TWI492340B - Package structure and manufacturing method of the same - Google Patents

Package structure and manufacturing method of the same Download PDF

Info

Publication number
TWI492340B
TWI492340B TW101146965A TW101146965A TWI492340B TW I492340 B TWI492340 B TW I492340B TW 101146965 A TW101146965 A TW 101146965A TW 101146965 A TW101146965 A TW 101146965A TW I492340 B TWI492340 B TW I492340B
Authority
TW
Taiwan
Prior art keywords
package structure
interposer
wafer
copper layer
forming
Prior art date
Application number
TW101146965A
Other languages
Chinese (zh)
Other versions
TW201423919A (en
Inventor
Ra Min Tain
Cheng Ta Ko
Wei Chung Lo
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101146965A priority Critical patent/TWI492340B/en
Publication of TW201423919A publication Critical patent/TW201423919A/en
Application granted granted Critical
Publication of TWI492340B publication Critical patent/TWI492340B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

封裝結構及其製造方法Package structure and manufacturing method thereof

本揭露內容是有關於一種封裝結構及其製造方法,且特別是有關於一種具有矽中介層(silicon interposer)的封裝結構及其製造方法。The present disclosure relates to a package structure and a method of fabricating the same, and more particularly to a package structure having a silicon interposer and a method of fabricating the same.

隨著電子系統產品的逐漸縮小化,現今的發展趨勢已經從在傳統電路板上佈滿各種元件的方式,逐漸走向將多個元件縮裝在單一封裝結構內的方式,進而走進異質整合單一晶片中。目前常用的其中一種方式是將不同的晶片以凸塊堆疊的方式,疊成一整組晶片(通常會搭配晶圓薄化)整合在一起。因為多層晶片藉由凸塊接合疊在一起,因此增加了結構的複雜度。並且多個晶片以凸塊堆疊之後,因各種不同晶片之熱膨脹係數差異,而對各個晶片及凸塊之間會產生熱應力,或者是外力或重力亦會引發出機械應力,而衍生可靠度問題。With the gradual shrinking of electronic system products, the current development trend has gradually moved from the traditional circuit board to various components, and gradually moved to the way of shrinking multiple components into a single package structure. In the wafer. One of the commonly used methods is to integrate different wafers into a whole set of wafers (usually with wafer thinning) in a bump stacking manner. Since the multilayer wafers are stacked by bump bonding, the complexity of the structure is increased. Moreover, after a plurality of wafers are stacked by bumps, thermal stresses may be generated between the respective wafers and bumps due to differences in thermal expansion coefficients of different wafers, or external forces or gravity may also cause mechanical stress, and the reliability problem arises. .

目前傳統作法是將晶片磨薄以提升晶片的熱膨脹係數,而降低與銅質散熱片與晶片的熱膨脹係數之差異。然而,將晶片磨薄的步驟又會引發其他的良率問題。因此,如何提供一種相對於熱應力具有高可靠度且能仍保有良好良率的晶片封裝結構,乃為相關業者努力之課題之一。At present, the conventional method is to thin the wafer to increase the thermal expansion coefficient of the wafer, and to reduce the difference between the thermal expansion coefficient of the copper heat sink and the wafer. However, the step of thinning the wafer in turn raises other yield issues. Therefore, how to provide a chip package structure which has high reliability with respect to thermal stress and can still maintain good yield is one of the subjects of the related industry.

本揭露內容係有關於一種封裝結構及其製造方法。藉 形成矽中介層於晶片和散熱片之間,可以緩衝並降低不同材質之晶片和散熱片因為熱膨脹係數的差異而產生的應力,而能夠提高封裝結構的可靠度。The disclosure relates to a package structure and a method of fabricating the same. borrow Forming the germanium interposer between the wafer and the heat sink can buffer and reduce the stress generated by the difference in thermal expansion coefficient between the wafer and the heat sink of different materials, thereby improving the reliability of the package structure.

根據本揭露內容之一實施例,係提出一種封裝結構。封裝結構包括一基板、一晶片、一矽中介層(silicon interposer)、一銅層以及一散熱片(integrated heat spreader,IHS)。晶片設置於基板上,矽中介層形成於晶片上,散熱片形成於矽中介層上,銅層形成於矽中介層和晶片之間。矽中介層具有複數個矽穿孔(through silicon via,TSV),矽穿孔係充填一導電一材料。According to an embodiment of the present disclosure, a package structure is proposed. The package structure includes a substrate, a wafer, a silicon interposer, a copper layer, and an integrated heat spreader (IHS). The wafer is disposed on the substrate, the interposer is formed on the wafer, the heat sink is formed on the germanium interposer, and the copper layer is formed between the germanium interposer and the wafer. The ruthenium interposer has a plurality of through silicon vias (TSVs), and the ruthenium perforations are filled with a conductive material.

根據本揭露內容之另一實施例,係提出一種封裝結構的製造方法。封裝結構的製造方法包括:形成一矽中介層,矽中介層具有複數個矽穿孔,矽穿孔係充填一導電材料,矽中介層具有一第一表面與一第二表面;形成一散熱片於矽中介層之第一表面上;形成一第一銅層於矽中介層之第二表面上;形成一第二銅層於一晶片上;以熱壓(thermal compression)方式接合矽中介層上之第一銅層與晶片上之第二銅層;以及接合晶片之相對於第二銅層的另一側至一基板上。According to another embodiment of the present disclosure, a method of fabricating a package structure is presented. The manufacturing method of the package structure comprises: forming an interposer, the interposer having a plurality of crucibles, the perforation is filled with a conductive material, the interposer having a first surface and a second surface; forming a heat sink a first surface of the interposer; forming a first copper layer on the second surface of the interposer; forming a second copper layer on a wafer; and bonding the interposer on the interposer by thermal compression a copper layer and a second copper layer on the wafer; and bonding the other side of the wafer relative to the second copper layer to a substrate.

為了對本揭露內容之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present disclosure, the preferred embodiments are described below in detail with reference to the accompanying drawings.

本揭露內容之實施例中,封裝結構中,矽中介層形成於晶片和散熱片之間,可以緩衝並降低不同材質之晶片和散熱片因為熱膨脹係數的差異而產生的應力,而能夠提高封裝結構的可靠度。以下係參照所附圖式詳細敘述本揭露內容之實施例。圖式中相同的標號係用以標示相同或類似之部分。需注意的是,圖式係已簡化以利清楚說明實施例之內容,實施例所提出的細部結構僅為舉例說明之用,並非對本揭露內容欲保護之範圍做限縮。具有通常知識者當可依據實際實施態樣的需要對該些結構加以修飾或變化。In an embodiment of the disclosure, in the package structure, the interposer layer is formed between the wafer and the heat sink, which can buffer and reduce stress generated by different materials of the wafer and the heat sink due to the difference in thermal expansion coefficient, thereby improving the package structure. Reliability. Embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings. The same reference numerals are used to designate the same or similar parts. It is to be noted that the drawings have been simplified to illustrate the details of the embodiments, and the detailed description of the embodiments is for illustrative purposes only and is not intended to limit the scope of the disclosure. Those having ordinary knowledge may modify or change the structures as needed in accordance with the actual implementation.

第1圖繪示本揭露內容之一實施例之封裝結構之示意圖。請參照第1圖。封裝結構100包括基板110、晶片120、矽中介層(silicon interposer)130以及散熱片(integrated heat spreader,IHS)140。實施例中,如第1圖所示,封裝結構100更可包括銅層150形成於矽中介層130和晶片120之間,可進一步幫助熱的有效傳導。晶片120設置於基板110上,矽中介層130形成於晶片120上,散熱片140形成於矽中介層130上。矽中介層130具有複數個矽穿孔(through silicon via,TSV)133,矽穿孔133係充填導電材料。實施例中,導電材料例如是銅金屬。實施例中,矽中介層130形成於晶片120和散熱片140之間,可以緩衝並降低不同材質之晶片120和散熱片140因為熱膨脹係數的差異而產生的應力,不需薄化晶片120,而能夠提高封裝結構100的可靠度。FIG. 1 is a schematic diagram of a package structure according to an embodiment of the disclosure. Please refer to Figure 1. The package structure 100 includes a substrate 110, a wafer 120, a silicon interposer 130, and an integrated heat spreader (IHS) 140. In an embodiment, as shown in FIG. 1, the package structure 100 further includes a copper layer 150 formed between the germanium interposer 130 and the wafer 120 to further facilitate efficient conduction of heat. The wafer 120 is disposed on the substrate 110, the germanium interposer 130 is formed on the wafer 120, and the heat sink 140 is formed on the germanium interposer 130. The germanium interposer 130 has a plurality of through silicon vias (TSVs) 133 that are filled with a conductive material. In an embodiment, the electrically conductive material is, for example, copper metal. In the embodiment, the germanium interposer 130 is formed between the wafer 120 and the heat sink 140, and can buffer and reduce the stress generated by the difference between the thermal expansion coefficients of the wafer 120 and the heat sink 140 of different materials, without thinning the wafer 120. The reliability of the package structure 100 can be improved.

實施例中,基板110的材質例如是矽、陶瓷或高分子 材料。實施例中,晶片120面向基板110之表面可包括主動電路層(active circuit layer)(未繪示於圖中)。In the embodiment, the material of the substrate 110 is, for example, tantalum, ceramic or polymer. material. In an embodiment, the surface of the wafer 120 facing the substrate 110 may include an active circuit layer (not shown).

實施例中,如第1圖所示,矽穿孔133之高度H例如是1~50微米,矽穿孔133之直徑(diameter)DTSV 例如是0.5~20微米。任二鄰近的矽穿孔133之中心間隔的距離,也就是矽穿孔133的間距(pitch)P,例如是1.25~250微米。實施例中,矽中介層130並不具備電性功能,換句話說,矽穿孔133並未與任何元件電性連接。In the embodiment, as shown in Fig. 1, the height H of the perforation 133 is, for example, 1 to 50 μm, and the diameter D TSV of the perforation 133 is, for example, 0.5 to 20 μm. The distance between the centers of any two adjacent turns 133, that is, the pitch P of the turns 133, is, for example, 1.25 to 250 microns. In the embodiment, the germanium interposer 130 does not have an electrical function. In other words, the germanium via 133 is not electrically connected to any of the components.

實施例中,如第1圖所示,矽中介層130更包括二氧化矽層135形成於矽穿孔133之內壁上。實施例中,二氧化矽層135之厚度TSiO2 例如是0.2~2微米。In the embodiment, as shown in FIG. 1, the ruthenium interposer 130 further includes a ruthenium dioxide layer 135 formed on the inner wall of the ruthenium perforation 133. In the embodiment, the thickness T SiO2 of the ceria layer 135 is, for example, 0.2 to 2 μm.

第2圖繪示本揭露內容之一實施例之矽中介層的等效熱膨脹係數(equivalent coefficient of thermal expansion)之模擬結果。請參照第2圖。曲線S1~S3分別表示當二氧化矽層135之厚度TSiO2 為0.2、0.5及1微米時,矽中介層130的等效熱膨脹係數相對於矽穿孔133之間距P的關係。如第2圖所示,當矽穿孔133之間距P小於50微米時,矽中介層130的等效熱膨脹係數上升至約為10 ppm/K。經由調整矽穿孔133之直徑DTSV 和間距P,可以控制矽中介層130的等效熱膨脹係數。一實施例中,矽中介層130之等效熱膨脹係數例如是4~12 ppm/K。實施例中,矽中介層130之等效熱膨脹係數介於銅金屬之16~18 ppm/K及矽晶片之2.3 ppm/K之間,因此可以有效降低矽晶片與銅質散熱片140之間因為熱膨脹係數的巨大差異而產生的應力可靠度的問題。Figure 2 is a graph showing the simulation results of the equivalent coefficient of thermal expansion of the interposer in one embodiment of the present disclosure. Please refer to Figure 2. The curves S1 to S3 respectively indicate the relationship between the equivalent thermal expansion coefficient of the tantalum interposer 130 and the distance P between the tantalum perforations 133 when the thickness T SiO2 of the ceria layer 135 is 0.2, 0.5 and 1 μm. As shown in Fig. 2, when the distance P between the turns 133 is less than 50 μm, the equivalent thermal expansion coefficient of the ruthenium interposer 130 rises to about 10 ppm/K. By adjusting the diameter D TSV and the pitch P of the turns 133, the equivalent thermal expansion coefficient of the ruthenium interposer 130 can be controlled. In one embodiment, the equivalent thermal expansion coefficient of the germanium interposer 130 is, for example, 4 to 12 ppm/K. In the embodiment, the equivalent thermal expansion coefficient of the germanium interposer 130 is between 16~18 ppm/K of copper metal and 2.3 ppm/K of the germanium wafer, so that the germanium wafer and the copper heat sink 140 can be effectively reduced. The problem of stress reliability due to the large difference in thermal expansion coefficient.

第3圖繪示本揭露內容之一實施例之矽中介層的等效熱傳導係數(equivalent thermal conductivity)之模擬結果。請參照第3圖,其中分別表示矽中介層130在水平方向的等效熱傳導係數K1及垂直方向的等效熱傳導係數K2相對於矽穿孔133之間距P的關係,此處所指的水平方向為垂直於矽穿孔133延伸的方向,垂直方向為平行於矽穿孔133延伸的方向。實施例中,矽中介層130具有的散熱效果是非等向性的,等效熱傳導係數根據熱傳導的方向而有所不同。Figure 3 is a graph showing the simulation results of the equivalent thermal conductivity of the tantalum layer of one embodiment of the present disclosure. Please refer to FIG. 3, which shows the relationship between the equivalent heat transfer coefficient K1 of the germanium interposer 130 in the horizontal direction and the equivalent heat transfer coefficient K2 of the vertical direction with respect to the distance P between the turns 133. The horizontal direction referred to herein is vertical. In the direction in which the perforation 133 extends, the vertical direction is parallel to the direction in which the perforation 133 extends. In the embodiment, the heat dissipation effect of the germanium interposer 130 is anisotropic, and the equivalent heat transfer coefficient varies depending on the direction of heat conduction.

2011年Chien et al.發表在IMPACT(International Microsystems,Packaging,Assembly and Circuits Technology Conference)會議之論文(TW059-1,pp.152~155)中,提出了矽中介層在水平方向的等效熱傳導係數K1及垂直方向的等效熱傳導係數K2的表示公式如下:K1=(90.TSiO2 -0.33 ).(DTSV /P).H0.1 +160.TSiO2 0.07 In 2011, Chien et al. published a paper presented at the IMPACT (International Microsystems, Packaging, Assembly and Circuits Technology Conference) conference (TW059-1, pp. 152-155), which proposed the equivalent thermal conductivity of the ruthenium interposer in the horizontal direction. The equivalent heat transfer coefficient K2 of K1 and the vertical direction is expressed as follows: K1=(90.T SiO2 -0.33 ). (D TSV /P). H 0.1 +160. T SiO2 0.07

K2=128.exp(DTSV /P)K2=128. Exp(D TSV /P)

其中0.2(微米)TSiO2 0.5(微米),10(微米)DTSV 50(微米),H20(微米),0.1DTSV /P0.77。Of which 0.2 (micron) T SiO2 0.5 (micron), 10 (micron) D TSV 50 (micron), H 20 (micron), 0.1 D TSV /P 0.77.

第3圖繪示的模擬結果係根據以上公式所推得,並且以矽穿孔133的直徑DTSV =30微米,二氧化矽層135之厚度TSiO2 =2微米,以及矽穿孔133之高度H=60微米為例。實施例中,如第3圖所示,當矽穿孔133之間距P小於50微米時,矽中介層130之水平方向的等效熱傳導係數K1例如是80~100 W/m/K,垂直方向等效熱傳導係數K2例如是260~330 W/m/K。如第3圖所示,相較於矽晶片的原始 熱傳導係數(約140 W/m/K),矽中介層130之垂直方向等效熱傳導係數K2大幅提昇,而水平方向的等效熱傳導係數K1雖然比矽晶片的原始熱傳導係數低,仍大於一般傳統所使用的熱介面材料(thermal interface material,TIM)之熱傳導係數(常用的熱介面材料例如是銦,其熱傳導係數大約為82~86 W/m/K)。The simulation results shown in Fig. 3 are derived according to the above formula, and the diameter D TSV = 30 μm of the tantalum perforation 133, the thickness T SiO2 of the ceria layer 135 = 2 μm, and the height of the perforated perforation 133 H = Take 60 microns as an example. In the embodiment, as shown in FIG. 3, when the distance P between the turns 133 is less than 50 μm, the equivalent heat transfer coefficient K1 of the tantalum interposer 130 in the horizontal direction is, for example, 80 to 100 W/m/K, vertical direction, and the like. The effective heat transfer coefficient K2 is, for example, 260 to 330 W/m/K. As shown in Fig. 3, the vertical equivalent heat transfer coefficient K2 of the germanium interposer 130 is greatly improved compared to the original heat transfer coefficient (about 140 W/m/K) of the germanium wafer, and the equivalent heat transfer coefficient K1 in the horizontal direction is increased. Although the original heat transfer coefficient of the germanium wafer is lower than that of the conventional thermal interface material (TIM), the common thermal interface material is indium, and its thermal conductivity is about 82~86 W/ m/K).

實施例中,如第1圖所示,矽中介層130設置於晶片120和散熱片140之間,矽中介層130例如是直接接觸晶片120和散熱片140。實施例中,晶片120材質例如是矽,散熱片140例如是由銅所製成,或者散熱片140例如包括一表面銅層鄰接於矽中介層130。如此一來,矽中介層130之等效熱膨脹係數介於銅及矽晶片之熱膨脹係數之間,且矽中介層130直接接觸散熱片140的銅材質及矽晶片,可以有效降低矽晶片與散熱片140的銅材質之間因為熱膨脹係數的巨大差異而產生的應力可靠度的問題。並且,矽中介層130具有良好的垂直方向等效熱傳導係數K2,矽中介層130直接接觸散熱片140的銅材質及矽晶片,可以有效地將晶片120產生的熱傳導至散熱片140而排出。In the embodiment, as shown in FIG. 1 , the germanium interposer 130 is disposed between the wafer 120 and the heat sink 140 , and the germanium interposer 130 directly contacts the wafer 120 and the heat sink 140 , for example. In the embodiment, the material of the wafer 120 is, for example, tantalum, the heat sink 140 is made of, for example, copper, or the heat sink 140 includes, for example, a surface copper layer adjacent to the tantalum interposer 130. In this way, the equivalent thermal expansion coefficient of the germanium interposer 130 is between the thermal expansion coefficients of the copper and germanium wafers, and the germanium interposer 130 directly contacts the copper material and the germanium wafer of the heat sink 140, thereby effectively reducing the germanium wafer and the heat sink. The problem of stress reliability between the copper materials of 140 due to the large difference in thermal expansion coefficient. Moreover, the germanium interposer 130 has a good vertical equivalent heat transfer coefficient K2, and the germanium interposer 130 directly contacts the copper material and the germanium wafer of the heat sink 140, and can effectively transfer the heat generated by the wafer 120 to the heat sink 140 for discharge.

實施例中,如第1圖所示,封裝結構100更可包括複數個銲料凸塊(solder bump)160電性連接晶片120和基板110。實施例中,如第1圖所示,封裝結構100更可包括底部封膠(underfill)170,底部封膠170覆蓋銲料凸塊160,可增加晶片120與銲料凸塊160之間的應力強度,提升可靠度。In an embodiment, as shown in FIG. 1 , the package structure 100 further includes a plurality of solder bumps 160 electrically connecting the wafer 120 and the substrate 110 . In an embodiment, as shown in FIG. 1 , the package structure 100 further includes a bottom seal 170 , and the bottom seal 170 covers the solder bumps 160 to increase the stress intensity between the wafer 120 and the solder bumps 160 . Improve reliability.

第4圖繪示本揭露內容之另一實施例之封裝結構之 示意圖。請參照第4圖。本實施例與第1圖之實施例之差別在於,封裝結構200更包括複數個銲料凸塊260電性連接晶片120和矽中介層130上之銅層150。實施例中,封裝結構200更包括底部封膠270,底部封膠270覆蓋銲料凸塊260,可增加晶片120與銲料凸塊260之間的應力強度,提升可靠度。本實施例中,矽中介層130並不具備電性功能,換句話說,矽穿孔133並未與任何元件電性連接。本實施例中與前述實施例相同之元件係沿用同樣的元件標號,且相同元件之相關說明請參考前述,在此不再贅述。FIG. 4 illustrates a package structure of another embodiment of the disclosure. schematic diagram. Please refer to Figure 4. The difference between the embodiment and the embodiment of FIG. 1 is that the package structure 200 further includes a plurality of solder bumps 260 electrically connecting the wafer 120 and the copper layer 150 on the germanium interposer 130. In the embodiment, the package structure 200 further includes a bottom seal 270, and the bottom sealant 270 covers the solder bumps 260, which can increase the stress intensity between the wafer 120 and the solder bumps 260, thereby improving reliability. In this embodiment, the germanium interposer 130 does not have an electrical function. In other words, the germanium via 133 is not electrically connected to any of the components. The same components as those in the foregoing embodiments are denoted by the same reference numerals, and the related descriptions of the same components are referred to the foregoing, and are not described herein again.

以下係提出實施例之一種封裝結構100的製造方法,然該些步驟僅為舉例說明之用,並非用以限縮本發明。具有通常知識者當可依據實際實施態樣的需要對該些步驟加以修飾或變化。請參照第5A圖至第5H圖。第5A圖至第5H圖繪示依照本發明之一實施例之一種封裝結構之製造方法示意圖。The following is a method for fabricating a package structure 100 of the embodiments, which are for illustrative purposes only and are not intended to limit the invention. Those having ordinary knowledge may modify or change the steps as needed according to the actual implementation. Please refer to pictures 5A to 5H. 5A to 5H are schematic views showing a manufacturing method of a package structure according to an embodiment of the present invention.

請參照第5A圖,形成一矽中介層130,矽中介層130具有複數個矽穿孔133,矽穿孔133係充填導電材料。實施例中,導電材料例如是銅金屬。實施例中,形成矽中介層130之製造方法例如包括以下步驟:提供一矽層131、形成複數個矽穿孔133於矽層131中以及充填導電材料於矽穿孔133之內。Referring to FIG. 5A, an interposer 130 is formed. The interposer 130 has a plurality of crucibles 133, and the vias 133 are filled with a conductive material. In an embodiment, the electrically conductive material is, for example, copper metal. In an embodiment, the method of forming the germanium interposer 130 includes, for example, the steps of providing a germanium layer 131, forming a plurality of germanium vias 133 in the germanium layer 131, and filling the conductive material within the germanium vias 133.

實施例中,充填導電材料於矽穿孔133之內之前,更可形成一二氧化矽層於矽穿孔133之內壁上(如第1圖所示)。實施例中,充填導電材料於矽穿孔133之內之後,更可薄化矽中介層130。In an embodiment, a layer of ruthenium dioxide is formed on the inner wall of the ruthenium perforation 133 (as shown in FIG. 1) before filling the conductive material in the ruthenium perforation 133. In the embodiment, after filling the conductive material inside the crucible through hole 133, the germanium interposer 130 can be thinned.

請參照第5B~5C圖,形成散熱片140於矽中介層130上。實施例中,矽中介層130具有一第一表面與一第二表面,散熱片形成於矽中介層130之第一表面上。Referring to FIGS. 5B-5C, the heat sink 140 is formed on the buffer interposer 130. In an embodiment, the germanium interposer 130 has a first surface and a second surface, and a heat sink is formed on the first surface of the germanium interposer 130.

一實施例中,散熱片140例如是由銅所製成,形成散熱片140於矽中介層130上之製造方法例如包括以下步驟:如第5B圖所示,形成第三銅層510於矽中介層130之第一表面上上。接著,如第5C圖所示,提供銅製的散熱片140’,然後以熱壓方式(thermal compression)接合第三銅層510至銅製的散熱片140’,熱壓溫度大約是低於300℃。經由銅對銅熱壓合方式(copper to copper bonding)形成散熱片140於矽中介層130上,第三銅層510於製程中與銅製的散熱片140’結合而成為散熱片140的一部份,使得散熱片140和矽中介層130之間不具有其他膜層(例如黏著層),而能夠提高整體的散熱性。In one embodiment, the heat sink 140 is made of, for example, copper, and the manufacturing method of forming the heat sink 140 on the germanium interposer 130 includes the following steps: as shown in FIG. 5B, forming a third copper layer 510 in the middle On the first surface of layer 130. Next, as shown in Fig. 5C, a heat sink 140' made of copper is provided, and then the third copper layer 510 is bonded to the heat sink 140' made of copper by thermal compression at a hot pressing temperature of about less than 300 °C. The heat sink 140 is formed on the germanium interposer 130 via copper to copper bonding, and the third copper layer 510 is combined with the copper heat sink 140' to form a part of the heat sink 140 during the process. Therefore, there is no other film layer (for example, an adhesive layer) between the heat sink 140 and the germanium interposer 130, and the overall heat dissipation property can be improved.

另一實施例中,散熱片140例如包括一表面銅層(未繪示於圖中),形成散熱片140於矽中介層130上之製造方法例如包括以下步驟:如第5B圖所示,形成第三銅層510於矽中介層130上。接著,以熱壓方式接合第三銅層510至散熱片140之表面銅層。經由銅對銅熱壓合方式形成散熱片140於矽中介層130上,第三銅層510於製程中結合而成為散熱片140的表面銅層的一部份,使得散熱片140的表面銅層和矽中介層130之間不具有其他膜層(例如黏著層),而能夠提高整體的散熱性。In another embodiment, the heat sink 140 includes, for example, a surface copper layer (not shown), and the manufacturing method for forming the heat sink 140 on the germanium interposer 130 includes, for example, the following steps: forming as shown in FIG. 5B The third copper layer 510 is on the germanium interposer 130. Next, the third copper layer 510 is bonded to the surface copper layer of the heat sink 140 by heat pressing. The heat sink 140 is formed on the germanium interposer 130 via copper to copper thermocompression bonding, and the third copper layer 510 is combined in the process to form a part of the surface copper layer of the heat sink 140, so that the surface copper layer of the heat sink 140 There is no other film layer (for example, an adhesive layer) between the ruthenium interposer 130, and the overall heat dissipation property can be improved.

請參照第5D~5E圖,設置晶片120於矽中介層130上。實施例中,設置晶片120於矽中介層130上之製造方 法例如包括以下步驟:如第5D圖所示,形成第二銅層520於晶片120上,以及形成第一銅層530於矽中介層130之第二表面上。接著,如第5E圖所示,以熱壓(thermal compression)方式接合晶片120上的第二銅層520與矽中介層130上的第一銅層530。實施例中,熱壓之後,第二銅層520和第一銅層530結合而形成一層銅層150於矽中介層130和晶片120之間。經由銅對銅熱壓合方式設置晶片120於矽中介層130上,使得矽中介層130和晶片120之間僅具有銅層150,而不具有其他膜層(例如黏著層),而銅具有良好的熱傳導特性,因此能夠提高整體的散熱性。Referring to FIGS. 5D-5E, the wafer 120 is disposed on the germanium interposer 130. In an embodiment, the manufacturer of the wafer 120 on the germanium interposer 130 is disposed. The method includes, for example, the step of forming a second copper layer 520 on the wafer 120 and forming a first copper layer 530 on the second surface of the germanium interposer 130 as shown in FIG. 5D. Next, as shown in FIG. 5E, the second copper layer 520 on the wafer 120 and the first copper layer 530 on the germanium interposer 130 are bonded in a thermal compression manner. In an embodiment, after the hot pressing, the second copper layer 520 and the first copper layer 530 are combined to form a copper layer 150 between the germanium interposer 130 and the wafer 120. The wafer 120 is disposed on the germanium interposer 130 via copper-on-copper bonding such that the germanium interposer 130 and the wafer 120 have only the copper layer 150 without other film layers (eg, adhesive layers), while the copper has good The heat transfer characteristics improve the overall heat dissipation.

一實施例中,請參照第4圖,以熱壓方式接合矽中介層130上之第一銅層530與晶片120之第二銅層520之前,更包括形成複數個第一銲料凸塊260於晶片120上。In one embodiment, referring to FIG. 4, before the first copper layer 530 on the interposer 130 and the second copper layer 520 of the wafer 120 are bonded by thermocompression, a plurality of first solder bumps 260 are further formed. On the wafer 120.

一實施例中,設置晶片120於矽中介層130上之製造方法例如更可包括以下步驟:請參照第4圖,形成一層銅層150於矽中介層130上,接著,形成複數個銲料凸塊260電性連接晶片120和矽中介層130上之銅層150。In one embodiment, the method for fabricating the wafer 120 on the germanium interposer 130 may further include the following steps: Referring to FIG. 4, a copper layer 150 is formed on the germanium interposer 130, and then a plurality of solder bumps are formed. 260 electrically connects the wafer 120 and the copper layer 150 on the germanium interposer 130.

請參照第5F~5H圖,接合晶片120之相對於第二銅層520的另一側至基板110上。實施例中,接合晶片120至基板110上之製造方法例如包括以下步驟:如第5F圖所示,形成複數個第二銲料凸塊160於晶片120上。接著,如第5G圖所示,以一大片散熱片140上設置多個晶片120為例,依據各個晶片120切割矽中介層130及散熱片140,切割完成的各個組件包括晶片120、矽中介層130及散熱 片140。接著,如第5H圖所示,藉由第二銲料凸塊160接合晶片120和基板110以完成晶片120和基板110之間的電性連接。Referring to FIGS. 5F-5H, the other side of the wafer 120 opposite to the second copper layer 520 is bonded to the substrate 110. In an embodiment, the method of bonding the wafer 120 to the substrate 110 includes, for example, the step of forming a plurality of second solder bumps 160 on the wafer 120 as shown in FIG. 5F. Next, as shown in FIG. 5G, a plurality of wafers 120 are disposed on a large heat sink 140, and the interposer 130 and the fins 140 are cut according to the respective wafers 120. The cut components include the wafer 120 and the interposer. 130 and heat dissipation Slice 140. Next, as shown in FIG. 5H, the wafer 120 and the substrate 110 are bonded by the second solder bumps 160 to complete the electrical connection between the wafer 120 and the substrate 110.

實施例中,例如是以雷射切割矽中介層130及散熱片140。由於矽中介層130不具有電性功能,因此即使切割完成後的組件邊緣有些許剝落(peeling)或破裂(crack),並不會影響完成後的整個封裝結構100的可靠度,因此可以放寬製程的要求,提高良率。In the embodiment, the interposer 130 and the heat sink 140 are cut, for example, by laser. Since the ruthenium interposer 130 does not have an electrical function, even if the edge of the component after the dicing is slightly peeled or cracked, and the reliability of the entire package structure 100 after completion is not affected, the process can be relaxed. Requirements to improve yield.

實施例中,更可形成底部封膠170覆蓋第二銲料凸塊160。至此,形成如第5H圖(第1圖)所示之封裝結構100。In an embodiment, the bottom sealant 170 is further formed to cover the second solder bumps 160. Thus far, the package structure 100 as shown in Fig. 5H (Fig. 1) is formed.

綜上所述,雖然本揭露內容已以實施例揭露如上,然其並非用以限定本揭露內容之保護範圍。本揭露內容所屬技術領域中具有通常知識者,在不脫離本揭露內容之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露內容之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the disclosure has been disclosed in the above embodiments, it is not intended to limit the scope of the disclosure. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the appended claims.

100、200‧‧‧封裝結構100,200‧‧‧Package structure

110‧‧‧基板110‧‧‧Substrate

120‧‧‧晶片120‧‧‧ wafer

130‧‧‧矽中介層130‧‧‧矽 Intermediary

131‧‧‧矽層131‧‧‧矽

133‧‧‧矽穿孔133‧‧‧矽 piercing

135‧‧‧二氧化矽層135‧‧ 二 二 layer

140‧‧‧散熱片140‧‧‧ Heat sink

150、250‧‧‧銅層150, 250‧‧‧ copper layer

160、260‧‧‧銲料凸塊160, 260‧‧‧ solder bumps

170、270‧‧‧底部封膠170, 270‧‧‧ bottom sealant

510‧‧‧第三銅層510‧‧‧ Third copper layer

520‧‧‧第二銅層520‧‧‧Second copper layer

530‧‧‧第一銅層530‧‧‧First copper layer

DTSV ‧‧‧直徑D TSV ‧‧‧diameter

H‧‧‧高度H‧‧‧ Height

K1、K2‧‧‧等效熱傳導係數K1, K2‧‧‧ equivalent heat transfer coefficient

P‧‧‧間距P‧‧‧ spacing

S1~S3‧‧‧曲線S1~S3‧‧‧ Curve

TSiO2 ‧‧‧厚度T SiO2 ‧‧‧ thickness

第1圖繪示本揭露內容之一實施例之封裝結構之示意圖。FIG. 1 is a schematic diagram of a package structure according to an embodiment of the disclosure.

第2圖繪示本揭露內容之一實施例之矽中介層的等效熱膨脹係數(equivalent coefficient of thermal expansion)之模擬結果。Figure 2 is a graph showing the simulation results of the equivalent coefficient of thermal expansion of the interposer in one embodiment of the present disclosure.

第3圖繪示本揭露內容之一實施例之矽中介層的等效熱傳導係數(equivalent thermal conductivity)之模擬結 果。FIG. 3 is a schematic diagram showing an equivalent thermal conductivity of the interposer of an embodiment of the present disclosure. fruit.

第4圖繪示本揭露內容之另一實施例之封裝結構之示意圖。FIG. 4 is a schematic diagram showing a package structure of another embodiment of the disclosure.

第5A圖至第5H圖繪示依照本發明之一實施例之一種封裝結構之製造方法示意圖。5A to 5H are schematic views showing a manufacturing method of a package structure according to an embodiment of the present invention.

100‧‧‧封裝結構100‧‧‧Package structure

110‧‧‧基板110‧‧‧Substrate

120‧‧‧晶片120‧‧‧ wafer

130‧‧‧矽中介層130‧‧‧矽 Intermediary

133‧‧‧矽穿孔133‧‧‧矽 piercing

135‧‧‧二氧化矽層135‧‧ 二 二 layer

140‧‧‧散熱片140‧‧‧ Heat sink

150‧‧‧銅層150‧‧‧ copper layer

160‧‧‧銲料凸塊160‧‧‧ solder bumps

170‧‧‧底部封膠170‧‧‧Bottom sealant

DTSV ‧‧‧直徑D TSV ‧‧‧diameter

H‧‧‧高度H‧‧‧ Height

P‧‧‧間距P‧‧‧ spacing

TSiO2 ‧‧‧厚度T SiO2 ‧‧‧ thickness

Claims (17)

一種封裝結構,包括:一基板;一晶片設置於該基板上;一矽中介層(silicon interposer),形成於該晶片上,該矽中介層具有複數個矽穿孔(through silicon via,TSV),該些矽穿孔係充填一導電材料;一銅層,形成於該矽中介層和該晶片之間;以及一散熱片(integrated heat spreader,IHS),形成於該矽中介層上。 A package structure includes: a substrate; a wafer disposed on the substrate; a silicon interposer formed on the wafer, the germanium interposer having a plurality of through silicon vias (TSVs), The tantalum perforations are filled with a conductive material; a copper layer is formed between the tantalum interposer and the wafer; and an integrated heat spreader (IHS) is formed on the tantalum interposer. 如申請專利範圍第1項所述之封裝結構,其中該導電材料為銅。 The package structure of claim 1, wherein the conductive material is copper. 如申請專利範圍第1項所述之封裝結構,其中該矽中介層之等效熱膨脹係數(equivalent coefficient of thermal expansion)係為4~12ppm/K。 The package structure according to claim 1, wherein the equivalent coefficient of thermal expansion of the tantalum interposer is 4 to 12 ppm/K. 如申請專利範圍第1項所述之封裝結構,其中該矽中介層之垂直方向等效熱傳導係數(equivalent thermal conductivity)係為150~330W/m/K。 The package structure according to claim 1, wherein the 矽 interposer has an equivalent thermal conductivity of 150 to 330 W/m/K in the vertical direction. 如申請專利範圍第1項所述之封裝結構,其中該些矽穿孔之直徑(diameter)係為0.5~20微米。 The package structure of claim 1, wherein the diameter of the turns is 0.5 to 20 microns. 如申請專利範圍第1項所述之封裝結構,其中該些矽穿孔之任二鄰近者之中心間隔的距離係為1.25~250微米。 The package structure of claim 1, wherein the distance between the centers of any two adjacent ones of the turns is 1.25 to 250 microns. 如申請專利範圍第1項所述之封裝結構,其中該散熱片更包括一表面銅層鄰接於該矽中介層。 The package structure of claim 1, wherein the heat sink further comprises a surface copper layer adjacent to the germanium interposer. 如申請專利範圍第1項所述之封裝結構,更包括複數個銲料凸塊(solder bump)電性連接該晶片和該基板。 The package structure of claim 1, further comprising a plurality of solder bumps electrically connecting the wafer and the substrate. 一種封裝結構之製造方法,包括:形成一矽中介層,該矽中介層具有複數個矽穿孔,該些矽穿孔係充填一導電材料,該矽中介層具有一第一表面與一第二表面;形成一散熱片於該矽中介層之該第一表面上;形成一第一銅層於該矽中介層之該第二表面上;形成一第二銅層於一晶片上;以熱壓(thermal compression)方式接合該矽中介層上之該第一銅層與該晶片上之該第二銅層;以及接合該晶片之相對於該第二銅層的另一側至一基板上。 A method for fabricating a package structure, comprising: forming a buffer layer having a plurality of turns, the plurality of turns are filled with a conductive material, the germanium layer having a first surface and a second surface; Forming a heat sink on the first surface of the germanium interposer; forming a first copper layer on the second surface of the germanium interposer; forming a second copper layer on a wafer; Compressing the first copper layer on the germanium interposer and the second copper layer on the wafer; and bonding the other side of the wafer relative to the second copper layer to a substrate. 如申請專利範圍第9項所述之封裝結構之製造方法,其中該導電材料為銅。 The method of manufacturing a package structure according to claim 9, wherein the conductive material is copper. 如申請專利範圍第9項所述之封裝結構之製造方法,其中形成該矽中介層之步驟包括:提供一矽層;形成該些矽穿孔於該矽層中;以及充填該導電材料於該些矽穿孔之內。 The method for manufacturing a package structure according to claim 9, wherein the step of forming the ruthenium interposer comprises: providing a ruthenium layer; forming the ruthenium perforations in the ruthenium layer; and filling the conductive material in the Within the perforation. 如申請專利範圍第11項所述之封裝結構之製造方法,其中充填該導電材料於該些矽穿孔之內之前,更包括:形成一二氧化矽層於該些矽穿孔之內壁上。 The method for manufacturing a package structure according to claim 11, wherein before filling the conductive material in the punctured perforations, the method further comprises: forming a cerium oxide layer on the inner wall of the punctured perforations. 如申請專利範圍第9項所述之封裝結構之製造方 法,其中以熱壓方式接合該矽中介層上之該第一銅層與該晶片上之該第二銅層之前,更包括形成複數個第一銲料凸塊於該晶片上。The manufacturer of the package structure as described in claim 9 The method further includes forming a plurality of first solder bumps on the wafer before the first copper layer on the germanium interposer and the second copper layer on the wafer are bonded by heat pressing. 如申請專利範圍第9項所述之封裝結構之製造方法,其中該散熱片之表面包括一表面銅層,形成該散熱片於該矽中介層上之步驟包括:形成一第三銅層於該矽中介層之該第一表面上;以及以熱壓方式接合該第三銅層至該散熱片之該表面銅層。The method of manufacturing a package structure according to claim 9, wherein the surface of the heat sink comprises a surface copper layer, and the step of forming the heat sink on the germanium interposer comprises: forming a third copper layer thereon And affixing the third copper layer to the surface copper layer of the heat sink by heat pressing. 如申請專利範圍第14項所述之封裝結構之製造方法,其中該散熱片係由銅所製成。The method of manufacturing a package structure according to claim 14, wherein the heat sink is made of copper. 如申請專利範圍第9項所述之封裝結構之製造方法,更包括:形成複數個第二銲料凸塊電性連接該晶片和該基板。The manufacturing method of the package structure of claim 9, further comprising: forming a plurality of second solder bumps to electrically connect the wafer and the substrate. 如申請專利範圍第16項所述之封裝結構之製造方法,更包括:形成一底部封膠(underfill)覆蓋該些第二銲料凸塊。The manufacturing method of the package structure of claim 16, further comprising: forming a bottom underfill covering the second solder bumps.
TW101146965A 2012-12-12 2012-12-12 Package structure and manufacturing method of the same TWI492340B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101146965A TWI492340B (en) 2012-12-12 2012-12-12 Package structure and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101146965A TWI492340B (en) 2012-12-12 2012-12-12 Package structure and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW201423919A TW201423919A (en) 2014-06-16
TWI492340B true TWI492340B (en) 2015-07-11

Family

ID=51394142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146965A TWI492340B (en) 2012-12-12 2012-12-12 Package structure and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI492340B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201203492A (en) * 2010-07-15 2012-01-16 Nanya Technology Corp Die package and related die package structure manufacturing method
US8158456B2 (en) * 2008-12-05 2012-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming stacked dies
US20120193778A1 (en) * 2011-01-27 2012-08-02 Texas Instruments Incorporated Integrated circuit having protruding bonding features with reinforcing dielectric supports
US8242611B2 (en) * 2008-07-21 2012-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding metallurgy for three-dimensional interconnect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242611B2 (en) * 2008-07-21 2012-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding metallurgy for three-dimensional interconnect
US8158456B2 (en) * 2008-12-05 2012-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming stacked dies
TW201203492A (en) * 2010-07-15 2012-01-16 Nanya Technology Corp Die package and related die package structure manufacturing method
US20120193778A1 (en) * 2011-01-27 2012-08-02 Texas Instruments Incorporated Integrated circuit having protruding bonding features with reinforcing dielectric supports

Also Published As

Publication number Publication date
TW201423919A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
TWI418269B (en) Package substrate having an embedded via hole medium layer and method of forming same
TWI541954B (en) Semiconductor package and manufacturing method thereof
US10354891B2 (en) Electronic package and method for fabricating the same
US8258007B2 (en) Package process
TWI496270B (en) Semiconductor package and method of manufacture
JP2017022398A (en) Window interposed die packaging
US11031356B2 (en) Semiconductor package structure for improving die warpage and manufacturing method thereof
TW201318129A (en) Package substrate having embedded via hole medium layer and fabrication method thereof
TWI595613B (en) Semiconductor package and fabrication method thereof
JP2008109046A (en) Semiconductor package and stacked semiconductor package
TWI614848B (en) Electronic package and method of manufacture thereof
JP2012160707A (en) Multilayer semiconductor chip, semiconductor device, and manufacturing method for these
TWI715970B (en) Fan-out package with warpage reduction
TWI575673B (en) Double-sided chip on film packaging structure and manufacturing method thereof
TW201507064A (en) Semiconductor package and method of manufacture
US9627307B2 (en) Semiconductor package and fabrication method thereof
TW201533882A (en) Stacked flip chip package
US8970038B2 (en) Semiconductor substrate and method of fabricating the same
TWI497616B (en) Method of forming semiconductor package
TWI600133B (en) Semiconductor device and fabrication method thereof
US20120168936A1 (en) Multi-chip stack package structure and fabrication method thereof
TW201738974A (en) Interposer manufacturing method for semiconductor device reduces phenomenon of cracking the interposer due to heating or pressurizing so as to effectively enhance the yield
TWI492340B (en) Package structure and manufacturing method of the same
JP6792322B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
TWI546920B (en) Semiconductor device and manufacturing method thereof