, the on-wafer package structure having the ultrasonic heat dissipation function manufactured according to the present invention can surely dissipate heat by ultrasonic waves, provide heat removal, quickly remove heat, and reduce hot spots generated in the semiconductor epitaxial layer.
據此,上述試驗例一至五之結果顯示本發明之直通式發光二極體及晶片板上封裝結構中,因其含有類鑽碳並且調整活性中間層與類鑽碳間之距離為1至10微米以內,可使得該類鑽碳能透過超聲波散熱的方式,快速移除產生於活性中間層之熱點,進而提升晶片板上封裝結構之整體熱穩定性,達到提高其發光效率並延長其產品壽命。Accordingly, the results of the above Test Examples 1 to 5 show that the straight-through light-emitting diode of the present invention and the package structure on the wafer board have a diamond-like carbon and adjust the distance between the active intermediate layer and the diamond-like carbon to be 1 to 10 Within the micrometer, the carbon can be quickly removed by the ultrasonic heat dissipation method, and the hot spot generated in the active intermediate layer is quickly removed, thereby improving the overall thermal stability of the package structure on the wafer board, thereby improving the luminous efficiency and prolonging the life of the product. .
綜上所述,本發明之發光二極體及使用其之晶片板上封裝結構,因其具有超聲波散熱之結構設計,可在發光二極體運作產生熱量的過程中快速移除所產生之熱點,以穩定其晶格結構,從而達到最佳化其散熱效率,以維持其發光效率。In summary, the light-emitting diode of the present invention and the package structure on the wafer board using the same have a structure design of ultrasonic heat dissipation, and can quickly remove the generated hot spot during the process of generating heat of the light-emitting diode. In order to stabilize its lattice structure, to optimize its heat dissipation efficiency to maintain its luminous efficiency.
上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.
1,3‧‧‧發光二極體1,3‧‧‧Lighting diode
10,30‧‧‧基板10,30‧‧‧Substrate
11,31‧‧‧反射層11,31‧‧‧reflective layer
12,32‧‧‧半導體磊晶層12,32‧‧‧Semiconductor epitaxial layer
121,321‧‧‧第一半導體磊晶層121,321‧‧‧First semiconductor epitaxial layer
122,322‧‧‧活性中間層122,322‧‧‧Active intermediate layer
123,323‧‧‧第二半導體磊晶層123,323‧‧‧Second semiconductor epitaxial layer
13‧‧‧第二電極13‧‧‧second electrode
34‧‧‧第一電極34‧‧‧First electrode
151,351‧‧‧金屬層151,351‧‧‧metal layer
152,352‧‧‧碳化物層152,352‧‧‧Carbide layer
15,35‧‧‧多層結構15,35‧‧‧Multilayer structure
36‧‧‧第一金屬焊接層36‧‧‧First metal solder layer
37‧‧‧第二金屬焊接層37‧‧‧Second metal soldering layer
7‧‧‧電路載板7‧‧‧Circuit carrier board
1070,70‧‧‧絕緣層1070, 70‧‧‧ insulation
1071,71‧‧‧電路基板1071, 71‧‧‧ circuit board
72‧‧‧焊料72‧‧‧ solder
73‧‧‧電性連接墊73‧‧‧Electrical connection pads
300,400‧‧‧晶片板上封裝結構300,400‧‧‧ wafer board package structure
圖1係產生於發光二極體中之熱源尺寸對應熱源溫度之示意圖。FIG. 1 is a schematic diagram showing the size of a heat source generated in a light-emitting diode corresponding to a heat source temperature.
圖2A至圖2E係本發明實施例一之發光二極體製備流程結構示意圖。2A to 2E are schematic structural views showing a process for preparing a light-emitting diode according to Embodiment 1 of the present invention.
圖3A至圖3F係本發明實施例二之晶片板上封裝結構製備流程示意圖。3A to 3F are schematic views showing the preparation process of the package structure on the wafer board according to the second embodiment of the present invention.
圖4係本發明實施例三之晶片板上封裝結構結構示意圖。4 is a schematic structural view of a package structure on a wafer board according to a third embodiment of the present invention.
圖5A及5B係本發明試驗例一之光場分析結果圖。5A and 5B are diagrams showing the results of light field analysis of Test Example 1 of the present invention.
圖6A及6B係本發明試驗例三中之熱阻分析結果圖。6A and 6B are graphs showing the results of thermal resistance analysis in Test Example 3 of the present invention.
圖7A及7B係本發明試驗例四之溫度分佈結果圖。7A and 7B are graphs showing the results of temperature distribution in Test Example 4 of the present invention.
圖8A及8B係本發明試驗例五之溫度分佈結果圖。8A and 8B are graphs showing the results of temperature distribution in Test Example 5 of the present invention.
300‧‧‧晶片板上封裝結構300‧‧‧Package on the wafer board
31‧‧‧反射層31‧‧‧reflective layer
32‧‧‧半導體磊晶層32‧‧‧Semiconductor epitaxial layer
321‧‧‧第一半導體磊晶層321‧‧‧First semiconductor epitaxial layer
322‧‧‧活性中間層322‧‧‧Active intermediate layer
323‧‧‧第二半導體磊晶層323‧‧‧Second semiconductor epitaxial layer
34‧‧‧第一電極34‧‧‧First electrode
35‧‧‧多層結構35‧‧‧Multilayer structure
351‧‧‧金屬層351‧‧‧metal layer
352‧‧‧碳化物層352‧‧‧Carbide layer
36‧‧‧第一金屬焊接層36‧‧‧First metal solder layer
37‧‧‧第二金屬焊接層37‧‧‧Second metal soldering layer
7‧‧‧電路載板7‧‧‧Circuit carrier board
70‧‧‧絕緣層70‧‧‧Insulation
71‧‧‧電路基板71‧‧‧ circuit board
72‧‧‧焊料72‧‧‧ solder
73‧‧‧電性連接墊73‧‧‧Electrical connection pads
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102104189A TWI493760B (en) | 2013-02-04 | 2013-02-04 | Light emitting diode and chip on board thereof |
CN201310079405.4A CN103972359A (en) | 2013-02-04 | 2013-03-13 | Light emitting diode and on-chip packaging structure thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102104189A TWI493760B (en) | 2013-02-04 | 2013-02-04 | Light emitting diode and chip on board thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201432946A TW201432946A (en) | 2014-08-16 |
TWI493760B true TWI493760B (en) | 2015-07-21 |
Family
ID=51241640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102104189A TWI493760B (en) | 2013-02-04 | 2013-02-04 | Light emitting diode and chip on board thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103972359A (en) |
TW (1) | TWI493760B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9859483B2 (en) | 2015-02-17 | 2018-01-02 | Hsiu Chang HUANG | Flip-chip light emitting diode and method for manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106124955B (en) * | 2016-06-17 | 2019-01-08 | 中国电子科技集团公司第十研究所 | The transient electrical test method of liquid cold plate thermal resistance |
CN108493321A (en) * | 2018-03-26 | 2018-09-04 | 华灿光电(浙江)有限公司 | A kind of light-emitting diode chip for backlight unit and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200812124A (en) * | 2006-08-11 | 2008-03-01 | Bridgelux Inc | Surface mountable chip |
TW201242088A (en) * | 2011-04-15 | 2012-10-16 | Epistar Corp | Light-emitting device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101593798B (en) * | 2008-05-26 | 2012-11-14 | 晶元光电股份有限公司 | Light emitting diode containing transparent base material with gradual change type refractive index or having high thermal diffusivity and application thereof |
CN101853822B (en) * | 2010-04-14 | 2012-01-25 | 星弧涂层科技(苏州工业园区)有限公司 | Novel heat sink and production method thereof |
CN102130244B (en) * | 2010-12-17 | 2013-03-06 | 天津理工大学 | LED (light-emitting diode) radiating substrate based on diamond film and manufacturing method thereof |
-
2013
- 2013-02-04 TW TW102104189A patent/TWI493760B/en not_active IP Right Cessation
- 2013-03-13 CN CN201310079405.4A patent/CN103972359A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200812124A (en) * | 2006-08-11 | 2008-03-01 | Bridgelux Inc | Surface mountable chip |
TW201242088A (en) * | 2011-04-15 | 2012-10-16 | Epistar Corp | Light-emitting device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9859483B2 (en) | 2015-02-17 | 2018-01-02 | Hsiu Chang HUANG | Flip-chip light emitting diode and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW201432946A (en) | 2014-08-16 |
CN103972359A (en) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10608144B2 (en) | Electrode pad structure of a light emitting diode | |
TWI520378B (en) | Flip-chip light emitting diode and application thereof | |
TWI466328B (en) | Flip-chip light emitting diode and manufacturing method and application thereof | |
US8211722B2 (en) | Flip-chip GaN LED fabrication method | |
KR101047721B1 (en) | Light emitting device, method for fabricating the light emitting device and light emitting device package | |
US9577155B2 (en) | Light emitting device | |
US9276176B2 (en) | Light-emitting device | |
US9349914B2 (en) | Light emitting device and light emitting device package | |
TWI493760B (en) | Light emitting diode and chip on board thereof | |
TWM517424U (en) | Light emitting diode and light emitting device | |
TW201407760A (en) | Light-emitting diode array | |
US9929207B2 (en) | Light-emitting device and method for manufacturing the same | |
TWI495160B (en) | Flip-chip light emitting diode and manufacturing method and application thereof | |
TWI473299B (en) | Flip-chip light emitting diode and manufacturing method and application thereof | |
TWM436224U (en) | ||
JP2007188942A (en) | Light emitting diode device coupling rectifying circuit to sub-carrier and manufacturing method thereof | |
TWI462339B (en) | Light-emitting diode having diamond-like carbon layer and manufacturing method and application thereof | |
TW201424057A (en) | Chip on board and associated methods | |
TW201332153A (en) | Vertical light emitting diode and manufacturing method and application thereof | |
CN217361628U (en) | Antistatic LED chip | |
TWI478371B (en) | Light-emitting device | |
TWI231055B (en) | Method of fabricating gallium nitride-based light emitting diode and structure thereof | |
KR102042540B1 (en) | Light emitting device and light emitting device package | |
TWI635773B (en) | Light-emitting device | |
TW201810640A (en) | Light-emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |