TWI492010B - Used in the factory to carry out the manufacturing method of verification - Google Patents

Used in the factory to carry out the manufacturing method of verification Download PDF

Info

Publication number
TWI492010B
TWI492010B TW102138174A TW102138174A TWI492010B TW I492010 B TWI492010 B TW I492010B TW 102138174 A TW102138174 A TW 102138174A TW 102138174 A TW102138174 A TW 102138174A TW I492010 B TWI492010 B TW I492010B
Authority
TW
Taiwan
Prior art keywords
verification
value
manufacturing
failure
statistic
Prior art date
Application number
TW102138174A
Other languages
English (en)
Other versions
TW201516603A (zh
Inventor
Chia Lin Liu
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW102138174A priority Critical patent/TWI492010B/zh
Priority to US14/109,060 priority patent/US20150112626A1/en
Publication of TW201516603A publication Critical patent/TW201516603A/zh
Application granted granted Critical
Publication of TWI492010B publication Critical patent/TWI492010B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/08Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

應用於工廠進行生產製造的驗證方法
本發明為有關一種驗證方法,尤指一種應用於工廠進行生產製造的驗證方法。
製程操作人員為了維持工廠的正常運作,包括:確保製程所生產的產品品質合乎製造規範,亦或是確保製程尾氣的處理合乎環保法規,往往必須仰賴線上分析儀或是化驗室分析數據,作為調整操作條件的依據。當操作人員日益倚賴線上分析儀作為操作時的判斷標準之際,線上分析儀的故障或是維修而無法提供相關操作資訊時,容易導致操作人員無所適從。因此,藉由分析歷史操作數據,建立製程操作變數(輸入變數),與線上分析儀或化驗室檢驗所分析品質變數(輸出變數)之間的預測模式,稱之為虛擬線上分析儀。由於輸入變數的測量值,約0.1-1秒即可取樣一次,相較於輸出變數的取樣頻率,約10分鐘(實體線上分析儀數據)至數個小時(化驗室檢驗數據)可取樣一次來得容易,如能建立有效的虛擬線上分析儀預測模式,利用輸入變數的測量值及預測模式,可立即得知輸出變數的預測值,對於製程操作人員而言,能及早修正操作條件,避免產品品質超出製造規範,或排放的製程尾氣違反環保法規。
目前此領域的技術大多著重於開發虛擬分析儀預測模式的方法,例如:美國發明專利公告第6243696號之「Automated method for building a model」揭露一種利用類神經網路模式,以及工廠操作數據建立輸入與輸出變數之間的預測模式。美國發明專利公告第6373033號之「Model-based predictive control of thermal processing」揭露一種利用之前溫度測量值以及類神經網路模式,建立下一個時間點的溫度預測值,藉以回饋控制晶圓加熱程序的熱源,維持晶圓表面溫度的穩定性。美國發明專利公告第7313550號之「Performance of artificial neural network models in the presence of instrumental noise and measurement errors」揭露一種加入適當的高斯雜訊於輸入與輸出變數的測量值,利用類神經網路模式擬和外加雜訊之間的相關性,藉此提高預測模式的準確性。美國發明專利公告第7505949號之「Process model error correction method and system」揭露一種利用輸入與輸出變數測量值建立第一個預測模式。之後,利用輸入變數測量值與第一個預測模式的誤差值建立第二個預測模式。線上實作時,利用第二個預測模式的預測誤差,補償第一個預測模式的預測輸出值。美國發明專利公告第8250006號之「Inferential sensors developed using three-dimensional pareto-front genetic programming」揭露一種利用基因演算法建立虛擬分析儀的方法,藉由準確性、複雜性以及平滑性三個面向,評估基因演化運算的適當性,藉此建立正確且穩健的預測模式。美國發明專利公告第8296107號之「Computer method and apparatus for constraining a non-linear approximator of an empirical process」揭露一種利用分段式趨近法,建立虛擬分析儀。首先,利用轉換函數(Transfer Function)定義不同區間輸入與輸出變數的關係。其次,連結不同的轉換函數,藉此近似全區域輸入與輸出變數的關係。最後,利用限制性最適化演算法收斂模式參數。美國發明專利公告第8429100 號之「Method for building adaptive soft sensor」揭露一種利用更新區域預測模式的方法建立虛擬分析儀,藉由合併既有區域類別,或是產生新的區域類別,遞迴式地更新預測模式,使得更新後的虛擬分析儀能描述製程新的操作行為。
前述對於虛擬分析儀的發明專利,不外乎利用輸入與輸出變數的歷史數據,發展能利用線上輸入變數的測量值,正確且穩健地預測輸出變數值。然而,當線上輸入變數的測量值失效時,無論再精準的預測模式,必然受到失效測量值的影響,而預測出錯誤的輸出值。本發明針對此一虛擬分析儀技術的缺點,提出驗證線上輸入變數測量值的方法,並且排除失效測量值對於虛擬分析儀預測值的影響。
本發明的主要目的,在於解決習知的虛擬分析儀必然受到失效測量值的影響,而產生預測錯誤的問題。
為達上述目的,本發明提供一種應用於工廠進行生產製造的驗證方法,該工廠包含一待輸入一製造參數的虛擬分析儀以及一生產設備,該方法包含以下步驟:步驟1:透過一主方向分析法利用該虛擬分析儀的一建模數據建立一驗證模型;步驟2:以該主方向分析法取得該驗證模型的一驗證模型參數,該驗證模型參數包含一管制界限、一輸入平均值向量、一標準差對角線矩陣以及一特徵向量矩陣;步驟3:將複數個待驗證量測參數輸入該驗證模型計算一驗 證統計量,利用該驗證統計量與該管制界限排除該待驗證量測參數之中的至少一失效值以形成該製造參數,其中,更包含以下步驟:步驟3(a):利用該輸入平均值向量以及該標準差對角線矩陣將該些待驗證量測參數形成複數個尺度化向量,再利用該特徵向量矩陣,投影該尺度化向量至一主方向空間,以計算該驗證統計量;步驟3(b):建立一失效值集合;步驟3(c):將該尺度化向量的其中之一放入該失效值集合,利用其餘未放入該失效值集合的該尺度化向量與該特徵向量矩陣,估算位於該失效值集合中的該尺度化向量的一驗證值,並利用該驗證值與其餘未放入該失效值集合的該尺度化向量計算一估算驗證統計量,並記錄該估算驗證統計量相較該驗證統計量的一下降值;以及步驟3(d):重覆步驟3(c),直至每個該尺度化向量都評估過對應的該下降值,並將對應最大的該下降值的該尺度化向量列為一失效值而放入該失效值集合;步驟4:將該製造參數輸入該虛擬分析儀進行分析;以及步驟5:由該虛擬分析儀判斷該製造參數有效,該生產設備依據該製造參數進行生產製造。
如此一來,本發明藉由建立該驗證模型,以該主方向分析法對該待驗證量測參數進行驗證,排除該待驗證量測參數之中的失效值以形成驗證後的該製造參數,防止無效的該待驗證量測參數直接輸入該虛擬分析儀,避免該虛擬分析儀預測出錯誤的輸出結果。
1、2、3、3(a)、3(b)、3(c)、3(d)、3(e)、4、5‧‧‧步驟
10‧‧‧驗證模型
20‧‧‧建模數據
21‧‧‧輸入數據
22‧‧‧輸出數據
30‧‧‧物料
31‧‧‧蒸餾液
32‧‧‧殘餘物
40‧‧‧再沸器
50‧‧‧冷凝器
60‧‧‧工業級蒸餾塔
61‧‧‧塔頂
62‧‧‧塔底
A‧‧‧虛擬分析儀
F‧‧‧流量控制閥
T1 、T2 、TN ‧‧‧溫度計
圖1,為本發明一實施例的工業級蒸餾塔結構示意圖。
圖2,為本發明一實施例的驗證模型的建構示意圖。
圖3A,為本發明一實施例的流程示意圖一。
圖3B,為本發明一實施例的流程示意圖二。
有關本發明的詳細說明及技術內容,現就配合圖式說明如下:本發明為一種應用於工廠進行生產製造的驗證方法,該工廠包含一待輸入一製造參數的虛擬分析儀以及一生產設備,該生產設備例如可為一工業級蒸餾塔,而該製造參數可為對應該生產設備所使用的溫度值,舉例說明如下述,請參閱『圖1』所示,為本發明一實施例的工業級蒸餾塔結構示意圖,欲純化的物料30(Feed)由該工業級蒸餾塔60的進料板層進料流進該工業級蒸餾塔60,位於一塔底62的一再沸器40(Reboiler)利用蒸氣加熱,蒸發沸點較低物質形成氣相向上流動,位於一塔頂61的一冷凝器50(Condenser)利用冷卻水冷凝,使得沸點較高物質形成液相向下流動。如此,液氣兩相的物質於該工業級蒸餾塔60內各板層充分接觸,達到熱力學平衡狀態,使得沸點較低物質持續向塔頂流動,沸點較高物質向塔底流動,達到分離的效果,分別於該塔頂61形成一蒸餾液31(Distillate),於該塔底62形成一殘餘物32(Residue),該塔頂61的該蒸餾液31濃度為進行生產製造一產品的重要指標,因此配置該虛擬分析儀A對該蒸餾液31濃度進行分析,亦配置一流量計以及一流量控制閥F用以調整該蒸餾液31濃度不得超過以上限值。而為了即時得知於該塔頂61的該蒸餾液31濃度,於其塔體63的不同位 置設置複數個溫度計(T1 、T2 、…、TN ),以量測取得不同位置的溫度值,並利用各該溫度值與該蒸餾液31濃度的歷史數據對應關係,建立該虛擬分析儀A的一預測模式,之後,只要得知即時的該溫度值,即可預測該於該塔頂的該蒸餾液31濃度,然而,一旦該溫度計(T1 、T2 、…、TN )所量測的該溫度值為一錯誤值或是失效值,即會使得該虛擬分析儀A預測出錯誤的該蒸餾液31濃度,而使得該流量控制閥F產生錯誤動作,造成該產品於生產製造時的毀損。本發明在此範例中,即可用以驗證該溫度計(T1 、T2 、…、TN )所量測的該溫度值,是否符合歷史數據所呈現的規則,避免錯誤的該製造參數影響該工廠正常的生產製造,尚需補充說明的是,以上僅以該工業級蒸餾塔60為舉例說明,但並不以此為限制本發明的應用範疇,凡符合上述生產製造精神之所需的該生產設備、該製造參數以及該虛擬分析儀,皆為本發明可同理應用而欲保護的範圍。
請搭配參閱『圖2』、『圖3A』及『圖3B』所示,『圖2』為本發明一實施例的驗證模型的建構示意圖,『圖3A』為本發明一實施例的流程示意圖一,『圖3B』為本發明一實施例的流程示意圖二,本發明的該驗證方法包含以下步驟:
步驟1:透過一主方向分析法(Principal components analysis,PCA)利用該虛擬分析儀的一建模數據20建立一驗證模型10,該建模數據20包含關聯於該虛擬分析儀過往的一歷史操作數據,該歷史操作數據包含至少一輸入數據21以及至少一輸出數據22,該輸出數據22為對應該輸入數據21而產生,例如,在此實施例中,假設有N個輸入數據21及M組建模數據20,則該輸入據數21的數據矩陣W的大小為M×N,每個該輸入數據21的M 組數據經過重新尺度化,,使得每個該輸入數據21欄位的M組數據平均值為0,標準差為1。
其中,為M組建模數據20的平均值向量,l為組成元素為1的欄向量,S為標準差的對角矩陣,S=diag[σ1 σ2 …σN ],σi 為第i個變數的標準差。利用尺度化之後的數據X,計算共變異矩陣Σ的特徵向量P=[P1 P2 ...PN ],將尺度化之後數據X投影到每個特徵向量的投影量,稱之為Score向量:T=XP。
Tk 、Pk 分別為前k項的Score及Loading向量,Tn-k 、Pn-k 則為k+1至n項的Score及Loading向量。為k項特徵向量描述系統主要的變化,E則是誤差矩陣。當誤差矩陣可被忽略不計時,即,則這k項特徵向量即為數據分佈的主要方向(Principal Components)。由此,定義統計量Q為:
其中x為重新尺度化後的一筆輸入變數測量值,Q可視為利用正常操作數據所建立的PCA子空間解釋新數據的誤差,Q的管制界限定義如下:
(1-α )為發生Type I檢定錯誤的機率,亦為常態分佈由c α 積分 至∞的機率。另一個測量PCA與新數據之間的差異指標為統計量T2
其中Λ=diag[λ1 λ2 ...λk ]為特徵值對角矩陣。T2 則是測量新的數據投影至PCA的方向與之前正常數據中心的距離,它的管制界限為:
Fk,M-1,α 為F分配函數,其自由度分別為k和M-1。驗證統計量則是採用Q和T2 的混和指標(Yue,H.H.;Qin,S.J.;Ind.Eng.Chem.Res.2001,40,4403.)。
其管制界限為:
其中(h )為自由度h,信心水準為(1-α )×100%的卡方分佈(Chi-square Distribution)。
步驟2:以該主方向分析法取得該驗證模型10的一驗證模型參數,該驗證模型參數包含一管制界限(7a)、一輸入平均值向量(7b)、一標準差對角線矩陣(7c)、一對應特徵值對角線矩陣(7d)、一特徵向量矩陣以及一主方向個數,該主方向個數採用特徵值大於1的個數。
步驟3:將複數個待驗證量測參數(x)輸入該驗證模型10計算一驗證統計量,接著,利用該驗證統計量與該管制界限排除該待驗證量測參數(x)之中的至少一失效值以形成該製造參數,在此實施例中,步驟3還進一步包含步驟3(a)、步驟3(b)、步驟3(c)、步驟3(d)以及步驟3(e)。
步驟3(a):利用該輸入平均值向量以及該標準差對角線矩陣將該待驗證量測參數(x)形成複數個尺度化向量,再利用該特徵向量矩陣,投影該尺度化向量至一主方向空間,以計算該驗證統計量,即利用上述(2)、(4)及(6)式計算該驗證統計量,而採用混和指標。
另外,為比較該驗證統計量是否低於該管制界限,該管制界限可由該歷史操作數據以及(7a)式計算而得,如果驗證統計量低於管制界限,表示該待驗證量測參數(x)並無存在失效值,可直接利用該虛擬分析儀預測輸出值。如果該驗證統計量超過該管制界限,則如下所述:
步驟3(b):建立一失效值集合(xf ),設定測量失效值個數(nf )為0,失效值集合(xf )為空集合。
步驟3(c):將該尺度化向量的其中之一放入該失效值集合 (xf ),利用其餘未放入該失效值集合(xf )的該尺度化向量與特徵向量矩陣,以(8)式估算位於該失效值集合(xf )中的該尺度化向量的一對應的驗證值(x*nf ),並利用該驗證值(x*nf )與其餘未放入該失效集合的該尺度化向量計算一估算驗證統計量,並記錄該估算驗證統計量相較該驗證統計量的一下降值。
其中,而ξ≡[ξ1 ξ2 ...ξ nf ],ξi 為欄向量,第i個元素為1,其餘為0。Γ為對角線矩陣,在對角線失效值位置元素值為1,反之為0。該下降值如(9)式所示,其中φ* nf 為利用該驗證值(x*nf )所計算的估算驗證統計量。
步驟3(d):重覆步驟3(c),共(N-nf)次,直至每個該尺度化向量都評估過對應的該下降值,並將對應最大的該下降值的該尺度化向量列為該失效值而放入該失效值集合(xf )。
步驟3(e):若為該失效值的該尺度化向量,其對應的該驗證值(x*nf )所計算出的該估算驗證統計量高於該管制界限,表示該尺度化向量之中仍有其他的失效值,則重覆步驟3(c)至步驟3(d),以挑選出下一個該尺度化向量成為新增的失效值放入該失效值集合(xf ),直至其對應計算出的該估算驗證統計量低於該管制界限,而如果該估算驗證統計量已低於該管制界限,為了避免將該尺度化向量誤判為該失效值,重寫(9)式如下:
其中ci 為第i個失效值的下降值,下降程度越大,越可能是失效值。因此,將該下降值由大至小排序,再次篩選失效值,並依序挑選該下降值進行加總形成一下降貢獻值,直至該驗證統計量扣除該下降貢獻值而低於該管制界限,保留足夠降低該驗證統計量至該管制界限的失效值的個數即可,其中,挑選的該下降值所對應的該失效值即為放入該失效值集合(xf )的一最少驗證數量。之後,將該待驗證量測參數(x)之中所挑選的該失效值以對應的該驗證值(x*nf )取代,以形成該製造參數。
步驟4:將該製造參數輸入該虛擬分析儀進行分析。
步驟5:由該虛擬分析儀判斷該製造參數有效,該生產設備依據該製造參數進行生產製造。
綜上所述,由於本發明藉由建立該驗證模型,以該主方向分析法對該待驗證量測參數進行驗證,排除該待驗證量測參數之中的失效值以形成驗證後的該製造參數,防止無效的該待驗證量測參數直接輸入該虛擬分析儀,避免該虛擬分析儀預測出錯誤的輸出結果,據此,令工廠於製造生產上,得以提高良率以及生產效率,因此本發明極具進步性及符合申請發明專利的要件,爰依法提出申請,祈 鈞局早日賜准專利,實感德便。
以上已將本發明做一詳細說明,惟以上所述者,僅為本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。
1、2、3、4、5‧‧‧步驟

Claims (6)

  1. 一種應用於工廠進行生產製造的驗證方法,該工廠包含一待輸入一製造參數的虛擬分析儀以及一生產設備,該方法包含以下步驟:步驟1:透過一主方向分析法利用該虛擬分析儀的一建模數據建立一驗證模型;步驟2:以該主方向分析法取得該驗證模型的一驗證模型參數,該驗證模型參數包含一管制界限、一輸入平均值向量、一標準差對角線矩陣以及一特徵向量矩陣;步驟3:將複數個待驗證量測參數輸入該驗證模型計算一驗證統計量,利用該驗證統計量與該管制界限排除該待驗證量測參數之中的至少一失效值以形成該製造參數,其中,更包含以下步驟:步驟3(a):利用該輸入平均值向量以及該標準差對角線矩陣將該些待驗證量測參數形成複數個尺度化向量,再利用該特徵向量矩陣,投影該尺度化向量至一主方向空間,以計算該驗證統計量;步驟3(b):建立一失效值集合;步驟3(c):將該尺度化向量的其中之一放入該失效值集合,利用其餘未放入該失效值集合的該尺度化向量與該特徵向量矩陣,估算位於該失效值集合中的該尺度化向量的一驗證值,並利用該驗證值與其餘未放入該失效值集合的該尺度化向量計算一估算驗證統計量,並記錄該估算驗證統計量相較該驗證統計量的一下降值;以及步驟3(d):重覆步驟3(c),直至每個該尺度化向量都評估過對應的該下降值,並將對應最大的該下降值的該尺度化向量列為一失效值而 放入該失效值集合;步驟4:將該製造參數輸入該虛擬分析儀進行分析;以及步驟5:由該虛擬分析儀判斷該製造參數有效,該生產設備依據該製造參數進行生產製造。
  2. 如申請專利範圍第1項所述的應用於工廠進行生產製造的驗證方法,其中於步驟1中,該建模數據包含該虛擬分析儀的一歷史操作數據,該歷史操作數據包含至少一輸入數據以及至少一對應該輸入數據的輸出數據。
  3. 如申請專利範圍第1項所述的應用於工廠進行生產製造的驗證方法,其中於步驟2中,該驗證模型參數還包含一主方向個數以及一對應特徵值對角線矩陣。
  4. 如申請專利範圍第1項所述的應用於工廠進行生產製造的驗證方法,其中於步驟3中,更包含:步驟3(e):若為該失效值的該尺度化向量,其對應的該驗證值所計算出的該估算驗證統計量高於該管制界限,則重覆步驟3(c)至步驟3(d),以挑選出下一個該尺度化向量成為新增的該失效值放入該失效值集合,直至其對應計算出的該估算驗證統計量低於該管制界限。
  5. 如申請專利範圍第4項所述的應用於工廠進行生產製造的驗證方法,其中於步驟3(e)中,將已放入該失效值集合的該些失效值各對應的該下降值由大至小排序,並依序挑選該下降值進行加總形成一下降貢獻值,直至該驗證統計量扣除該下降貢獻值而低於該管制界限,其中,挑選的該下降值所對應的該失效值即為放入該失效值集合的一最少驗證數量。
  6. 如申請專利範圍第4項所述的應用於工廠進行生產製造的驗證方法,其中於步驟3中,將該待驗證量測參數之中所挑選的該失效值以對應的該驗證值取代,以形成該製造參數。
TW102138174A 2013-10-23 2013-10-23 Used in the factory to carry out the manufacturing method of verification TWI492010B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102138174A TWI492010B (zh) 2013-10-23 2013-10-23 Used in the factory to carry out the manufacturing method of verification
US14/109,060 US20150112626A1 (en) 2013-10-23 2013-12-17 Method for verifying manufacturing measurements used for virtual analysis instrument in a factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102138174A TWI492010B (zh) 2013-10-23 2013-10-23 Used in the factory to carry out the manufacturing method of verification

Publications (2)

Publication Number Publication Date
TW201516603A TW201516603A (zh) 2015-05-01
TWI492010B true TWI492010B (zh) 2015-07-11

Family

ID=52826918

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138174A TWI492010B (zh) 2013-10-23 2013-10-23 Used in the factory to carry out the manufacturing method of verification

Country Status (2)

Country Link
US (1) US20150112626A1 (zh)
TW (1) TWI492010B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679557B (zh) * 2017-09-19 2020-11-27 平安科技(深圳)有限公司 驾驶模型训练方法、驾驶人识别方法、装置、设备及介质
CN114722643B (zh) * 2022-06-09 2022-09-16 浙江大学 基于复杂系统仿真模型的虚实一致性验证方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200506559A (en) * 2003-07-30 2005-02-16 Steve Tuszynski Manufacturing design and process analysis and simulation system
US20050071037A1 (en) * 2003-09-30 2005-03-31 Tokyo Electron Limited System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool
TW200907617A (en) * 2007-05-02 2009-02-16 Mks Instr Inc Automated model building and model updating
TW201211789A (en) * 2010-07-22 2012-03-16 Kla Tencor Corp Method for automated determination of an optimally parameterized scatterometry model
US20120253757A1 (en) * 2011-03-30 2012-10-04 Fujitsu Limited Computer-readable recoding medium in which thermal hydraulic simulation program is stored, thermal hydraulic simulating device, and method for thermal hydraulic simulation
US8494798B2 (en) * 2008-09-02 2013-07-23 Mks Instruments, Inc. Automated model building and batch model building for a manufacturing process, process monitoring, and fault detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8620468B2 (en) * 2010-01-29 2013-12-31 Applied Materials, Inc. Method and apparatus for developing, improving and verifying virtual metrology models in a manufacturing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200506559A (en) * 2003-07-30 2005-02-16 Steve Tuszynski Manufacturing design and process analysis and simulation system
US20050071037A1 (en) * 2003-09-30 2005-03-31 Tokyo Electron Limited System and method for using first-principles simulation to analyze a process performed by a semiconductor processing tool
TW200907617A (en) * 2007-05-02 2009-02-16 Mks Instr Inc Automated model building and model updating
US8494798B2 (en) * 2008-09-02 2013-07-23 Mks Instruments, Inc. Automated model building and batch model building for a manufacturing process, process monitoring, and fault detection
TW201211789A (en) * 2010-07-22 2012-03-16 Kla Tencor Corp Method for automated determination of an optimally parameterized scatterometry model
US20120253757A1 (en) * 2011-03-30 2012-10-04 Fujitsu Limited Computer-readable recoding medium in which thermal hydraulic simulation program is stored, thermal hydraulic simulating device, and method for thermal hydraulic simulation

Also Published As

Publication number Publication date
TW201516603A (zh) 2015-05-01
US20150112626A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
Hirai et al. Adaptive virtual metrology design for semiconductor dry etching process through locally weighted partial least squares
KR102169561B1 (ko) 데이터 클린징 시스템 및 공급물 조성을 추론하기 위한 방법
KR102144373B1 (ko) 탐색 장치 및 탐색 방법
KR101930420B1 (ko) 샘플링 비율 결정 기법에 의한 계측 샘플링 방법 및 그 컴퓨터 프로그램 제품
KR102153924B1 (ko) 모델 파라미터값 추정 장치 및 추정 방법, 프로그램, 프로그램을 기록한 기록 매체, 모델 파라미터값 추정 시스템
TWI521360B (zh) 量測抽樣方法與其電腦程式產品
US20180046155A1 (en) Identifying and implementing refinery or petrochemical plant process performance improvements
JP4795957B2 (ja) 半導体製造プロセスを制御する第1の原理シミュレーションを用いたシステム及び方法。
CN107430706A (zh) 高级数据清理系统和方法
CN105488317B (zh) 用于预测空气质量的系统和方法
JP2016507113A5 (ja) 製品またはプロセス流の特性を判定するためのシステムおよび方法
US20110282480A1 (en) Process Quality Predicting System and Method Thereof
JP2009500853A (ja) プロセス環境における動的パラメータのモニタリングに用いる自己訂正型多変量解析
JP6641372B2 (ja) 高次元変数選択モデルを使用した重要なパラメータの決定
CN113272748A (zh) 解析系统和解析方法
WO2017022234A1 (ja) 製造プロセス分析装置、製造プロセス分析方法、及び、製造プロセス分析プログラムが格納された記録媒体
TWI492010B (zh) Used in the factory to carry out the manufacturing method of verification
JP2014018844A (ja) 鋼材の熱伝達係数予測装置及び冷却制御方法
Wang Enhanced fault detection for nonlinear processes using modified kernel partial least squares and the statistical local approach
Iskandar et al. Maintenance of virtual metrology models
CN104679972A (zh) 应用于工厂进行生产制造的验证方法
Tin et al. The implementation of a smart sampling scheme C2O utilizing virtual metrology in semiconductor manufacturing
Liu et al. Adaptive soft sensors using local partial least squares with moving window approach
Okada1 et al. Development of a model selection method based on the reliability of a soft sensor model
WO2019028020A1 (en) IMPROVING THE PERFORMANCE OF A REFINERY PROCESS OR A PETROCHEMICAL PLANT