TWI490486B - System of built-in self-test for sensing element and method thereof - Google Patents

System of built-in self-test for sensing element and method thereof Download PDF

Info

Publication number
TWI490486B
TWI490486B TW101138020A TW101138020A TWI490486B TW I490486 B TWI490486 B TW I490486B TW 101138020 A TW101138020 A TW 101138020A TW 101138020 A TW101138020 A TW 101138020A TW I490486 B TWI490486 B TW I490486B
Authority
TW
Taiwan
Prior art keywords
test
self
signal
wafer level
sensing component
Prior art date
Application number
TW101138020A
Other languages
Chinese (zh)
Other versions
TW201416667A (en
Inventor
Don Lung Qui
Jen Jung Yeh
Original Assignee
King Yuan Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by King Yuan Electronics Co Ltd filed Critical King Yuan Electronics Co Ltd
Priority to TW101138020A priority Critical patent/TWI490486B/en
Publication of TW201416667A publication Critical patent/TW201416667A/en
Application granted granted Critical
Publication of TWI490486B publication Critical patent/TWI490486B/en

Links

Description

用於感測元件之自我測試系統及其方法 Self-test system for sensing elements and method thereof

本發明提供一種用於感測元件之自我測試系統,特別是有關一種用於晶圓級感測元件中可以有效降低測試成本及提升檢測效率之自我測試系統。 The present invention provides a self-test system for sensing components, and more particularly to a self-test system for wafer level sensing components that can effectively reduce test costs and improve detection efficiency.

由於現今微機電元件應用層面愈趨勃蓬廣泛,並且半導體技術發展亦日趨成熟,導致微機電元件售價逐年遞減,而其中元件測試成本卻因所需之高價測試機台而難以降低,致使無法有效降低整體成本。 As the application of MEMS components is becoming more and more extensive, and the development of semiconductor technology is becoming more and more mature, the price of MEMS components is decreasing year by year, and the cost of component testing is difficult to reduce due to the high-priced test machine required. Effectively reduce overall costs.

尤其是目前一般在晶圓等級元件測試時,測試過程中必需使用外部測量儀器,並藉由外部導線之接線方式,方能進行微機電系統(MEMS)晶圓級結構的微小電容量測。然而,因其需要搭配使用外部測量儀器,故於量產階段中,通盤考量儀器成本和測試時間成本後,則產出利潤將無法達到最大化且難以提升市場競爭力。 In particular, at present, in the wafer level component test, an external measuring instrument must be used in the test process, and the micro-capacitance measurement of the micro-electromechanical system (MEMS) wafer-level structure can be performed by the wiring of the external wires. However, because it needs to be used with external measuring instruments, in the mass production stage, after considering the instrument cost and the test time cost, the output profit will not be maximized and it is difficult to enhance the market competitiveness.

有鑑於上述問題,因此亟需提出具有高效率及高效益之晶圓級感測元件的自我測試系統及其方法。 In view of the above problems, it is urgent to propose a self-test system and method for wafer level sensing elements with high efficiency and high efficiency.

本發明之一目的為提供一種用於感測元件之自我測試系統。 It is an object of the present invention to provide a self-test system for sensing components.

根據本發明之一實施例,一種用於感測元件之自我測試系統包含一感測元件及一測試模組。感測元件包含一固定單元及一可動單元,其中固定單元與可動單元之間形成一感應電容。測試模組用以電性連接感測元件,且測試模組包含一測試電路,用以量測感應電容。其中,感測元件用以接收一輸入訊號,使感應電容產生一電容值變化量,而測試電路根據電容值變化量,輸出一測試訊號。 According to an embodiment of the invention, a self-test system for a sensing component includes a sensing component and a test module. The sensing component includes a fixed unit and a movable unit, wherein a sensing capacitor is formed between the fixed unit and the movable unit. The test module is electrically connected to the sensing component, and the test module includes a test circuit for measuring the sensing capacitor. The sensing component is configured to receive an input signal, so that the sensing capacitor generates a capacitance value change, and the test circuit outputs a test signal according to the capacitance value change amount.

本發明之另一目的為提供一種用於感測元件之自我測試系統之方法。 Another object of the present invention is to provide a method for sensing a self-test system of components.

依據本發明之另一實施例,一種用於感測元件之自我測試系統之方法,包含下列步驟:首先,提供一輸入訊號至感測元件;其次,根據輸入訊號產生感應電容之一電容值變化量;再者,根據電容值變化量,輸出一測試訊號。 According to another embodiment of the present invention, a method for sensing a self-test system of a component includes the steps of: first, providing an input signal to the sensing component; and second, generating a capacitance value change of the sensing capacitor according to the input signal. The amount; in addition, according to the amount of change in the capacitance value, a test signal is output.

100‧‧‧自我測試系統 100‧‧‧Self Test System

110‧‧‧感測元件 110‧‧‧Sensor components

111‧‧‧固定單元 111‧‧‧Fixed unit

112a-112b‧‧‧固定臂 112a-112b‧‧‧Fixed Arm

113‧‧‧訊號輸入端 113‧‧‧Signal input

114‧‧‧訊號輸出端 114‧‧‧Signal output

115‧‧‧可動單元 115‧‧‧ movable unit

116‧‧‧質量塊 116‧‧‧Quality

117‧‧‧移動臂 117‧‧‧ moving arm

118a-118b‧‧‧彈簧件 118a-118b‧‧‧Spring parts

119‧‧‧訊號輸入端 119‧‧‧ signal input

120‧‧‧測試模組 120‧‧‧Test module

122‧‧‧測試電路 122‧‧‧Test circuit

124‧‧‧轉阻放大器 124‧‧‧Transistor Amplifier

125‧‧‧混頻器 125‧‧‧ Mixer

126‧‧‧濾波器 126‧‧‧ filter

130‧‧‧感應電容 130‧‧‧Induction Capacitance

132‧‧‧第一感應電容 132‧‧‧First induction capacitor

134‧‧‧第二感應電容 134‧‧‧second induction capacitor

136‧‧‧寄生電容 136‧‧‧Parasitic capacitance

140‧‧‧輸入訊號 140‧‧‧Input signal

142‧‧‧激勵訊號 142‧‧‧ incentive signal

144‧‧‧調變訊號 144‧‧‧Transformation signal

150‧‧‧測試訊號 150‧‧‧Test signal

300‧‧‧自我測試系統 300‧‧‧Self Test System

310‧‧‧感測元件 310‧‧‧Sensor components

320‧‧‧測試模組 320‧‧‧Test module

322‧‧‧測試電路 322‧‧‧Test circuit

360‧‧‧探針卡 360‧‧‧ Probe Card

370‧‧‧測試電路板 370‧‧‧Test circuit board

400‧‧‧方法 400‧‧‧ method

410‧‧‧步驟 410‧‧‧Steps

420‧‧‧步驟 420‧‧ steps

430‧‧‧步驟 430‧‧ steps

[第一A圖]係繪示依據本發明一實施例之用於感測元件之自我測試系統的示意圖。 [Fig. AA] is a schematic diagram showing a self-test system for sensing elements in accordance with an embodiment of the present invention.

[第一B圖]係繪示第一A圖中之自我測試系統的等效電路圖。 [Fig. B] shows an equivalent circuit diagram of the self-test system in Fig. A.

[第二A圖]係繪示依據本發明一實施例之測試電路中之轉阻放大器的輸出訊號圖。 [Fig. 2A] is a diagram showing an output signal of a transimpedance amplifier in a test circuit according to an embodiment of the present invention.

[第二B圖]係繪示依據本發明一實施例之測試電路中之混頻器的輸出訊號圖。 [Fig. 2B] is a diagram showing an output signal of a mixer in a test circuit according to an embodiment of the present invention.

[第二C圖]係繪示依據本發明一實施例之測試電路中之濾波器的輸出訊號圖。 [Second C] is a diagram showing an output signal of a filter in a test circuit according to an embodiment of the present invention.

[第三A圖]係繪示依據本發明另一實施例之自我測試系統的功能方塊圖。 [Third A] is a functional block diagram of a self-test system according to another embodiment of the present invention.

[第三B圖]係繪示依據本發明另一實施例之自我測試系統的功能方塊圖。 [Third B] is a functional block diagram of a self-test system according to another embodiment of the present invention.

[第四圖]係繪示依據本發明另一實施例之一種用於感測元件之自我測試系統之方法流程圖。 [Fourth Diagram] is a flow chart showing a method for a self-test system for sensing components according to another embodiment of the present invention.

為了使本發明之敘述更加詳盡與完備,可參照所附之圖式及以下所述各種實施例,圖式中相同之號碼代表相同或相似之元件。另一方面,眾所週知的元件與步驟並未描述於實施例中,以避免造成本發明不必要的限制。 In order to make the description of the present invention more complete and complete, reference is made to the accompanying drawings and the accompanying drawings. On the other hand, well-known elements and steps are not described in the embodiments to avoid unnecessarily limiting the invention.

請參照第一A圖,其為依據本發明一實施例之用於感測元件之自我測試系統100的示意圖。自我測試系統100包含一感測元件110及一測試模組120。感測元件110包含一固定單元111及一可動單元115,其中固定單元111與可動單元115之間形成感應電容130。測試模組120用以電性連接感測元件110,且測試模組120包含一測試電路122,用以量測感應電容130。具體地說,感測元件110用以接收一輸入訊號140,使感應電容130產生一電容值變化量,而測試電路122根據電容值變化量,輸出一測試訊號150。 Please refer to FIG. 1A, which is a schematic diagram of a self-test system 100 for sensing components in accordance with an embodiment of the present invention. The self-test system 100 includes a sensing component 110 and a test module 120. The sensing component 110 includes a fixed unit 111 and a movable unit 115. The sensing capacitor 130 is formed between the fixed unit 111 and the movable unit 115. The test module 120 is electrically connected to the sensing component 110, and the test module 120 includes a test circuit 122 for measuring the sensing capacitor 130. Specifically, the sensing component 110 is configured to receive an input signal 140, such that the sensing capacitor 130 generates a capacitance value change, and the test circuit 122 outputs a test signal 150 according to the capacitance value change amount.

如第一A圖所示,固定單元111包含兩固定臂112a-112b,而可動單元115則包含一質量塊116及一移動臂117,其中移動臂117設於質量塊116上,且移動臂117位於固定臂112a-112b之間,以形成感應電容130。更進一步地說,兩固定臂112a-112b分別與移動臂117之間,形成第一感應電容(C1)132及第二感應電容(C2)134,且固定臂112a-112b彼此之間則形成一寄生電容(C3)136。 As shown in FIG. A, the fixing unit 111 includes two fixing arms 112a-112b, and the movable unit 115 includes a mass 116 and a moving arm 117, wherein the moving arm 117 is disposed on the mass 116, and the moving arm 117 Located between the fixed arms 112a-112b to form the sensing capacitor 130. Further, between the two fixed arms 112a-112b and the moving arm 117, a first sensing capacitor (C1) 132 and a second sensing capacitor (C2) 134 are formed, and the fixed arms 112a-112b form a Parasitic capacitance (C3) 136.

此外,在一實施例中,固定單元111及可動單元115分別包含一訊號輸入端113及一訊號輸入端119,用以接收輸入訊號140。更具體地說,訊號輸入端113設於固定臂112a,且用以接收一激勵訊號142,另外,訊號輸入端119則設於可動單元115之一端,用以接收一調變訊號144。然而,當調變訊號144經由訊號輸入端119輸入至可動單元115時,將使可動單元115對應產生靜電力,驅動質量塊116予以造成位移,從而改變移動臂117分別與兩固定臂112a-112b之間的距離。因此,第一感應電容132及第二感應電容134之電容值,亦將隨著移動臂117與兩固定臂112a-112b之間的距離改變,而產生對應之電容值變化量。 In addition, in an embodiment, the fixed unit 111 and the movable unit 115 respectively include a signal input end 113 and a signal input end 119 for receiving the input signal 140. More specifically, the signal input terminal 113 is disposed on the fixed arm 112a and is configured to receive an excitation signal 142. The signal input terminal 119 is disposed at one end of the movable unit 115 for receiving a modulation signal 144. However, when the modulation signal 144 is input to the movable unit 115 via the signal input terminal 119, the movable unit 115 is caused to generate an electrostatic force correspondingly, and the driving mass 116 is displaced, thereby changing the moving arm 117 and the two fixed arms 112a-112b, respectively. the distance between. Therefore, the capacitance values of the first sensing capacitor 132 and the second sensing capacitor 134 will also change corresponding to the capacitance value as the distance between the moving arm 117 and the two fixed arms 112a-112b changes.

在一實施例中,固定單元111包含一訊號輸出端114。如圖所示,訊號輸出端114位於固定臂112b之一端,因此,測試模組120可透過電性接觸訊號輸出端114,以偵測感應電容130之電容值變化量,並藉由測試模組120內部之測試電路122予以進行訊號處理,從而輸出一測試訊號,以判讀感測元件110是否是否良好完整。 In an embodiment, the fixed unit 111 includes a signal output end 114. As shown in the figure, the signal output end 114 is located at one end of the fixed arm 112b. Therefore, the test module 120 can pass through the electrical contact signal output end 114 to detect the change in the capacitance value of the sensing capacitor 130, and the test module is used. The test circuit 122 inside 120 performs signal processing to output a test signal to determine whether the sensing element 110 is good or not.

此外,在一實施例中,如第一A圖所示,可動單元116包含彈簧件118a-118b。彈簧件118a-118b分別設於質量塊116之兩端,用於當質量塊116受靜電力產生位移時,同步提供一彈性力,進而可使質量塊116後續作動復位至初始位置。 Further, in an embodiment, as shown in FIG. A, the movable unit 116 includes spring members 118a-118b. The spring members 118a-118b are respectively disposed at two ends of the mass block 116 for synchronously providing an elastic force when the mass block 116 is displaced by the electrostatic force, thereby allowing the mass block 116 to be subsequently reset to the initial position.

請參考第一B圖,其係繪示第一A圖中之自我測試系統100的等效電路圖。如第一B圖所示,測試電路122包含一轉阻放大器124、一混頻器125及一濾波器126。於此實施例中,從訊號輸入端119輸入至感應電容130的調變訊號144之頻率約為1MHz赫茲,其用以產生靜電力進而改變第一感應電容132及第二感應電容134之電容值。另外,從訊號輸入端113輸入至感應電容130的激勵訊號142 之頻率約為2KHz赫茲,其中激勵訊號142之頻率係端視於整體等效電路之共振頻率。然而,當激勵訊號142及調變訊號144輸入至感應電容130後,將對應產生感應電流訊號Ip及Im,且從訊號輸出端114輸出,如圖所示,其中感應電流訊號Ip為流經通過寄生電容136的電流訊號,而感應電流訊號Ip之頻率為2KHz赫茲;相對而言,感應電流訊號Im為流經通過第一感應電容132及第二感應電容134的電流訊號,而感應電流訊號Im具有頻率2KHz赫茲及頻率1MHz赫茲之混合電流訊號。 Please refer to FIG. B, which is an equivalent circuit diagram of the self-test system 100 in FIG. As shown in FIG. B, the test circuit 122 includes a transimpedance amplifier 124, a mixer 125, and a filter 126. In this embodiment, the frequency of the modulation signal 144 input from the signal input terminal 119 to the sensing capacitor 130 is about 1 MHz, which is used to generate an electrostatic force to change the capacitance values of the first sensing capacitor 132 and the second sensing capacitor 134. . In addition, the excitation signal 142 is input from the signal input terminal 113 to the sensing capacitor 130. The frequency is about 2KHz Hertz, where the frequency of the excitation signal 142 is viewed at the resonant frequency of the overall equivalent circuit. However, when the excitation signal 142 and the modulation signal 144 are input to the sensing capacitor 130, the induced current signals Ip and Im are generated correspondingly, and outputted from the signal output terminal 114, as shown in the figure, wherein the induced current signal Ip flows through The current signal of the parasitic capacitance 136, and the frequency of the induced current signal Ip is 2KHz Hz; relatively speaking, the induced current signal Im is a current signal flowing through the first sensing capacitor 132 and the second sensing capacitor 134, and the induced current signal Im Mixed current signal with frequency 2KHz Hertz and frequency 1MHz Hertz.

當測試模組120電性連接至訊號輸出端114時,轉阻放大器124則擷取電流訊號Ip及Im,並分別轉換為電壓訊號Vp及Vm,且依序傳送至混頻器125及濾波器126,以進行訊號調變與訊號濾除之訊號處理,進而判讀產生測試訊號150。在一實施例中,濾波器126為一低通濾波器,用以濾除高頻訊號,而保留所需之主要低頻訊號。 When the test module 120 is electrically connected to the signal output terminal 114, the transimpedance amplifier 124 draws the current signals Ip and Im, and converts them into voltage signals Vp and Vm, respectively, and sequentially transmits them to the mixer 125 and the filter. 126, for signal processing of signal modulation and signal filtering, and then reading and generating test signal 150. In one embodiment, filter 126 is a low pass filter for filtering high frequency signals while preserving the desired primary low frequency signals.

請同步參考第二A圖至第二C圖,其分別對應繪示測試電路中之轉阻放大器、混頻器及濾波器的輸出訊號圖。更具體地說,如第二A圖所示,轉阻放大器124係將所擷取之電流訊號Ip及Im分別對應轉換輸出電壓訊號Vp及Vm,其中電壓訊號Vp的頻率為2KHz赫茲,電壓訊號Vm的頻率為1MHz赫茲。其次,如第二B圖所示,當混頻器125接收到電壓訊號Vp及Vm後,則透過使用1MHz赫茲進行訊號調變,使電壓訊號Vm降頻轉換至2KHz赫茲的電壓訊號,而電壓訊號Vp則升頻轉換至1MHz赫茲,並將調變後之電壓訊號Vp及Vm予以輸出。再者,如第二C圖所示,濾波器126使主要所需之電壓訊號Vm通過,並衰減電壓訊號Vp之強度,以過濾電壓訊號Vp而保留主要之電壓訊號Vm。 Please refer to the second to second C diagrams synchronously, which respectively correspond to the output signal diagrams of the transimpedance amplifier, the mixer and the filter in the test circuit. More specifically, as shown in FIG. 2A, the transimpedance amplifier 124 converts the extracted current signals Ip and Im to the output voltage signals Vp and Vm, respectively, wherein the frequency of the voltage signal Vp is 2KHz Hertz, and the voltage signal is The frequency of Vm is 1 MHz Hz. Next, as shown in FIG. B, when the mixer 125 receives the voltage signals Vp and Vm, the signal is modulated by using a 1 MHz Hz signal, and the voltage signal Vm is down-converted to a voltage signal of 2 kHz Hertz. The signal Vp is up-converted to 1 MHz, and the modulated voltage signals Vp and Vm are output. Furthermore, as shown in FIG. 2C, the filter 126 passes the main required voltage signal Vm and attenuates the intensity of the voltage signal Vp to filter the voltage signal Vp while retaining the main voltage signal Vm.

如此一來,測試電路122即可根據濾波器126所輸出之電壓訊號Vm,進行判讀感測元件110是否完整,以對應輸出測試訊號150。 In this way, the test circuit 122 can determine whether the sensing component 110 is complete according to the voltage signal Vm output by the filter 126 to output the test signal 150.

另,於一較佳實施例中,請分別參考第三A圖所示,自我測試系統300之測試模組320可內建於一探針卡(Probe card)360,便以透過測試電路322偵測訊號輸出端之電壓訊號Vm。再者,如第三B圖所示,自我測試系統之測試模組320及其測試電路322亦可視需要內建於一般習知測試機(Tester)內之測試電路板(Testing board)370,藉以減少外接精密量測儀器之成本和測試時間成本,達成微小電容量測之目的。請參照第四圖,其繪示依照本發明另一實施例之一種用於感測元件之自我測試系統之方法400的流程圖。如圖所示,方法400包含步驟410、步驟420與步驟430。然而,關於實施方法400之自我測試系統,由於上述實施例已具體揭露,因此不再重複贅述之。 In addition, in a preferred embodiment, as shown in FIG. 3A, the test module 320 of the self-test system 300 can be built in a probe card 360 to detect through the test circuit 322. The voltage signal Vm at the output of the test signal. Furthermore, as shown in FIG. B, the test module 320 of the self-test system and its test circuit 322 can also be used as a test board 370 built into a conventional tester. Reduce the cost of external precision measuring instruments and test time costs, and achieve the purpose of small capacitance measurement. Please refer to the fourth figure, which illustrates a flow chart of a method 400 for sensing a component self-test system in accordance with another embodiment of the present invention. As shown, method 400 includes step 410, step 420, and step 430. However, with regard to the self-test system implementing the method 400, since the above embodiments have been specifically disclosed, the description thereof will not be repeated.

如第四圖所示,於步驟410中,可提供一輸入訊號至該感測元件。於步驟420中,可根據該輸入訊號產生感應電容之一電容值變化量。於步驟430中,可根據電容值變化量,輸出一測試訊號。 As shown in the fourth figure, in step 410, an input signal can be provided to the sensing element. In step 420, a capacitance value change of one of the sensing capacitors may be generated according to the input signal. In step 430, a test signal can be output according to the amount of change in the capacitance value.

更具體地說,於步驟410中,係將輸入訊號提供至感測元件中之可動單元及固定單元。在一實施例中,輸入訊號包含調變訊號及激勵訊號,分別輸入至可動單元及固定單元。 More specifically, in step 410, an input signal is provided to the movable unit and the fixed unit in the sensing element. In one embodiment, the input signal includes a modulation signal and an excitation signal, which are respectively input to the movable unit and the fixed unit.

然而,在步驟420中,當可動單元接收調變訊號時,即可據以產生一電靜力並發生位移,使改變可動單元及固定單元之間的距離。如此一來,將可造成可動單元及固定單元之間所形成的感應電容對應產生之電容值變化量。 However, in step 420, when the movable unit receives the modulation signal, an electric static force is generated and displaced to change the distance between the movable unit and the fixed unit. In this way, the amount of change in the capacitance value corresponding to the induced capacitance formed between the movable unit and the fixed unit can be caused.

在步驟430中,方法400可透過測試模組,以感測感應電容之電容值變化量,從而輸出一測試訊號。在一實施例中,測試模組包含一轉阻放大器、混 頻器及濾波器,透過將從感測元件中所擷取感測感應電容之電容值變化量的輸出訊號,予以進行信號處理檢測,進而判讀是否良好完整,並輸出測試訊號。 In step 430, the method 400 can pass the test module to sense the amount of change in the capacitance of the sensing capacitor to output a test signal. In one embodiment, the test module includes a transimpedance amplifier, mixed The frequency converter and the filter perform signal processing detection through an output signal that is obtained by sensing a change in the capacitance value of the sensing capacitance from the sensing element, thereby determining whether the reading is good and complete, and outputting the test signal.

因此,藉由依照上述本發明實施例中之用於感測元件之自我測試系統及其方法,得以在晶圓級測試時僅需藉由一任意波形產生器產生輸入訊號,即可進行檢測,且所需測試電路之設計簡易,完全可取代外部測量儀器,而能大幅降低整體測試成本。此外,透過將測試電路整合配置於測試模組上,同時亦能縮短測試時間以增加測試效率。 Therefore, by performing the self-test system for sensing elements and the method thereof according to the above embodiments of the present invention, it is possible to perform detection only when an input signal is generated by an arbitrary waveform generator at the wafer level test. And the design of the required test circuit is simple, completely replaces the external measuring instrument, and can greatly reduce the overall testing cost. In addition, by integrating the test circuit on the test module, the test time can be shortened to increase the test efficiency.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧自我測試系統 100‧‧‧Self Test System

110‧‧‧感測元件 110‧‧‧Sensor components

111‧‧‧固定單元 111‧‧‧Fixed unit

112a-112b‧‧‧固定臂 112a-112b‧‧‧Fixed Arm

113‧‧‧訊號輸入端 113‧‧‧Signal input

114‧‧‧訊號輸出端 114‧‧‧Signal output

115‧‧‧可動單元 115‧‧‧ movable unit

116‧‧‧質量塊 116‧‧‧Quality

117‧‧‧移動臂 117‧‧‧ moving arm

118a-118b‧‧‧彈簧件 118a-118b‧‧‧Spring parts

119‧‧‧訊號輸入端 119‧‧‧ signal input

120‧‧‧測試模組 120‧‧‧Test module

122‧‧‧測試電路 122‧‧‧Test circuit

130‧‧‧感應電容 130‧‧‧Induction Capacitance

132‧‧‧第一感應電容 132‧‧‧First induction capacitor

134‧‧‧第二感應電容 134‧‧‧second induction capacitor

136‧‧‧寄生電容 136‧‧‧Parasitic capacitance

140‧‧‧輸入訊號 140‧‧‧Input signal

142‧‧‧激勵訊號 142‧‧‧ incentive signal

144‧‧‧調變訊號 144‧‧‧Transformation signal

150‧‧‧測試訊號 150‧‧‧Test signal

Claims (13)

一種用於晶圓級感測元件之自我測試系統,包含:一感測元件,包含一固定單元及一可動單元,其中該固定單元與該可動單元之間形成一感應電容;及一測試模組,用以電性連接該感測元件,其中該測試模組包含一測試電路,用以量測該感應電容;其中該感測元件,用以接收一輸入訊號,使該感應電容產生一電容值變化量,而該測試電路根據該電容值變化量,輸出一測試訊號。 A self-test system for a wafer level sensing component, comprising: a sensing component comprising a fixed unit and a movable unit, wherein the fixed unit forms a sensing capacitor with the movable unit; and a test module The test module includes a test circuit for measuring the sensing capacitor. The sensing component is configured to receive an input signal to generate a capacitance value. The amount of change, and the test circuit outputs a test signal according to the amount of change in the capacitance value. 如申請專利範圍第1項所述之用於晶圓級感測元件之自我測試系統,其中該固定單元包含至少二固定臂。 The self-test system for wafer level sensing elements of claim 1, wherein the fixing unit comprises at least two fixed arms. 如申請專利範圍第2項所述之用於晶圓級感測元件之自我測試系統,其中該可動單元包含一質量塊及一移動臂,其中該移動臂設於該質量塊,且該移動臂位於該些固定臂之間。 The self-test system for a wafer level sensing component according to claim 2, wherein the movable unit comprises a mass and a moving arm, wherein the moving arm is disposed on the mass, and the moving arm Located between the fixed arms. 如申請專利範圍第1項所述之用於晶圓級感測元件之自我測試系統,其中該可動單元包含一彈簧件。 A self-test system for a wafer level sensing element according to claim 1, wherein the movable unit comprises a spring member. 如申請專利範圍第1項所述之用於晶圓級感測元件之自我測試系統,其中該固定單元及該可動單元分別包含一訊號輸入端。 The self-test system for a wafer level sensing component according to claim 1, wherein the fixed unit and the movable unit respectively comprise a signal input end. 如申請專利範圍第5項所述之用於晶圓級感測元件之自我測試系統,其中該固定單元更包含一訊號輸出端。 The self-test system for a wafer level sensing component according to claim 5, wherein the fixing unit further comprises a signal output end. 如申請專利範圍第1項所述之用於晶圓級感測元件之自我測試系統,其中該測試電路包含一轉阻放大器、一混頻器及一濾波器。 The self-test system for a wafer level sensing component according to claim 1, wherein the test circuit comprises a transimpedance amplifier, a mixer and a filter. 如申請專利範圍第1項所述之用於晶圓級感測元件之自我測試系統,其中該測試電路係內建於一探針卡或一測試機之測試電路板。 The self-test system for a wafer level sensing component according to claim 1, wherein the test circuit is built in a probe card or a test circuit board of a test machine. 一種用於晶圓級感測元件之自我測試方法,其中該感測元件包含一可動單元及一固定單元,且該可動單元與該固定單元間形成一感應電容,該方法包含:提供一輸入訊號至該感測元件;根據該輸入訊號產生該感應電容之一電容值變化量;根據該電容值變化量,輸出一測試訊號。 A self-test method for a wafer level sensing component, wherein the sensing component comprises a movable unit and a fixed unit, and the movable unit forms a sensing capacitance with the fixed unit, the method comprising: providing an input signal Up to the sensing component; generating a capacitance value change of the one of the sensing capacitors according to the input signal; and outputting a test signal according to the amount of change of the capacitance value. 如申請專利範圍第9項所述之用於晶圓級感測元件之自我測試方法,其中該輸入訊號包含一激勵訊號及一調變訊號。 The self-test method for a wafer level sensing component according to claim 9, wherein the input signal comprises an excitation signal and a modulation signal. 如申請專利範圍第10項所述之用於晶圓級感測元件之自我測試方法,其中提供該輸入訊號之步驟包含:將該調變訊號及該激勵訊號分別輸入至該可動單元及該固定單元。 The self-test method for a wafer level sensing component according to claim 10, wherein the step of providing the input signal comprises: inputting the modulation signal and the excitation signal to the movable unit and the fixing separately unit. 如申請專利範圍第9項所述之用於晶圓級感測元件之自我測試方法,其中輸出該測試訊號之步驟包含:使用一感測電路,檢測該感應電容之該電容值變化量,以判讀是否良好完整。 The self-test method for a wafer level sensing component according to claim 9 , wherein the step of outputting the test signal comprises: detecting a change in the capacitance value of the sensing capacitor by using a sensing circuit, Whether the interpretation is good and complete. 如申請專利範圍第12項所述之用於晶圓級感測元件之自我測試方法,其中該感測電路包含一轉導放大器、一混頻器及一濾波器。 The self-test method for a wafer level sensing component according to claim 12, wherein the sensing circuit comprises a transducing amplifier, a mixer and a filter.
TW101138020A 2012-10-16 2012-10-16 System of built-in self-test for sensing element and method thereof TWI490486B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101138020A TWI490486B (en) 2012-10-16 2012-10-16 System of built-in self-test for sensing element and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101138020A TWI490486B (en) 2012-10-16 2012-10-16 System of built-in self-test for sensing element and method thereof

Publications (2)

Publication Number Publication Date
TW201416667A TW201416667A (en) 2014-05-01
TWI490486B true TWI490486B (en) 2015-07-01

Family

ID=51293755

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101138020A TWI490486B (en) 2012-10-16 2012-10-16 System of built-in self-test for sensing element and method thereof

Country Status (1)

Country Link
TW (1) TWI490486B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523223A (en) * 2006-10-11 2009-09-02 飞思卡尔半导体公司 Sensor having free fall self-test capability and method therefor
TW201003091A (en) * 2008-06-02 2010-01-16 Advantest Corp Semiconductor wafer, semiconductor circuit, test substrate and test system
JP2010232431A (en) * 2009-03-27 2010-10-14 Denso Corp Capacitive physical quantity detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101523223A (en) * 2006-10-11 2009-09-02 飞思卡尔半导体公司 Sensor having free fall self-test capability and method therefor
TW201003091A (en) * 2008-06-02 2010-01-16 Advantest Corp Semiconductor wafer, semiconductor circuit, test substrate and test system
JP2010232431A (en) * 2009-03-27 2010-10-14 Denso Corp Capacitive physical quantity detector

Also Published As

Publication number Publication date
TW201416667A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
KR101274821B1 (en) Electronic device, and open circuit detecting system, detecting method thereof
CN106030320B (en) Contactless voltage measuring apparatus
CN107231596B (en) Capacitive sensor testing
TW200638052A (en) Method and apparatus for detecting shorts on inaccessible pins using capacitive measurements
EP2647954A3 (en) Self test of mems gyroscope with asics integrated capacitors
KR20160123364A (en) Integrated self-test for electro-mechanical capacitive sensors
Buffa et al. A versatile instrument for the characterization of capacitive micro-and nanoelectromechanical systems
CN104729539A (en) Measurement system including accessory with internal calibration signal
JP4824319B2 (en) Failure detection apparatus and method, and signal extraction circuit
JP2013543585A (en) System and method for sensitive detection of input bias current
JP2020030073A (en) Electronic product evaluation method and evaluation device
JP6504087B2 (en) Inspection device, control method therefor, control program
TWI490486B (en) System of built-in self-test for sensing element and method thereof
EP3144640B1 (en) Sensor arrangement and method for operation of a sensor
JP2007508534A (en) Magnetic field measuring device
TWI591343B (en) Sensing apparatus
JP6516063B2 (en) Measuring device and material testing machine
CN106526923B (en) Array substrate, its test method and display device
JP2009204538A (en) Characteristic measuring device and characteristic measuring method of vibration detection sensor
JP2009156580A (en) Input capacitance measuring circuit
JP2008076085A (en) Signal measuring device
Li et al. Capacitive readout system for micro sensors and actuators with automatic parasitic cancellation
JP2738828B2 (en) Method and apparatus for measuring capacitance
JPS61209361A (en) Method for measuring electrostatic capacity
JP5710398B2 (en) Circuit board mounting component inspection apparatus and circuit board mounting component inspection method