TWI488285B - Dual metal oxide semiconductor field effect transistors integrating a capacitor - Google Patents

Dual metal oxide semiconductor field effect transistors integrating a capacitor Download PDF

Info

Publication number
TWI488285B
TWI488285B TW100101933A TW100101933A TWI488285B TW I488285 B TWI488285 B TW I488285B TW 100101933 A TW100101933 A TW 100101933A TW 100101933 A TW100101933 A TW 100101933A TW I488285 B TWI488285 B TW I488285B
Authority
TW
Taiwan
Prior art keywords
layer
type
metal layer
capacitor
extension structure
Prior art date
Application number
TW100101933A
Other languages
Chinese (zh)
Other versions
TW201232755A (en
Inventor
Yan Xun Xue
Anup Bhalla
Hamza Yilmaz
Jun Lu
Original Assignee
Alpha & Omega Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha & Omega Semiconductor filed Critical Alpha & Omega Semiconductor
Priority to TW100101933A priority Critical patent/TWI488285B/en
Publication of TW201232755A publication Critical patent/TW201232755A/en
Application granted granted Critical
Publication of TWI488285B publication Critical patent/TWI488285B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

集成一個電容的雙金屬氧化物半導體場效應電晶體 Bimetal oxide semiconductor field effect transistor integrated with a capacitor

本發明一般涉及一種金屬氧化物半導體場效應電晶體,更為確切的說,本發明涉及一種集成有一個電容的金屬氧化物半導體場效應電晶體及其製備方法。 The present invention generally relates to a metal oxide semiconductor field effect transistor, and more particularly to a metal oxide semiconductor field effect transistor integrated with a capacitor and a method of fabricating the same.

在功率裝置中,通常於DC-DC功率切換的電源和地極(GND)之間連接一個旁路電容。工作電路電流存在脈動,例如數位電路的同步頻率,易於造成電源電壓的脈動,這是一種交流雜訊,小容量的無極電容可以把這種雜訊旁路到地;另,電子產品的工作電壓正在不斷降低,這就要求DC-DC變換器具有低電壓、大電流輸出,DC-DC變換器中,常利用一電容器作為濾波電容,為了提高穩定性,上述電容對於改善裝置的性能至關重要。 In a power device, a bypass capacitor is typically connected between the power supply of the DC-DC power switching and the ground (GND). There is pulsation in the working circuit current, such as the synchronous frequency of the digital circuit, which is easy to cause the ripple of the power supply voltage. This is an AC noise. A small-capacity non-polar capacitor can bypass this noise to the ground. In addition, the working voltage of the electronic product It is decreasing continuously, which requires a DC-DC converter with low voltage and high current output. In DC-DC converters, a capacitor is often used as a filter capacitor. In order to improve stability, the above capacitors are essential for improving the performance of the device. .

一種在DC-DC轉換器中集成電容的設計方案是,於一晶片封裝結構中同時將一個獨立的電容和一個金屬氧化物半導體場效應管(MOSFET)通過環氧類樹脂塑封在一起,電容並非直接和MOS場效應管集成,而是獨立存在的。MOS場效應管和電容的電性連接方式,依賴於將形成有MOS場效應管的晶圓顆粒通過鍵合金線而連接耦合到電容,或是將電容接地(GND)。 A design scheme for integrating a capacitor in a DC-DC converter is to simultaneously seal a separate capacitor and a metal oxide semiconductor field effect transistor (MOSFET) through an epoxy resin in a chip package structure, and the capacitor is not Directly integrated with the MOS FET, but independent. The electrical connection between the MOS FET and the capacitor depends on the connection of the wafer particles forming the MOS field effect transistor to the capacitor through the bond alloy wire or the grounding of the capacitor (GND).

一種在包含一低端MOSFET和一高端MOSFET的雙MOSFET中 集成電容的設計方案,參見第1A圖所示,第1A圖中N型的高端MOSFET1的源極S1連接N型的低端MOSFET2的漏極D2,高端MOSFET1的漏極D1和低端MOSFET2的源極S2之間連接有一電容3。 A design scheme for integrating a capacitor in a dual MOSFET including a low-side MOSFET and a high-side MOSFET, as shown in FIG. 1A, in which the source S 1 of the N-type high-side MOSFET 1 is connected to the N-type low-side MOSFET 2 A drain 3 is connected between the drain D 2 , the drain D 1 of the high side MOSFET 1 and the source S 2 of the low side MOSFET 2 .

相應的,第1B圖的晶片結構示意圖即是先前技術中第1A圖的電路結構圖對應的低端MOSFET和高端MOSFET集成在一個晶片內並組合一個電容的晶片結構示意圖。第1B圖中的晶圓顆粒10構成第1A圖中高端MOSFET1,第1B圖中的晶圓顆粒20構成第1A圖中低端MOSFET2。晶圓顆粒10的尺寸(Die Size)小於晶圓顆粒20的尺寸,晶圓顆粒10堆疊在晶圓顆粒20上,晶圓顆粒10與晶圓顆粒20的封裝方式為迭層晶片封裝(Stack Die Assembly),晶圓顆粒20黏合在金屬的引線框架30上。其中,晶圓顆粒10的柵極鍵合區11通過柵極鍵合線11a連接到柵極引腳11b上;晶圓顆粒10的源極鍵合區12通過鍵合線12a連接到引線框架30上;位於晶圓顆粒10底部的漏極(未示出)通過導電銀漿(Epoxy)黏合至漏極金屬層13上,同時,漏極金屬層13通過鍵合線13a連接到漏極引腳13b上。漏極金屬層13的尺寸大於晶圓顆粒10的尺寸。其中,晶圓顆粒20的柵極鍵合區21通過柵極鍵合線21a連接到柵極引腳21b上;晶圓顆粒20的源極金屬層22設置有一源極鍵合區22a,源極鍵合區22a通過鍵合線22b連接到源極引腳22c上;位於晶圓顆粒20底部的漏極(未示出)通過導電銀漿(Epoxy)黏合至引線框架30上,繼而,晶圓顆粒20的漏極與晶圓顆粒10的源極鍵合區12電性連接。其中,晶圓顆粒10的漏極金屬層13與晶圓顆粒20的源極金屬層22之間有一層電介質層(未示出)並依此而粘合連接在一起,漏極金屬層13與源極金屬層22的該結構雖可作為一個電容而存在,遺憾的是,其電容值不足以滿足功率裝置的實際需求,如果需要再增加極金屬層13與源極金屬層22之間的電容值,則需要在源極引腳22c(即第1A圖中低端MOSFET的源極S2)與漏極引腳13b(即第1A圖中高端MOSFET的漏極D1)之間額外連接外置電容。然,一個事實是,用於連接電容的鍵合金線或是其他外在的引合線,帶來的負面效應是離散的電感,這對MOSFET的開關速度有著 重大影響。 Correspondingly, the schematic diagram of the structure of the wafer of FIG. 1B is a schematic diagram of the structure of the wafer in which the low-side MOSFET and the high-side MOSFET corresponding to the circuit structure diagram of FIG. 1A in the prior art are integrated in one wafer and combined with one capacitor. The wafer particles 10 in Fig. 1B constitute the high side MOSFET 1 in Fig. 1A, and the wafer particles 20 in Fig. 1B constitute the low side MOSFET 2 in Fig. 1A. The size of the wafer particles 10 is smaller than the size of the wafer particles 20, and the wafer particles 10 are stacked on the wafer particles 20. The wafer particles 10 and the wafer particles 20 are packaged in a stacked chip package (Stack Die). Assembly), the wafer particles 20 are bonded to the metal lead frame 30. Wherein, the gate bonding region 11 of the wafer particle 10 is connected to the gate pin 11b through the gate bonding wire 11a; the source bonding region 12 of the wafer particle 10 is connected to the lead frame 30 through the bonding wire 12a. The drain (not shown) at the bottom of the wafer particle 10 is bonded to the drain metal layer 13 by a conductive silver paste (Epoxy) while the drain metal layer 13 is connected to the drain pin through the bonding wire 13a. 13b. The size of the drain metal layer 13 is larger than the size of the wafer particles 10. The gate bonding region 21 of the wafer particle 20 is connected to the gate pin 21b through the gate bonding wire 21a; the source metal layer 22 of the wafer particle 20 is provided with a source bonding region 22a, a source. The bonding region 22a is connected to the source pin 22c through the bonding wire 22b; the drain (not shown) at the bottom of the wafer particle 20 is bonded to the lead frame 30 by conductive silver paste (Epoxy), and then the wafer The drain of the particles 20 is electrically connected to the source bonding region 12 of the wafer particles 10. Wherein, a drain dielectric layer 13 of the wafer particles 10 and a source metal layer 22 of the wafer particles 20 have a dielectric layer (not shown) and are bonded and bonded together, and the drain metal layer 13 is The structure of the source metal layer 22 can exist as a capacitor. Unfortunately, the capacitance value is insufficient to meet the actual requirements of the power device, and if necessary, the capacitance between the electrode metal layer 13 and the source metal layer 22 is increased. The value needs to be additionally connected between the source pin 22c (ie, the source S 2 of the low-side MOSFET in FIG. 1A) and the drain pin 13b (ie, the drain D 1 of the high-side MOSFET in FIG. 1A). Set the capacitor. However, the fact is that the negative effect of the bond alloy wire used to connect the capacitor or other external lead wires is the discrete inductance, which has a significant impact on the switching speed of the MOSFET.

參見附圖第1C及1D圖集成一高端MOSFET和一低端MOSFET的雙MOSFET的示例。其包含一低端MOSFET和一高端MOSFET的雙MOSFET的設計和製備可參考美國專利申請US 2008/0067584 A1。具體而言,其中,第1C、1D圖是採用的以一個iT-FET裝置起頂部FET裝置功能及一個肖特基FET裝置起底部裝置功能的集成組合式降壓變流器的截面圖和電路圖;該iT-FET裝置和肖特基FET支撐在共同的基底150上,後者起it-FET裝置的源極和肖特基FET裝置的漏極的功能。該肖特基FET裝置包括被接近頂面的源區145'圍繞的槽溝門極120',又包圍在體區110內。源區145'跟源極金屬層170'電接觸。該肖特基FET裝置的槽溝門極120'被襯墊了門極氧化物層125'並且跟門極金屬180'電連接。而本申請提供了雙金屬氧化物半導體場效應電晶體集成一個電容的範例。 An example of a dual MOSFET integrating a high side MOSFET and a low side MOSFET is shown in Figures 1C and 1D of the accompanying drawings. The design and fabrication of a dual MOSFET comprising a low side MOSFET and a high side MOSFET can be found in U.S. Patent Application Serial No. US 2008/0067584 A1. Specifically, the 1C, 1D diagram is a cross-sectional view and a circuit diagram of an integrated combined buck converter using an iT-FET device as a top FET device function and a Schottky FET device as a bottom device function. The iT-FET device and the Schottky FET are supported on a common substrate 150 that functions as the source of the it-FET device and the drain of the Schottky FET device. The Schottky FET device includes a trench gate 120' surrounded by a source region 145' proximate the top surface, and is also enclosed within the body region 110. Source region 145' is in electrical contact with source metal layer 170'. The trench gate 120' of the Schottky FET device is padded with a gate oxide layer 125' and electrically coupled to the gate metal 180'. The present application provides an example of integrating a capacitor in a bimetal oxide semiconductor field effect transistor.

另一方面,晶圓顆粒來源於晶圓(Wafer)的切割,作為減小晶圓顆粒襯底電阻或是其他期望減薄晶圓的需求,晶片製造工藝中與其極其相關的晶圓背部研磨(Wafer Backside Grinding)的工藝控制極其重要,當期盼晶圓背部減得更薄時,晶圓或是晶圓顆粒也就更容易破碎。進一步而言,薄的晶圓顆粒通過裝片(Die Attach)至引線框架(Leadframe)或是PCB之類的基板(Substrate)上的工藝步驟中,容易產生晶圓顆粒碎裂(Die Crack)以致晶片功能性失效,而這不是我們希望看到的。 On the other hand, wafer granules are derived from Wafer dicing, as a need to reduce wafer grain substrate resistance or other desired thinning of wafers, and wafer back grinding that is extremely relevant to wafer fabrication processes ( Wafer Backside Grinding's process control is extremely important, and wafers or wafer pellets are more likely to break when the wafer back is thinner. Further, in the process steps of thin wafer particles through a die attach to a lead frame or a substrate such as a PCB, the wafer crack is easily generated. The chip functionality failed, and this is not what we want to see.

鑒於此,為了突破上述侷限和難題,本發明的一個方面就在於提出了一種集成一個電容的一MOS場效應電晶體,具有的電容直接集成在MOS場效應電晶體上,同時藉以集成電容作為增強MOS場效應電晶體自身機械強度的一個有效方式。 In view of this, in order to overcome the above limitations and problems, an aspect of the present invention is to provide a MOS field effect transistor integrated with a capacitor, which has a capacitor directly integrated on the MOS field effect transistor, and is enhanced by the integrated capacitor. An effective way of mechanical strength of MOS field effect transistors.

本發明提供一種集成一個電容的雙MOS場效應電晶體,雙MOS場效應電晶體集成有一個旁路電容,其中:於一矽片襯底頂面上設置有構 成第一電晶體柵極電極的第一柵極金屬層及構成第一電晶體漏極電極的漏極金屬層,和構成第二電晶體柵極電極的第二柵極金屬層及構成第二電晶體源極電極的源極金屬層;矽片襯底頂面上方設置有平行於矽片襯底的包含數個第一類電容極板和數個第二類電容極板的多層電容極板,且在矽片襯底頂面與矽片襯底頂面上方的一塊電容極板間以及在相鄰的兩塊電容極板間填充有電介質層;第一類電容極板和第二類電容極板相互交替間隔配置,且第一類電容極板均與漏極金屬層電性連接用於構成所述旁路電容的一個電極,第二類電容極板均與源極金屬層電性連接用於構成所述旁路電容的另一個電極。 The invention provides a dual MOS field effect transistor integrated with a capacitor. The double MOS field effect transistor is integrated with a bypass capacitor, wherein: a top surface of a substrate is provided with a structure a first gate metal layer forming a first transistor gate electrode and a drain metal layer constituting the first transistor drain electrode, and a second gate metal layer constituting the second transistor gate electrode and forming a second a source metal layer of the source electrode of the transistor; a multilayer capacitor plate including a plurality of first type capacitor plates and a plurality of second type capacitor plates parallel to the cymbal substrate disposed above the top surface of the cymbal substrate And a dielectric layer is filled between a top surface of the cymbal substrate and a capacitor plate above the top surface of the cymbal substrate and between two adjacent capacitor plates; the first type of capacitor plate and the second type of capacitor The plates are alternately spaced apart from each other, and the first type of capacitor plates are electrically connected to the drain metal layer for forming one electrode of the bypass capacitor, and the second type of capacitor plates are electrically connected to the source metal layer. The other electrode used to form the bypass capacitor.

上述的集成一個電容的雙MOS場效應電晶體,其中,第一電晶體的源極形成於所述矽片襯底的底面,第一電晶體的漏極、柵極形成於矽片襯底頂面;第二電晶體的漏極形成於所述矽片襯底的底面,第二電晶體的源極、柵極形成於矽片襯底頂面。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein a source of the first transistor is formed on a bottom surface of the enamel substrate, and a drain and a gate of the first transistor are formed on a top of the cymbal substrate The drain of the second transistor is formed on the bottom surface of the enamel substrate, and the source and the gate of the second transistor are formed on the top surface of the cymbal substrate.

上述的集成一個電容的雙MOS場效應電晶體,其中,任意一層所述的電容極板所在的層面均在所述第一柵極金屬層上方設有一第一層迭柵極金屬層;其中,第一層迭柵極金屬層用於與所述第一柵極金屬層電性連接以將第一電晶體的柵極導出。 The above-mentioned dual-MOS field-effect transistor integrated with a capacitor, wherein a layer of the capacitor plate of any one of the layers is provided with a first stacked gate metal layer above the first gate metal layer; A first stacked gate metal layer is electrically connected to the first gate metal layer to derive a gate of the first transistor.

上述的集成一個電容的雙MOS場效應電晶體,其中,任意一層所述的電容極板所在的層面均在所述第二柵極金屬層上方設有一第二層迭柵極金屬層;其中,第二層迭柵極金屬層用於與所述第二柵極金屬層電性連接以將第二電晶體的柵極導出。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein a layer of the capacitor plate of any one of the layers is provided with a second stacked gate metal layer above the second gate metal layer; A second stacked gate metal layer is electrically connected to the second gate metal layer to derive a gate of the second transistor.

上述的集成一個電容的雙MOS場效應電晶體,其中,所述漏極金屬層設有一第一延伸結構,且任意一層所述的電容極板所在的層面均在所述第一延伸結構上方設有一第一層迭延伸結構;其中,第一層迭延伸結構用於與所述第一延伸結構電性連接以將第一電晶體漏極導出。 The dual MOS field effect transistor integrated with a capacitor, wherein the drain metal layer is provided with a first extension structure, and the layer of any one of the capacitor plates is disposed above the first extension structure There is a first layered extension structure; wherein the first layer extension structure is electrically connected to the first extension structure to lead the first transistor drain.

上述的集成一個電容的雙MOS場效應電晶體,所述源極金屬層設 有一第二延伸結構,且任意一層所述的電容極板所在的層面均在所述第二延伸結構上方設有一第二層迭延伸結構;第二層迭延伸結構用於與所述第二延伸結構電性連接以將第二電晶體源極導出。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, the source metal layer a second extension structure, and any one of the layers of the capacitor plate is disposed with a second layered extension structure above the second extension structure; the second layer extension structure is used for the second extension The structure is electrically connected to derive the second transistor source.

上述的集成一個電容的雙MOS場效應電晶體,在相鄰第一層迭延伸結構間的電介質層中及在靠近第一延伸結構的第一層迭延伸結構與第一延伸結構間的電介質層中設有多個通孔,並通過注入通孔中的金屬將第一層迭延伸結構與第一電晶體的漏極電性連接。 The above dual MOS field effect transistor integrated with a capacitor, in a dielectric layer between adjacent first stacked extension structures and a dielectric layer between the first stacked extension structure and the first extended structure adjacent to the first extended structure A plurality of through holes are formed in the middle, and the first layer extending structure is electrically connected to the drain of the first transistor through the metal injected into the through holes.

上述的集成一個電容的雙MOS場效應電晶體,在相鄰第二層迭延伸結構間的電介質層中及在靠近第二延伸結構的第二層迭延伸結構與第二延伸結構間的電介質層中設有多個通孔,並通過注入通孔中的金屬將第二層迭延伸結構與第二電晶體的源極電性連接。 The above dual MOS field effect transistor integrated with one capacitor, in a dielectric layer between adjacent second stacked extension structures and a dielectric layer between the second stacked extension structure and the second extended structure adjacent to the second extended structure A plurality of through holes are formed in the middle, and the second laminated extension structure is electrically connected to the source of the second transistor through the metal injected into the through holes.

上述的集成一個電容的雙MOS場效應電晶體,其中,第一類電容極板與第二類電容極板縱向交錯配置,用於在相鄰的第二類電容極板間的第一類電容極板所在的層面中設置絕緣於第一類電容極板的第二類連接層;在第二類電容極板與第二類連接層之間及源極金屬層與靠近源極金屬層的第二類電容極板之間的電介質層中設置通孔,並通過注入通孔中的金屬將第二類電容極板相互電性連接,同時將第二類電容極板與源極金屬層電性連接。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein the first type of capacitor plate and the second type of capacitor plate are longitudinally staggered for the first type of capacitor between adjacent second type of capacitor plates a second type of connection layer insulated from the first type of capacitor plate is disposed in the layer where the plate is located; between the second type of capacitor plate and the second type of connection layer, and between the source metal layer and the source metal layer A through hole is formed in the dielectric layer between the two types of capacitor plates, and the second type of capacitor plates are electrically connected to each other through the metal injected into the through hole, and the second type of capacitor plate and the source metal layer are electrically connected. connection.

上述的集成一個電容的雙MOS場效應電晶體,其中,第一類電容極板與第二類電容極板縱向交錯配置,用於在相鄰的第一類電容極板間及第一類電容極板與漏極金屬層間的第二類電容極板所在的層面中設置絕緣於第二類電容極板的第一類連接層;在第一類電容極板與第一類連接層之間及漏極金屬層與靠近漏極金屬層的第一類連接層之間的電介質層中設置通孔,並通過注入通孔中的金屬將第一類電容極板相互電性連接,同時將第一類電容極板與漏極金屬層電性連接。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein the first type of capacitor plate and the second type of capacitor plate are longitudinally staggered for use between adjacent first type of capacitor plates and the first type of capacitor a first type of connection layer insulated from the second type of capacitor plate is disposed in a layer of the second type of capacitor plate between the plate and the drain metal layer; between the first type of capacitor plate and the first type of connection layer a via hole is disposed in the dielectric layer between the drain metal layer and the first type of connection layer adjacent to the drain metal layer, and the first type of capacitor plates are electrically connected to each other through the metal injected into the via hole, and the first The capacitor-like plate is electrically connected to the drain metal layer.

上述的集成一個電容的雙MOS場效應電晶體,其中,任意一層所 述的第一類電容極板均與該層第一類電容極板所在層面的第一層迭延伸結構連接。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein any one layer The first type of capacitor plates are connected to the first layer extension structure of the layer of the first type of capacitor plates of the layer.

上述的集成一個電容的雙MOS場效應電晶體,其中,所述源極金屬層設有一第二延伸結構,且任意一層所述的電容極板所在的層面均在所述第二延伸結構上方設有一第二層迭延伸結構,其中任意一層所述的第一類電容極板均與該層第一類電容極板所在層面的第二層迭延伸結構分割絕緣。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein the source metal layer is provided with a second extension structure, and the layer of any one of the capacitor plates is disposed above the second extension structure There is a second layered extension structure, wherein the first type of capacitor plates of any one of the layers are separated from the second layer of the extension structure of the layer of the first type of capacitor plates.

上述的集成一個電容的雙MOS場效應電晶體,其中,任意一層所述的第二類電容極板均與該層第二類電容極板所在層面的第二層迭延伸結構連接。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein the second type of capacitor plate of any one of the layers is connected with the second layer extension structure of the layer of the second type of capacitor plate of the layer.

上述的集成一個電容的雙MOS場效應電晶體,其中,所述漏極金屬層設有一第一延伸結構,且任意一層所述的電容極板所在的層面均在所述第一延伸結構上方設有一第一層迭延伸結構,其中任意一層所述的第二類電容極板均與該層第二類電容極板所在層面的第一層迭延伸結構分割絕緣。 The dual MOS field effect transistor integrated with a capacitor, wherein the drain metal layer is provided with a first extension structure, and the layer of any one of the capacitor plates is disposed above the first extension structure There is a first layered extension structure, wherein the second type of capacitor plates of any one of the layers are separated from the first layer of the extension structure of the layer of the second type of capacitor plates.

上述的集成一個電容的雙MOS場效應電晶體,其中,第一柵極金屬層、漏極金屬層、源極金屬層、第二柵極金屬層通過分割區相互分割隔離,且分割區填充有電介質;任意一層電容極板所在的層面均包含絕緣分割區且絕緣分割區均填充有電介質。 The above-mentioned dual MOS field effect transistor integrated with a capacitor, wherein the first gate metal layer, the drain metal layer, the source metal layer and the second gate metal layer are separated and separated from each other by a partition, and the partition is filled with Dielectric; the layer on which any one of the capacitor plates is located contains an insulating partition and the insulating partition is filled with a dielectric.

上述的集成一個電容的MOS場效應電晶體,其中,第一電晶體為一高端MOS場效應電晶體,第二電晶體為一低端MOS場效應電晶體。 The above-mentioned MOS field effect transistor integrated with a capacitor, wherein the first transistor is a high-end MOS field effect transistor, and the second transistor is a low-end MOS field effect transistor.

本發明還提供一種在雙MOS場效應電晶體上集成一個電容的方法,包括以下步驟:於第一電晶體、第二電晶體所在的矽片襯底頂面上多次沉積電介質層和多次沉積金屬層,以形成矽片襯底頂面上電介質層與金屬層交替的多層電介質層與多層金屬層;其中,沉積電介質層後對電介質層進行蝕刻,用於形成電介質層中的多個通孔;其中,沉積金屬層後對金 屬層進行蝕刻分割,用於將金屬層分割成不同的金屬區域,一部分金屬區域形成電容極板,且沉積金屬層的同時還利用金屬填充電介質層中所包含的通孔;任意一層金屬層蝕刻分割後均形成該金屬層所在層面的第一層迭延伸結構和第二層迭延伸結構,以及第一層迭柵極金屬層和第二層迭柵極金屬層。 The invention also provides a method for integrating a capacitor on a dual MOS field effect transistor, comprising the steps of: depositing a dielectric layer multiple times on the top surface of the enamel substrate on which the first transistor and the second transistor are located; Depositing a metal layer to form a multilayer dielectric layer and a plurality of metal layers alternately between a dielectric layer and a metal layer on a top surface of the ruthenium substrate; wherein, after depositing the dielectric layer, etching the dielectric layer for forming a plurality of vias in the dielectric layer Hole; in which the metal layer is deposited after gold The genus layer is etched and divided to divide the metal layer into different metal regions, a part of the metal region forms a capacitor plate, and the metal layer is filled with a metal to fill the via hole included in the dielectric layer; After the dividing, a first layer extending structure and a second layer extending structure of the layer where the metal layer is formed are formed, and the first stacked gate metal layer and the second stacked gate metal layer are formed.

上述的方法,其中,矽片襯底頂面包含構成第一電晶體漏極電極的漏極金屬層、構成第一電晶體柵極電極的第一柵極金屬層,構成第二電晶體源極電極的源極金屬層、構成第二電晶體柵極電極的第二柵極金屬層;漏極金屬層包含一個第一延伸結構,源極金屬層包含一個第二延伸結構。 The above method, wherein the top surface of the cymbal substrate comprises a drain metal layer constituting the drain electrode of the first transistor, and a first gate metal layer constituting the gate electrode of the first transistor to constitute a second transistor source a source metal layer of the electrode, a second gate metal layer constituting the second transistor gate electrode; the drain metal layer includes a first extension structure, and the source metal layer includes a second extension structure.

上述的方法,其中,所述第一層迭延伸結構位於所述第一延伸結構上方,所述第二層迭延伸結構位於所述第二延伸結構上方;以及所述第一層迭柵極金屬層位於所述第一柵極金屬層上方,所述第二層迭柵極金屬層位於所述第二柵極金屬層上方。 The above method, wherein the first layered extension structure is located above the first extension structure, the second layered extension structure is located above the second extension structure; and the first layer of stacked gate metal A layer is above the first gate metal layer, and a second stacked gate metal layer is above the second gate metal layer.

上述的方法,其中,所述多層金屬層蝕刻分割後形成位於不同層面的包含數個第一類電容極板和數個第二類電容極板的多層電容極板;第一類電容極板和第二類電容極板相互交替間隔配置。 The above method, wherein the multi-layer metal layer is etched and divided to form a plurality of capacitor plates including a plurality of first type capacitor plates and a plurality of second type capacitor plates at different levels; the first type of capacitor plates and The second type of capacitor plates are alternately spaced apart from each other.

上述的方法,其中,多層金屬層蝕刻分割後在相鄰的第二類電容極板間的第一類電容極板所在的層面中形成有絕緣於第一類電容極板的第二類連接層;蝕刻電介質層在第二類電容極板與第二類連接層之間的電介質層中蝕刻出多個通孔,並通過注入第二類電容極板與第二類連接層之間的電介質層中通孔中的金屬將第二類電容極板相互電性連接。 In the above method, the second type of connection layer insulated from the first type of capacitor plate is formed in the layer of the first type of capacitor plate between the adjacent second type of capacitor plates after the multilayer metal layer is etched and divided. Etching the dielectric layer to etch a plurality of vias in the dielectric layer between the second type of capacitor plates and the second type of connection layer, and by implanting a dielectric layer between the second type of capacitor plates and the second type of connection layer The metal in the middle via hole electrically connects the second type of capacitor plates to each other.

上述的方法,其中,多層金屬層蝕刻分割後在相鄰的第一類電容極板間及第一類電容極板與漏極金屬層間的第二類電容極板所在的層面中形成有絕緣於第二類電容極板的第一類連接層;蝕刻電介質層在第一類電容極板與第一類連接層之間及漏極金屬層與靠近漏極金屬層的第一類連接 層之間的電介質層中蝕刻出多個通孔,並通過注入第一類電容極板與第一類連接層之間電介質層中的通孔中的金屬將第一類電容極板相互電性連接,通過注入靠近漏極極金屬層的第一類連接層與漏極金屬層間之間電介質層中的通孔中的金屬將第一類連接層與漏極金屬層電性連接。 In the above method, the multilayer metal layer is etched and divided to form an insulation layer between the adjacent first type of capacitor plates and the second type of capacitor plates between the first type of capacitor plates and the drain metal layer. a first type of connection layer of a second type of capacitor plate; an etch dielectric layer between the first type of capacitor plate and the first type of connection layer and the first type of connection between the drain metal layer and the drain metal layer A plurality of via holes are etched in the dielectric layer between the layers, and the first type of capacitor plates are electrically connected to each other by injecting metal in the via holes in the dielectric layer between the first type of capacitor plates and the first type of connection layer Connecting, electrically connecting the first type of connection layer and the drain metal layer by implanting a metal in a via hole in the dielectric layer between the first type of connection layer and the drain metal layer adjacent to the drain metal layer.

上述的方法,其中,蝕刻電介質層在源極金屬層與靠近源極金屬層的第二類電容極板之間的電介質層中蝕刻出多個通孔,並通過注入源極金屬層與靠近源極金屬層的第二類電容極板之間電介質層中的通孔中的金屬將第二類電容極板與源極金屬層電性連接。 The above method, wherein the etching dielectric layer etches a plurality of via holes in the dielectric layer between the source metal layer and the second type of capacitor plates adjacent to the source metal layer, and by implanting the source metal layer and the proximity source The metal in the via hole in the dielectric layer between the second type of capacitor plates of the polar metal layer electrically connects the second type of capacitor plate to the source metal layer.

上述的方法,其中,蝕刻電介質層在相鄰的第一層迭延伸結構之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第一層迭延伸結構之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中的通孔中的金屬將相鄰的第一層迭延伸結構電性連接,同時將第一層迭延伸結構與第一延伸結構電性連接。 The above method, wherein the etching dielectric layer etches a plurality of passes in the dielectric layer between the adjacent first stacked extension structures and between the first stacked extension structure and the first extended structure of the first extended structure a hole, the metal in the through hole in the dielectric layer between the adjacent first stacked extension structures and between the first laminate extension structure and the first extension structure adjacent to the first extension structure The layered extension structure is electrically connected, and the first layer extension structure is electrically connected to the first extension structure.

上述的方法,其中,蝕刻電介質層在相鄰的第二層迭延伸結構之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第二層迭延伸結構之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中的通孔中的金屬將相鄰的第二層迭延伸結構電性連接,同時將第二層迭延伸結構與第二延伸結構電性連接。 The above method, wherein the etching dielectric layer etches a plurality of passes in the dielectric layer between the adjacent second stacked extension structures and between the second stacked extension structure and the second extended structure of the second extended structure a hole, the metal in the via hole in the dielectric layer between the adjacent second stacked extension structure and the second laminate extension structure and the second extension structure adjacent to the second extension structure The two-layer extension structure is electrically connected, and the second layer extension structure is electrically connected to the second extension structure.

上述的方法,其中,蝕刻電介質層在相鄰的第一層迭柵極金屬層之間及靠近第一柵極金屬層的第一層迭柵極金屬層與第一柵極金屬層之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第一層迭柵極金屬層之間及靠近第一柵極金屬層的第一層迭柵極金屬層與第一柵極金屬層之間的電介質層中的通孔中的金屬將相鄰的第一層迭柵極金屬層電性連接,同時將第一層迭柵極金屬層與第一柵極金屬層電性連接。 The above method, wherein the etching dielectric layer is between the adjacent first stacked gate metal layers and between the first stacked gate metal layer and the first gate metal layer adjacent to the first gate metal layer a plurality of via holes are etched in the dielectric layer by implanting a first stacked gate metal layer and a first gate metal layer between adjacent first stacked gate metal layers and adjacent to the first gate metal layer The metal in the via hole in the dielectric layer electrically connects the adjacent first stacked gate metal layer, and electrically connects the first stacked gate metal layer and the first gate metal layer.

上述的方法,其中,蝕刻電介質層在相鄰的第二層迭柵極金屬層之間及靠近第二柵極金屬層的第二層迭柵極金屬層與第二柵極金屬層之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第二層迭柵極金屬層之間及靠近第二柵極金屬層的第二層迭柵極金屬層與第二柵極金屬層之間的電介質層中的通孔中的金屬將相鄰的第二層迭柵極金屬層電性連接,同時將第二層迭柵極金屬層與第二柵極金屬層電性連接。 The above method, wherein the etching dielectric layer is between the adjacent second stacked gate metal layers and between the second stacked gate metal layer and the second gate metal layer adjacent to the second gate metal layer a plurality of via holes are etched into the dielectric layer by implanting a second stacked gate metal layer and a second gate metal layer between adjacent second stacked gate metal layers and adjacent to the second gate metal layer The metal in the via hole in the dielectric layer electrically connects the adjacent second stacked gate metal layer while electrically connecting the second stacked gate metal layer and the second gate metal layer.

上述的方法,任意一層所述的第一類電容極板均與該層第一類電容極板所在層面的第一層迭延伸結構連接,且與該層第一類電容極板所在層面的第二層迭延伸結構分割絕緣。 In the above method, the first type of capacitor plates of any one of the layers are connected to the first layer of the layer of the first type of capacitor plates, and the layer of the layer of the first type of capacitor plates is The two-layer extension structure divides the insulation.

上述的方法,任意一層所述的第二類電容極板均與該層第二類電容極板所在層面的第二層迭延伸結構連接,且與該層第二類電容極板所在層面的第一層迭延伸結構分割絕緣。 In the above method, the second type of capacitor plates of any one of the layers are connected to the second layer of the layer of the second type of capacitor plates, and the layer of the second type of capacitor plates of the layer is The layered extension structure divides the insulation.

上述的方法,其中,漏極金屬層、第一柵極金屬層、源極金屬層、第二柵極金屬層通過分割區相互分割隔離,沉積電介質層用於在分割區填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。本領域的技術人員閱讀以下較佳實施例的詳細說明,並參照附圖之後,本發明的這些和其他方面的優勢無疑將顯而易見。 The above method, wherein the drain metal layer, the first gate metal layer, the source metal layer, and the second gate metal layer are separated from each other by a partition, and the dielectric layer is deposited for filling the dielectric in the partition; depositing the dielectric layer The insulating partition formed by etching the divided metal layer is filled with a dielectric. These and other advantages of the present invention will no doubt become apparent to those skilled in the <RTIgt;

GND‧‧‧電容接地 GND‧‧‧capacitor grounding

S1/S2‧‧‧源極 S 1 /S 2 ‧‧‧ source

D1/D2‧‧‧漏極 D 1 /D 2 ‧‧‧Drain

10/20‧‧‧晶圓顆粒 10/20‧‧‧ wafer pellets

11/21‧‧‧柵極鍵合區 11/21‧‧‧Gate bonding zone

11a/21a‧‧‧柵極鍵合線 11a/21a‧‧‧Gate bonding wire

11b/21b‧‧‧柵極引腳 11b/21b‧‧‧ gate pin

12/22a‧‧‧源極鍵合區 12/22a‧‧‧Source Bonding Zone

12a/13a/22b‧‧‧鍵合線 12a/13a/22b‧‧‧bonding wire

13/531/631/103/1130‧‧‧漏極金屬層 13/531/631/103/1130‧‧‧Drain metal layer

13b‧‧‧漏極引腳 13b‧‧‧Drain pin

22/130/170’/230/330/430/53/632/730/93/104/1140‧‧‧源極金屬層 22/130/170’/230/330/430/53/632/730/93/104/1140‧‧‧ source metal layer

22c‧‧‧源極引腳 22c‧‧‧Source pin

30‧‧‧引線框架 30‧‧‧ lead frame

10/200/300/400‧‧‧MOS場效應電晶體 10/200/300/400‧‧‧MOS field effect transistor

110/210/310/410/510/610/710/810/910/1010/1110‧‧‧矽片襯底 110/210/310/410/510/610/710/810/910/1010/1110‧‧‧ 矽 substrate

120/220/320/420/720/920‧‧‧柵極金屬層 120/220/320/420/720/920‧‧‧Gate metal layer

120’‧‧‧槽溝門極 120’‧‧‧ Groove gate

120a/220a/320a/420a‧‧‧層迭柵極金屬層 120a/220a/320a/420a‧‧‧Layered gate metal layer

120b/140b/150b/220b/240b/250b/320b/340b/350b/420b/435b/450b/521b//522b/535b/536b/540b/550b/621b/622b/635b/636b‧‧‧金屬 120b/140b/150b/220b/240b/250b/320b/340b/350b/420b/435b/450b/521b//522b/535b/536b/540b/550b/621b/622b/635b/636b‧‧Metal

135/235/335/435‧‧‧延伸結構 135/235/335/435‧‧‧Extended structure

135a/235a/335a/435a‧‧‧層迭延伸結構 135a/235a/335a/435a‧‧‧Layer extension structure

140/240/340/440/540/640‧‧‧第一類電容極板 140/240/340/440/540/640‧‧‧First type of capacitive plates

140a/240a/340a/540a‧‧‧第一類連接層 140a/240a/340a/540a‧‧‧Type 1 connection layer

145’‧‧‧源區 145’‧‧‧ source area

150/250/350/450/550/650‧‧‧第二類電容極板 150/250/350/450/550/650‧‧‧Second type capacitor plates

150a/250a/350a/450a/550a‧‧‧第二類連接層 150a/250a/350a/450a/550a‧‧‧Second type of connection layer

180’‧‧‧門極金屬 180’‧‧‧Gate metal

500/600‧‧‧雙MOS場效應電晶體 500/600‧‧‧Double MOS field effect transistor

521/1020/1120‧‧‧第一柵極金屬層 521/1020/1120‧‧‧First gate metal layer

521a/621a‧‧‧第一層迭柵極金屬層 521a/621a‧‧‧First laminated gate metal layer

522/6/1150‧‧‧第二柵極金屬層 522/6/1150‧‧‧second gate metal layer

522a/622a‧‧‧第二層迭柵極金屬層 522a/622a‧‧‧Second laminated gate metal layer

535‧‧‧第一延伸結構 535‧‧‧First extension structure

535a/635a‧‧‧第一層迭延伸結構 535a/635a‧‧‧First layer extension structure

536/636‧‧‧第二延伸結構 536/636‧‧‧Second extension structure

536a/636a‧‧‧第二層迭延伸結構 536a/636a‧‧‧Second layer extension structure

711/713/715/811/813/815/817/911/913/915/1011/1013/1015/1111/1113/1115‧‧‧多次沉積電介質層 711/713/715/811/813/815/817/911/913/915/1011/1013/1015/1111/1113/1115‧‧‧Multiple deposition of dielectric layers

711a713a/715a/811a/813a/815a/817a/911a/913a/915a/1011a/1013a/1015a/1111a/1113a/1115a‧‧‧通孔 711a713a/715a/811a/813a/815a/817a/911a/913a/915a/1011a/1013a/1015a/1111a/1113a/1115a‧‧‧through holes

712/714/716/812/814/816/818/912/914/916/1012/1014/1016/1112/1114/1116‧‧‧多次沉積金屬層 712/714/716/812/814/816/818/912/914/916/1012/1014/1016/1112/1114/1116‧‧ ‧ multiple deposition of metal layers

712a/712b/712c/714a/714b/714c/716a/716b/812a/812b/814a/814b/814c/816a/816b/816c/818a/818b/912a/912b/914a/914b/914c/916a/916b/1012a/1012b/1012c/1012d/1014a/1014b/1014c/1014d/1016a/1016b/1016c/1112a/1112b/1112c/1114a/1114b/1114c/1116a/1116b/1116c‧‧‧金屬區域 712a/712b/712c/714a/714b/714c/716a/716b/812a/812b/814a/814b/814c/816a/816b/816c/818a/818b/912a/912b/914a/914b/914c/916a/916b/ 1012a/1012b/1012c/1012d/1014a/1014b/1014c/1014d/1016a/1016b/1016c/1112a/1112b/1112c/1114a/1114b/1114c/1116a/1116b/1116c‧‧‧Metal area

725/925/1025/1125‧‧‧分割區 725/925/1025/1125‧‧‧ partition

參考所附附圖,以更加充分的描述本發明的實施例。然而,所附附圖僅用於說明和闡述,並不構成對本發明範圍的限制。 Embodiments of the present invention are described more fully with reference to the accompanying drawings. However, the attached drawings are for illustration and illustration only and are not intended to limit the scope of the invention.

第1A圖是一低端MOSFET和一高端MOSFET連接一個電容的電路結構示意圖。 Figure 1A is a schematic diagram of the circuit structure of a low-side MOSFET and a high-side MOSFET connected to a capacitor.

第1B圖是先前技術中對應於第1A圖中電路圖的低端MOSFET和高端MOSFET集成在一個晶片內組合一個電容的晶片俯視結構示意圖。 1B is a top plan view of a wafer in which a low-side MOSFET and a high-side MOSFET corresponding to the circuit diagram in FIG. 1A are integrated in a single wafer in the prior art.

第1C圖、第1D圖分別是US 2008/0067584 A1中採用的以一個iT-FET 裝置起頂部FET裝置功能及一個肖特基FET裝置起底部裝置功能的集成組合式降壓變流器的截面圖和電路圖。 1C and 1D are respectively an iT-FET used in US 2008/0067584 A1. A cross-sectional view and circuit diagram of an integrated combined buck converter that functions as a top FET device and a Schottky FET device as a bottom device.

第2A圖是本發明的實施例一的立體結構示意圖。 Fig. 2A is a perspective view showing the structure of the first embodiment of the present invention.

第2B圖是本發明的實施例一立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 2B is a plan view showing an extended structure of a gate metal layer, a source metal layer, and a source metal layer on a top surface of a corresponding cymbal substrate in a schematic perspective view of the first embodiment of the present invention.

第2C-2F圖是本發明的實施例一立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖。 FIG. 2C-2F is a plan view showing a corresponding layer of each layer of the capacitor plates in the bottom view of the first embodiment of the present invention.

第3A圖是本發明的實施例二的立體結構示意圖。 Fig. 3A is a perspective view showing the structure of the second embodiment of the present invention.

第3B圖是本發明的實施例二立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 FIG. 3B is a plan view showing the extension structure of the gate metal layer, the source metal layer and the source metal layer on the top surface of the corresponding cymbal substrate in the schematic view of the two-dimensional structure of the second embodiment of the present invention.

第3C-3F圖是本發明的實施例二立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖。 3C-3F is a plan view schematically showing a level of a corresponding bottom-up capacitor layer of each layer in the schematic view of the two-dimensional structure of the second embodiment of the present invention.

第4A圖是本發明的實施例三的立體結構示意圖。 4A is a schematic perspective view showing a third embodiment of the present invention.

第4B圖是本發明的實施例三立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 FIG. 4B is a plan view showing the extended structure of the gate metal layer, the source metal layer and the source metal layer on the top surface of the corresponding cymbal substrate in the three-dimensional structure diagram of the third embodiment of the present invention.

第4C-4E圖是本發明的實施例三立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖。 4C-4E is a plan view showing the level of the corresponding bottom-up capacitor layer of each layer in the three-dimensional structure diagram of the third embodiment of the present invention.

第5A-1圖是本發明的實施例四的前側立體結構示意圖。 Fig. 5A-1 is a schematic view showing the front side three-dimensional structure of the fourth embodiment of the present invention.

第5A-2圖是本發明的實施例四的後側立體結構示意圖。 5A-2 is a schematic perspective view of the rear side of the fourth embodiment of the present invention.

第5B圖是本發明的實施例四立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 FIG. 5B is a plan view showing the extension structure of the gate metal layer, the source metal layer and the source metal layer on the top surface of the corresponding cymbal substrate in the four-dimensional structure diagram of the fourth embodiment of the present invention.

第5C-5E圖是本發明的實施例四立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖。 FIG. 5C-5E is a plan view showing the level of the corresponding bottom-up capacitor layer of each layer in the schematic view of the four-dimensional structure of the fourth embodiment of the present invention.

第6A-1圖是本發明的實施例五的前側立體結構示意圖。 Fig. 6A-1 is a schematic view showing the front side three-dimensional structure of the fifth embodiment of the present invention.

第6A-2圖是本發明的實施例五的後側立體結構示意圖。 6A-2 is a schematic perspective view of the rear side of the fifth embodiment of the present invention.

第6B圖是本發明的實施例五立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 FIG. 6B is a plan view showing the extended structure of the gate metal layer, the source metal layer and the source metal layer on the top surface of the corresponding cymbal substrate in the schematic diagram of the three-dimensional structure of the fifth embodiment of the present invention.

第6C-6E圖是本發明的實施例五立體結構示意圖中相對應的自下而上 的每一層電容極板所在的層面的平面示意圖。 6C-6E is a corresponding bottom-up view in the schematic diagram of the three-dimensional structure of the fifth embodiment of the present invention A schematic plan view of the layer where each layer of capacitive plates is located.

第7A-1圖是本發明的實施例六的前側立體結構示意圖。 Fig. 7A-1 is a schematic view showing the front side three-dimensional structure of the sixth embodiment of the present invention.

第7A-2圖是本發明的實施例六的後側立體結構示意圖。 7A-2 is a schematic perspective view of the rear side of the sixth embodiment of the present invention.

第7B圖是本發明的實施例六立體結構示意圖中相對應的矽片襯底頂面的柵極金屬層、源極金屬層及源極金屬層的延伸結構的平面示意圖。 FIG. 7B is a plan view showing the extension structure of the gate metal layer, the source metal layer and the source metal layer on the top surface of the corresponding cymbal substrate in the three-dimensional structure diagram of the sixth embodiment of the present invention.

第7C-7E圖是本發明的實施例六立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖。 7C-7E is a plan view showing the level of the corresponding bottom-up capacitor layer of each layer in the three-dimensional structure diagram of the sixth embodiment of the present invention.

第8A-8L圖是實現本發明的實施例一、三的製備方法。 8A-8L are preparation methods for carrying out Examples 1 and 3 of the present invention.

第9圖是實現本發明的實施例二的製備方法。 Fig. 9 is a view showing a production method for carrying out the second embodiment of the present invention.

第10圖是實現本發明的實施例四的製備方法。 Fig. 10 is a view showing a production method for carrying out the fourth embodiment of the present invention.

第11圖是實現本發明的實施例五的製備方法。 Fig. 11 is a view showing a production method for carrying out the fifth embodiment of the present invention.

第12圖是實現本發明的實施例六的製備方法。 Fig. 12 is a view showing a production method for carrying out the sixth embodiment of the present invention.

根據本發明的申請專利範圍和發明內容所公開的內容,本發明的技術方案具體如下所述: According to the disclosure of the patent application and the content of the invention, the technical solution of the present invention is specifically as follows:

實施例一: Embodiment 1:

參見第2A圖(立體結構示意圖)、第2B-2F圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,於一矽片襯底110頂面上設置有構成低端(Low Side)的MOS場效應電晶體100柵極電極(記作第二電極)的柵極金屬層120(記作第二電極金屬層),及構成MOS場效應電晶體100源極電極(記作第一電極)的源極金屬層130(記作第一電極金屬層),源極金屬層130包含一延伸結構135。MOS場效應電晶體100的漏極(未示出)形成於矽片襯底110的底面,MOS場效應電晶體100的源極(未示出)、柵極(未示出)形成於矽片襯底110頂面。其中,矽片襯底110頂面上方設置有平行於矽片襯底110的包含數個第一類電容極板140和數個第二類電容極板150的多層電容極板。 Referring to FIG. 2A (schematic diagram of the three-dimensional structure) and FIG. 2B-2F (a schematic plan view of the layer of each of the corresponding bottom-up capacitor plates in the schematic view of the three-dimensional structure), the substrate 110 is shown in FIG. A gate metal layer 120 (referred to as a second electrode metal layer) constituting a gate electrode (referred to as a second electrode) of a low side (Low Side) MOS field effect transistor 100 is disposed on the top surface, and a MOS field effect is formed. A source metal layer 130 (referred to as a first electrode metal layer) of a source electrode (referred to as a first electrode) of the transistor 100, and a source metal layer 130 includes an extension structure 135. A drain (not shown) of the MOS field effect transistor 100 is formed on the bottom surface of the NMOS substrate 110, and a source (not shown) and a gate (not shown) of the MOS field effect transistor 100 are formed on the ruthenium. The top surface of the substrate 110. A plurality of capacitor plates including a plurality of first type capacitor plates 140 and a plurality of second type capacitor plates 150 are disposed parallel to the cymbal substrate 110 above the top surface of the cymbal substrate 110.

參見第2A、2B-2F圖所示,在矽片襯底110頂面與矽片襯底110頂面上方的一塊電容極板(該實施例中為第二類電容極板150)間填充有電介質層(未示出),第一類電容極板140和第二類電容極板150間填充有電介質層(未示出);第一類電容極板140和第二類電容極板150相互交替間隔配置,且第一類電容極板140均與源極金屬層130電性連接用於構成旁路電容的一個電極,第二類電容極板150彼此相互電性連接用於構成旁路電容的另一個電極。第一類電容極板140與第二類電容極板150縱向交錯配置,用於在相鄰的第二類電容極板150間的第一類電容極板140所在的層面中設置絕緣於第一類電容極板140的第二類連接層150a,同時在第二類電容極板150與第二類連接層150a之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬150b將第二類電容極板150相互電性連接。第一類電容極板140與第二類電容極板150縱向交錯配置,用於在相鄰的第一類電容極板140間及第一類電容極板140與源極金屬層130間的第二類電容極板150所在的層面中設置絕緣於第二類電容極板150的第一類連接層140a。在第一類電容極板140與第一類連接層140a之間及源極金屬層130與靠近源極金屬層130的第一類連接層140之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬140b將第一類電容極板140相互電性連接,同時將第一類電容極板140與源極金屬層130電性連接。 Referring to FIGS. 2A and 2B-2F, a capacitor plate (the second type of capacitor plate 150 in this embodiment) is mounted between the top surface of the cymbal substrate 110 and the top surface of the cymbal substrate 110. a dielectric layer (not shown), a first type of capacitor plate 140 and a second type of capacitor plate 150 are filled with a dielectric layer (not shown); the first type of capacitor plate 140 and the second type of capacitor plate 150 are mutually Alternately spaced, and the first type of capacitor plates 140 are electrically connected to the source metal layer 130 for forming one electrode of the bypass capacitor, and the second type of capacitor plates 150 are electrically connected to each other for forming a bypass capacitor. Another electrode. The first type of capacitor plates 140 are longitudinally staggered with the second type of capacitor plates 150 for insulating the first layer of the first type of capacitor plates 140 between the adjacent second type of capacitor plates 150. The second type of connection layer 150a of the capacitor-like plate 140 is provided with a through hole (not shown) in the dielectric layer between the second type of capacitor plate 150 and the second type of connection layer 150a, and is injected into the through hole. The metal 150b electrically connects the second type of capacitor plates 150 to each other. The first type of capacitor plate 140 and the second type of capacitor plate 150 are longitudinally staggered for use between the adjacent first type of capacitor plates 140 and between the first type of capacitor plates 140 and the source metal layer 130. A first type of connection layer 140a insulated from the second type of capacitor plate 150 is disposed in a layer of the second type of capacitor plate 150. A through hole is disposed in the dielectric layer between the first type of capacitor plate 140 and the first type of connection layer 140a and between the source metal layer 130 and the first type of connection layer 140 adjacent to the source metal layer 130 (not shown) And electrically connecting the first type of capacitor plates 140 to each other through the metal 140b injected into the through holes, and electrically connecting the first type of capacitor plates 140 and the source metal layer 130.

任意一層的電容極板所在的層面均在柵極金屬層120上方設有一層迭柵極金屬層120a;其中,層迭柵極金屬層120a用於與柵極金屬層120電性連接以將柵極導出。在相鄰層迭柵極金屬層120a間的電介質層中及在靠近柵極金屬層120的層迭柵極金屬層120a與柵極金屬層120間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬120b將層迭柵極金屬層120a與柵極金屬層120電性連接,即是將層迭柵極金屬層120a與柵極電性連接。第2B-2F圖中,類似上述柵極金屬層120與層迭柵極金屬層120a的連接方式,任意一層的電容極板所在的層面均在延伸結構135上方設有一層迭延伸結構135a;其中,層迭延伸結構135a用於與延伸結構135電性 連接以將源極導出。在相鄰層迭延伸結構135a間的電介質層中及在靠近延伸結構135的層迭延伸結構135a與延伸結構135間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬(未示出)將層迭延伸結構135a與延伸結構135電性連接,即是將將層迭延伸結構135a與源極電性連接。 A layer of the capacitor plate of any one layer is provided with a stacked gate metal layer 120a over the gate metal layer 120. The stacked gate metal layer 120a is electrically connected to the gate metal layer 120 to connect the gate. Extremely exported. A plurality of via holes are provided in the dielectric layer between the adjacent stacked gate metal layers 120a and in the dielectric layer between the stacked gate metal layer 120a and the gate metal layer 120 adjacent to the gate metal layer 120 (not The laminated gate metal layer 120a is electrically connected to the gate metal layer 120 by the metal 120b implanted in the via hole, that is, the stacked gate metal layer 120a is electrically connected to the gate. In the second B-2F, similar to the manner in which the gate metal layer 120 and the stacked gate metal layer 120a are connected, the layer of the capacitor plate of any one layer is provided with a layered extension structure 135a above the extension structure 135; The laminated extension structure 135a is used for electrical connection with the extension structure 135 Connect to export the source. A plurality of through holes (not shown) are provided in the dielectric layer between the adjacent lamination extension structures 135a and in the dielectric layer between the lamination extension structures 135a and the extension structures 135 adjacent to the extension structure 135, and are passed through the injection holes. A metal (not shown) in the hole electrically connects the laminated extension structure 135a to the extension structure 135, that is, the laminated extension structure 135a is electrically connected to the source.

第2B-2F圖中,柵極金屬層120和源極金屬層130相互分割隔離,柵極金屬層120和源極金屬層130之間的分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、層迭延伸結構、層迭柵極金屬層)的絕緣分割區且絕緣分割區均填充有電介質。第一類電容極板140與第二類電容極板150不限制於第2A-2F圖中描述的數量,與之相應的層迭柵極金屬層120a、層迭延伸結構135a亦不限制於第2A-2F圖中描述的數量。另外,本實施例中構成MOS場效應電晶體100柵極電極的柵極金屬層120及構成源極電極的源極金屬層130設置於矽片襯底110的頂面,漏極設置於矽片襯底110的底面,該MOS場效應電晶體100為底漏頂源式的垂直裝置。本實施例集成電容的結構也可應用於其他類別的MOS場效應電晶體的實施例中,在另一集成電容的底源頂漏式的MOSFET垂直裝置中,底源頂漏式的MOSFET的柵極電極及漏極電極設置於矽片襯底頂面,源極設置於矽片襯底的底面;換言之,在本實施例第2A圖示出的MOSFET100中,其構成第二電極的柵極金屬層120在另一實施方式中轉換成另一底源頂漏式的MOSFET的柵極電極,其構成第一電極的源極金屬層130在另一實施方式中轉換成另一底源頂漏式的MOSFET的漏極電極,其形成於矽片襯底110的底面的漏極(未示出)在另一實施方式中轉換成另一底源頂漏式的MOSFET的源極。 In the second B-2F, the gate metal layer 120 and the source metal layer 130 are separated from each other, and the divided region between the gate metal layer 120 and the source metal layer 130 is filled with a dielectric; the layer where any one of the capacitor plates is located Each includes an insulating partition for insulating isolation of device structures (such as a capacitor plate, a stacked extension structure, and a stacked gate metal layer) that are electrically connected to each other in the layer, and the insulating partitions are filled with a dielectric. The first type of capacitor plate 140 and the second type of capacitor plate 150 are not limited to the number described in FIG. 2A-2F, and the corresponding stacked gate metal layer 120a and the layered extension structure 135a are not limited to the first The number described in Figure 2A-2F. In addition, in this embodiment, the gate metal layer 120 constituting the gate electrode of the MOS field effect transistor 100 and the source metal layer 130 constituting the source electrode are disposed on the top surface of the cymbal substrate 110, and the drain is disposed on the cymbal sheet. On the bottom surface of the substrate 110, the MOS field effect transistor 100 is a bottom drain type vertical device. The structure of the integrated capacitor of this embodiment can also be applied to other embodiments of MOS field effect transistors. In the bottom-source top-drain MOSFET vertical device of another integrated capacitor, the gate of the bottom-source top-drain MOSFET The electrode and the drain electrode are disposed on the top surface of the cymbal substrate, and the source is disposed on the bottom surface of the cymbal substrate; in other words, in the MOSFET 100 shown in FIG. 2A of the embodiment, the gate metal constituting the second electrode In another embodiment, layer 120 is converted to the gate electrode of another bottom-source drain-type MOSFET whose source metal layer 130 constituting the first electrode is converted to another bottom-source drain type in another embodiment. The drain electrode of the MOSFET, the drain (not shown) formed on the bottom surface of the NMOS substrate 110, is converted in another embodiment to the source of another bottom-source drain-type MOSFET.

實施例二: Embodiment 2:

參見第3A圖(立體結構示意圖)、第3B-3F圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,於一矽片襯底210頂面上設置有構成低端(Low Side)的MOS場效應電晶體200柵極電極(記作第二電極)的柵極金屬層220(記作第二電極金屬層),及構 成MOS場效應電晶體200源極電極(記作第一電極)的源極金屬層230(記作第一電極金屬層),源極金屬層230包含一延伸結構235。MOS場效應電晶體200的漏極(未示出)形成於210矽片襯底的底面,MOS場效應電晶體200的源極(未示出)、柵極(未示出)形成於矽片襯底210頂面。其中,矽片襯底210頂面上方設置有平行於矽片襯底210的包含數個第一類電容極板240和數個第二類電容極板250的多層電容極板。 Referring to FIG. 3A (schematic diagram of the three-dimensional structure) and FIG. 3B-3F (a schematic plan view of the layer of each of the corresponding bottom-up capacitor plates in the three-dimensional structure diagram), the substrate substrate 210 is shown. A gate metal layer 220 (referred to as a second electrode metal layer) constituting a low side (Low Side) MOS field effect transistor 200 gate electrode (referred to as a second electrode) is disposed on the top surface, and A source metal layer 230 (referred to as a first electrode metal layer) of a MOS field effect transistor 200 source electrode (referred to as a first electrode), and a source metal layer 230 includes an extension structure 235. A drain (not shown) of the MOS field effect transistor 200 is formed on the bottom surface of the 210 wafer substrate, and a source (not shown) and a gate (not shown) of the MOS field effect transistor 200 are formed on the wafer. The top surface of the substrate 210. A plurality of capacitor plates including a plurality of first type capacitor plates 240 and a plurality of second type capacitor plates 250 are disposed parallel to the ruthenium substrate 210 above the top surface of the ruthenium substrate 210.

參見第3A、3B-3F圖所示,在矽片襯底210頂面與矽片襯底210頂面上方的一塊電容極板(該實施例中為第一類電容極板240)間填充有電介質層(未示出),第一類電容極板240和第二類電容極板250間填充有電介質層(未示出);第一類電容極板240和第二類電容極板250相互交替間隔配置,且第一類電容極板240均與源極金屬層230電性連接用於構成旁路電容的一個電極,第二類電容極板250彼此相互電性連接用於構成旁路電容的另一個電極。第一類電容極板240與第二類電容極板250縱向交錯配置,用於在相鄰的第二類電容極板250間的第一類電容極板240所在的層面中設置絕緣於第一類電容極板240的第二類連接層250a,同時在第二類電容極板250與第二類連接層250a之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬250b將第二類電容極板250相互電性連接。第一類電容極板240與第二類電容極板250縱向交錯配置,用於在相鄰的第一類電容極板240間的第二類電容極板250所在的層面中設置絕緣於第二類電容極板250的第一類連接層240a。在第一類電容極板240與第一類連接層240a之間及源極金屬層230與靠近源極金屬層230的第一類電容極板240之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬240b將第一類電容極板240相互電性連接,同時將第一類電容極板240與源極金屬層230電性連接。 Referring to FIGS. 3A, 3B-3F, a capacitor plate (in this embodiment, the first type of capacitor plate 240) is mounted between the top surface of the cymbal substrate 210 and the top surface of the cymbal substrate 210. a dielectric layer (not shown), a first type of capacitor plate 240 and a second type of capacitor plate 250 are filled with a dielectric layer (not shown); the first type of capacitor plate 240 and the second type of capacitor plate 250 are mutually Alternately spaced, and the first type of capacitor plates 240 are electrically connected to the source metal layer 230 for forming one electrode of the bypass capacitor, and the second type of capacitor plates 250 are electrically connected to each other for forming a bypass capacitor. Another electrode. The first type of capacitor plate 240 and the second type of capacitor plate 250 are longitudinally staggered, and are arranged to be insulated first in the layer of the first type of capacitor plate 240 between the adjacent second type of capacitor plates 250. The second type of connection layer 250a of the capacitor-like plate 240 is provided with a through hole (not shown) in the dielectric layer between the second type of capacitor plate 250 and the second type of connection layer 250a, and is injected into the through hole. The metal 250b electrically connects the second type of capacitor plates 250 to each other. The first type of capacitor plate 240 and the second type of capacitor plate 250 are longitudinally staggered for providing insulation in the layer of the second type of capacitor plate 250 between the adjacent first type of capacitor plates 240. The first type of connection layer 240a of the capacitor-like plate 250. A through hole is disposed in the dielectric layer between the first type of capacitor plate 240 and the first type of connection layer 240a and between the source metal layer 230 and the first type of capacitor plate 240 adjacent to the source metal layer 230 (not shown) The first type of capacitor plates 240 are electrically connected to each other through the metal 240b injected into the through holes, and the first type of capacitor plates 240 are electrically connected to the source metal layer 230.

第3A、3B-3F圖中,任意一層的電容極板所在的層面均在柵極金屬層220上方設有一層迭柵極金屬層220a;其中,層迭柵極金屬層220a用於與柵極金屬層220電性連接以將柵極導出。在相鄰層迭柵極金屬層220a 間的電介質層中及在靠近柵極金屬層220的層迭柵極金屬層220a與柵極金屬層220間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬220b將層迭柵極金屬層220a與柵極金屬層220電性連接,即是將層迭柵極金屬層220a與柵極電性連接。第3A、3B-3F圖中,類似上述柵極金屬層220與層迭柵極金屬層220a的連接方式,任意一層的電容極板所在的層面均在延伸結構235上方設有一層迭延伸結構235a;其中,層迭延伸結構235a用於與延伸結構235電性連接以將源極導出。在相鄰層迭延伸結構235a間的電介質層中及在靠近延伸結構235的層迭延伸結構235a與延伸結構235間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬(未示出)將層迭延伸結構235a與延伸結構235電性連接,即是將將層迭延伸結構235a與源極電性連接。 In the 3A, 3B-3F, the layer of the capacitor plate of any one layer is provided with a stacked gate metal layer 220a above the gate metal layer 220; wherein the stacked gate metal layer 220a is used for the gate The metal layer 220 is electrically connected to derive the gate. Adjacent gate metal layer 220a A plurality of through holes (not shown) are disposed in the dielectric layer between the dielectric layer and the gate metal layer 220a and the gate metal layer 220 adjacent to the gate metal layer 220, and are inserted into the via holes. The metal 220b electrically connects the stacked gate metal layer 220a and the gate metal layer 220, that is, electrically connects the stacked gate metal layer 220a and the gate. In the 3A, 3B-3F, similar to the manner in which the gate metal layer 220 and the stacked gate metal layer 220a are connected, the layer of the capacitor plate of any one layer is provided with a layered extension structure 235a above the extension structure 235. Wherein, the laminated extension structure 235a is used to electrically connect with the extension structure 235 to derive the source. A plurality of through holes (not shown) are provided in the dielectric layer between the adjacent lamination extension structures 235a and in the dielectric layer between the lamination extension structures 235a and the extension structures 235 adjacent to the extension structure 235, and are passed through the injection holes. A metal (not shown) in the hole electrically connects the layered extension structure 235a to the extension structure 235, that is, the layer extension structure 235a is electrically connected to the source.

第3B-3F圖中,柵極金屬層220和源極金屬層230相互分割隔離,柵極金屬層220和源極金屬層230之間的分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、層迭延伸結構、層迭柵極金屬層)的絕緣分割區(例如柵極金屬層220、層迭延伸結構235a、第二類連接層250a、第一類電容極板240之間的分割區)且絕緣分割區均填充有電介質。第一類電容極板240與第二類電容極板250不限制於第3A、3B-3F圖中描述的數量,與之相應的層迭柵極金屬層220a、層迭延伸結構235a亦不限制於第3A、3B-3F圖中描述的數量。另外,本實施例中構成MOS場效應電晶體200柵極電極的柵極金屬層220及構成源極電極的源極金屬層230設置於矽片襯底210的頂面,漏極設置於矽片襯底210的底面,該MOS場效應電晶體200為底漏頂源式的垂直裝置。本實施例集成電容的結構也可應用於其他類別的MOS場效應電晶體的實施例中,在另一集成電容的底源頂漏式的MOSFET垂直裝置中,底源頂漏式的MOSFET的柵極電極及漏極電極設置於矽片襯底頂面,源極設置於矽片襯底的底面;換言之,在本實施例第3A圖示出的MOSFET200中,其構成第二電極的柵極金屬層220在另一實施方式中轉換 成另一底源頂漏式的MOSFET的柵極電極,其構成第一電極的源極金屬層230在另一實施方式中轉換成另一底源頂漏式的MOSFET的漏極電極,其形成於矽片襯底210的底面的漏極(未示出)在另一實施方式中轉換成另一底源頂漏式的MOSFET的源極。 In the 3B-3F diagram, the gate metal layer 220 and the source metal layer 230 are separated from each other, and the divided region between the gate metal layer 220 and the source metal layer 230 is filled with a dielectric; the layer where any one of the capacitor plates is located Each includes an insulating partition (eg, a gate metal layer 220, a layer) for insulatingly isolating device structures (such as a capacitor plate, a stacked extension structure, and a stacked gate metal layer) that are electrically connected to each other in the layer. The extension structure 235a, the second type of connection layer 250a, and the division region between the first type of capacitor plates 240) and the insulating division regions are filled with a dielectric. The first type of capacitor plate 240 and the second type of capacitor plate 250 are not limited to the number described in FIGS. 3A, 3B-3F, and the corresponding stacked gate metal layer 220a and the layered extension structure 235a are not limited. The number described in Figures 3A, 3B-3F. In addition, in this embodiment, the gate metal layer 220 constituting the gate electrode of the MOS field effect transistor 200 and the source metal layer 230 constituting the source electrode are disposed on the top surface of the cymbal substrate 210, and the drain is disposed on the cymbal sheet. The bottom surface of the substrate 210, the MOS field effect transistor 200 is a bottom drain type vertical device. The structure of the integrated capacitor of this embodiment can also be applied to other embodiments of MOS field effect transistors. In the bottom-source top-drain MOSFET vertical device of another integrated capacitor, the gate of the bottom-source top-drain MOSFET The electrode and the drain electrode are disposed on the top surface of the cymbal substrate, and the source is disposed on the bottom surface of the cymbal substrate; in other words, in the MOSFET 200 illustrated in FIG. 3A of the embodiment, the gate metal constituting the second electrode Layer 220 is converted in another embodiment The gate electrode of another bottom-drain-type MOSFET, the source metal layer 230 constituting the first electrode is converted into the drain electrode of another bottom-source drain-type MOSFET in another embodiment, which is formed The drain (not shown) on the bottom surface of the germanium substrate 210 is converted in another embodiment to the source of another bottom-source drain-type MOSFET.

實施例三: Embodiment 3:

事實上,隨著應用於電容的電介質的介電常數的不斷提升,上述實施例略顯臃雜,一般電容不需要上述實施例一或二的那麼多層電容極板,作為上述實施例的進一步改進,下述內容將提供更為簡潔的實施方式。 In fact, as the dielectric constant of the dielectric applied to the capacitor is continuously increased, the above embodiment is slightly noisy, and the general capacitor does not require the multilayer capacitor plate of the first embodiment or the second embodiment as a further improvement of the above embodiment. The following will provide a more concise implementation.

參見第4A圖(立體結構示意圖)、第4B-4E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,MOS場效應電晶體300集成有一個旁路電容,其中:於一矽片襯底310頂面上設置有構成低端(Low Side)的MOS場效應電晶體300柵極電極(記作第二電極)的柵極金屬層320(記作第二電極金屬層),及構成MOS場效應電晶體300源極電極(記作第一電極)的源極金屬層330(記作第一電極金屬層),源極金屬層330包含一延伸結構335。矽片襯底310頂面上方設置有平行於矽片襯底310的包含一個第一類電容極板340和二個第二類電容極板350的多層電容極板。在矽片襯底310頂面與矽片襯底310頂面上方的一塊電容極板(第4A圖視為第二類電容極板350)間以及在相鄰的兩塊電容極板(第4A圖視為第一類電容極板340和第二類電容極板350)間填充有電介質層。第一類電容極板340和第二類電容極板350相互交替間隔配置,且第一類電容極板340與源極金屬層330電性連接用於構成旁路電容的一個電極,第二類電容極板350彼此相互電性連接用於構成旁路電容的另一個電極。MOS場效應電晶體300的漏極(未示出)形成於矽片襯底310的底面,MOS場效應電晶體300的源極(未示出)、柵極(未示出)形成於矽片襯底310頂面。 Referring to FIG. 4A (schematic diagram of the three-dimensional structure) and FIG. 4B-4E (a schematic plan view of the layer of each of the corresponding bottom-up capacitor plates in the three-dimensional structure diagram), the MOS field effect transistor 300 is integrated. There is a bypass capacitor in which a gate metal layer 320 constituting a gate electrode (referred to as a second electrode) of a low side (Low Side) MOS field effect transistor 300 is disposed on a top surface of a germanium substrate 310. (referred to as a second electrode metal layer), and a source metal layer 330 (referred to as a first electrode metal layer) constituting a source electrode (referred to as a first electrode) of the MOS field effect transistor 300, and the source metal layer 330 includes An extension structure 335. Above the top surface of the cymbal substrate 310 is disposed a multilayer capacitor plate including a first type of capacitor plate 340 and two second type of capacitor plates 350 parallel to the cymbal substrate 310. On the top surface of the cymbal substrate 310 and a capacitor plate above the top surface of the cymbal substrate 310 (Fig. 4A is regarded as the second type of capacitor plate 350) and adjacent two capacitor plates (4A) The figure is considered to be filled with a dielectric layer between the first type of capacitor plate 340 and the second type of capacitor plate 350). The first type of capacitor plate 340 and the second type of capacitor plate 350 are alternately spaced apart from each other, and the first type of capacitor plate 340 is electrically connected to the source metal layer 330 for forming an electrode of the bypass capacitor, and the second type The capacitor plates 350 are electrically connected to each other to form another electrode of the bypass capacitor. A drain (not shown) of the MOS field effect transistor 300 is formed on the bottom surface of the NMOS substrate 310, and a source (not shown) and a gate (not shown) of the MOS field effect transistor 300 are formed on the ruthenium. The top surface of the substrate 310.

參見第4A、4B-4E圖所示,在矽片襯底310頂面與矽片襯底310 頂面上方的一塊電容極板(該實施例中為第二類電容極板350)間填充有電介質層(未示出),第一類電容極板340和第二類電容極板350間填充有電介質層(未示出);第一類電容極板340和第二類電容極板350相互交替間隔配置,且第一類電容極板340與源極金屬層330電性連接用於構成旁路電容的一個電極,第二類電容極板350彼此相互電性連接用於構成旁路電容的另一個電極。第一類電容極板340與第二類電容極板350縱向交錯配置,用於在相鄰的第二類電容極板350間的第一類電容極板340所在的層面中設置絕緣於第一類電容極板340的第二類連接層350a,同時在第二類電容極板350與第二類連接層350a之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬350b將第二類電容極板350相互電性連接。第一類電容極板340與第二類電容極板350縱向交錯配置,用於在第一類電容極板340與源極金屬層330間的第二類電容極板350所在的層面中設置絕緣於第二類電容極板350的第一類連接層340a。在第一類電容極板340與第一類連接層340a之間及源極金屬層330與靠近源極金屬層330的第一類連接層340之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬340b將第一類電容極板340與源極金屬層330電性連接。第4A、4B-4E圖中,任意一層的電容極板所在的層面均在柵極金屬層320上方設有一層迭柵極金屬層320a;其中,層迭柵極金屬層320a用於與柵極金屬層320電性連接以將柵極導出。在相鄰層迭柵極金屬層320a間的電介質層中及在靠近柵極金屬層320的層迭柵極金屬層320a與柵極金屬層320間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬320b將層迭柵極金屬層320a與柵極金屬層320電性連接,即是將層迭柵極金屬層320a與柵極電性連接。 Referring to FIGS. 4A, 4B-4E, the top surface of the cymbal substrate 310 and the cymbal substrate 310 are shown. A capacitor plate (in this embodiment, the second type of capacitor plate 350) is filled with a dielectric layer (not shown), and the first type of capacitor plate 340 and the second type of capacitor plate 350 are filled. There is a dielectric layer (not shown); the first type of capacitor plate 340 and the second type of capacitor plate 350 are alternately spaced apart from each other, and the first type of capacitor plate 340 is electrically connected to the source metal layer 330 for forming a side One electrode of the capacitance of the circuit, and the second type of capacitor plates 350 are electrically connected to each other to form another electrode of the bypass capacitor. The first type of capacitor plate 340 and the second type of capacitor plate 350 are longitudinally staggered, and are arranged to be insulated first in the layer of the first type of capacitor plate 340 between the adjacent second type of capacitor plates 350. A second type of connection layer 350a of the capacitor-like plate 340, and a through hole (not shown) is disposed in the dielectric layer between the second type of capacitor plate 350 and the second type of connection layer 350a, and is inserted into the through hole. The metal 350b electrically connects the second type of capacitor plates 350 to each other. The first type of capacitor plate 340 and the second type of capacitor plate 350 are longitudinally staggered for providing insulation in a layer where the second type of capacitor plate 350 between the first type of capacitor plate 340 and the source metal layer 330 is located. The first type of connection layer 340a of the second type of capacitor plate 350. A through hole is disposed in the dielectric layer between the first type of capacitor plate 340 and the first type of connection layer 340a and between the source metal layer 330 and the first type of connection layer 340 adjacent to the source metal layer 330 (not shown) And electrically connecting the first type of capacitor plate 340 and the source metal layer 330 through the metal 340b injected into the via. In the 4A, 4B-4E, the layer of the capacitor plate of any one layer is provided with a stacked gate metal layer 320a above the gate metal layer 320; wherein the stacked gate metal layer 320a is used for the gate The metal layer 320 is electrically connected to lead the gate. A plurality of via holes are provided in the dielectric layer between the adjacent stacked gate metal layers 320a and in the dielectric layer between the stacked gate metal layer 320a and the gate metal layer 320 adjacent to the gate metal layer 320 (not The stacked gate metal layer 320a is electrically connected to the gate metal layer 320 by the metal 320b implanted in the via hole, that is, the stacked gate metal layer 320a is electrically connected to the gate.

第4A、4B-4E圖中,類似上述柵極金屬層320與層迭柵極金屬層320a的連接方式,任意一層的電容極板所在的層面均在延伸結構335上方設有一層迭延伸結構335a;其中,層迭延伸結構335a用於與延伸結構335電性連接以將源極導出。在相鄰層迭延伸結構335a間的電介質層中及在靠近延伸結構335的層迭延伸結構335a與延伸結構335間的電介質層中設有 多個通孔(未示出),並通過注入通孔中的金屬(未示出)將層迭延伸結構335a相互電性連接,層迭延伸結構335a同時與延伸結構335電性連接,即是將將層迭延伸結構335a與源極電性連接。 4A, 4B-4E, similar to the manner in which the gate metal layer 320 and the stacked gate metal layer 320a are connected, the layer of the capacitor plate of any one layer is provided with a layered extension structure 335a above the extension structure 335. Wherein, the laminated extension structure 335a is used to electrically connect with the extension structure 335 to derive the source. Provided in the dielectric layer between the adjacent lamination extension structures 335a and in the dielectric layer between the lamination extension structures 335a and the extension structures 335 adjacent to the extension structure 335 a plurality of through holes (not shown), and electrically connecting the laminated extension structures 335a to each other through a metal (not shown) injected into the through holes, and the laminated extension structure 335a is electrically connected to the extension structure 335 at the same time, that is, The laminated extension structure 335a will be electrically connected to the source.

第4B-4E圖中,柵極金屬層320和源極金屬層330相互分割隔離,柵極金屬層320和源極金屬層330之間的分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、層迭延伸結構、層迭柵極金屬層)的絕緣分割區且絕緣分割區均填充有電介質。另外,本實施例中構成MOS場效應電晶體300柵極電極的柵極金屬層320及構成源極電極的源極金屬層330設置於矽片襯底310的頂面,漏極設置於矽片襯底310的底面,該MOS場效應電晶體300為底漏頂源式的垂直裝置。本實施例集成電容的結構也可應用於其他類別的MOS場效應電晶體的實施例中,在另一集成電容的底源頂漏式的MOSFET垂直裝置中,底源頂漏式的MOSFET的柵極電極及漏極電極設置於矽片襯底頂面,源極設置於矽片襯底的底面;換言之,在本實施例第4A圖示出的MOSFET300中,其構成第二電極的柵極金屬層320在另一實施方式中轉換成另一底源頂漏式的MOSFET的柵極電極,其構成第一電極的源極金屬層330在另一實施方式中轉換成另一底源頂漏式的MOSFET的漏極電極,其形成於矽片襯底310的底面的漏極(未示出)在另一實施方式中轉換成另一底源頂漏式的MOSFET的源極。 In FIG. 4B-4E, the gate metal layer 320 and the source metal layer 330 are separated from each other, and the divided region between the gate metal layer 320 and the source metal layer 330 is filled with a dielectric; the layer where any one of the capacitor plates is located Each includes an insulating partition for insulating isolation of device structures (such as a capacitor plate, a stacked extension structure, and a stacked gate metal layer) that are electrically connected to each other in the layer, and the insulating partitions are filled with a dielectric. In addition, in this embodiment, the gate metal layer 320 constituting the gate electrode of the MOS field effect transistor 300 and the source metal layer 330 constituting the source electrode are disposed on the top surface of the cymbal substrate 310, and the drain is disposed on the cymbal sheet. The bottom surface of the substrate 310, the MOS field effect transistor 300 is a bottom drain type vertical device. The structure of the integrated capacitor of this embodiment can also be applied to other embodiments of MOS field effect transistors. In the bottom-source top-drain MOSFET vertical device of another integrated capacitor, the gate of the bottom-source top-drain MOSFET The electrode and the drain electrode are disposed on the top surface of the cymbal substrate, and the source is disposed on the bottom surface of the cymbal substrate; in other words, in the MOSFET 300 illustrated in FIG. 4A of the embodiment, the gate metal constituting the second electrode Layer 320 is converted in another embodiment to the gate electrode of another bottom-source drain-type MOSFET whose source metal layer 330 constituting the first electrode is converted to another bottom-source drain type in another embodiment The drain electrode of the MOSFET, the drain (not shown) formed on the bottom surface of the NMOS substrate 310, is converted in another embodiment to the source of another bottom-source drain-type MOSFET.

實施例四: Embodiment 4:

上述實施例基於將第一類電容極板通過第一類連接層彼此連接,或是通過第一類連接層將第一類電容極板連接到源極金屬層上。作為進一步簡化,另披露一種下述的實施方式。 The above embodiments are based on connecting the first type of capacitor plates to each other through the first type of connection layer, or connecting the first type of capacitor plates to the source metal layer through the first type of connection layer. As a further simplification, another embodiment described below is disclosed.

參見第5A-1、5A-2圖(5A-1為矽片襯底410前側立體結構示意圖、5A-2為矽片襯底410後側立體結構示意圖)所示,及第5B-5E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所 示,於一矽片襯底410頂面上設置有構成低端MOS場效應電晶體400柵極電極(記作第二電極)的柵極金屬層420(記作第二電極金屬層),及構成MOS場效應電晶體400源極電極(記作第一電極)的源極金屬層430(記作第二電極金屬層),源極金屬層430包含一延伸結構435。矽片襯底410頂面上方設置有平行於矽片410襯底的包含數個第一類電容極板440(作為簡潔化的措施,該實施例第一類電容極板包含一個第一類電容極板440)和數個第二類電容極板450的多層電容極板。在矽片襯底410頂面與矽片襯底410頂面上方的一塊電容極板(第二類電容極板450)間以及在相鄰的兩塊電容極板(第一類電容極板440與第二類電容極板450)間填充有電介質層(未示出)。第一類電容極板440和第二類電容極板450相互交替間隔配置,且第一類電容極板440均與源極金屬層430電性連接用於構成旁路電容的一個電極,第二類電容極板450彼此相互電性連接用於構成旁路電容的另一個電極。MOS場效應電晶體400的漏極(未示出)形成於矽片襯底410的底面,MOS場效應電晶體的源極(未示出)、柵極(未示出)形成於矽片襯底410頂面。 See FIGS. 5A-1 and 5A-2 (5A-1 is a schematic view of the front side of the reticle substrate 410, 5A-2 is a schematic view of the rear side of the reticle substrate 410), and FIG. 5B-5E ( A schematic plan view of the corresponding layer of the bottom-up capacitor layer of each layer in the three-dimensional structure diagram) A gate metal layer 420 (referred to as a second electrode metal layer) constituting a gate electrode (referred to as a second electrode) of the low-side MOS field effect transistor 400 is disposed on a top surface of the substrate 410. A source metal layer 430 (referred to as a second electrode metal layer) constituting a source electrode (referred to as a first electrode) of the MOS field effect transistor 400, and a source metal layer 430 includes an extension structure 435. A plurality of first type capacitor plates 440 are disposed above the top surface of the cymbal substrate 410 in parallel with the substrate of the cymbal 410. As a simplification measure, the first type of capacitor plate of the first type includes a first type of capacitor. The plate 440) and the plurality of capacitor plates of the second type of capacitor plate 450. Between the top surface of the cymbal substrate 410 and a capacitor plate (the second type of capacitor plate 450) above the top surface of the cymbal substrate 410 and the adjacent two capacitor plates (the first type of capacitor plate 440) A dielectric layer (not shown) is filled between the second type of capacitor plates 450). The first type of capacitor plates 440 and the second type of capacitor plates 450 are alternately spaced apart from each other, and the first type of capacitor plates 440 are electrically connected to the source metal layer 430 for forming an electrode of the bypass capacitor, and second The capacitor-like plates 450 are electrically connected to each other to form another electrode of the bypass capacitor. A drain (not shown) of the MOS field effect transistor 400 is formed on the bottom surface of the cymbal substrate 410, and a source (not shown) and a gate (not shown) of the MOS field effect transistor are formed on the lining of the cymbal lining The top of the bottom 410.

參見第5A-1圖,任意一層電容極板所在的層面均在柵極金屬層420上方設有一層迭柵極金屬層420a;層迭柵極金屬層420a用於與柵極金屬層420電性連接以將柵極導出。在相鄰層迭柵極金屬層420a間的電介質層中及在靠近柵極金屬層420的層迭柵極金屬層420a與柵極金屬層420間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬420b將層迭柵極金屬層420a與與柵極金屬層420電性連接,即與柵極電性連接。參見第5A-2圖,源極金屬層430設有一延伸結構435,且任意一層的電容極板所在的層面均在延伸結構435上方設有一層迭延伸結構435a;層迭延伸結構435a用於與延伸結構435電性連接以將所述源極導出。在相鄰層迭延伸結構435a間的電介質層中及在靠近延伸結構435的層迭延伸結構435a與延伸結構435間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬435b將層迭延伸結構435a與源極電性連接。 Referring to FIG. 5A-1, any layer of the capacitor plate is provided with a stacked gate metal layer 420a over the gate metal layer 420; the stacked gate metal layer 420a is used for electrical connection with the gate metal layer 420. Connect to export the gate. A plurality of via holes are provided in the dielectric layer between the adjacent stacked gate metal layers 420a and in the dielectric layer between the stacked gate metal layer 420a and the gate metal layer 420 adjacent to the gate metal layer 420 (not The grounded gate metal layer 420a is electrically connected to the gate metal layer 420, that is, electrically connected to the gate, by the metal 420b implanted in the via. Referring to FIG. 5A-2, the source metal layer 430 is provided with an extension structure 435, and the layers of the capacitor plates of any one layer are provided with a layered extension structure 435a above the extension structure 435; the layer extension structure 435a is used for The extension structure 435 is electrically connected to derive the source. A plurality of through holes (not shown) are provided in the dielectric layer between the adjacent lamination extension structures 435a and in the dielectric layer between the lamination extension structures 435a and the extension structures 435 of the extension structure 435, and are passed through the injection holes. The metal 435b in the hole electrically connects the layer extension structure 435a to the source.

參見第5A-1、5A-2圖,第一類電容極板440與第二類電容極板450縱向交錯配置,用於在相鄰的第二類電容極板450間的第一類電容極板440所在的層面中設置絕緣於第一類電容極板440的第二類連接層450a,同時在第二類電容極板450與第二類連接層450a之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬450b將第二類電容極板450相互電性連接。參見第5A-2圖,任意一層第一類電容極板440均與該層第一類電容極板440所在層面的層迭延伸結構435a連接。以致,第一類電容極板440通過與層迭延伸結構435a電性連接,又由於層迭延伸結構435a與源極金屬層430電性連接,使得第一類電容極板440均與源極金屬層430電性連接。 Referring to FIGS. 5A-1 and 5A-2, the first type of capacitor plates 440 and the second type of capacitor plates 450 are longitudinally staggered for use in the first type of capacitor poles between adjacent second type of capacitor plates 450. A second type of connection layer 450a insulated from the first type of capacitor plate 440 is disposed in the layer where the board 440 is located, and a through hole is disposed in the dielectric layer between the second type of capacitor plate 450 and the second type of connection layer 450a ( Not shown), and the second type of capacitor plates 450 are electrically connected to each other through the metal 450b injected into the via holes. Referring to FIG. 5A-2, any of the first type of capacitor plates 440 is connected to the layered extension structure 435a of the layer of the first type of capacitor plates 440. Therefore, the first type of capacitor plates 440 are electrically connected to the layer extension structure 435a, and the layer extension structure 435a is electrically connected to the source metal layer 430, so that the first type of capacitor plates 440 are both source metal and source metal. Layer 430 is electrically connected.

第5B-5E圖中,柵極金屬層420和源極金屬層430相互分割隔離,柵極金屬層420和源極金屬層430之間的分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、層迭延伸結構、層迭柵極金屬層)的絕緣分割區且絕緣分割區均填充有電介質。另外,本實施例中構成MOS場效應電晶體400柵極電極的柵極金屬層420及構成源極電極的源極金屬層430設置於矽片襯底410的頂面,漏極設置於矽片襯底410的底面,該MOS場效應電晶體400為底漏頂源式的垂直裝置。本實施例集成電容的結構也可應用於其他類別的MOS場效應電晶體的實施例中,在另一集成電容的底源頂漏式的MOSFET垂直裝置中,底源頂漏式的MOSFET的柵極電極及漏極電極設置於矽片襯底頂面,源極設置於矽片襯底的底面;換言之,在本實施例第5A-1圖及第5A-2圖示出的MOSFET400中,其構成第二電極的柵極金屬層420在另一實施方式中轉換成另一底源頂漏式的MOSFET的柵極電極,其構成第一電極的源極金屬層430在另一實施方式中轉換成另一底源頂漏式的MOSFET的漏極電極,其形成於矽片襯底410的底面的漏極(未示出)在另一實施方式中轉換成另一底源頂漏式的MOSFET的源極。 In the 5B-5E, the gate metal layer 420 and the source metal layer 430 are separated from each other, and the partition between the gate metal layer 420 and the source metal layer 430 is filled with a dielectric; the layer where any one of the capacitor plates is located Each includes an insulating partition for insulating isolation of device structures (such as a capacitor plate, a stacked extension structure, and a stacked gate metal layer) that are electrically connected to each other in the layer, and the insulating partitions are filled with a dielectric. In addition, in this embodiment, the gate metal layer 420 constituting the gate electrode of the MOS field effect transistor 400 and the source metal layer 430 constituting the source electrode are disposed on the top surface of the cymbal substrate 410, and the drain is disposed on the ruthenium. The bottom surface of the substrate 410, the MOS field effect transistor 400 is a bottom drain type vertical device. The structure of the integrated capacitor of this embodiment can also be applied to other embodiments of MOS field effect transistors. In the bottom-source top-drain MOSFET vertical device of another integrated capacitor, the gate of the bottom-source top-drain MOSFET The electrode and the drain electrode are disposed on the top surface of the cymbal substrate, and the source is disposed on the bottom surface of the cymbal substrate; in other words, in the MOSFET 400 shown in FIGS. 5A-1 and 5A-2 of the embodiment, The gate metal layer 420 constituting the second electrode is converted into a gate electrode of another bottom-source top-drain MOSFET in another embodiment, and the source metal layer 430 constituting the first electrode is converted in another embodiment The drain electrode of another bottom drain type MOSFET, the drain (not shown) formed on the bottom surface of the cymbal substrate 410 is converted into another bottom drain type MOSFET in another embodiment. The source.

實施例五: Embodiment 5:

上述實施例均以單晶片的低端MOSFET集成一個電容,在包含一 低端MOSFET和一高端MOSFET的雙MOSFET中集成電容的具體設計方案如下所述。包含一低端MOSFET和一高端MOSFET的雙MOSFET的設計和製備可參考美國專利申請US 2008/0067584 A1。 The above embodiments all integrate a capacitor with a single-chip low-side MOSFET, including one The specific design of the integrated capacitor in the low MOSFET and the high MOSFET's dual MOSFET is as follows. A design and fabrication of a dual MOSFET comprising a low side MOSFET and a high side MOSFET can be found in U.S. Patent Application Serial No. US 2008/0067584 A1.

參見第6A-1圖(矽片襯底510前側立體結構示意圖)、第6B-6E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,雙MOS場效應電晶體500集成有一個旁路電容,其中:於一矽片襯底510頂面上設置有構成第一電晶體柵極電極的第一柵極金屬層521及構成第一電晶體漏極電極的漏極金屬層531,和構成第二電晶體柵極電極的第二柵極金屬層522及構成第二電晶體源極電極的源極金屬層532。第一電晶體為一高端MOS場效應電晶體,第二電晶體為一低端MOS場效應電晶體。 See Figure 6A-1 (schematic diagram of the front side of the slab substrate 510), and Figure 6B-6E (the schematic diagram of the corresponding layer of the bottom-up capacitor layer of each layer in the schematic view of the three-dimensional structure) The dual MOS field effect transistor 500 is integrated with a bypass capacitor, wherein a first gate metal layer 521 constituting the first transistor gate electrode and a first electrode are disposed on a top surface of the NMOS substrate 510. A drain metal layer 531 of the crystal drain electrode, a second gate metal layer 522 constituting the second transistor gate electrode, and a source metal layer 532 constituting the second transistor source electrode. The first transistor is a high-end MOS field effect transistor, and the second transistor is a low-end MOS field effect transistor.

矽片襯底510頂面上方設置有平行於矽片襯底510的包含數個第一類電容極板(如本實施例中的一個第一類電容極板540)和數個第二類電容極板550的多層電容極板,且在矽片襯底510頂面與矽片襯底510頂面上方的一塊電容極板(如本實施例中的第二類電容極板550)間以及在相鄰的兩塊電容極板(如第二類電容極板550與第一類電容極板540)間填充有電介質層(未示出)。第一類電容極板540和第二類電容極板550相互交替間隔配置,且第一類電容極板540均與漏極金屬層531電性連接用於構成旁路電容的一個電極,第二類電容極板550均與源極金屬層532電性連接用於構成旁路電容的另一個電極。第一電晶體的源極(未示出)形成於矽片襯底510的底面,第一電晶體的漏極、柵極(未示出)形成於矽片襯底510頂面;第二電晶體的漏極(未示出)形成於矽片襯底510的底面,第二電晶體的源極、柵極(未示出)形成於矽片襯底510頂面。任意一層的電容極板所在的層面均在第一柵極金屬層521上方設有一第一層迭柵極金屬層521a;其中,第一層迭柵極金屬層521a用於與第一柵極金屬層521電性連接以將第一電晶體的柵極導出。任意一層的電容極板所在的層面均在第二柵極金屬層522上方設有一第二層迭柵極金屬層522a;其中,第二層迭柵極金屬層522a用於與 第二柵極金屬層522電性連接以將第二電晶體的柵極導出。 A plurality of first type capacitor plates (such as a first type capacitor plate 540 in this embodiment) and a plurality of second type capacitors are disposed above the top surface of the cymbal substrate 510 parallel to the cymbal substrate 510. a multi-layer capacitor plate of the plate 550, and between a top surface of the cymbal substrate 510 and a capacitor plate above the top surface of the cymbal substrate 510 (such as the second type of capacitor plate 550 in this embodiment) and A dielectric layer (not shown) is filled between two adjacent capacitor plates (such as the second type of capacitor plate 550 and the first type of capacitor plate 540). The first type of capacitor plates 540 and the second type of capacitor plates 550 are alternately spaced apart from each other, and the first type of capacitor plates 540 are electrically connected to the drain metal layer 531 for forming an electrode of the bypass capacitor, and second The capacitor-like plates 550 are each electrically connected to the source metal layer 532 for forming the other electrode of the bypass capacitor. A source (not shown) of the first transistor is formed on a bottom surface of the cymbal substrate 510, and a drain and a gate (not shown) of the first transistor are formed on a top surface of the cymbal substrate 510; A drain (not shown) of the crystal is formed on the bottom surface of the ruthenium substrate 510, and a source and a gate (not shown) of the second transistor are formed on the top surface of the ruthenium substrate 510. A layer of the capacitor plate of any one layer is disposed above the first gate metal layer 521 with a first stacked gate metal layer 521a; wherein the first stacked gate metal layer 521a is used for the first gate metal Layer 521 is electrically connected to derive the gate of the first transistor. A layer of the capacitor plate of any one layer is provided with a second stacked gate metal layer 522a above the second gate metal layer 522; wherein the second stacked gate metal layer 522a is used for The second gate metal layer 522 is electrically connected to derive the gate of the second transistor.

參見第6A-2圖(矽片襯底510後側立體結構示意圖)、第6B-6E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,漏極金屬層531設有一第一延伸結構535,且任意一層電容極板所在的層面均在第一延伸結構535上方設有一第一層迭延伸結構535a;其中,第一層迭延伸結構535a用於與第一延伸結構535電性連接以將第一電晶體漏極導出。參見第6A-2圖(矽片襯底510後側立體結構示意圖)、第6B-6E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,源極金屬層532設有一第二延伸結構536,且任意一層電容極板所在的層面均在第二延伸結構536上方設有一第二層迭延伸結構536a;其中,第二層迭延伸結構536a用於與第二延伸結構536電性連接以將第二電晶體源極導出。 Refer to FIG. 6A-2 (a schematic view of the rear side of the slab substrate 510), and FIG. 6B-6E (a schematic plan view of the corresponding bottom-up layer of each of the capacitor plates in the schematic view of the three-dimensional structure) The drain metal layer 531 is provided with a first extension structure 535, and a layer of any one of the capacitor plates is disposed above the first extension structure 535 with a first layer extension structure 535a; wherein, the first layer extension structure 535a is used to electrically connect with the first extension structure 535 to lead the first transistor drain. Refer to FIG. 6A-2 (a schematic view of the rear side of the slab substrate 510), and FIG. 6B-6E (a schematic plan view of the corresponding bottom-up layer of each of the capacitor plates in the schematic view of the three-dimensional structure) The source metal layer 532 is provided with a second extension structure 536, and a layer of any one of the capacitor plates is disposed above the second extension structure 536 with a second layer extension structure 536a; wherein the second layer extension structure 536a is for electrically connecting with the second extension structure 536 to derive the second transistor source.

參見第6A-1圖所示,在相鄰第一層迭柵極金屬層521a間的電介質層中及在靠近第一柵極金屬層521的第一層迭柵極金屬層521a與第一柵極金屬層521間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬521b將第一層迭柵極金屬層521a彼此電性連接,同時將第一層迭柵極金屬層521a與第一柵極金屬層521電性連接,即是將第一層迭柵極金屬層521a與第一電晶體的柵極電性連接。參見第6A-1圖所示,在相鄰第二層迭柵極金屬層522a間的電介質層中及在靠近第二柵極金屬層522的第二層迭柵極金屬層522a與第二柵極金屬層間522的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬522b將第二層迭柵極金屬層522a彼此電性連接,同時將第二層迭柵極金屬層522a與第二柵極金屬層522電性連接,即是將第二層迭柵極金屬層522a與第二電晶體的柵極電性連接。 Referring to FIG. 6A-1, in the dielectric layer between adjacent first stacked gate metal layers 521a and in the first stacked gate metal layer 521a and the first gate adjacent to the first gate metal layer 521 A plurality of through holes (not shown) are disposed in the dielectric layer between the electrode metal layers 521, and the first stacked gate metal layers 521a are electrically connected to each other through the metal 521b injected into the through holes, and the first layer is simultaneously The gate metal layer 521a is electrically connected to the first gate metal layer 521, that is, the first stacked gate metal layer 521a is electrically connected to the gate of the first transistor. Referring to FIG. 6A-1, the dielectric layer between the adjacent second stacked gate metal layers 522a and the second stacked gate metal layer 522a and the second gate adjacent to the second gate metal layer 522. A plurality of through holes (not shown) are disposed in the dielectric layer of the inter-metal layer 522, and the second stacked gate metal layers 522a are electrically connected to each other through the metal 522b injected into the via holes, and the second layer is stacked The gate metal layer 522a is electrically connected to the second gate metal layer 522, that is, the second stacked gate metal layer 522a is electrically connected to the gate of the second transistor.

參見第6A-2圖所示,在相鄰第一層迭延伸結構535a間的電介質層中及在靠近第一延伸結構535的第一層迭延伸結構535a與第一延伸結構間535的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬535b將第一層迭延伸結構535a彼此相互電性連接,並將第一層迭延伸結構535a 與第一延伸結構間535電性連接,進而達到將第一層迭延伸結構535a與第一電晶體的漏極電性連接。參見第6A-2圖所示,在相鄰第二層迭延伸結構536a間的電介質層中及在靠近第二延伸結構536的第二層迭延伸結構536a與第二延伸結構536間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬536b將第二層迭延伸結構536a彼此相互電性連接,並將第二層迭延伸結構536a與第二延伸結構間536電性連接,進而達到將第二層迭延伸結構536a與第二電晶體的源極電性連接。 Referring to FIG. 6A-2, the dielectric layer between the adjacent first stacked extension structures 535a and the dielectric layer between the first extended extension structures 535a and the first extended structures 535 adjacent to the first extended structures 535. A plurality of through holes (not shown) are provided, and the first stacked extension structures 535a are electrically connected to each other through the metal 535b injected into the through holes, and the first laminated extension structure 535a is The electrical connection between the first extension structure 535 and the first extension structure 535a is electrically connected to the drain of the first transistor. Referring to FIG. 6A-2, the dielectric layer between the adjacent second stacked extension structures 536a and the dielectric layer between the second extended extension structures 536a and the second extended structures 536 adjacent to the second extended structures 536. A plurality of through holes (not shown) are provided, and the second stacked extension structures 536a are electrically connected to each other through the metal 536b injected into the through holes, and the second laminated extension structure 536a and the second extended structure are The electrical connection 536 is electrically connected to the second laminated extension 536a and the source of the second transistor.

參見第6A-1圖、第6B-6E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,第一類電容極板540與第二類電容極板550縱向交錯配置,用於在相鄰的第二類電容極板550間的第一類電容極板540所在的層面中設置絕緣於第一類電容極板540的第二類連接層550a;在第二類電容極板550與第二類連接層550a之間及源極金屬層532與靠近源極金屬層532的第二類電容極板550之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬550b將第二類電容極板550與第二類連接層550a電性連接,進而第二類電容極板550相互電性連接,同時將第二類電容極板550與源極金屬層532電性連接。參見第6A-1圖、第6B-6E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,第一類電容極板540與第二類電容極板550縱向交錯配置,用於在相鄰的第一類電容極板(第一類電容極板可以有多層,本實施例第一類電容極板包含一個第一類電容極板540)間及第一類電容極板540與漏極金屬層531間的第二類電容極板550所在的層面中設置絕緣於第二類電容極板550的第一類連接層540a;在第一類電容極板540與第一類連接層540a之間及漏極金屬層531與靠近漏極金屬層531的第一類連接層540a之間的電介質層中設置通孔(未示出),並通過注入通孔中的金屬540b將第一類電容極板540相互電性連接(如果第一類電容極板有多層),同時將第一類電容極板540與漏極金屬層531電性連接。 Referring to FIG. 6A-1 and FIG. 6B-6E (a schematic plan view of a layer of each of the corresponding bottom-up capacitor plates in the schematic view of the three-dimensional structure), the first type of capacitor plates 540 and the second The capacitor-like plate 550 is longitudinally staggered and configured to provide a second type of connection insulated from the first type of capacitor plate 540 in a layer of the first type of capacitor plate 540 between adjacent second type of capacitor plates 550. a layer 550a; a via hole is disposed in the dielectric layer between the second type of capacitor plate 550 and the second type of connection layer 550a and between the source metal layer 532 and the second type of capacitor plate 550 adjacent to the source metal layer 532 (not shown), and the second type of capacitor plate 550 is electrically connected to the second type of connection layer 550a through the metal 550b injected into the through hole, and the second type of capacitor plates 550 are electrically connected to each other. The second type of capacitor plate 550 is electrically connected to the source metal layer 532. Referring to FIG. 6A-1 and FIG. 6B-6E (a schematic plan view of a layer of each of the corresponding bottom-up capacitor plates in the schematic view of the three-dimensional structure), the first type of capacitor plates 540 and the second The capacitor-like plates 550 are arranged in a longitudinally staggered manner for the adjacent first type of capacitor plates (the first type of capacitor plates may have multiple layers, and the first type of capacitor plates of the present embodiment comprise a first type of capacitor plates 540). a first type of connection layer 540a insulated from the second type of capacitor plate 550 is disposed in a layer between the first type of capacitor plate 540 and the second type of capacitor plate 550 between the drain metal layer 531; A through hole (not shown) is disposed in the dielectric layer between the capacitor-like plate 540 and the first type of connection layer 540a and between the drain metal layer 531 and the first type of connection layer 540a adjacent to the drain metal layer 531, and The first type of capacitor plates 540 are electrically connected to each other through the metal 540b injected into the through holes (if the first type of capacitor plates have multiple layers), and the first type of capacitor plates 540 and the drain metal layer 531 are electrically connected. .

第6B-6E圖中,第一柵極金屬層521、漏極金屬層531、源極金屬 層532、第二柵極金屬層522通過分割區相互分割隔離,且分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、第一層迭延伸結構、第二層迭延伸結構、第一層迭柵極金屬層、第二層迭柵極金屬層、第一類連接層、第二類連接層)的絕緣分割區且絕緣分割區均填充有電介質。 In FIG. 6B-6E, the first gate metal layer 521, the drain metal layer 531, and the source metal The layer 532 and the second gate metal layer 522 are separated and separated from each other by the dividing region, and the dividing region is filled with a dielectric; the layer where any one of the capacitor plates is located includes a device structure for insulating and isolating the mutually non-electrical connection in the layer. (such as capacitor plate, first layer extension structure, second layer extension structure, first layer of stacked gate metal layer, second layer of stacked gate metal layer, first type of connection layer, second type of connection layer) The insulating partition and the insulating partition are filled with a dielectric.

如果期望取得更大電容值,實施例五中第一類電容極板540與第二類電容極板550的層數,可以不限制於第6A-1、6A-2、6B-6E圖中描述的數量,與之相應的第一層迭柵極金屬層521a、第二層迭柵極金屬層522a、第一層迭延伸結構535a、第二層迭延伸結構536a亦不限制於第6A-1、6A-2、6B-6E圖中描述的數量。 If it is desired to obtain a larger capacitance value, the number of layers of the first type of capacitor plate 540 and the second type of capacitor plate 550 in Embodiment 5 may not be limited to those described in FIGS. 6A-1, 6A-2, and 6B-6E. The number of the first stacked gate metal layer 521a, the second stacked gate metal layer 522a, the first stacked extension structure 535a, and the second stacked extension structure 536a are also not limited to the 6A-1. , the number described in the figures 6A-2, 6B-6E.

實施例六: Example 6:

上述實施例五基於將第一類電容極板通過第一類連接層電性連接到漏極金屬層上,通過第二類連接層將第二類電容極板彼此連接或是連接到源極金屬層上。作為進一步簡化,在不脫離本發明精神的基礎上,另披露一種下述的更為簡潔的實施方式。 The fifth embodiment is based on electrically connecting the first type of capacitor plates to the drain metal layer through the first type of connection layer, and connecting the second type of capacitor plates to each other or to the source metal through the second type of connection layer. On the floor. As a further simplification, a more concise embodiment of the following will be disclosed without departing from the spirit of the invention.

參見第7A-1圖(矽片襯底610前側立體結構示意圖)、第7A-2圖(矽片襯底610後側立體結構示意圖)、第7B-7E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,雙MOS場效應電晶體600集成有一個旁路電容,其中:於一矽片襯底610頂面上設置有構成第一電晶體柵極電極的第一柵極金屬層621及構成第一電晶體漏極電極的漏極金屬層631,和構成第二電晶體柵極電極的第二柵極金屬層622及構成第二電晶體源極電極的源極金屬層632。第一電晶體為一高端MOS場效應電晶體,第二電晶體為一低端MOS場效應電晶體。矽片襯底610頂面上方設置有平行於矽片襯底610的包含數個第一類電容極板(如本實施例中的一個第一類電容極板640)和數個第二類電容極板650的多層電容極板,且在矽片襯底610頂面與矽片襯底610頂面上方的一塊電容極板(如本 實施例中的第二類電容極板650)間以及在相鄰的兩塊電容極板(如第二類電容極板650與第一類電容極板640)間填充有電介質層(未示出)。第一類電容極板640和第二類電容極板650相互交替間隔配置,且第一類電容極板640均與漏極金屬層631電性連接用於構成旁路電容的一個電極,第二類電容極板650均與源極金屬層632電性連接用於構成旁路電容的另一個電極。第一電晶體的源極(未示出)形成於矽片襯底610的底面,第一電晶體的漏極、柵極(未示出)形成於矽片襯底610頂面;第二電晶體的漏極(未示出)形成於矽片襯底610的底面,第二電晶體的源極、柵極(未示出)形成於矽片襯底610頂面。任意一層的電容極板所在的層面均在第一柵極金屬層621上方設有一第一層迭柵極金屬層621a;其中,第一層迭柵極金屬層621a用於與第一柵極金屬層621電性連接以將第一電晶體的柵極導出。任意一層的電容極板所在的層面均在第二柵極金屬層622上方設有一第二層迭柵極金屬層622a;其中,第二層迭柵極金屬層622a用於與第二柵極金屬層622電性連接以將第二電晶體的柵極導出。 See Fig. 7A-1 (schematic diagram of the front side of the reticle substrate 610), Fig. 7A-2 (schematic view of the rear side of the cymbal substrate 610), and Fig. 7B-7E (corresponding to the three-dimensional structure The double MOS field effect transistor 600 is integrated with a bypass capacitor, wherein the top surface of the substrate 610 is disposed on the top surface of the substrate 610. a first gate metal layer 621 of the transistor gate electrode, a drain metal layer 631 constituting the first transistor drain electrode, and a second gate metal layer 622 constituting the second transistor gate electrode and a second structure A source metal layer 632 of the transistor source electrode. The first transistor is a high-end MOS field effect transistor, and the second transistor is a low-end MOS field effect transistor. A plurality of first type capacitor plates (such as a first type capacitor plate 640 in this embodiment) and a plurality of second type capacitors are disposed above the top surface of the cymbal substrate 610 parallel to the cymbal substrate 610. a multi-layer capacitor plate of the plate 650, and a capacitor plate on the top surface of the cymbal substrate 610 and the top surface of the cymbal substrate 610 (such as The second type of capacitor plates 650) in the embodiment and between two adjacent capacitor plates (such as the second type of capacitor plates 650 and the first type of capacitor plates 640) are filled with a dielectric layer (not shown). ). The first type of capacitor plates 640 and the second type of capacitor plates 650 are alternately spaced apart from each other, and the first type of capacitor plates 640 are electrically connected to the drain metal layer 631 for forming an electrode of the bypass capacitor, and second The capacitor-like plates 650 are electrically connected to the source metal layer 632 for forming the other electrode of the bypass capacitor. A source (not shown) of the first transistor is formed on a bottom surface of the cymbal substrate 610, and a drain and a gate (not shown) of the first transistor are formed on a top surface of the cymbal substrate 610; A drain (not shown) of the crystal is formed on the bottom surface of the ruthenium substrate 610, and a source and a gate (not shown) of the second transistor are formed on the top surface of the ruthenium substrate 610. A layer of the capacitor plate of any one layer is disposed above the first gate metal layer 621 with a first stacked gate metal layer 621a; wherein the first stacked gate metal layer 621a is used for the first gate metal Layer 621 is electrically connected to derive the gate of the first transistor. A layer of the capacitor plate of any one layer is disposed on the second gate metal layer 622 with a second stacked gate metal layer 622a; wherein the second stacked gate metal layer 622a is used for the second gate metal Layer 622 is electrically connected to derive the gate of the second transistor.

參見第7A-2圖(矽片襯底610後側立體結構示意圖)、第7B-7E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,漏極金屬層631設有一第一延伸結構635,且任意一層電容極板所在的層面均在第一延伸結構635上方設有一第一層迭延伸結構635a;其中,第一層迭延伸結構635a用於與第一延伸結構635電性連接以將第一電晶體漏極導出。參見第7A-2圖(矽片襯底610後側立體結構示意圖)、第7B-7E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,源極金屬層632設有一第二延伸結構636,且任意一層電容極板所在的層面均在第二延伸結構636上方設有一第二層迭延伸結構636a;其中,第二層迭延伸結構636a用於與第二延伸結構636電性連接以將第二電晶體源極導出。 See Figure 7A-2 (schematic diagram of the rear side of the slab substrate 610), and Figure 7B-7E (the schematic diagram of the corresponding layer of the bottom-up capacitor layer of each layer in the schematic view of the three-dimensional structure) The drain metal layer 631 is provided with a first extension structure 635, and a layer of any one of the capacitor plates is disposed above the first extension structure 635 with a first layer extension structure 635a; wherein, the first layer extension structure 635a is for electrically connecting with the first extension structure 635 to lead the first transistor drain. See Figure 7A-2 (schematic diagram of the rear side of the slab substrate 610), and Figure 7B-7E (the schematic diagram of the corresponding layer of the bottom-up capacitor layer of each layer in the schematic view of the three-dimensional structure) The source metal layer 632 is provided with a second extension structure 636, and a layer of any one of the capacitor plates is disposed above the second extension structure 636 with a second layer extension structure 636a; wherein the second layer extension structure 636a is for electrically connecting with the second extension structure 636 to derive the second transistor source.

參見第7A-1圖所示,在相鄰第一層迭柵極金屬層621a間的電介質層中及在靠近第一柵極金屬層621的第一層迭柵極金屬層621a與第一柵 極金屬層621間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬621b將第一層迭柵極金屬層621a彼此電性連接,同時將第一層迭柵極金屬層621a與第一柵極金屬層621電性連接,即是將第一層迭柵極金屬層621a與第一電晶體的柵極電性連接。參見第7A-1圖所示,在相鄰第二層迭柵極金屬層622a間的電介質層中及在靠近第二柵極金屬層622的第二層迭柵極金屬層622a與第二柵極金屬層間622的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬622b將第二層迭柵極金屬層622a彼此電性連接,同時將第二層迭柵極金屬層622a與第二柵極金屬層622電性連接,即是將第二層迭柵極金屬層622a與第二電晶體的柵極電性連接。 Referring to FIG. 7A-1, in the dielectric layer between adjacent first stacked gate metal layers 621a and in the first stacked gate metal layer 621a and the first gate adjacent to the first gate metal layer 621 A plurality of through holes (not shown) are disposed in the dielectric layer between the epitaxial metal layers 621, and the first stacked gate metal layers 621a are electrically connected to each other through the metal 621b injected into the via holes, and the first layer is simultaneously The gate metal layer 621a is electrically connected to the first gate metal layer 621, that is, the first stacked gate metal layer 621a is electrically connected to the gate of the first transistor. Referring to FIG. 7A-1, in the dielectric layer between adjacent second stacked gate metal layers 622a and in the second stacked gate metal layer 622a and second gate adjacent to the second gate metal layer 622 A plurality of through holes (not shown) are disposed in the dielectric layer of the inter-metal layer 622, and the second stacked gate metal layers 622a are electrically connected to each other through the metal 622b implanted in the via holes, and the second layer is stacked The gate metal layer 622a is electrically connected to the second gate metal layer 622, that is, the second stacked gate metal layer 622a is electrically connected to the gate of the second transistor.

參見第7A-2圖所示,在相鄰第一層迭延伸結構635a間的電介質層中及在靠近第一延伸結構635的第一層迭延伸結構635a與第一延伸結構間635的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬635b將第一層迭延伸結構635a彼此相互電性連接,並將第一層迭延伸結構635a與第一延伸結構間635電性連接,進而達到將第一層迭延伸結構635a與第一電晶體的漏極電性連接。參見第7A-2圖所示,在相鄰第二層迭延伸結構636a間的電介質層中及在靠近第二延伸結構636的第二層迭延伸結構636a與第二延伸結構636間的電介質層中設有多個通孔(未示出),並通過注入通孔中的金屬636b將第二層迭延伸結構636a彼此相互電性連接,並將第二層迭延伸結構636a與第二延伸結構間636電性連接,進而達到將第二層迭延伸結構636a與第二電晶體的源極電性連接。 Referring to FIG. 7A-2, the dielectric layer between the adjacent first stacked extension structures 635a and the dielectric layer between the first extended extension structures 635a and the first extended structures 635 adjacent to the first extended structures 635. a plurality of through holes (not shown) are provided, and the first layer extension structures 635a are electrically connected to each other through the metal 635b injected into the through holes, and the first layer extension structure 635a and the first extension structure are The electrical connection 635 is electrically connected, thereby electrically connecting the first stacked extension structure 635a to the drain of the first transistor. Referring to FIG. 7A-2, the dielectric layer between the adjacent second stacked extension structures 636a and the second extended structure 636a and the second extended structure 636 adjacent to the second extended structure 636. A plurality of through holes (not shown) are provided, and the second laminated extension structures 636a are electrically connected to each other through the metal 636b injected into the through holes, and the second laminated extension structure 636a and the second extended structure are The electrical connection 636 is electrically connected, thereby electrically connecting the second laminated extension structure 636a to the source of the second transistor.

參見第7A-2圖、第7B-7E圖(立體結構示意圖中相對應的自下而上的每一層電容極板所在的層面的平面示意圖)所示,任意一層第一類電容極板640均與該層第一類電容極板640所在層面的第一層迭延伸結構635a連接。任意一層所述的第二類電容極板650均與該層第二類電容極板650所在層面的第二層迭延伸結構636a連接。以致,第一類電容極板640通過與第一層迭延伸結構635a電性連接,又由於第一層迭延伸結構635a與漏極金屬層631電性連接,使得第一類電容極板640均與漏極金屬層631電性 連接;第二類電容極板650通過與第二層迭延伸結構636a電性連接,又由於第二層迭延伸結構636a與源極金屬層632電性連接,使得第二類電容極板650均與源極金屬層632電性連接。 See Figure 7A-2, Figure 7B-7E (the schematic diagram of the layer of the corresponding bottom-up capacitor layer in the three-dimensional structure diagram), any one of the first type of capacitor plates 640 Connected to the first layer extension structure 635a of the layer of the first type of capacitor plate 640 of the layer. The second type of capacitor plates 650 of any one of the layers are connected to the second layer extension structure 636a of the layer of the second type of capacitor plates 650. Therefore, the first type of capacitor plates 640 are electrically connected to the first layer extension structure 635a, and the first layer extension structure 635a is electrically connected to the drain metal layer 631, so that the first type of capacitor plates 640 are Electrical properties with the drain metal layer 631 The second type of capacitor plate 650 is electrically connected to the second layer extension structure 636a, and the second layer extension structure 636a is electrically connected to the source metal layer 632. The source metal layer 632 is electrically connected.

第7B-7E圖中,第一柵極金屬層621、漏極金屬層631、源極金屬層632、第二柵極金屬層622通過分割區相互分割隔離,且分割區填充有電介質;任意一層電容極板所在的層面均包含用於絕緣隔離該層面中彼此互不電性連接的裝置結構(如電容極板、第一層迭延伸結構、第二層迭延伸結構、第一層迭柵極金屬層、第二層迭柵極金屬層)的絕緣分割區且絕緣分割區均填充有電介質。 In FIG. 7B-7E, the first gate metal layer 621, the drain metal layer 631, the source metal layer 632, and the second gate metal layer 622 are separated and separated from each other by a division region, and the division region is filled with a dielectric; any layer The layers on which the capacitor plates are located include device structures for insulating and isolating each other from each other (eg, a capacitor plate, a first layer extension structure, a second layer extension structure, and a first layer stack gate) The insulating partition of the metal layer and the second stacked gate metal layer and the insulating partition are filled with a dielectric.

如果期望取得更大電容值,實施例六中第一類電容極板640與第二類電容極板650的層數,可以不限制於第7A-1、7A-2、7B-7E圖中描述的數量,與之相應的第一層迭柵極金屬層621a、第二層迭柵極金屬層622a、第一層迭延伸結構635a、第二層迭延伸結構636a亦不限制於第7A-1、7A-2、7B-7E圖中描述的數量。 If it is desired to obtain a larger capacitance value, the number of layers of the first type of capacitor plate 640 and the second type of capacitor plate 650 in Embodiment 6 may not be limited to those described in FIGS. 7A-1, 7A-2, and 7B-7E. The number of the first stacked gate metal layer 621a, the second stacked gate metal layer 622a, the first stacked extension structure 635a, and the second stacked extension structure 636a are also not limited to the 7A-1. , the number described in the figures 7A-2, 7B-7E.

基於上述實施例的技術方案,現提供在金屬氧化物半導體場效應電晶體(MOSFET)上集成電容的製備方法。 Based on the technical solution of the above embodiment, a method of preparing an integrated capacitor on a metal oxide semiconductor field effect transistor (MOSFET) is now provided.

參見第8A-8L圖及第4A-4E圖所示,就實施例三(第4A-4E圖)披露的技術方案的電容結構進行說明,參見第8A-8L圖,製備方法:於一MOS場效應電晶體所在的矽片襯底710頂面上多次沉積電介質層711、713、715和多次沉積金屬層712、714、716,以形成矽片襯底710頂面上電介質層與金屬層交替的多層電介質層與多層金屬層。其中,沉積電介質層711、713、715後對電介質層711、713、715進行蝕刻,用於形成電介質層中的多個通孔(如711a、713a、715a及圖中未示出的通孔,下述內容將提及);其中,沉積金屬層712、714、716後對金屬層712、714、716進行蝕刻分割,用於將金屬層712、714、716分割成不同的金屬區域(如712a、712b、712c、714a、714b、714c、716a、716b及為圖中未示出的金屬區,下述內容將提 及),一部分金屬區域形成電容極板,且沉積金屬層的同時還利用金屬填充電介質層中所包含的通孔(如711a、713a、715a及圖中未示出的通孔,下述內容將提及)。任意一層金屬層蝕刻分割後均形成該金屬層所在層面的層迭延伸結構(圖中未示出)和層迭柵極金屬層(如712a、714a、716a)。 Referring to Figures 8A-8L and 4A-4E, the capacitor structure of the technical solution disclosed in Embodiment 3 (Fig. 4A-4E) will be described. Referring to Figures 8A-8L, the preparation method is as follows: in a MOS field The dielectric layer 711, 713, 715 and the plurality of deposited metal layers 712, 714, 716 are deposited on the top surface of the cymbal substrate 710 where the effect transistor is located to form a dielectric layer and a metal layer on the top surface of the cymbal substrate 710. An alternating multilayer dielectric layer and a plurality of metal layers. The dielectric layers 711, 713, and 715 are etched after depositing the dielectric layers 711, 713, and 715 for forming a plurality of via holes in the dielectric layer (such as 711a, 713a, and 715a and through holes not shown in the drawing). The following will be mentioned; wherein, after depositing the metal layers 712, 714, 716, the metal layers 712, 714, 716 are etched and divided for dividing the metal layers 712, 714, 716 into different metal regions (such as 712a). , 712b, 712c, 714a, 714b, 714c, 716a, 716b and metal regions not shown in the figure, the following will be mentioned And a part of the metal region forms a capacitor plate, and the metal layer is filled with a metal to fill the via holes included in the dielectric layer (such as 711a, 713a, 715a and a through hole not shown in the figure, the following content will be Mention). After any one of the metal layers is etched and divided, a layered extension structure (not shown) and a stacked gate metal layer (such as 712a, 714a, 716a) on the layer where the metal layer is formed are formed.

MOS場效應電晶體所在的矽片襯底710頂面上沉積一層電介質層711並通過蝕刻電介質層711於電介質層711中形成多個通孔711a;第8A-8L圖為第4A圖的截面圖,第8A-8L圖中金屬層712、714、716蝕刻分割後即形成第4C、4D、4E圖所示的金屬切割圖案。再於電介質層上711沉積一層金屬層712並通過蝕刻分割金屬層712用於將金屬層712分割成不同的金屬區域,且沉積金屬層712的同時還利用金屬填充電介質層711所包含的通孔711a。多次重複沉積電介質層和金屬層,以形成矽片襯底頂面上電介質層711、713、515與金屬層712、714、716交替的多層電介質層與多層金屬層。具體步驟如下: A dielectric layer 711 is deposited on the top surface of the NMOS substrate 710 where the MOS field effect transistor is located, and a plurality of through holes 711a are formed in the dielectric layer 711 by etching the dielectric layer 711; FIG. 8A-8L is a cross-sectional view of FIG. 4A. In the 8A-8L diagram, the metal layers 712, 714, and 716 are etched and divided to form the metal cut patterns shown in the fourth C, 4D, and 4E drawings. A metal layer 712 is deposited on the dielectric layer 711 and the metal layer 712 is divided by etching to divide the metal layer 712 into different metal regions, and the metal layer 712 is deposited while filling the via hole included in the dielectric layer 711 with metal. 711a. The dielectric layer and the metal layer are repeatedly deposited a plurality of times to form a plurality of dielectric layers and a plurality of metal layers alternately between the dielectric layers 711, 713, 515 and the metal layers 712, 714, 716 on the top surface of the ruthenium substrate. Specific steps are as follows:

參見第8A圖,矽片襯底710頂面包含構成MOS場效應電晶體柵極電極的柵極金屬層720、構成MOS場效應電晶體源極電極的源極金屬層730及源極金屬層730的一延伸結構(未示出,可參考第4B圖)。於矽片襯底710頂面上沉積一層電介質層711。柵極金屬層720和源極金屬層730相互分割隔離,沉積電介質層711用於將柵極金屬層720和源極金屬層730之間的分割區725填充電介質。參見第8B圖,通過蝕刻電介質層711於電介質層711中形成多個通孔711a。通孔711a選擇性的蝕刻於位於柵極金屬層720、延伸結構上方的電介質中,於電介質層711中在下述提到的第一類連接層712b下方的電介質中亦圖案化的進行蝕刻行成通孔711a。參見第8C圖,於電介質層711上形成一層金屬層712,金屬層712形成的過程中,金屬注入通孔711a中。參見第8D圖,蝕刻分割金屬層712形成金屬區域712a、712b、712c,其中,金屬區域712a構成位於柵極金屬層720上方的層迭柵極金屬層,金屬區域712b構成第一類連接層,金屬區域712c構成第二類電容極板,蝕刻分割金屬層712還形成位於延伸結構上方的層迭延 伸結構(未示出)。參見第8E圖,於金屬層712頂面上沉積一層電介質層713。沉積電介質層712同時用於將金屬層712包含的分割區填充電介質。參見第8F圖,通過蝕刻電介質層713於電介質層713中形成多個通孔713a。通孔713a選擇性的蝕刻於位於金屬區域712a、金屬區域712b、金屬區域712c上方的電介質中,金屬層712包含的層迭延伸結構上方亦形成有通孔713a。參見第8G圖,於電介質層713上形成一層金屬層714,金屬層714形成的過程中,金屬注入通孔713a中。參見第8H圖,蝕刻分割金屬層714形成金屬區域714a、714b、714c,其中,金屬區域714a構成位於柵極金屬層720上方的層迭柵極金屬層,金屬區域714b構成第一類電容極板,金屬區域714c構成第二類連接層,蝕刻分割金屬層714還形成位於延伸結構上方的層迭延伸結構(未示出)。蝕刻分割金屬層714的過程中第一類電容極板與第二類電容極板縱向交錯。參見第8I圖,於金屬層714頂面上沉積一層電介質層715。沉積電介質層715同時用於將金屬層714包含的分割區填充電介質。參見第8J圖,通過蝕刻電介質層715於電介質層715中形成多個通孔715a。通孔715a選擇性的蝕刻於位於金屬區域714a、金屬區域714c上方的電介質中,金屬層714包含的層迭延伸結構上方亦形成有通孔713a。參見第8K圖,於電介質層715上形成一層金屬層716,金屬層716形成的過程中,金屬注入通孔715a中。參見第8L圖,蝕刻分割金屬層716形成金屬區域716a、716b,其中,金屬區域716a構成位於柵極金屬層720上方的層迭柵極金屬層,金屬區域716b構成第二類電容極板,蝕刻分割金屬層716還形成位於延伸結構上方的層迭延伸結構(圖中未示出,需參考實施例三第4C、4D、4E圖所示)。第8L圖即第4A圖所示的截面圖,第8L圖中金屬層712、714、716蝕刻分割後即形成第4C、4D、4E圖所示的金屬切割圖案。 Referring to FIG. 8A, the top surface of the cymbal substrate 710 includes a gate metal layer 720 constituting a MOS field effect transistor gate electrode, a source metal layer 730 constituting a MOS field effect transistor source electrode, and a source metal layer 730. An extension structure (not shown, refer to FIG. 4B). A dielectric layer 711 is deposited on the top surface of the gusset substrate 710. The gate metal layer 720 and the source metal layer 730 are separated from each other, and the dielectric layer 711 is deposited to fill the dielectric between the gate metal layer 720 and the source metal layer 730. Referring to FIG. 8B, a plurality of via holes 711a are formed in the dielectric layer 711 by etching the dielectric layer 711. The via 711a is selectively etched into the dielectric over the gate metal layer 720 over the extended structure, and patterned in the dielectric layer 711 in the dielectric below the first type of connection layer 712b mentioned below. Through hole 711a. Referring to FIG. 8C, a metal layer 712 is formed on the dielectric layer 711. During the formation of the metal layer 712, metal is implanted into the via hole 711a. Referring to FIG. 8D, the etched metal layer 712 is etched to form metal regions 712a, 712b, and 712c, wherein the metal region 712a constitutes a stacked gate metal layer over the gate metal layer 720, and the metal region 712b constitutes a first type of connection layer. The metal region 712c constitutes a second type of capacitor plate, and the etched divided metal layer 712 also forms a layer extension over the extended structure. Stretching structure (not shown). Referring to FIG. 8E, a dielectric layer 713 is deposited on the top surface of the metal layer 712. The deposition dielectric layer 712 is simultaneously used to fill the dielectric contained in the metal layer 712 with a dielectric region. Referring to FIG. 8F, a plurality of via holes 713a are formed in the dielectric layer 713 by etching the dielectric layer 713. The via 713a is selectively etched into the dielectric above the metal region 712a, the metal region 712b, and the metal region 712c. The metal layer 712 includes a via hole 713a formed above the layered extension structure. Referring to FIG. 8G, a metal layer 714 is formed on the dielectric layer 713. During the formation of the metal layer 714, metal is implanted into the via 713a. Referring to FIG. 8H, the etched metal layer 714 is etched to form metal regions 714a, 714b, and 714c, wherein the metal region 714a constitutes a stacked gate metal layer over the gate metal layer 720, and the metal region 714b constitutes a first type of capacitor plate. The metal region 714c constitutes a second type of connection layer, and the etched metal layer 714 also forms a layered extension structure (not shown) over the extension structure. During the etching of the divided metal layer 714, the first type of capacitor plates are longitudinally staggered with the second type of capacitor plates. Referring to FIG. 8I, a dielectric layer 715 is deposited on the top surface of the metal layer 714. The deposited dielectric layer 715 is also used to fill the dielectric contained in the metal layer 714 with a dielectric. Referring to FIG. 8J, a plurality of vias 715a are formed in the dielectric layer 715 by etching the dielectric layer 715. The via 715a is selectively etched into the dielectric above the metal region 714a and the metal region 714c, and the via 713a is also formed over the layered extension structure of the metal layer 714. Referring to FIG. 8K, a metal layer 716 is formed on the dielectric layer 715. During the formation of the metal layer 716, metal is implanted into the via 715a. Referring to FIG. 8L, the etched metal layer 716 is etched to form metal regions 716a, 716b, wherein the metal region 716a constitutes a stacked gate metal layer over the gate metal layer 720, and the metal region 716b constitutes a second type of capacitor plate, etched The split metal layer 716 also forms a lamination extension structure over the extension structure (not shown in the figure, as shown in the third embodiment of FIGS. 4C, 4D, 4E). Fig. 8L is a cross-sectional view shown in Fig. 4A. In the eighth embodiment, the metal layers 712, 714, and 716 are etched and divided to form metal cut patterns shown in Figs. 4C, 4D, and 4E.

蝕刻分割金屬層716的過程中第一類電容極板與第二類電容極板縱向交錯,以供金屬區域714c通過注入第二類電容極板與金屬區域714c間的金屬可以將第二類電容極板進行相互連接。 During the process of etching the divided metal layer 716, the first type of capacitor plates are longitudinally staggered with the second type of capacitor plates, so that the metal region 714c can inject a second type of capacitor by injecting a metal between the second type of capacitor plates and the metal region 714c. The plates are connected to each other.

上述方法,如果進一步於金屬層716上進行沉積電介質層再沉積金屬層,如上述方法迴圈,則可形成類似實施例一1A、1B-1F所示的結構,相異處僅為金屬層和電介質層的層數可以不受數量限制。上述方法,任意一層金屬層(如712、714、716或更多層的金屬層)蝕刻分割後均形成位於延伸結構上方的層迭延伸結構及位於柵極金屬層上方的層迭柵極金屬層。多層金屬層(如712、714、716或更多層的金屬層)蝕刻分割後形成位於不同層面的包含數個第一類電容極板和數個第二類電容極板的多層電容極板;第一類電容極板和第二類電容極板相互交替間隔配置。上述方法,多層金屬層(如712、714、716或更多層的金屬層)蝕刻分割後在相鄰的第二類電容極板間的第一類電容極板所在的層面中形成有絕緣於第一類電容極板的第二類連接層。蝕刻電介質層(如713、715或更多層的電介質層)在第二類電容極板與第二類連接層之間的電介質層中蝕刻出多個通孔,並通過注入第二類電容極板與第二類連接層之間的電介質層中通孔中的金屬將第二類電容極板相互電性連接。上述方法,多層金屬層蝕刻分割後在相鄰的第一類電容極板間(如果形成多層第一類電容極板)及第一類電容極板與源極金屬層間的第二類電容極板所在的層面中形成有絕緣於第二類電容極板的第一類連接層。蝕刻電介質層在第一類電容極板與第一類連接層之間及源極金屬層與靠近源極金屬層的第一類連接層之間的電介質層中蝕刻出多個通孔,並通過注入第一類電容極板與第一類連接層之間電介質層中的通孔中的金屬將第一類電容極板相互電性連接,通過注入靠近源極金屬層的第一類連接層與源極金屬層間之間電介質層中的通孔中的金屬將第一類連接層與源極金屬層電性連接。上述方法,蝕刻電介質層在相鄰的層迭延伸結構之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的層迭延伸結構之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中的通孔中的金屬將相鄰的層迭延伸結構電性連接,同時將層迭延伸結構與延伸結構電性連接。上述方法,蝕刻電介質層在相鄰的層迭柵極金屬層之間及靠近柵極金屬層的層迭柵極金屬層與柵極金屬層之間的電介質層中蝕刻出多個通孔,通過注入相鄰的層迭柵極金 屬層之間及靠近柵極金屬層的層迭柵極金屬層與柵極金屬層之間的電介質層中的通孔中的金屬將相鄰的層迭柵極金屬層電性連接,同時將層迭柵極金屬層與柵極金屬層電性連接。上述方法,柵極金屬層和源極金屬層相互分割隔離,沉積電介質層用於將柵極金屬層和源極金屬層之間的分割區填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。 In the above method, if the dielectric layer is further deposited on the metal layer 716 to redeposit the metal layer, as described above, the structure shown in the first embodiment 1A, 1B-1F can be formed, and the difference is only the metal layer and The number of layers of the dielectric layer can be unlimited. In the above method, any one metal layer (such as 712, 714, 716 or more metal layers) is etched and divided to form a stacked extension structure over the extended structure and a stacked gate metal layer over the gate metal layer. . a plurality of metal layers (such as 712, 714, 716 or more metal layers) are etched and divided to form a plurality of capacitor plates comprising a plurality of first type capacitor plates and a plurality of second type capacitor plates at different levels; The first type of capacitor plate and the second type of capacitor plate are alternately arranged at intervals. In the above method, a plurality of metal layers (such as 712, 714, 716 or more metal layers) are etched and divided to form an insulation layer in a layer of the first type of capacitor plates between adjacent second type of capacitor plates. The second type of connection layer of the first type of capacitor plate. Etching a dielectric layer (such as 713, 715 or more dielectric layers) to etch a plurality of vias in the dielectric layer between the second type of capacitor plates and the second type of connection layer, and by implanting a second type of capacitor The metal in the via hole in the dielectric layer between the board and the second type of connection layer electrically connects the second type of capacitor plates to each other. In the above method, after the multilayer metal layer is etched and divided, between the adjacent first type of capacitor plates (if a plurality of first type capacitor plates are formed) and the second type of capacitor plates between the first type of capacitor plates and the source metal layer A first type of connection layer insulated from the second type of capacitor plates is formed in the layer. Etching the dielectric layer to etch a plurality of via holes in the dielectric layer between the first type of capacitor plate and the first type of connection layer and between the source metal layer and the first type of connection layer adjacent to the source metal layer, and pass through The metal in the via hole in the dielectric layer between the first type of capacitor plate and the first type of connection layer electrically connects the first type of capacitor plates to each other through the first type of connection layer adjacent to the source metal layer The metal in the via hole in the dielectric layer between the source metal layers electrically connects the first type of connection layer to the source metal layer. In the above method, the etch dielectric layer etches a plurality of via holes between the adjacent lamination extension structures and the dielectric layer between the lamination extension structure and the extension structure of the extension structure, by implanting adjacent lamination extension structures The metal in the through hole in the dielectric layer between the layered extension structure and the extension structure between the extension structure and the extension structure electrically connects adjacent layer extension structures, and electrically connects the layer extension structure and the extension structure . In the above method, the etching dielectric layer etches a plurality of via holes in the dielectric layer between the adjacent stacked gate metal layers and between the stacked gate metal layer and the gate metal layer of the gate metal layer. Injecting adjacent stacked gate gold The metal in the via hole in the dielectric layer between the layer and between the gate metal layer and the gate metal layer electrically connects the adjacent stacked gate metal layers, and The stacked gate metal layer is electrically connected to the gate metal layer. In the above method, the gate metal layer and the source metal layer are separated from each other, and the dielectric layer is deposited to fill the dielectric between the gate metal layer and the source metal layer; and the dielectric layer is deposited to etch the divided metal layer. The formed insulating partition fills the dielectric.

參見第9圖所示,為實施二(第3A、3B-3F圖)的製備方法,類同上述8A-8L的步驟,具體步驟不再贅述。製備方法:於一MOS場效應電晶體所在的矽片襯底810頂面上多次沉積電介質層811、813、815、817和多次沉積金屬層812、814、816、818,以形成矽片襯底810頂面上電介質層與金屬層交替的多層電介質層與多層金屬層。其中,沉積電介質層811、813、815、817後對電介質層811、813、815、817進行蝕刻,用於形成電介質層中的多個通孔(811a、813a、815a、817a及圖中未示出的通孔,下述內容將提及)。其中,沉積金屬層(如圖中的812、814、816、818)後對金屬層812、814、816、818進行蝕刻分割,用於將金屬層812、814、816、818分割成位於不同層面的不同的金屬區域(如圖中的812a、812b、814a、814b、814c、816a、816b、816c、818a、818b及圖中未示出的金屬區,下述內容將提及),一部分金屬區域形成電容極板,且沉積金屬層的同時還利用金屬填充電介質層中所包含的通孔(如811a、813a、815a、817a及圖中未示出的通孔,下述內容將提及)。 Referring to Fig. 9, the preparation method for the implementation of the second (Fig. 3A, 3B-3F) is similar to the above steps 8A-8L, and the specific steps are not described again. The preparation method comprises: depositing a dielectric layer 811, 813, 815, 817 and a plurality of deposited metal layers 812, 814, 816, 818 on the top surface of the cymbal substrate 810 where a MOS field effect transistor is located to form a cymbal. A plurality of dielectric layers and a plurality of metal layers having alternating dielectric layers and metal layers on the top surface of the substrate 810. The dielectric layers 811, 813, 815, and 817 are etched after the dielectric layers 811, 813, 815, and 817 are deposited, and are used to form a plurality of via holes (811a, 813a, 815a, and 817a) in the dielectric layer and are not shown. Out through holes, which will be mentioned below). Wherein, the metal layers 812, 814, 816, and 818 are etched and divided by depositing metal layers (812, 814, 816, and 818 in the figure) for dividing the metal layers 812, 814, 816, and 818 into different layers. Different metal regions (812a, 812b, 814a, 814b, 814c, 816a, 816b, 816c, 818a, 818b and metal regions not shown in the figure, as will be mentioned below), part of the metal region A capacitor plate is formed, and a metal layer is filled while filling a via hole (such as 811a, 813a, 815a, 817a and a via hole not shown in the drawing) included in the dielectric layer, which will be mentioned later.

參見第9圖,矽片襯底810頂面包含構成MOS場效應電晶體柵極電極的柵極金屬層820、構成MOS場效應電晶體源極電極的源極金屬層830及源極金屬層830的一延伸結構(圖中未示出,需參考實施例二第3B圖)。MOS場效應電晶體所在的矽片襯底810頂面上沉積一層電介質層811並通過蝕刻電介質層811於電介質層811中形成多個通孔811a;第9圖為第3A圖的截面圖。再於電介質層811上沉積一層金屬層812並通過蝕刻分割金屬層812用於將金屬層812分割成不同的金屬區域,且沉積金屬層812的 同時還利用金屬填充電介質層811所包含的通孔811a。多次重複沉積電介質層和金屬層,以形成矽片襯底810頂面上電介質層811、813、815、817與金屬層812、814、816、818交替的多層電介質層與多層金屬層。如果進一步於金屬層818上進行沉積電介質層再沉積金屬層,如此迴圈,則可形成金屬層和電介質層的層數不受數量限制的結構。第9圖即第3A圖所示的截面圖,第9圖中金屬層812、814、816、818蝕刻分割後即形成第3C、3D、3E、3F圖所示的金屬切割圖案。矽片襯底810頂面包含構成MOS場效應電晶體柵極電極的柵極金屬層820、構成MOS場效應電晶體源極電極的源極金屬層830及源極金屬層的一延伸結構(未示出,需參考實施例二第3B圖所示)。 Referring to FIG. 9, the top surface of the cymbal substrate 810 includes a gate metal layer 820 constituting a MOS field effect transistor gate electrode, a source metal layer 830 constituting a MOS field effect transistor source electrode, and a source metal layer 830. An extension structure (not shown in the figure, refer to the second embodiment of FIG. 3B). A dielectric layer 811 is deposited on the top surface of the NMOS substrate 810 where the MOS field effect transistor is located, and a plurality of via holes 811a are formed in the dielectric layer 811 by etching the dielectric layer 811; FIG. 9 is a cross-sectional view of FIG. 3A. A metal layer 812 is deposited on the dielectric layer 811 and the metal layer 812 is divided by etching to divide the metal layer 812 into different metal regions, and the metal layer 812 is deposited. At the same time, the via hole 811a included in the dielectric layer 811 is filled with metal. The dielectric layer and the metal layer are repeatedly deposited a plurality of times to form a plurality of dielectric layers and a plurality of metal layers in which the dielectric layers 811, 813, 815, and 817 and the metal layers 812, 814, 816, and 818 are alternately on the top surface of the ruthenium substrate 810. If the dielectric layer is further deposited on the metal layer 818 to redeposit the metal layer, and thus looped, the number of layers of the metal layer and the dielectric layer can be formed without limitation. Fig. 9 is a cross-sectional view shown in Fig. 3A. In Fig. 9, the metal layers 812, 814, 816, and 818 are etched and divided to form metal cut patterns shown in Figs. 3C, 3D, 3E, and 3F. The top surface of the cymbal substrate 810 includes a gate metal layer 820 constituting a MOS field effect transistor gate electrode, a source metal layer 830 constituting a MOS field effect transistor source electrode, and an extension structure of the source metal layer (not Shown, refer to the second embodiment of FIG. 3B).

任意一層金屬層蝕刻分割後均形成位於延伸結構上方的層迭延伸結構(未示出,需參考實施例二第3C-3F圖所示)及位於柵極金屬層820上方的層迭柵極金屬層812a、814a、816a、818a。多層金屬層蝕刻分割後形成位於不同層面的包含數個第一類電容極板812b、816c和數個第二類電容極板814b、818b的多層電容極板;第一類電容極板812b、816c和第二類電容極板814b、818b相互交替間隔配置。多層金屬層蝕刻分割後在相鄰的第二類電容極板814b、818b間的第一類電容極板816所在的層面中形成有絕緣於第一類電容極板816c的第二類連接層816b。蝕刻電介質層在第二類電容極板814b、818b與第二類連接層816b之間的電介質層中蝕刻出多個通孔815a、817a,並通過注入第二類電容極板814b、818b與第二類連接層816b之間的電介質層中通孔815a、817a中的金屬將第二類電容極板814b、818b相互電性連接。多層金屬層蝕刻分割後在相鄰的第一類電容極板間812b、816c的第二類電容極板814b所在的層面中形成有絕緣於第二類電容極板814b的第一類連接層814c。蝕刻電介質層在第一類電容極板812b、816c與第一類連接層814c之間及源極金屬層830與靠近源極金屬層830的第一類電容極板812b之間的電介質層中形成有多個通孔815a、813a、811a,並通過注入第一類電容極板812b、816c與第一類連接層814c之間及源極金屬 層830與靠近源極金屬層830的第一類電容極板812b之間的電介質層中的通孔815a、813a、811a中的金屬將第一類電容極板812b、816c相互電性連接,同時將第一類電容極板812b、816c與源極金屬層830電性連接。 Any one of the metal layers is etched and divided to form a stacked extension structure over the extended structure (not shown, refer to the second embodiment 3C-3F of the second embodiment) and the stacked gate metal above the gate metal layer 820. Layers 812a, 814a, 816a, 818a. The multilayer metal layer is etched and divided to form a plurality of capacitor plates including a plurality of first type capacitor plates 812b and 816c and a plurality of second type capacitor plates 814b and 818b at different levels; the first type of capacitor plates 812b and 816c The second type of capacitor plates 814b and 818b are alternately arranged at intervals. After the multilayer metal layer is etched and divided, a second type of connection layer 816b insulated from the first type of capacitor plate 816c is formed in a layer of the first type of capacitor plate 816 between adjacent second type capacitor plates 814b and 818b. . Etching the dielectric layer to etch a plurality of vias 815a, 817a in the dielectric layer between the second type of capacitor plates 814b, 818b and the second type of connection layer 816b, and by injecting the second type of capacitor plates 814b, 818b and The metal in the vias 815a, 817a in the dielectric layer between the two types of connection layers 816b electrically connects the second type of capacitor plates 814b, 818b to each other. After the multilayer metal layer is etched and divided, a first type of connection layer 814c insulated from the second type of capacitor plate 814b is formed in a layer of the second type of capacitor plate 814b of the adjacent first type of capacitor plates 812b, 816c. . An etch dielectric layer is formed in the dielectric layer between the first type of capacitor plates 812b, 816c and the first type of connection layer 814c and between the source metal layer 830 and the first type of capacitor plate 812b adjacent to the source metal layer 830. There are a plurality of through holes 815a, 813a, 811a, and between the first type of capacitor plates 812b, 816c and the first type of connection layer 814c and the source metal The metal in the via 815a, 813a, 811a in the dielectric layer between the layer 830 and the first type of capacitor plate 812b adjacent to the source metal layer 830 electrically connects the first type of capacitor plates 812b, 816c to each other while The first type of capacitor plates 812b, 816c are electrically connected to the source metal layer 830.

蝕刻電介質層在相鄰的層迭延伸結構(未示出)之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中蝕刻出多個通孔(未示出),通過注入相鄰的層迭延伸結構之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中的通孔中的金屬(未示出)將相鄰的層迭延伸結構電性連接,同時將層迭延伸結構與延伸結構電性連接。蝕刻電介質層在相鄰的層迭柵極金屬層812a、814a、816a、818a之間及靠近柵極金屬層820的層迭柵極金屬層812a與柵極金屬層820之間的電介質層中蝕刻出多個通孔811a、813a、815a、817a,通過注入相鄰的層迭柵極金屬層812a、814a、816a、818a之間及靠近柵極金屬層820的層迭柵極金屬層812a與柵極金屬層820之間的電介質層中的通孔811a、813a、815a、817a中的金屬將相鄰的層迭柵極金屬層812a、814a、816a、818a電性連接,同時將層迭柵極金屬層812a、814a、816a、818a與柵極金屬層820電性連接。柵極金屬層820和源極金屬層830相互分割隔離,沉積電介質層用於將柵極金屬層和源極金屬層之間的分割區825填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。 The etch dielectric layer etches a plurality of vias (not shown) in the dielectric layer between adjacent lamination extension structures (not shown) and between the lamination extension structure and the extension structure of the extension structure, through the implantation Metals (not shown) in the via holes in the dielectric layers between adjacent stacked extension structures and adjacent to the extended structure and the extension structure electrically connect adjacent layer extension structures, At the same time, the laminated extension structure is electrically connected to the extension structure. The etch dielectric layer is etched in the dielectric layer between adjacent stacked gate metal layers 812a, 814a, 816a, 818a and between the stacked gate metal layer 812a and the gate metal layer 820 of the gate metal layer 820. A plurality of via holes 811a, 813a, 815a, and 817a are formed by implanting a stacked gate metal layer 812a and a gate between adjacent stacked gate metal layers 812a, 814a, 816a, and 818a and adjacent to the gate metal layer 820. The metal in the vias 811a, 813a, 815a, 817a in the dielectric layer between the epitaxial metal layers 820 electrically connects the adjacent stacked gate metal layers 812a, 814a, 816a, 818a while the stacked gates are The metal layers 812a, 814a, 816a, 818a are electrically connected to the gate metal layer 820. The gate metal layer 820 and the source metal layer 830 are separated from each other, and the dielectric layer is deposited to fill the dielectric region between the gate metal layer and the source metal layer; the dielectric layer is deposited to etch the divided metal layer. The formed insulating partition fills the dielectric.

參見第10圖所示,為實施例四(第5A-1圖、第5A-2、5B-5E圖)的製備方法,類同上述8A-8L的步驟,具體步驟不再贅述。於一MOS場效應電晶體所在的矽片襯底910頂面上多次沉積電介質層911、913、915和多次沉積金屬層912、914、916,以形成矽片襯底910頂面上電介質層與金屬層交替的多層電介質層與多層金屬層。其中,沉積電介質層911、913、915後對電介質層911、913、915進行蝕刻,用於形成電介質層中的多個通孔(如911a、913a、915a及圖中未示出的通孔,下述內容將提及)。其中,沉積金屬層912、914、916後對金屬層912、914、916進行蝕刻分割,用於將金屬層912、914、916分割成不同的金屬區域(如912a、912b、914a、 914b、914c、916a、916b及圖中未示出的金屬區,下述內容將提及),且沉積金屬層的同時還利用金屬填充電介質層中所包含的通孔(911a、913a、915a及圖中未示出的通孔,下述內容將提及)。 Referring to Fig. 10, the preparation method of the fourth embodiment (Fig. 5A-1, 5A-2, 5B-5E) is similar to the above steps 8A-8L, and the specific steps are not described again. A dielectric layer 911, 913, 915 and a plurality of deposited metal layers 912, 914, 916 are deposited a plurality of times on the top surface of the cymbal substrate 910 where a MOS field effect transistor is located to form a dielectric on the top surface of the cymbal substrate 910. a multilayer dielectric layer and a plurality of metal layers alternating between a layer and a metal layer. The dielectric layers 911, 913, and 915 are etched after depositing the dielectric layers 911, 913, and 915 for forming a plurality of via holes in the dielectric layer (such as 911a, 913a, 915a and through holes not shown in the drawing). The following will be mentioned). The metal layers 912, 914, and 916 are etched and divided after the metal layers 912, 914, and 916 are deposited, and the metal layers 912, 914, and 916 are divided into different metal regions (such as 912a, 912b, and 914a, 914b, 914c, 916a, 916b and a metal region not shown in the drawing, which will be mentioned later), and depositing a metal layer while filling a via hole (911a, 913a, 915a) included in the dielectric layer with a metal A through hole not shown in the drawing will be mentioned below).

參見第10圖,矽片襯底910頂面包含構成MOS場效應電晶體柵極電極的柵極金屬層920、構成MOS場效應電晶體源極電極的源極金屬層930及源極金屬層930的一延伸結構(未示出)。MOS場效應電晶體所在的矽片襯底910頂面上沉積一層電介質層911並通過蝕刻電介質層911於電介質層911中形成多個通孔911a;第10圖為第5A-1圖、第5A-2圖的截面圖。再於電介質層911上沉積一層金屬層912並通過蝕刻分割金屬層912用於將金屬層912分割成不同的金屬區域,且沉積金屬層912的同時還利用金屬填充電介質層911所包含的通孔911a。多次重複沉積電介質層和金屬層,以形成矽片襯底910頂面上電介質層911、913、915與金屬層912、914、916交替的多層電介質層與多層金屬層。第10圖即第5A-1圖所示的截面圖,第10圖中金屬層912、914、916蝕刻分割後即形成第5C、5D、5E圖所示的金屬切割圖案。 Referring to FIG. 10, the top surface of the cymbal substrate 910 includes a gate metal layer 920 constituting a MOS field effect transistor gate electrode, a source metal layer 930 constituting a MOS field effect transistor source electrode, and a source metal layer 930. An extension structure (not shown). A dielectric layer 911 is deposited on the top surface of the NMOS substrate 910 where the MOS field effect transistor is located, and a plurality of through holes 911a are formed in the dielectric layer 911 by etching the dielectric layer 911; FIG. 10 is a 5A-1, 5A A cross-sectional view of the -2 diagram. A metal layer 912 is deposited on the dielectric layer 911 and the metal layer 912 is divided by etching to divide the metal layer 912 into different metal regions, and the metal layer 912 is deposited while filling the via hole included in the dielectric layer 911 with metal. 911a. The dielectric layer and the metal layer are repeatedly deposited a plurality of times to form a plurality of dielectric layers and a plurality of metal layers in which the dielectric layers 911, 913, 915 and the metal layers 912, 914, and 916 are alternately on the top surface of the ruthenium substrate 910. Fig. 10 is a cross-sectional view shown in Fig. 5A-1. In Fig. 10, the metal layers 912, 914, and 916 are etched and divided to form metal cut patterns shown in Figs. 5C, 5D, and 5E.

如果進一步於金屬層916上進行沉積電介質層再沉積金屬層,如此迴圈,則可形成金屬層和電介質層的層數不受數量限制的結構。 If the dielectric layer is further deposited on the metal layer 916 to re-deposit the metal layer, and thus looped, a structure in which the number of layers of the metal layer and the dielectric layer is not limited can be formed.

矽片襯底910頂面包含構成MOS場效應電晶體柵極電極的柵極金屬層920、構成MOS場效應電晶體源極電極的源極金屬層930及源極金屬層的一延伸結構(未示出)。任意一層金屬層蝕刻分割後均形成位於延伸結構上方的層迭延伸結構(未示出)及位於柵極金屬層920上方的層迭柵極金屬層912a、914a、916a。多層金屬層蝕刻分割後形成位於不同層面的包含數個第一類電容極板(該實施例中包含一個第一類電容極板914b)和數個第二類電容極板(如圖中912b、916b)的多層電容極板;第一類電容極板914b和第二類電容極板912b、916b相互交替間隔配置。多層金屬層蝕刻分割後在相鄰的第二類電容極板912b、916b間的第一類電容極板914b所在的層面中形成有絕緣於第一類電容極板914b的第二類連接層914c。蝕刻電介質層 在第二類電容極板912b、916b與第二類連接層914c之間的電介質層中蝕刻出多個通孔913a、915a,並通過注入第二類電容極板912b、916b與第二類連接層914c之間的電介質層中通孔913a、915a中的金屬將第二類電容極板912b、916b相互電性連接。任意一層所述的第一類電容極板(該實施例中包含一個第一類電容極板914b)均與該層第一類電容極板所在層面的層迭延伸結構(未示出)連接。也即意味著第一類電容極板914b通過連通第一類電容極板914b所在的層面的層迭延伸結構,實現與源極金屬層930層電性連接。 The top surface of the cymbal substrate 910 includes a gate metal layer 920 constituting a MOS field effect transistor gate electrode, a source metal layer 930 constituting a MOS field effect transistor source electrode, and an extension structure of the source metal layer (not show). Any one of the metal layers is etched and divided to form a stacked extension structure (not shown) over the extended structure and a stacked gate metal layer 912a, 914a, 916a over the gate metal layer 920. The multi-layer metal layer is etched and divided to form a plurality of first-type capacitor plates (including a first-type capacitor plate 914b in the embodiment) and a plurality of second-type capacitor plates at different levels (as shown in FIG. 912b, The multilayer capacitor plate of 916b); the first type of capacitor plates 914b and the second type of capacitor plates 912b, 916b are alternately spaced apart from each other. After the multilayer metal layer is etched and divided, a second type of connection layer 914c insulated from the first type of capacitor plate 914b is formed in a layer of the first type of capacitor plate 914b between adjacent second type capacitor plates 912b and 916b. . Etching the dielectric layer A plurality of via holes 913a, 915a are etched in the dielectric layer between the second type of capacitor plates 912b, 916b and the second type of connection layer 914c, and are connected to the second type by injecting the second type of capacitor plates 912b, 916b. The metal in the vias 913a, 915a in the dielectric layer between the layers 914c electrically connects the second type of capacitor plates 912b, 916b to each other. The first type of capacitor plates of any of the layers (including a first type of capacitor plates 914b in this embodiment) are connected to a layered extension (not shown) of the layer of the first type of capacitor plates of the layer. That is to say, the first type of capacitor plate 914b is electrically connected to the source metal layer 930 through a layered extension structure connecting the layers of the first type of capacitor plates 914b.

蝕刻電介質層在相鄰的層迭延伸結構(未示出)之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中蝕刻出多個通孔(未示出),通過注入相鄰的層迭延伸結構之間及靠近延伸結構的層迭延伸結構與延伸結構之間的電介質層中的通孔中的金屬(未示出)將相鄰的層迭延伸結構電性連接,同時將層迭延伸結構與延伸結構電性連接。蝕刻電介質層在相鄰的層迭柵極金屬層912a、914a、916a之間及靠近柵極金屬層920的層迭柵極金屬層912a與柵極金屬層920之間的電介質層中蝕刻出多個通孔911a、913a、915a,通過注入相鄰的層迭柵極金屬層912a、914a、916a之間及靠近柵極金屬層920的層迭柵極金屬層912a與柵極金屬層920之間的電介質層中的通孔911a、913a、915a中的金屬將相鄰的層迭柵極金屬層912a、914a、916a電性連接,同時將層迭柵極金屬層912a、914a、916a與柵極金屬層920電性連接。 The etch dielectric layer etches a plurality of vias (not shown) in the dielectric layer between adjacent lamination extension structures (not shown) and between the lamination extension structure and the extension structure of the extension structure, through the implantation Metals (not shown) in the via holes in the dielectric layers between adjacent stacked extension structures and adjacent to the extended structure and the extension structure electrically connect adjacent layer extension structures, At the same time, the laminated extension structure is electrically connected to the extension structure. The etch dielectric layer is etched more in the dielectric layer between the adjacent stacked gate metal layers 912a, 914a, 916a and between the stacked gate metal layer 912a and the gate metal layer 920 of the gate metal layer 920. The via holes 911a, 913a, 915a are formed by implanting between the stacked gate metal layers 912a, 914a, 916a and between the stacked gate metal layer 912a and the gate metal layer 920 near the gate metal layer 920. The metal in the vias 911a, 913a, 915a in the dielectric layer electrically connects the adjacent stacked gate metal layers 912a, 914a, 916a while laminating the gate metal layers 912a, 914a, 916a and the gate The metal layer 920 is electrically connected.

柵極金屬層920和源極金屬層930相互分割隔離,沉積電介質層用於將柵極金屬層和源極金屬層之間的分割區925填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。 The gate metal layer 920 and the source metal layer 930 are separated from each other, and the dielectric layer is deposited to fill the dielectric between the gate metal layer and the source metal layer; the dielectric layer is used to etch the divided metal layer. The formed insulating partition fills the dielectric.

參見第11圖所示,為實施例五(第6A-1、6A-2、6B-6E圖)的製備方法,類同上述8A-8L的步驟,具體步驟不再贅述。製備方法:於第一電晶體、第二電晶體所在的矽片襯底1010頂面上多次沉積電介質層1011、1013、1015和多次沉積金屬層1012、1014、1016,以形成矽片襯底1010 頂面上電介質層1011、1013、1015與金屬層1012、1014、1016交替的多層電介質層與多層金屬層。其中,沉積電介質層1011、1013、1015後對電介質層1011、1013、1015進行蝕刻,用於形成電介質層1011、1013、1015中的多個通孔1011a、1013a、1015a及圖中未示出的通孔;沉積金屬層1012、1014、1016後對金屬層1012、1014、1016進行蝕刻分割,用於將金屬層1012、1014、1016分割成不同的金屬區域(如圖中1012a、1012b、1012c、1012d、1014a、1014b、1014c、1014d、1016a、1016b、1016c及未示出的金屬區域),且沉積金屬層1012、1014、1016的同時還利用金屬填充電介質層中所包含的通孔1011a、1013a、1015a及圖中未示出的通孔。第11圖即第6A-1圖所示的截面圖,第11圖中金屬層1012、1014、1016蝕刻分割後即形成第6C、6D、6E圖所示的金屬切割圖案。矽片襯底1010頂面包含構成第一電晶體漏極電極的漏極金屬層1030、構成第一電晶體柵極電極的第一柵極金屬層1020,構成第二電晶體源極電極的源極金屬層1040、構成第二電晶體柵極電極的第二柵極金屬層1050。漏極金屬層1030包含一個第一延伸結構(圖中未示出,需參考實施例五第6B圖),源極金屬層1040包含一個第二延伸結構(圖中未示出,需參考實施例五第6B圖)。任意一層金屬層1012、1014、1016蝕刻分割後均形成位於第一延伸結構上方的第一層迭延伸結構(圖中未示出,需參考實施例五第6C-6E圖)及位於所述第二延伸結構上方的第二層迭延伸結構(圖中未示出,需參考實施例五第6C-6E圖);以及位於第一柵極金屬層1020上方的第一層迭柵極金屬層1012a、1014a、1016a和位於第二柵極金屬層1050上方的第二層迭柵極金屬層1012d、1014d、1016c。 Referring to Fig. 11, the preparation method of the fifth embodiment (Fig. 6A-1, 6A-2, 6B-6E) is the same as the above steps 8A-8L, and the specific steps are not described again. The preparation method comprises: depositing a dielectric layer 1011, 1013, 1015 and a plurality of deposited metal layers 1012, 1014, 1016 on the top surface of the enamel substrate 1010 where the first transistor and the second transistor are located to form a lining. Bottom 1010 A multilayer dielectric layer and a plurality of metal layers in which the dielectric layers 1011, 1013, and 1015 on the top surface are alternated with the metal layers 1012, 1014, and 1016. The dielectric layers 1011, 1013, and 1015 are etched after depositing the dielectric layers 1011, 1013, and 1015, and are used to form a plurality of via holes 1011a, 1013a, and 1015a in the dielectric layers 1011, 1013, and 1015, and are not shown in the drawings. Through holes; after the metal layers 1012, 1014, and 1016 are deposited, the metal layers 1012, 1014, and 1016 are etched and divided to divide the metal layers 1012, 1014, and 1016 into different metal regions (as shown in FIG. 1012a, 1012b, 1012c, 1012d, 1014a, 1014b, 1014c, 1014d, 1016a, 1016b, 1016c and a metal region not shown), and depositing the metal layers 1012, 1014, 1016 while filling the via holes 1011a, 1013a included in the dielectric layer with metal , 1015a and through holes not shown in the figure. Fig. 11 is a cross-sectional view shown in Fig. 6A-1. In Fig. 11, the metal layers 1012, 1014, and 1016 are etched and divided to form metal cut patterns shown in Figs. 6C, 6D, and 6E. The top surface of the cymbal substrate 1010 includes a drain metal layer 1030 constituting a first transistor drain electrode, and a first gate metal layer 1020 constituting a first transistor gate electrode, constituting a source of the second transistor source electrode. The epitaxial metal layer 1040 and the second gate metal layer 1050 constituting the second transistor gate electrode. The drain metal layer 1030 includes a first extension structure (not shown in the drawings, refer to Embodiment 5, FIG. 6B), and the source metal layer 1040 includes a second extension structure (not shown in the drawing, refer to the embodiment). 5th 6B)). Any one of the metal layers 1012, 1014, and 1016 is etched and divided to form a first layered extension structure above the first extension structure (not shown in the drawing, refer to Embodiment 5, 6C-6E) and located at the a second layered extension structure over the second extension structure (not shown in the figure, refer to Embodiment 5, 6C-6E); and a first stacked gate metal layer 1012a over the first gate metal layer 1020 And 1014a, 1016a and a second stacked gate metal layer 1012d, 1014d, 1016c over the second gate metal layer 1050.

多層金屬層1012、1014、1016蝕刻分割後形成位於不同層面的包含數個第一類電容極板(如圖中1014b)和數個第二類電容極板(如圖中1012c、1016b)的多層電容極板;第一類電容極板1014b和第二類電容極板1012c、1016b相互交替間隔配置。多層金屬層1012、1014、1016蝕刻分割後在相鄰的第二類電容極板1012c、1016b間的第一類電容極板1014b所在 的層面中形成有絕緣於第一類電容極板1014b的第二類連接層1014c。蝕刻電介質層在第二類電容極板1012c、1016b與第二類連接層1014c之間的電介質層中蝕刻出多個通孔(如圖中1013a、1015a及圖中未示出的通孔),並通過注入第二類電容極板1012c、1016b與第二類連接層1014c之間的電介質層中通孔中的金屬(未示出)將第二類電容極板1012c、1016b相互電性連接。多層金屬層蝕刻分割後在相鄰的第一類電容極板(第一類電容極板可以有多層,本實施例中包含一個第一類電容極板1014b)間及第一類電容極板1014b與漏極金屬層1030間的第二類電容極板1012c所在的層面中形成有絕緣於第二類電容極板1012c的第一類連接層1012b。 The multilayer metal layers 1012, 1014, and 1016 are etched and divided to form a plurality of layers of a plurality of first type capacitor plates (1014b in the figure) and a plurality of second type capacitor plates (1012c, 1016b in the figure) at different levels. The capacitor plate; the first type of capacitor plate 1014b and the second type of capacitor plates 1012c, 1016b are alternately spaced apart from each other. The first type of capacitor plates 1014b between the adjacent second type of capacitor plates 1012c, 1016b are etched and divided by the multilayer metal layers 1012, 1014, and 1016. A second type of connection layer 1014c insulated from the first type of capacitor plates 1014b is formed in the layer. Etching the dielectric layer to etch a plurality of via holes in the dielectric layer between the second type of capacitor plates 1012c, 1016b and the second type of connection layer 1014c (such as 1013a, 1015a in the figure and through holes not shown in the figure), The second type of capacitor plates 1012c, 1016b are electrically connected to each other by injecting metal (not shown) in the via holes in the dielectric layer between the second type of capacitor plates 1012c, 1016b and the second type of connection layer 1014c. After the multilayer metal layer is etched and divided, the adjacent first type of capacitor plates (the first type of capacitor plates may have multiple layers, and the first type of capacitor plates 1014b are included in the embodiment) and the first type of capacitor plates 1014b A first type of connection layer 1012b insulated from the second type of capacitor plate 1012c is formed in a layer of the second type of capacitor plate 1012c between the drain metal layer 1030.

蝕刻電介質層在第一類電容極板1014b與第一類連接層1012b之間及漏極金屬層1030與靠近漏極金屬層1030的第一類連接層1012b之間的電介質層中蝕刻出多個通孔(如圖中1011a、1013a及圖中未示出的通孔),並通過注入第一類電容極板1014b與第一類連接層1012b之間電介質層中的通孔中的金屬(未示出)將第一類電容極板1014b相互電性連接,通過注入靠近漏極金屬層1030的第一類連接層1012b與漏極金屬層1030間之間電介質層中的通孔中的金屬(未示出)將第一類連接層1012b與漏極金屬層1030電性連接。蝕刻電介質層在源極金屬層1040與靠近源極金屬層1040的第二類電容極板1012c之間的電介質層中蝕刻出多個通孔(如圖中1011a及圖中未示出的通孔),並通過注入源極金屬層1040與靠近源極金屬層1040的第二類電容極板1012c之間電介質層中的通孔中的金屬(未示出)將第二類電容極板1012c與源極金屬層1040電性連接。 Etching the dielectric layer to etch a plurality of dielectric layers between the first type of capacitor plate 1014b and the first type of connection layer 1012b and between the drain metal layer 1030 and the first type of connection layer 1012b adjacent to the drain metal layer 1030 Through holes (1011a, 1013a in the figure and through holes not shown in the figure), and by injecting metal in the through holes in the dielectric layer between the first type of capacitor plates 1014b and the first type of connection layer 1012b (not The first type of capacitor plates 1014b are electrically connected to each other by implanting metal in the via holes in the dielectric layer between the first type of connection layer 1012b and the drain metal layer 1030 of the drain metal layer 1030 ( The first type of connection layer 1012b is electrically connected to the drain metal layer 1030. Etching the dielectric layer to etch a plurality of vias in the dielectric layer between the source metal layer 1040 and the second type of capacitor plate 1012c adjacent to the source metal layer 1040 (as shown in FIG. 1011a and through holes not shown in the drawing) And the second type of capacitor plate 1012c is coupled to metal (not shown) in the via hole in the dielectric layer between the source metal layer 1040 and the second type of capacitor plate 1012c adjacent to the source metal layer 1040. The source metal layer 1040 is electrically connected.

蝕刻電介質層在相鄰的第一層迭延伸結構(第11圖未示出,需參考實施例五第6A-2圖)之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第一層迭延伸結構之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中的通孔中的金屬將相鄰的第一層迭延伸結構電性連接,同時將第一層迭延伸結構與第一延伸結構電性連接。蝕刻電介質層在相鄰的第 二層迭延伸結構(第11圖未示出,需參考實施例五第6A-2圖)之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第二層迭延伸結構之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中的通孔中的金屬將相鄰的第二層迭延伸結構電性連接,同時將第二層迭延伸結構與第二延伸結構電性連接。蝕刻電介質層在相鄰的第一層迭柵極金屬層(如圖中1012a、1014a、1016a)之間及靠近第一柵極金屬層1020的第一層迭柵極金屬層1012a與第一柵極金屬層1020之間的電介質層中蝕刻出多個通孔(如圖中1011a、1013a、1015a及圖中未示出的通孔),通過注入相鄰的第一層迭柵極金屬層之間及靠近第一柵極金屬層1020的第一層迭柵極金屬層1012a與第一柵極金屬層1020之間的電介質層中的通孔中的金屬(未示出)將相鄰的第一層迭柵極金屬層(如圖中1012a、1014a、1016a)電性連接,同時將第一柵極金屬層1020與第一層迭柵極金屬層(如圖中1012a、1014a、1016a)電性連接。 Etching the dielectric layer between the adjacent first stacked extension structures (not shown in FIG. 11 and referring to Embodiment 5, FIG. 6A-2) and the first layered extension structure adjacent to the first extension structure and the first A plurality of via holes are etched into the dielectric layer between the extension structures by implanting a dielectric between the adjacent first layer extension structures and between the first layer extension structure and the first extension structure of the first extension structure The metal in the via hole in the layer electrically connects the adjacent first layer extension structures, and electrically connects the first layer extension structure to the first extension structure. Etching the dielectric layer in the adjacent a two-layer extension structure (not shown in FIG. 11, which is referred to in Embodiment 5, FIG. 6A-2) and in a dielectric layer between the second layer extension structure and the second extension structure adjacent to the second extension structure Etching a plurality of via holes by implanting metal in vias in the dielectric layer between adjacent second stacked extension structures and adjacent to the second layered extension structure of the second extension structure and the second extension structure The adjacent second layer extension structures are electrically connected, and the second layer extension structure is electrically connected to the second extension structure. Etching the dielectric layer between the adjacent first stacked gate metal layers (1012a, 1014a, 1016a in the figure) and the first stacked gate metal layer 1012a and the first gate adjacent to the first gate metal layer 1020 A plurality of via holes (such as 1011a, 1013a, 1015a and through holes not shown in the figure) are etched into the dielectric layer between the metal layer 1020 by implanting adjacent first stacked gate metal layers. The metal (not shown) in the via hole in the dielectric layer between the first stacked gate metal layer 1012a and the first gate metal layer 1020 adjacent to the first gate metal layer 1020 will be adjacent to the first The stacked gate metal layers (1012a, 1014a, 1016a in the figure) are electrically connected, and the first gate metal layer 1020 and the first stacked gate metal layer (1012a, 1014a, 1016a in the figure) are electrically connected. Sexual connection.

蝕刻電介質層在相鄰的第二層迭柵極金屬層(如圖中1012d、1014d、1016c)之間及靠近第二柵極金屬層1050的第二層迭柵極金屬層1012d與第二柵極金屬層1050之間的電介質層中蝕刻出多個通孔(如圖中1011a、1013a、1015a及圖中未示出的通孔),通過注入相鄰的第二層迭柵極金屬層(如圖中1012d、1014d、1016c)之間及靠近第二柵極金屬層1050的第二層迭柵極金屬層1012d與第二柵極金屬層1050之間的電介質層中的通孔中的金屬(未示出)將相鄰的第二層迭柵極金屬層(如圖中1012d、1014d、1016c)電性連接,同時將第二柵極金屬層1050與第二層迭柵極金屬層(如圖中1012d、1014d、1016c)電性連接。漏極金屬層1030、第一柵極金屬層1020、源極金屬層1040、第二柵極金屬層1050通過分割區(例如漏極金屬層1030、第一柵極金屬層1020之間的分割區1025)相互分割隔離,沉積電介質層用於在分割區填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。 Etching the dielectric layer between the adjacent second stacked gate metal layers (1012d, 1014d, 1016c in the figure) and the second stacked gate metal layer 1012d and the second gate adjacent to the second gate metal layer 1050 A plurality of via holes (such as 1011a, 1013a, 1015a and through holes not shown in the figure) are etched into the dielectric layer between the metal layer 1050 by implanting an adjacent second stacked gate metal layer ( Metal in the via hole in the dielectric layer between 1012d, 1014d, 1016c) and between the second stacked gate metal layer 1012d and the second gate metal layer 1050 of the second gate metal layer 1050 (not shown) electrically connecting adjacent second stacked gate metal layers (1012d, 1014d, 1016c in the figure) while the second gate metal layer 1050 and the second stacked gate metal layer ( 1012d, 1014d, 1016c) are electrically connected as shown. The drain metal layer 1030, the first gate metal layer 1020, the source metal layer 1040, and the second gate metal layer 1050 pass through the division region (for example, the drain metal layer 1030 and the first gate metal layer 1020) 1025) Separating from each other, depositing a dielectric layer for filling the dielectric in the partition; and depositing a dielectric layer for filling the dielectric spacer formed by etching the split metal layer into the dielectric.

參見第12圖所示,為實施例六(第7A-1、7A-2、7B-7E圖)的製備方法,類同上述8A-8L的步驟,具體步驟不再贅述。製備方法:於第一電晶體、第二電晶體所在的矽片襯底1110頂面上多次沉積電介質層1111、1113、1115和多次沉積金屬層1112、1114、1116,以形成矽片襯底1110頂面上電介質層1111、1113、1115與金屬層1112、1114、1116交替的多層電介質層與多層金屬層。其中,沉積電介質層1111、1113、1115後對電介質層1111、1113、1115進行蝕刻,用於形成電介質層1111、1113、1115中的多個通孔1111a、1113a、1115a及圖中未示出的通孔;沉積金屬層1112、1114、1116後對金屬層1112、1114、1116進行蝕刻分割,用於將金屬層1112、1114、1116分割成不同的金屬區域(如圖中1112a、1112b、1112c、1114a、1114b、1114c、1116a、1116b、1116c及未示出的金屬區域),且沉積金屬層1112、1114、1116的同時還利用金屬填充電介質層中所包含的通孔1111a、1113a、1115a及圖中未示出的通孔。第12圖即第7A-1圖所示的截面圖,第12圖中金屬層1112、1114、1116蝕刻分割後即形成第7C、7D、7E圖所示的金屬切割圖案。 Referring to Fig. 12, the preparation method of the sixth embodiment (Fig. 7A-1, 7A-2, 7B-7E) is similar to the above steps 8A-8L, and the specific steps are not described again. The preparation method: depositing dielectric layers 1111, 1113, 1115 and multiple deposition metal layers 1112, 1114, 1116 on the top surface of the enamel substrate 1110 where the first transistor and the second transistor are located to form a lining. A dielectric layer 1111, 1113, 1115 on the top surface of the bottom 1110 and a plurality of metal layers 1112, 1114, 1116 alternate with a plurality of dielectric layers and a plurality of metal layers. The dielectric layers 1111, 1113, and 1115 are etched after depositing the dielectric layers 1111, 1113, and 1115, and are used to form a plurality of via holes 1111a, 1113a, and 1115a in the dielectric layers 1111, 1113, and 1115, and are not shown in the drawings. Through holes; after the metal layers 1112, 1114, and 1116 are deposited, the metal layers 1112, 1114, and 1116 are etched and divided to divide the metal layers 1112, 1114, and 1116 into different metal regions (such as 1112a, 1112b, and 1112c in the figure). 1114a, 1114b, 1114c, 1116a, 1116b, 1116c and metal regions not shown), and depositing metal layers 1112, 1114, 1116 while filling the via holes 1111a, 1113a, 1115a and the layers included in the dielectric layer with metal A through hole not shown. Fig. 12 is a cross-sectional view shown in Fig. 7A-1. In Fig. 12, the metal layers 1112, 1114, and 1116 are etched and divided to form metal cut patterns shown in Figs. 7C, 7D, and 7E.

矽片襯底1110頂面包含構成第一電晶體漏極電極的漏極金屬層1130、構成第一電晶體柵極電極的第一柵極金屬層1120,構成第二電晶體源極電極的源極金屬層1140、構成第二電晶體柵極電極的第二柵極金屬層1150。漏極金屬層1130包含一個第一延伸結構(第12圖中未示出,需參考實施例六第7B圖),源極金屬層1140包含一個第二延伸結構(第12圖中未示出,需參考實施例六第7B圖)。任意一層金屬層1112、1114、1116蝕刻分割後均形成位於第一延伸結構上方的第一層迭延伸結構(圖中未示出,需參考實施例六第7C-7E圖)及位於第二延伸結構上方的第二層迭延伸結構(圖中未示出,需參考實施例六第7C-7E圖);以及位於第一柵極金屬層1120上方的第一層迭柵極金屬層1112a、1114a、1116a和位於第二柵極金屬層1150上方的第二層迭柵極金屬層1112c、1114c、1116c。多層金屬層1112、1114、1116蝕刻分割後形成位於不同層面的包含數個第一類電容極板(本實 施例取圖中的一個第一類電容極板1114b為例)和數個第二類電容極板(如圖中1112b、1116b)的多層電容極板;第一類電容極板1114b和第二類電容極板1112b、1116b相互交替間隔配置。蝕刻電介質層在相鄰的第一層迭延伸結構(第12圖未示出,需參考實施例六第7A-2圖)之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第一層迭延伸結構之間及靠近第一延伸結構的第一層迭延伸結構與第一延伸結構之間的電介質層中的通孔中的金屬將相鄰的第一層迭延伸結構電性連接,同時將第一層迭延伸結構與第一延伸結構電性連接,即是使得第一層迭延伸結構與漏極金屬層1130電性連接。 The top surface of the cymbal substrate 1110 includes a drain metal layer 1130 constituting a drain electrode of the first transistor, a first gate metal layer 1120 constituting a gate electrode of the first transistor, and a source constituting a source electrode of the second transistor. A polar metal layer 1140, a second gate metal layer 1150 constituting a second transistor gate electrode. The drain metal layer 1130 includes a first extension structure (not shown in FIG. 12, refer to Embodiment 6 and FIG. 7B), and the source metal layer 1140 includes a second extension structure (not shown in FIG. 12, Refer to Figure 6B of Example 6). Any one of the metal layers 1112, 1114, and 1116 is etched and divided to form a first layered extension structure (not shown in the figure, which is not shown in the figure, and is referred to in the sixth embodiment of the seventh embodiment, and is located in the second extension). a second stacked extension structure above the structure (not shown in the figure, refer to Embodiment 6 7C-7E); and a first stacked gate metal layer 1112a, 1114a over the first gate metal layer 1120 And 1116a and a second stacked gate metal layer 1112c, 1114c, 1116c over the second gate metal layer 1150. The multilayer metal layers 1112, 1114, and 1116 are etched and divided to form a plurality of first-type capacitor plates at different levels (this is For example, a first type of capacitor plate 1114b is taken as an example) and a plurality of second type capacitor plates (such as 1112b and 1116b in the figure) are used; the first type of capacitor plate 1114b and the second type The capacitor-like plates 1112b and 1116b are alternately arranged at intervals. Etching the dielectric layer between the adjacent first layer extension structures (not shown in FIG. 12, refer to Embodiment 6 7A-2) and the first layer extension structure adjacent to the first extension structure and the first A plurality of via holes are etched into the dielectric layer between the extension structures by implanting a dielectric between the adjacent first layer extension structures and between the first layer extension structure and the first extension structure of the first extension structure The metal in the through hole in the layer electrically connects the adjacent first layer extension structure, and electrically connects the first layer extension structure to the first extension structure, that is, the first layer extension structure and the drain The electrode metal layer 1130 is electrically connected.

蝕刻電介質層在相鄰的第二層迭延伸結構(第12圖未示出,需參考實施例六第7A-2圖)之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中蝕刻出多個通孔,通過注入相鄰的第二層迭延伸結構之間及靠近第二延伸結構的第二層迭延伸結構與第二延伸結構之間的電介質層中的通孔中的金屬將相鄰的第二層迭延伸結構電性連接,同時將第二層迭延伸結構與第二延伸結構電性連接,即是使得第二層迭延伸結構與源極金屬層1140電性連接。蝕刻電介質層在相鄰的第一層迭柵極金屬層(如圖中1112a、1114a、1116a)之間及靠近第一柵極金屬層1120的第一層迭柵極金屬層1112a與第一柵極金屬層1120之間的電介質層中蝕刻出多個通孔(如圖中1111a、1113a、1115a及圖中未示出的通孔),通過注入相鄰的第一層迭柵極金屬層之間及靠近第一柵極金屬層1120的第一層迭柵極金屬層1112a與第一柵極金屬層1120之間的電介質層中的通孔中的金屬(未示出)將相鄰的第一層迭柵極金屬層(如圖中1112a、1114a、1116a)電性連接,同時將第一層迭柵極金屬層(如圖中1112a、1114a、1116a)與第一柵極金屬層1120電性連接。 Etching the dielectric layer between the adjacent second stacked extension structures (not shown in FIG. 12, refer to Embodiment 6 7A-2) and the second laminated extension structure and the second adjacent to the second extended structure A plurality of via holes are etched into the dielectric layer between the extension structures by implanting a dielectric between the adjacent second layer extension structures and between the second layer extension structure and the second extension structure of the second extension structure The metal in the via hole in the layer electrically connects the adjacent second layer extension structure, and electrically connects the second layer extension structure to the second extension structure, that is, the second layer extension structure and the source The electrode metal layer 1140 is electrically connected. Etching the dielectric layer between the adjacent first stacked gate metal layers (such as 1112a, 1114a, 1116a in the figure) and the first stacked gate metal layer 1112a and the first gate adjacent to the first gate metal layer 1120 A plurality of via holes (such as 1111a, 1113a, 1115a and through holes not shown in the drawing) are etched into the dielectric layer between the metal layer 1120 by implanting adjacent first stacked gate metal layers. The metal (not shown) in the via hole in the dielectric layer between the first stacked gate metal layer 1112a and the first gate metal layer 1120 adjacent to the first gate metal layer 1120 will be adjacent to the first The stacked gate metal layers (1112a, 1114a, 1116a in the figure) are electrically connected, and the first stacked gate metal layer (1112a, 1114a, 1116a in the figure) and the first gate metal layer 1120 are electrically connected. Sexual connection.

蝕刻電介質層在相鄰的第二層迭柵極金屬層(如圖中1112c、1114c、1116c)之間及靠近第二柵極金屬層1150的第二層迭柵極金屬層1112c與第二柵極金屬層1150之間的電介質層中蝕刻出多個通孔(如圖中1111a、 1113a、1115a及圖中未示出的通孔),通過注入相鄰的第二層迭柵極金屬層(如圖中1112c、1114c、1116c)之間及靠近第二柵極金屬層1150的第二層迭柵極金屬層1112c與第二柵極金屬層1150之間的電介質層中的通孔中的金屬(未示出)將相鄰的第二層迭柵極金屬層(如圖中1112c、1114c、1116c)電性連接,同時將第二柵極金屬層1150與第二層迭柵極金屬層(如圖中1112c、1114c、1116c)電性連接。 Etching the dielectric layer between the adjacent second stacked gate metal layers (such as 1112c, 1114c, 1116c) and the second stacked gate metal layer 1112c and the second gate adjacent to the second gate metal layer 1150 A plurality of through holes are etched in the dielectric layer between the metal layer 1150 (as shown in FIG. 1111a, 1113a, 1115a and through holes not shown in the drawing), by injecting adjacent second stacked gate metal layers (such as 1112c, 1114c, 1116c in the figure) and near the second gate metal layer 1150 A metal (not shown) in the via hole in the dielectric layer between the two-layered gate metal layer 1112c and the second gate metal layer 1150 will be adjacent to the second stacked gate metal layer (as shown in FIG. 1112c) , 1114c, 1116c) electrically connected, while electrically connecting the second gate metal layer 1150 and the second stacked gate metal layer (1112c, 1114c, 1116c in the figure).

任意一層第一類電容極板(如本實施例如中的第一類電容極板1114b)均與該層第一類電容極板(如本實施例如中的第一類電容極板1114b)所在層面的第一層迭延伸結構(未示出)連接;任意一層第二類電容極板(如本實施例如中的第一類電容極板1112b、1116b)均與該層第二類電容極板(如本實施例如中的第一類電容極板1112b、1116b)所在層面的第二層迭延伸結構(未示出)連接。以致,第一類電容極板1114b通過與第一層迭延伸結構電性連接,又由於第一層迭延伸結構與漏極金屬層1130電性連接,使得第一類電容極板1114b均與漏極金屬層1130電性連接;第二類電容極板1112b、1116b通過與第二層迭延伸結構電性連接,又由於第二層迭延伸結構與源極金屬層1140電性連接,使得第二類電容極板1112b、1116b均與源極金屬層1140電性連接。漏極金屬層1130、第一柵極金屬層1120、源極金屬層1140、第二柵極金屬層1150通過分割區(例如漏極金屬層1130、第一柵極金屬層1120之間的分割區1125)相互分割隔離,沉積電介質層用於在分割區填充電介質;沉積電介質層用於將蝕刻分割金屬層所形成的絕緣分割區填充電介質。 Any one of the first type of capacitor plates (such as the first type of capacitor plates 1114b in the present embodiment) is located at the level of the first type of capacitor plates (such as the first type of capacitor plates 1114b in the present embodiment). a first layer of extension structure (not shown) is connected; any one of the second type of capacitor plates (such as the first type of capacitor plates 1112b, 1116b in the present embodiment) and the second type of capacitor plate of the layer ( A second layered extension (not shown) of the layer of the first type of capacitor plates 1112b, 1116b) is connected as in the present embodiment. Therefore, the first type of capacitor plates 1114b are electrically connected to the first layer extension structure, and the first layer extension structure is electrically connected to the drain metal layer 1130, so that the first type of capacitor plates 1114b are both leaked and drained. The metal layer 1130 is electrically connected; the second type of capacitor plates 1112b and 1116b are electrically connected to the second layer extension structure, and the second layer extension structure is electrically connected to the source metal layer 1140, so that the second layer The capacitor-like plates 1112b and 1116b are electrically connected to the source metal layer 1140. The drain metal layer 1130, the first gate metal layer 1120, the source metal layer 1140, and the second gate metal layer 1150 pass through a partition (eg, a drain region between the drain metal layer 1130 and the first gate metal layer 1120) 1125) Separating from each other, depositing a dielectric layer for filling the dielectric in the divided region; and depositing a dielectric layer for filling the dielectric spacer formed by etching the divided metal layer with a dielectric.

上述實施例所披露的技術方案在不脫離本發明精神的基礎上還存在較多形式上的變形,例如,金屬層、電介質層的增加或減少,及調整導出柵極、源極的不同方式,或是晶片類型的改變,這些變形形式均毫無疑慮的被發明人看作是本發明的組成部分。 The technical solutions disclosed in the above embodiments have many forms of deformations without departing from the spirit of the present invention, for example, the increase or decrease of the metal layer and the dielectric layer, and the different ways of adjusting the lead-out source and the source. Or variations in the type of wafer, these variants are considered by the inventors as an integral part of the invention without any doubt.

上述實施例,是基於但可不限制於金屬氧化物半導體場效應管(Metal Oxide Semiconductor Field-Effect Transistor,MOSFET)。其中,低端(Low Side)的MOSFET亦可在本領域中被技術人員稱之為低側金屬氧化物 半導體場效應管;高端(High Side)的MOSFET亦可本領域中被技術人員稱之為高側金屬氧化物半導體場效應管。 The above embodiments are based on, but not limited to, Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs). Among them, the low side (MOSFET) MOSFET can also be referred to by the skilled person in the art as a low side metal oxide. Semiconductor field effect transistors; high side MOSFETs can also be referred to by those skilled in the art as high side metal oxide semiconductor field effect transistors.

一個顯而易見的優勢是,電容直接集成於MOSFET上,取代了以鍵合金線來連接MOSFET和外置電容的方式,極大的消除了聯機離散電感。另一個有益效果是,由於電容極板和電介質層的存在,相當於增加了矽片襯底的厚度和機械強度,矽片襯底於晶圓背部研磨(Wafer Backside Grinding)的工藝步驟中,對於矽片襯底自身應力(Stress)的抑制,抑或控制整塊晶圓的曲翹度(Warpage),都是極為有效的,依據該優點,可以減薄矽片襯底取得較低的MOSFET導通電阻。 An obvious advantage is that the capacitor is directly integrated into the MOSFET, replacing the way the bond MOSFET and the external capacitor are connected by a bond alloy wire, which greatly eliminates the on-line discrete inductance. Another beneficial effect is that, due to the presence of the capacitor plate and the dielectric layer, the thickness and mechanical strength of the ruthenium substrate are increased, and the ruthenium substrate is in the process step of wafer back grinding (Wafer Backside Grinding), The suppression of the stress of the ruthenium substrate itself, or the control of the warpage of the entire wafer, is extremely effective. According to this advantage, the MOSFET substrate can be thinned to achieve a lower MOSFET on-resistance. .

基於半導體裝置輕薄及良好散熱性能的需求,半導體裝置的塑封厚度(Mold Cap)也趨於減薄的勢態,然,極薄的塑封厚度勢必造成塑封工藝中的環氧樹脂的表面封裝空洞(Package Void)的出現,甚至於露出晶圓顆粒(Die Exposed),一個避免該缺陷的直接有效的措施是減薄晶圓。故,本發明的晶圓機械強度的增加取得的另一個在晶片封裝(IC Assembly)工藝中的傑出成績也是可見的。 Based on the thinness and good heat dissipation performance of semiconductor devices, the Mold Cap of semiconductor devices also tends to be thinned. However, the extremely thin plastic package thickness will inevitably cause surface encapsulation of epoxy resin in the molding process (Package). The emergence of Void), even to expose Die Exposed, a direct and effective measure to avoid this defect is to thin the wafer. Therefore, another outstanding achievement in the IC assembly process obtained by the increase in the mechanical strength of the wafer of the present invention is also visible.

通過說明和附圖,給出了具體實施方式的特定結構的典型實施例。儘管上述發明提出了現有的較佳實施例,然,這些內容並不作為侷限。本領域的技術人員應掌握,本發明具有多種其他特殊形式,無需過多實驗,就能將本發明應用於這些實施例。對於本領域的技術人員而言,閱讀上述說明後,各種變化和修正無疑將顯而易見。例如,本發明是以MOS電晶體為例說明,根據同樣的發明理念,本發明也可應用於雙極電晶體電路。因此,所附的申請專利範圍書應看作是涵蓋本發明的真實意圖和範圍的全部變化和修正。在申請專利範圍書範圍內任何和所有等價的範圍與內容,都應認為仍屬本發明的意圖和範圍內。 Exemplary embodiments of specific structures of the specific embodiments are given by way of illustration and drawings. Although the above invention proposes a prior preferred embodiment, these are not intended to be limiting. It will be appreciated by those skilled in the art that the present invention may be embodied in various other specific forms without departing from the scope of the invention. Various changes and modifications will no doubt become apparent to those skilled in the <RTIgt; For example, the present invention is described by taking a MOS transistor as an example. According to the same inventive concept, the present invention is also applicable to a bipolar transistor circuit. Accordingly, the appended claims are intended to cover all such modifications and Any and all equivalent ranges and contents within the scope of the claims are intended to be within the spirit and scope of the invention.

500‧‧‧電晶體 500‧‧‧Optoelectronics

510‧‧‧矽片襯底 510‧‧‧矽 substrate

521‧‧‧第一柵極金屬層 521‧‧‧First gate metal layer

521a‧‧‧第一層迭柵極金屬層 521a‧‧‧First laminated gate metal layer

521b/522b/536b/540b/550b‧‧‧金屬 521b/522b/536b/540b/550b‧‧‧Metal

522‧‧‧第二柵極金屬層 522‧‧‧Second gate metal layer

522a‧‧‧第二層迭柵極金屬層 522a‧‧‧Second laminated gate metal layer

531‧‧‧漏極金屬層 531‧‧‧Drain metal layer

532‧‧‧源極金屬層 532‧‧‧ source metal layer

535a‧‧‧第一層迭延伸結構 535a‧‧‧First layer extension structure

536‧‧‧第二延伸結構 536‧‧‧Second extension structure

536a‧‧‧第二層迭延伸結構 536a‧‧‧Second layer extension structure

540‧‧‧第一類電容極板 540‧‧‧The first type of capacitor plate

540a‧‧‧第一類連接層 540a‧‧‧first type of connection layer

550‧‧‧第二類電容極板 550‧‧‧Second type capacitor plate

550a‧‧‧第二類連接層 550a‧‧‧Second type of connection layer

Claims (28)

一種集成一電容的雙MOS場效應電晶體,該雙MOS場效應電晶體集成有一旁路電容,其中:於一矽片襯底頂面上設置有構成一第一電晶體柵極電極的一第一柵極金屬層及構成一第一電晶體漏極電極的一漏極金屬層,和構成一第二電晶體柵極電極的一第二柵極金屬層及構成一第二電晶體源極電極的一源極金屬層;該矽片襯底頂面上方設置有平行於該矽片襯底的包括數個第一類電容極板和數個第二類電容極板的一多層電容極板,且在該矽片襯底頂面與該矽片襯底頂面上方的一塊電容極板間以及在相鄰的兩塊電容極板間填充有一電介質層;第一類電容極板和第二類電容極板相互交替間隔配置,且第一類電容極板均與該漏極金屬層電性連接用於構成該旁路電容的一電極,第二類電容極板均與該源極金屬層電性連接用於構成該旁路電容的另一電極;該第一電晶體的源極形成於該矽片襯底的底面,該第一電晶體的漏極、柵極形成於該矽片襯底頂面;該第二電晶體的漏極形成於該矽片襯底的底面,該第二電晶體的源極、柵極形成於該矽片襯底頂面;該漏極金屬層設有一第一延伸結構,且任意一層該電容極板所在的層面均在該第一延伸結構上方設有一第一層迭延伸結構;其中,該第一層迭延伸結構用於與該第一延伸結構電性連接以將該第一電晶體漏極導出。 A dual MOS field effect transistor integrated with a capacitor, wherein the double MOS field effect transistor is integrated with a bypass capacitor, wherein a top surface of a 衬底 substrate is provided with a first transistor gate electrode a gate metal layer and a drain metal layer constituting a first transistor drain electrode, and a second gate metal layer constituting a second transistor gate electrode and a second transistor source electrode a source metal layer; a multilayer capacitor plate including a plurality of first type capacitor plates and a plurality of second type capacitor plates parallel to the cymbal substrate disposed above the top surface of the cymbal substrate And a dielectric layer is filled between a top surface of the cymbal substrate and a capacitor plate above the top surface of the cymbal substrate and between two adjacent capacitor plates; the first type of capacitor plate and the second The capacitor-like plates are alternately spaced apart from each other, and the first type of capacitor plates are electrically connected to the drain metal layer for forming an electrode of the bypass capacitor, and the second type of capacitor plates are connected to the source metal layer. Electrically connecting another electrode constituting the bypass capacitor; the first transistor a source is formed on a bottom surface of the enamel substrate, a drain and a gate of the first transistor are formed on a top surface of the cymbal substrate; and a drain of the second transistor is formed on a bottom surface of the cymbal substrate a source and a gate of the second transistor are formed on a top surface of the enamel substrate; the drain metal layer is provided with a first extension structure, and any layer of the capacitor plate is at the first extension A first layered extension structure is disposed above the structure; wherein the first layer extension structure is electrically connected to the first extension structure to derive the first transistor drain. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,任意一層該電容極板所在的層面均在該第一柵極金屬層上方設有一第一層迭柵極金屬層; 其中,該第一層迭柵極金屬層用於與該第一柵極金屬層電性連接以將該第一電晶體的柵極導出。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein any one of the layers of the capacitor plate is provided with a first stacked gate above the first gate metal layer. Metal layer The first stacked gate metal layer is electrically connected to the first gate metal layer to derive the gate of the first transistor. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,任意一層該電容極板所在的層面均在該第二柵極金屬層上方設有一第二層迭柵極金屬層;其中,該第二層迭柵極金屬層用於與該第二柵極金屬層電性連接以將該第二電晶體的柵極導出。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein any layer of the capacitor plate is provided with a second stacked gate above the second gate metal layer. a metal layer; wherein the second stacked gate metal layer is electrically connected to the second gate metal layer to derive the gate of the second transistor. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,該源極金屬層設有一第二延伸結構,且任意一層該電容極板所在的層面均在該第二延伸結構上方設有一第二層迭延伸結構;其中,該第二層迭延伸結構用於與該第二延伸結構電性連接以將該第二電晶體源極導出。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the source metal layer is provided with a second extension structure, and any layer of the capacitor plate is at the second layer. A second layered extension structure is disposed above the extension structure; wherein the second layer extension structure is electrically connected to the second extension structure to derive the second transistor source. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,在相鄰該第一層迭延伸結構間的該電介質層中及在靠近該第一延伸結構的該第一層迭延伸結構與該第一延伸結構間的該電介質層中設有多個通孔,並通過注入通孔中的金屬將該第一層迭延伸結構與該第一電晶體的漏極電性連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the dielectric layer adjacent to the first stacked extension structure and the first layer adjacent to the first extension structure a plurality of through holes are formed in the dielectric layer between the layer extending structure and the first extending structure, and the first layer extending structure and the drain of the first transistor are electrically connected by metal injected into the through hole Sexual connection. 如申請專利範圍第4項所述的集成一電容的雙MOS場效應電晶體,其中,在相鄰該第二層迭延伸結構間的該電介質層中及在靠近該第二延伸結構的該第二層迭延伸結構與該第二延伸結構間的該電介質層中設有多個通孔,並通過注入通孔中的金屬將該第二層迭延伸結構與該第二電晶體的源極電性連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 4, wherein the dielectric layer adjacent to the second stacked extension structure and the first layer adjacent to the second extension structure a plurality of through holes are formed in the dielectric layer between the two-layer extension structure and the second extension structure, and the second layer extension structure and the source of the second transistor are electrically connected by metal injected into the through hole Sexual connection. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,該第一類電容極板與該第二類電容極板縱向交錯配置,用於在相鄰 的該第二類電容極板間的該第一類電容極板所在的層面中設置絕緣於該第一類電容極板的一第二類連接層;在該第二類電容極板與該第二類連接層之間及該源極金屬層與靠近該源極金屬層的該第二類電容極板之間的該電介質層中設置一通孔,並通過注入通孔中的金屬將該第二類電容極板相互電性連接,同時將該第二類電容極板與該源極金屬層電性連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the first type of capacitor plate and the second type of capacitor plate are longitudinally staggered for adjacent a second type of connection layer insulated from the first type of capacitor plate is disposed in a layer of the first type of capacitor plate between the second type of capacitor plates; and the second type of capacitor plate and the first type a through hole is disposed in the dielectric layer between the two types of connection layers and between the source metal layer and the second type of capacitor plate adjacent to the source metal layer, and the second hole is inserted through the metal in the through hole The capacitor-like plates are electrically connected to each other, and the second type of capacitor plates are electrically connected to the source metal layer. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,該第一類電容極板與該第二類電容極板縱向交錯配置,用於在相鄰的該第一類電容極板間及該第一類電容極板與該漏極金屬層間的該第二類電容極板所在的層面中設置絕緣於該第二類電容極板的一第一類連接層;在該第一類電容極板與該第一類連接層之間及該漏極金屬層與靠近該漏極金屬層的該第一類連接層之間的該電介質層中設置一通孔,並通過注入該通孔中的金屬將該第一類電容極板相互電性連接,同時將該第一類電容極板與該漏極金屬層電性連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the first type of capacitor plate and the second type of capacitor plate are longitudinally staggered for use in adjacent ones a first type of connection layer insulated from the second type of capacitor plate is disposed in a layer between the capacitor plates and the second type of capacitor plates between the first type of capacitor plates and the drain metal layer; Providing a through hole in the dielectric layer between the first type of capacitor plate and the first type of connection layer and between the drain metal layer and the first type of connection layer adjacent to the drain metal layer, and passing through The metal injected into the via hole electrically connects the first type of capacitor plates to each other, and electrically connects the first type of capacitor plate to the drain metal layer. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,任意一層該第一類電容極板均與該層該第一類電容極板所在層面的該第一層迭延伸結構連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein any one of the first type of capacitor plates and the first layer of the layer of the first type of capacitor plates The extension structure is connected. 如申請專利範圍第9項所述的集成一電容的雙MOS場效應電晶體,其中,該源極金屬層設有一第二延伸結構,且任意一層該電容極板所在的層面均在該第二延伸結構上方設有一第二層迭延伸結構,其中任意一層該第一類電容極板均與該層該第一類電容極板所在層面的該第二層迭延伸結構分割絕緣。 The dual MOS field effect transistor integrated with a capacitor according to claim 9, wherein the source metal layer is provided with a second extension structure, and any layer of the capacitor plate is at the second layer. A second layered extension structure is disposed above the extension structure, and any one of the first type of capacitor plates is divided and insulated from the second layer extension structure of the layer of the first type of capacitor plate. 如申請專利範圍第4項所述的集成一電容的雙MOS場效應電晶體,其中,任意一層該第二類電容極板均與該層該第二類電容極板所在層面的該第二層迭延伸結構連接。 The dual MOS field effect transistor integrated with a capacitor according to claim 4, wherein any one of the second type of capacitor plates and the second layer of the layer of the second type of capacitor plate The extension structure is connected. 如申請專利範圍第11項所述的集成一電容的雙MOS場效應電晶體,其中,所述漏極金屬層設有一第一延伸結構,且任意一層所述的電容極板所在的層面均在所述第一延伸結構上方設有一第一層迭延伸結構,其中任意一層該第二類電容極板均與該層該第二類電容極板所在層面的該第一層迭延伸結構分割絕緣。 The dual MOS field effect transistor integrated with a capacitor according to claim 11, wherein the drain metal layer is provided with a first extension structure, and the layer of the capacitor plate of any one of the layers is A first layered extension structure is disposed above the first extension structure, and any one of the second type of capacitor plates is divided and insulated from the first layer extension structure of the layer of the second type of capacitor plate. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,該第一柵極金屬層、該漏極金屬層、該源極金屬層、該第二柵極金屬層通過一分割區相互分割隔離,且該分割區填充有電介質;任意一層該電容極板所在的層面均包含一絕緣分割區且該絕緣分割區均填充有電介質。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the first gate metal layer, the drain metal layer, the source metal layer, and the second gate metal layer The partition is isolated and separated by a partition, and the partition is filled with a dielectric; any layer of the capacitor plate includes an insulating partition and the insulating partition is filled with a dielectric. 如申請專利範圍第1項所述的集成一電容的雙MOS場效應電晶體,其中,該第一電晶體為一高端MOS場效應電晶體,該第二電晶體為一低端MOS場效應電晶體。 The dual MOS field effect transistor integrated with a capacitor according to claim 1, wherein the first transistor is a high-end MOS field effect transistor, and the second transistor is a low-end MOS field effect transistor. Crystal. 一種在雙MOS場效應電晶體上集成一電容的方法,包括以下步驟:於一第一電晶體、一第二電晶體所在的一矽片襯底頂面上多次沉積一電介質層和多次沉積一金屬層,以形成該矽片襯底頂面上該電介質層與該金屬層交替的多層電介質層與多層金屬層;其中,沉積電介質層後對電介質層進行蝕刻,用於形成電介質層中的多個通孔;其中,沉積金屬層後對金屬層進行蝕刻分割,用於將金屬層分割成不同的一金屬區域,一部分該金屬區域形成一電容極板,且沉積該金屬層的同時還利用金屬填充電介質層中所包含的通孔; 任意一層金屬層蝕刻分割後均形成金屬層所在層面的一第一層迭延伸結構和一第二層迭延伸結構,以及一第一層迭柵極金屬層和一第二層迭柵極金屬層。 A method for integrating a capacitor on a dual MOS field effect transistor includes the steps of: depositing a dielectric layer and multiple times on a top surface of a substrate of a first transistor and a second transistor; Depositing a metal layer to form a plurality of dielectric layers and a plurality of metal layers alternately between the dielectric layer and the metal layer on the top surface of the enamel substrate; wherein, after depositing the dielectric layer, etching the dielectric layer for forming the dielectric layer a plurality of through holes; wherein, after depositing the metal layer, the metal layer is etched and divided to divide the metal layer into different metal regions, a part of the metal regions form a capacitor plate, and the metal layer is deposited Filling a via hole included in the dielectric layer with a metal; A first layer of metal layer is etched and divided to form a first layer extension structure and a second layer extension structure of the layer where the metal layer is located, and a first stacked gate metal layer and a second stacked gate metal layer . 如申請專利範圍第15項所述的方法,其中,該矽片襯底頂面包含構成該第一電晶體漏極電極的一漏極金屬層、構成該第一電晶體柵極電極的一第一柵極金屬層,構成該第二電晶體源極電極的一源極金屬層、構成該第二電晶體柵極電極的一第二柵極金屬層;該漏極金屬層包含一第一延伸結構,該源極金屬層包含一第二延伸結構。 The method of claim 15, wherein the top surface of the cymbal substrate comprises a drain metal layer constituting the drain electrode of the first transistor, and a first electrode constituting the gate electrode of the first transistor a gate metal layer, a source metal layer constituting the second transistor source electrode, and a second gate metal layer constituting the second transistor gate electrode; the drain metal layer includes a first extension The structure, the source metal layer comprises a second extension structure. 如申請專利範圍第16項所述的方法,其中,該第一層迭延伸結構位於該第一延伸結構上方,該第二層迭延伸結構位於該第二延伸結構上方;以及該第一層迭柵極金屬層位於該第一柵極金屬層上方,該第二層迭柵極金屬層位於該第二柵極金屬層上方。 The method of claim 16, wherein the first layered extension structure is above the first extension structure, the second layer extension structure is above the second extension structure; and the first layer is stacked The gate metal layer is above the first gate metal layer, and the second stacked gate metal layer is above the second gate metal layer. 如申請專利範圍第15項所述的方法,其中,該多層金屬層蝕刻分割後形成位於不同層面的包含數個第一類電容極板和數個第二類電容極板的多層電容極板;第一類電容極板和第二類電容極板相互交替間隔配置。 The method of claim 15, wherein the multi-layer metal layer is etched and divided to form a plurality of capacitor plates including a plurality of first-type capacitor plates and a plurality of second-type capacitor plates at different levels; The first type of capacitor plate and the second type of capacitor plate are alternately arranged at intervals. 如申請專利範圍第18項所述的方法,其中,該多層金屬層蝕刻分割後在相鄰的該第二類電容極板間的該第一類電容極板所在的層面中形成有絕緣於該第一類電容極板的一第二類連接層;蝕刻該電介質層在該第二類電容極板與該第二類連接層之間的該電介質層中蝕刻出多個通孔,並通過注入該第二類電容極板與該第二類連接層之間的該電介質層中通孔中的金屬將該第二類電容極板相互電性連接。 The method of claim 18, wherein the multi-layer metal layer is etched and formed, and the insulating layer is formed in a layer of the first type of capacitor plate between the adjacent second type of capacitor plates. a second type of connection layer of the first type of capacitor plate; etching the dielectric layer to etch a plurality of via holes in the dielectric layer between the second type of capacitor plate and the second type of connection layer, and injecting The metal in the via hole in the dielectric layer between the second type of capacitor plate and the second type of connection layer electrically connects the second type of capacitor plates to each other. 如申請專利範圍第18項所述的方法,其中,該多層金屬層蝕刻分割後在相鄰的該第一類電容極板間及該第一類電容極板與該漏極金屬層間的該第二類電容極板所在的層面中形成有絕緣於該第二類電容極板的一第一類連接層;蝕刻該電介質層在該第一類電容極板與該第一類連接層之間及該漏極金屬層與靠近該漏極金屬層的該第一類連接層之間的該電介質層中蝕刻出多個通孔,並通過注入該第一類電容極板與該第一類連接層之間該電介質層中的通孔中的金屬將該第一類電容極板相互電性連接,通過注入靠近該漏極極金屬層的該第一類連接層與該漏極金屬層間之間該電介質層中的通孔中的金屬將該第一類連接層與該漏極金屬層電性連接。 The method of claim 18, wherein the multi-layer metal layer is etched and divided between adjacent ones of the first type of capacitor plates and between the first type of capacitor plates and the drain metal layer Forming a first type of connection layer insulated from the second type of capacitor plate in the layer of the second type of capacitor plate; etching the dielectric layer between the first type of capacitor plate and the first type of connection layer A plurality of via holes are etched into the dielectric layer between the drain metal layer and the first type of connection layer adjacent to the drain metal layer, and the first type of capacitor plate and the first type of connection layer are implanted The first type of capacitor plates are electrically connected to each other through a metal in the via hole in the dielectric layer, and the dielectric is interposed between the first type of connection layer and the drain metal layer adjacent to the drain metal layer. The metal in the vias in the layer electrically connects the first type of connection layer to the drain metal layer. 如申請專利範圍第18項所述的方法,其中,蝕刻該電介質層在該源極金屬層與靠近該源極金屬層的該第二類電容極板之間的該電介質層中蝕刻出多個通孔,並通過注入該源極金屬層與靠近該源極金屬層的該第二類電容極板之間該電介質層中的通孔中的金屬將該第二類電容極板與該源極金屬層電性連接。 The method of claim 18, wherein etching the dielectric layer etches a plurality of the dielectric layer between the source metal layer and the second type of capacitor plate adjacent to the source metal layer a via hole, and the second type of capacitor plate and the source are formed by implanting a metal in a via hole in the dielectric layer between the source metal layer and the second type of capacitor plate adjacent to the source metal layer The metal layer is electrically connected. 如申請專利範圍第17項所述的方法,其中,蝕刻該電介質層在相鄰的該第一層迭延伸結構之間及靠近該第一延伸結構的該第一層迭延伸結構與該第一延伸結構之間的該電介質層中蝕刻出多個通孔,通過注入相鄰的該第一層迭延伸結構之間及靠近該第一延伸結構的該第一層迭延伸結構與該第一延伸結構之間的該電介質層中的通孔中的金屬將相鄰的該第一層迭延伸結構電性連接,同時將該第一層迭延伸結構與該第一延伸結構電性連接。 The method of claim 17, wherein etching the dielectric layer between the adjacent first stacked extension structures and the first laminate extension structure adjacent to the first extension structure and the first Having a plurality of vias etched into the dielectric layer between the extension structures by implanting the first layer extension structure between the adjacent first layer extension structures and adjacent to the first extension structure and the first extension The metal in the via hole in the dielectric layer between the structures electrically connects the adjacent first layer extension structure, and electrically connects the first layer extension structure to the first extension structure. 如申請專利範圍第17項所述的方法,其中,蝕刻該電介質層在相鄰的該第二層迭延伸結構之間及靠近該第二延伸結構的該第二層迭延伸結構與該第二延伸結構之間的該電介質層中蝕刻出多個通孔,通過注入相 鄰的該第二層迭延伸結構之間及靠近該第二延伸結構的該第二層迭延伸結構與該第二延伸結構之間的該電介質層中的通孔中的金屬將相鄰的該第二層迭延伸結構電性連接,同時將該第二層迭延伸結構與該第二延伸結構電性連接。 The method of claim 17, wherein etching the dielectric layer between the adjacent second stacked extension structures and the second stacked extension structure adjacent to the second extension structure and the second A plurality of through holes are etched into the dielectric layer between the extension structures through the injection phase The metal in the through hole in the dielectric layer between the adjacent second stacked extension structure and the second extended structure adjacent to the second extended structure and the second extended structure will be adjacent to the metal The second layer of the extension structure is electrically connected, and the second layer of the extension structure is electrically connected to the second extension structure. 如申請專利範圍第17項所述的方法,其中,蝕刻該電介質層在相鄰的該第一層迭柵極金屬層之間及靠近該第一柵極金屬層的該第一層迭柵極金屬層與該第一柵極金屬層之間的該電介質層中蝕刻出多個通孔,通過注入相鄰的該第一層迭柵極金屬層之間及靠近該第一柵極金屬層的該第一層迭柵極金屬層與該第一柵極金屬層之間的該電介質層中的通孔中的金屬將相鄰的該第一層迭柵極金屬層電性連接,同時將該第一層迭柵極金屬層與該第一柵極金屬層電性連接。 The method of claim 17, wherein etching the dielectric layer between the adjacent first stacked gate metal layers and the first stacked gate adjacent to the first gate metal layer a plurality of via holes are etched into the dielectric layer between the metal layer and the first gate metal layer by implanting between adjacent first stacked gate metal layers and adjacent to the first gate metal layer The metal in the via hole in the dielectric layer between the first stacked gate metal layer and the first gate metal layer electrically connects the adjacent first stacked gate metal layer while The first stacked gate metal layer is electrically connected to the first gate metal layer. 如申請專利範圍第17項所述的方法,其中,蝕刻該電介質層在相鄰的該第二層迭柵極金屬層之間及靠近該第二柵極金屬層的該第二層迭柵極金屬層與該第二柵極金屬層之間的該電介質層中蝕刻出多個通孔,通過注入相鄰的該第二層迭柵極金屬層之間及靠近該第二柵極金屬層的該第二層迭柵極金屬層與該第二柵極金屬層之間的該電介質層中的通孔中的金屬將相鄰的該第二層迭柵極金屬層電性連接,同時將該第二層迭柵極金屬層與該第二柵極金屬層電性連接。 The method of claim 17, wherein etching the dielectric layer between the adjacent second stacked gate metal layers and the second stacked gate adjacent to the second gate metal layer a plurality of via holes are etched into the dielectric layer between the metal layer and the second gate metal layer by implanting between adjacent second stacked gate metal layers and adjacent to the second gate metal layer The metal in the via hole in the dielectric layer between the second stacked gate metal layer and the second gate metal layer electrically connects the adjacent second stacked gate metal layer, and The second stacked gate metal layer is electrically connected to the second gate metal layer. 如申請專利範圍第18項所述的方法,其中,任意一層該第一類電容極板均與該層該第一類電容極板所在層面的該第一層迭延伸結構連接,且與該層該第一類電容極板所在層面的該第二層迭延伸結構分割絕緣。 The method of claim 18, wherein any one of the first type of capacitor plates is connected to the first layer of the layer of the layer of the first type of capacitor plates, and the layer is The second layered extension structure of the layer of the first type of capacitor plate is divided and insulated. 如申請專利範圍第18項所述的方法,其中,任意一層該第二類電容極板均與該層該第二類電容極板所在層面的該第二層迭延伸結構連接,且與該層該第二類電容極板所在層面的該第一層迭延伸結構分割絕緣。 The method of claim 18, wherein any one of the second type of capacitor plates is connected to the second layer of the layer of the layer of the second type of capacitor plates, and the layer The first layer of the extension structure of the second type of capacitor plate is divided and insulated. 如申請專利範圍第16項所述的方法,其中,該漏極金屬層、該第一柵極金屬層、該源極金屬層、該第二柵極金屬層通過一分割區相互分割隔離,沉積一電介質層用於在該分割區填充電介質;沉積該電介質層用於將蝕刻分割該金屬層所形成的一絕緣分割區填充電介質。 The method of claim 16, wherein the drain metal layer, the first gate metal layer, the source metal layer, and the second gate metal layer are separated from each other by a partition, and deposited A dielectric layer is used to fill the dielectric region with a dielectric layer; the dielectric layer is deposited for filling an insulating partition region dielectric formed by etching the metal layer.
TW100101933A 2011-01-19 2011-01-19 Dual metal oxide semiconductor field effect transistors integrating a capacitor TWI488285B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100101933A TWI488285B (en) 2011-01-19 2011-01-19 Dual metal oxide semiconductor field effect transistors integrating a capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100101933A TWI488285B (en) 2011-01-19 2011-01-19 Dual metal oxide semiconductor field effect transistors integrating a capacitor

Publications (2)

Publication Number Publication Date
TW201232755A TW201232755A (en) 2012-08-01
TWI488285B true TWI488285B (en) 2015-06-11

Family

ID=47069694

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100101933A TWI488285B (en) 2011-01-19 2011-01-19 Dual metal oxide semiconductor field effect transistors integrating a capacitor

Country Status (1)

Country Link
TW (1) TWI488285B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
US20080067584A1 (en) * 2006-09-17 2008-03-20 Alpha & Omega Semiconductor, Ltd Inverted-trench grounded-source FET structure with trenched source body short electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
US20080067584A1 (en) * 2006-09-17 2008-03-20 Alpha & Omega Semiconductor, Ltd Inverted-trench grounded-source FET structure with trenched source body short electrode

Also Published As

Publication number Publication date
TW201232755A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US8426963B2 (en) Power semiconductor package structure and manufacturing method thereof
US20160307826A1 (en) PACKAGING SOLUTIONS FOR DEVICES AND SYSTEMS COMPRISING LATERAL GaN POWER TRANSISTORS
US8669650B2 (en) Flip chip semiconductor device
TWI459536B (en) Multi-die package
US20060022298A1 (en) Semiconductor device and a manufacturing method of the same
US20160109896A9 (en) Semiconductor device
US20210296213A1 (en) Package structure for power converter and manufacture method thereof
US8236613B2 (en) Wafer level chip scale package method using clip array
US20110284997A1 (en) Chip-Exposed Semiconductor Device and Its Packaging Method
US20130075884A1 (en) Semiconductor package with high-side and low-side mosfets and manufacturing method
TWI590395B (en) Power encapsulation module of multi-power chip and manufacturing method of power chip unit
TW201145484A (en) Etch-back type semiconductor package, substrate and manufacturing method thereof
US8247288B2 (en) Method of integrating a MOSFET with a capacitor
TWI543279B (en) Solder flow-impeding plug on a lead frame
US8642397B1 (en) Semiconductor wafer level package (WLP) and method of manufacture thereof
US9437587B2 (en) Flip chip semiconductor device
US8482048B2 (en) Metal oxide semiconductor field effect transistor integrating a capacitor
TWI488285B (en) Dual metal oxide semiconductor field effect transistors integrating a capacitor
TWI523194B (en) A metal oxide semiconductor field effect transistor integrating a capacitor
CN102610608B (en) Metal-oxide semiconductor field effect transistor integrated with capacitor
TWI760836B (en) Common source land grid array package
TWI556364B (en) Chip package structure and manufacturing method thereof
TWI469311B (en) A combined packaged power semiconductor device
TWI473243B (en) Multi stacked-die packaging structure and its process
TW202137472A (en) Semiconductor package structure and manufacturing method thereof