TWI487790B - Methods for recycling valuble metal - Google Patents

Methods for recycling valuble metal Download PDF

Info

Publication number
TWI487790B
TWI487790B TW102140228A TW102140228A TWI487790B TW I487790 B TWI487790 B TW I487790B TW 102140228 A TW102140228 A TW 102140228A TW 102140228 A TW102140228 A TW 102140228A TW I487790 B TWI487790 B TW I487790B
Authority
TW
Taiwan
Prior art keywords
valuable metals
metal ions
recovering valuable
protein
thermophilic bacteria
Prior art date
Application number
TW102140228A
Other languages
Chinese (zh)
Other versions
TW201518509A (en
Inventor
Yin Lung Han
Tai Rong Guo
Jo Shu Chang
Yung Chong Lou
Wan Ju Yu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW102140228A priority Critical patent/TWI487790B/en
Publication of TW201518509A publication Critical patent/TW201518509A/en
Application granted granted Critical
Publication of TWI487790B publication Critical patent/TWI487790B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Description

有價金屬回收的方法Valuable metal recovery method

本發明關於一種有價金屬回收的方法。This invention relates to a process for the recovery of valuable metals.

地熱能為一極具發展潛力且蘊藏量豐富的潔淨能源。由於地熱流體化學組成成分特殊,熱液生產過程因溫度及壓力的改變,容易在生產井的井壁以及生產井附近的儲集層裂隙中產生結垢(scaling)沉積,對於熱液的穩定生產是一項重大障礙。Geothermal energy is a clean energy source with great development potential and abundant reserves. Due to the special chemical composition of the geothermal fluid, the hydrothermal production process is prone to scale formation in the wellbore of the production well and in the reservoir fracture near the production well due to changes in temperature and pressure, for stable production of hydrothermal fluid. It is a major obstacle.

酸處理(acid treatment)及化學抑制(chemical inhibition)為近年來國際間常用之地熱井防垢技術。但是,無論是使用酸處理或化學藥劑擠注技術,雖可處理/抑制結垢問題,但施作工程後產生的廢液對生態環境有相當大之衝擊性。Acid treatment and chemical inhibition are geothermal well anti-scaling technologies commonly used in recent years. However, whether it is the use of acid treatment or chemical extrusion technology, although the problem of scaling can be treated/suppressed, the waste liquid generated after the application of the project has a considerable impact on the ecological environment.

另外,工業廢水、地熱水/溫泉等水體中之有價金屬濃度並不高,若以物理/化學方法自上述水體中提取有價金屬,不但不易達成低濃度有價金屬提取之目的,且也容易造成如上述的環境汙染。In addition, the concentration of valuable metals in industrial water, geothermal water/hot springs and other water bodies is not high. If physical and chemical methods are used to extract valuable metals from the above water bodies, it is not easy to achieve the purpose of extracting low-concentration valuable metals, and it is also easy to cause Environmental pollution as described above.

因此,為了降低成本及增加對環境的友善,逐漸朝向對環境污染少之高效能綠色技術的開發。Therefore, in order to reduce costs and increase the friendliness of the environment, we are gradually moving towards the development of high-efficiency green technologies with less environmental pollution.

本揭露提供一種有價金屬回收的方法,包括使一 單離的嗜熱菌的胞外蛋白與含有金屬離子之溶液接觸,生成金屬離子與蛋白的複合物,及收集該複合物之步驟,其中該嗜熱菌為寄存於中華民國食品工業發展研究所生物資源保存及研究中心(BCRC),寄存編號BCRC 80391之微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)。The present disclosure provides a method for recovering valuable metals, comprising contacting an isolated extracellular protein of a thermophilic bacteria with a solution containing a metal ion to form a complex of a metal ion and a protein, and collecting the complex, wherein the step The thermophilic bacteria are deposited in the Bioresource Conservation and Research Center (BCRC) of the Republic of China Food Industry Development Institute, and registered with the number BCRC 80391, Tepidimonas fonticaldi sp. nov.

第1圖顯示以16S rDNA序列相似性建立的微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)的親緣關係圖。Figure 1 shows the genetic relationship of Tepidimonas fonticaldi sp. nov. established by 16S rDNA sequence similarity.

第2圖顯示微嗜熱乙型溫單胞菌的胞內與胞外蛋白對鈣離子的鍵結能力。Figure 2 shows the binding ability of intracellular and extracellular proteins of Thermophilic B. thermophila to calcium ions.

第3圖顯示在不同溫度下各嗜熱菌的胞外蛋白對鈣離子的鍵結能力。Figure 3 shows the binding ability of extracellular proteins of each thermophilic bacteria to calcium ions at different temperatures.

第4圖顯示在不同壓力下各嗜熱菌的胞外蛋白對鈣離子的鍵結能力。Figure 4 shows the binding ability of extracellular proteins of each thermophilic bacteria to calcium ions under different pressures.

第5圖顯示在不同酸鹼度的環境下各嗜熱菌的胞外蛋白對鈣離子的鍵結能力。Figure 5 shows the binding ability of extracellular proteins of each thermophilic bacteria to calcium ions in different pH environments.

第6圖顯示各嗜熱菌的胞外蛋白對鏑(Dy)離子的鍵結能力。Figure 6 shows the binding ability of extracellular proteins of each thermophilic bacterium to Dy ions.

第7圖顯示各嗜熱菌的胞外蛋白對鑭(La)離子的鍵結能力。Figure 7 shows the binding ability of extracellular proteins of each thermophile to lanthanum (La) ions.

第8圖顯示各嗜熱菌的胞外蛋白對釹(Nd)離子的鍵結能力。Figure 8 shows the binding ability of extracellular proteins of each thermophile to hydrazine (Nd) ions.

第9圖顯示各嗜熱菌的胞外蛋白對鈧(Sc)離子的鍵結能力。Figure 9 shows the binding ability of extracellular proteins of each thermophilic bacterium to sputum (Sc) ions.

第10圖顯示各嗜熱菌的胞外蛋白對釤(Sm)離子的鍵結能 力。Figure 10 shows the binding energy of extracellular proteins of each thermophile to strontium (Sm) ions. force.

第11圖顯示各嗜熱菌的胞外蛋白對鐿(Yb)離子的鍵結能力。Figure 11 shows the binding ability of the extracellular protein of each thermophilic bacterium to the ytterbium (Yb) ion.

第12圖顯示各嗜熱菌的胞外蛋白對釔(Y)離子的鍵結能力。Figure 12 shows the binding ability of extracellular proteins of each thermophilic bacterium to yttrium (Y) ions.

第13圖顯示各嗜熱菌的胞外蛋白對鋇(Ba)離子的鍵結能力。Figure 13 shows the binding ability of the extracellular protein of each thermophilic bacterium to barium (Ba) ions.

第14圖顯示各嗜熱菌的胞外蛋白對鈣(Ca)離子的鍵結能力。Figure 14 shows the binding ability of extracellular proteins of each thermophilic bacteria to calcium (Ca) ions.

第15圖顯示各嗜熱菌的胞外蛋白對銦(In)離子的鍵結能力。Figure 15 shows the binding ability of extracellular proteins of each thermophilic bacteria to indium (In) ions.

第16圖顯示各嗜熱菌的胞外蛋白對金(Au)離子的鍵結能力。Figure 16 shows the binding ability of extracellular proteins of each thermophilic bacteria to gold (Au) ions.

第17圖顯示各嗜熱菌的胞外蛋白對鈀(Pd)離子的鍵結能力。Figure 17 shows the binding ability of extracellular proteins of each thermophile to palladium (Pd) ions.

第18圖顯示各嗜熱菌的胞外蛋白對鉑(Pt)離子的鍵結能力。Figure 18 shows the binding ability of extracellular proteins of each thermophilic bacteria to platinum (Pt) ions.

第19圖顯示各嗜熱菌的胞外蛋白對銠(Rh)離子的鍵結能力。Figure 19 shows the binding ability of extracellular proteins of each thermophile to rhodium (Rh) ions.

第20圖顯示本案嗜熱菌的胞外蛋白及商用蛋白對金(Au)及鈀(Pd)離子的鍵結能力。Figure 20 shows the binding ability of extracellular proteins and commercial proteins of thermophilic bacteria to gold (Au) and palladium (Pd) ions.

本揭露中使用一單離的嗜熱菌,採集自台灣花蓮縣安通溫泉,經純化、分離後所獲得。本揭露所分離的嗜熱菌 經分析其16S核醣體DNA(16S rDNA)序列,顯示如序列識別號1所示之序列。根據該16S rDNA的序列,顯示與習知的嗜熱溫單胞菌(Tepidimonas thermarum AA-1T)(序列相似度97.5%)、水生溫單胞菌(Tepidimonas aquatica CLN-1T)(序列相似度96.8%)、竹溫單胞菌(Tepidimonas ignava SPS-1037T)(序列相似度96.4%)及台灣溫單胞菌(Tepidimonas taiwanensis I1-1T)(序列相似度95.8%)的16S rDNA序列相近。根據16S rDNA的序列相似度所繪的親緣關係圖如第1圖所示。In the present disclosure, an isolated thermophilic bacterium is collected from Antong Hot Spring, Hualien County, Taiwan, and purified and separated. Thermophilic bacteria isolated by the present disclosure The 16S ribosomal DNA (16S rDNA) sequence was analyzed to show the sequence as shown in SEQ ID NO: 1. According to the sequence of the 16S rDNA, it is shown with the known Tepidimonas thermarum AA-1T (sequence similarity 97.5%), Thermomyces aquatica CLN-1T (sequence similarity 96.8) %), 16% rDNA sequences of Tepidimonas ignava SPS-1037T (sequence similarity 96.4%) and Thermomonas taiwanensis I1-1T (sequence similarity 95.8%) were similar. The relationship diagram based on the sequence similarity of 16S rDNA is shown in Fig. 1.

在一方面,使該嗜熱菌與嗜熱溫單胞菌(Tepidimonas thermarum AA-1T)進行雜交,獲得23.9±0.2%的DNA-DNA關係值(relatedness),確定該嗜熱菌為溫單胞菌屬(Tepidimonas sp.)。In one aspect, the thermophilic bacteria are hybridized with Tepidimonas thermarum AA-1T to obtain a DNA-DNA relationship of 23.9±0.2%, and the thermophilic bacteria are determined to be warm single cells. Genus ( Tepidimonas sp.).

在生理特徵上,該嗜熱菌顯示為革蘭氏陰性好氧菌株,具單極鞭毛,有運動性,菌落呈現透明。該嗜熱菌較佳的生長溫度為35~60℃,更佳為55℃,較佳的生長鹽度為0~1.0重量%的氯化鈉,更佳為0.2重量%的氯化鈉,較佳的pH生長條件為pH 7.0~9.0,更佳為pH 7.0。該嗜熱菌的主要脂肪酸構成包括C16:0(40.2%)、組合脂肪酸(summed feature 3;包括C16:1 ω7c及/或C16:1 ω6c)(20.1%)及C17:0 cyclo(11.5%),主要的極性脂肪為磷脂乙醇胺(phosphatidylethanolamine,PE)及磷脂甘油(phosphatidylglycerol,PG),且細胞中的總DNA的G+C含量為70.1mol%。In physiological characteristics, the thermophilic bacteria are shown to be Gram-negative aerobic strains, have unipolar flagella, are motility, and the colonies are transparent. The preferred growth temperature of the thermophilic bacteria is 35 to 60 ° C, more preferably 55 ° C, and the preferred growth salinity is 0 to 1.0% by weight of sodium chloride, more preferably 0.2% by weight of sodium chloride. The preferred pH growth conditions are pH 7.0 to 9.0, more preferably pH 7.0. The main fatty acid composition of the thermophilic bacteria includes C16:0 (40.2%), combined fatty acids (summed feature 3; including C16:1 ω7c and / or C16:1 ω6c) (20.1%) and C17:0 cyclo (11.5%) The main polar fats are phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), and the total DNA in the cells has a G+C content of 70.1 mol%.

基於上述的核苷酸資訊以及生理特徵,確認其為微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.),寄存於 韓國菌種保存中心(Korean Collection of Type Culture;KCTC),寄存編號為KCTC 23862,寄存日期為2012年1月10日;以及寄存於中華民國食品工業發展研究所生物資源保存及研究中心(Bioresource Collection and Research Center;BCRC),寄存編號為BCRC 80391,寄存日期為2011年11月21日;以及寄存於比利時菌種保存中心(Laboratorium voor.Microbiologie Gent' Belgium;LMG),寄存編號為LMG26746,寄存日期為2011年11月28日。Based on the above nucleotide information and physiological characteristics, it was confirmed to be Tepidimonas fonticaldi sp. nov., deposited in the Korean Collection of Type Culture (KCTC), and deposited. The number is KCTC 23862, the registration date is January 10, 2012; and it is deposited in the Bioresource Collection and Research Center (BCRC) of the Republic of China Food Industry Development Institute. The registration number is BCRC 80391, and the registration date is November 21, 2011; and deposited in the Belgian Culture Collection Center (Laboratorium voor.Microbiologie Gent'Belgium; LMG), the registration number is LMG26746, the registration date is November 28, 2011.

該微嗜熱乙型溫單胞菌分泌的胞外蛋白在適當的環境條件下與有價金屬具有優良的鍵結效能,其中該有價金屬包含稀土金屬離子及貴金屬離子。此述的稀土金屬離子,具體例如鈰(Ce)、鏑(Dy)、鉺(Er)、銪(Eu)、釓(Gd)、鈥(Ho)、鑭(La)、鎦(Lu)、釹(Nd)、鐠(Pr)、鈧(Sc)、釤(Sm)、鋱(Tb)、釷(Th)、銩(Tm)、鈾(U)、鐿(Yb)或釔(Y),但不限於此。此述的貴金屬離子,具體例如金(Au)、銀(Ag)、鉑(Pt)、鈀(Pd)、銠(Rh)、銥(Ir)或前述之組合,但不限於此。The extracellular protein secreted by the Thermophilus thermophilus has excellent binding efficiency with a valuable metal under suitable environmental conditions, wherein the valuable metal comprises a rare earth metal ion and a noble metal ion. The rare earth metal ions described herein are specifically, for example, cerium (Ce), dysprosium (Dy), europium (Er), europium (Eu), strontium (Gd), strontium (Ho), lanthanum (La), lanthanum (Lu), lanthanum. (Nd), 鐠 (Pr), 钪 (Sc), 钐 (Sm), 鋱 (Tb), 钍 (Th), 銩 (Tm), uranium (U), 镱 (Yb) or 钇 (Y), but Not limited to this. The noble metal ions described herein are specifically, for example, gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir) or a combination thereof, but are not limited thereto.

該微嗜熱乙型溫單胞菌分泌的胞外蛋白在適當的環境條件下具有優良的金屬離子的鍵結效能,特別是二價或三價的金屬離子。此述的二價或三價的金屬離子,具體例如鋁(Al)、硼(B)、鋇(Ba)、鉍(Bi)、鈣(Ca)、鎘(Cd)、鈷(Co)、鉻(Cr)、銅(Cu)、鐵(Fe)、鎵(Ga)、銦(In)、鉀(K)、鋰(Li)、鎂(Mg)、錳(Mn)、鈉(Na)、鎳(Ni)、鉛(Pb)、鍶(Sr)、鉈(Tl)、或鋅(Zn),但不限於此。The extracellular protein secreted by the Thermophilus thermophilum has excellent metal ion binding efficiency under suitable environmental conditions, particularly divalent or trivalent metal ions. The divalent or trivalent metal ion described herein, specifically, for example, aluminum (Al), boron (B), barium (Ba), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), strontium (Sr), strontium (Tl), or zinc (Zn), but is not limited thereto.

再者,本案所述之微嗜熱乙型溫單胞菌所分泌的胞外蛋白具有優良的金屬離子鍵結效能,不受高溫、高壓、酸鹼度的環境條件影響。具體地說,在一實施例中,本案之微嗜熱乙型溫單胞菌分泌的胞外蛋白在100℃、pH 7的條件下,與金屬離子均具有良好的鍵結效能。在另一實施例中,本案之微嗜熱乙型溫單胞菌分泌的胞外蛋白在一大氣壓、pH 7的條件下,在75~150℃的高溫環境,特別是在125~150℃的高溫環境下,與金屬離子的鍵結效能仍然優良。在另一實施例中,在25℃、pH 7的條件下,本案之微嗜熱乙型溫單胞菌分泌的胞外蛋白在1~50atm的壓力下,特別在30~50atm的壓力下,與金屬離子的鍵結效能仍然優良。在另一實施例中,在25℃、一大氣壓的條件下,本發明之微嗜熱乙型溫單胞菌分泌的胞外蛋白在pH 2~6的酸性條件、或pH 7~10的鹼性條件下,與金屬離子的鍵結效能仍然優良。Furthermore, the extracellular protein secreted by Thermophilus thermophilus described in the present case has excellent metal ion bonding efficiency and is not affected by environmental conditions of high temperature, high pressure and pH. Specifically, in one embodiment, the extracellular protein secreted by Thermophilus thermophilum in this case has good binding efficiency with metal ions at 100 ° C and pH 7. In another embodiment, the extracellular protein secreted by Thermophilus thermophilus in the present case is at a temperature of 75 ° C, 150 ° C under a pressure of 7 atmospheres, especially at 125 to 150 ° C. In high temperature environments, the bonding efficiency with metal ions is still excellent. In another embodiment, the extracellular protein secreted by the Thermophilus thermophilum in the present case is at a pressure of 1 to 50 atm, particularly at a pressure of 30 to 50 atm, at 25 ° C and pH 7. The bonding efficiency with metal ions is still excellent. In another embodiment, the extracellular protein secreted by the Thermophilus thermophilum of the present invention is acidic at pH 2-6 or alkali at pH 7-10 at 25 ° C under atmospheric pressure. Under the condition of the bond, the bonding efficiency with the metal ion is still excellent.

本揭露所述之有價金屬回收的方法,更包括對該金屬離子與該胞外蛋白所形成的複合物進行脫附處理,以得到該金屬離子。該脫附處理包括加入脫附劑,使金屬離子脫離由其與該胞外蛋白所形成之複合物之處理。該脫附劑可例如氨三乙酸(nitrilotriacetic acid,NTA)、乙二胺四乙酸(Ethylenediaminetetraacetates,EDTA)或其組合。The method for recovering valuable metals according to the present disclosure further includes desorbing the complex formed by the metal ions and the extracellular protein to obtain the metal ions. The desorption treatment involves the addition of a desorbent to remove metal ions from the complex formed by the extracellular protein. The desorbent can be, for example, nitrilotriacetic acid (NTA), Ethylenediamine tetraacetate (EDTA), or a combination thereof.

由於此胞外蛋白對金屬離子的優良鍵結效能,可與溶液中的金屬離子鍵結而達到吸附金屬離子的效果。特別是在高溫的地熱水、鍋爐內溶液、工業廢水或硬水中殘留的少量金屬離子,容易造成環境汙染等的問題。因此,根據本揭露之 方法,使用具有優良金屬離子鍵結效能的胞外蛋白,可有效地吸附殘留的金屬離子,減少上述廢水對環境的汙染,並且可有效地回收該金屬離子,提升中/低金屬濃度廢液中有價金屬的濃度,以降低後續回收金屬工程的操作成本。Due to the excellent bonding efficiency of the extracellular protein to the metal ion, it can be bonded to the metal ion in the solution to achieve the effect of adsorbing the metal ion. In particular, a small amount of metal ions remaining in high-temperature geothermal water, boiler solution, industrial wastewater or hard water is liable to cause environmental pollution and the like. Therefore, according to the disclosure The method uses an extracellular protein with excellent metal ion bonding efficiency, can effectively adsorb residual metal ions, reduces environmental pollution of the above wastewater, and can effectively recover the metal ions, and improve the medium/low metal concentration waste liquid. The concentration of valuable metals to reduce the operating costs of subsequent recovery metal projects.

為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下。The above and other objects, features, and advantages of the invention will be apparent from

【實施例】[Examples]

[實施例1]微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)之採集與鑑定[Example 1] Collection and identification of Thermosporum thermophilus ( Tepidimonas fonticaldi sp. nov.)

採集collection

於台灣花蓮安通溫泉區,以鋁箔包覆遮光的採樣瓶,採集每個採樣點之採樣體積為10L的水樣,並在盡可能接近無菌操作狀態下以0.45μm的濾紙過濾水樣。過濾完成後,將濾膜貼在1.5%固態培養基上(300mL地熱水樣+4.5g洋菜粉,在121℃下滅菌15分鐘後,倒於培養皿中待涼),於55℃下培養7~14天。培養期程結束後,以無菌接種環挑出具有特殊顏色或形態之單離菌落,三區劃線於新的培養基上,重複數次,直至得到純菌株。純化之菌株於4℃下保存。In the Antong Hot Spring Area of Hualien, Taiwan, a blackened foil-coated sample bottle was used to collect a water sample with a sampling volume of 10 L at each sampling point, and the water sample was filtered with a 0.45 μm filter paper as close as possible to aseptic operation. After the filtration is completed, the filter is attached to a 1.5% solid medium (300 mL of geothermal water sample + 4.5 g of seaweed powder, sterilized at 121 ° C for 15 minutes, poured into a Petri dish for cooling), and cultured at 55 ° C. ~14 days. At the end of the culture period, single colonies with a special color or morphology were picked out with a sterile inoculating loop, and the three regions were streaked on a new medium and repeated several times until a pure strain was obtained. The purified strain was stored at 4 °C.

菌體DNA萃取Bacterial DNA extraction

以接種環刮取適量的新鮮菌落加於1mL的無菌水中,並以無菌水清洗3次後利用萃取套組(Blood & Tissue genomic DNA extraction minoprep system)抽取菌株的基因體DNA(genomic DNA),儲存於-20℃冰箱。Scrap the appropriate amount of fresh colonies in 1 mL of sterile water with an inoculating loop and wash them with sterile water for 3 times before using the extraction kit (Blood & Tissue genomic DNA) Extraction minoprep system) The genomic DNA of the strain was extracted and stored in a refrigerator at -20 °C.

菌體16S rDNA的定序Sequencing of 16S rDNA

將抽取菌株的基因體DNA以原核生物通用的引子對FD1(5’-AGA GTT TGA TCC TGG CTC AG-3’)及RD1(5’-AAG GAG GTG ATC CAG CC-3’),以及下列表1、表2所示之聚合酶鏈鎖反應(PCR)試劑及條件,增幅該菌株的16S rDNA片段,之後委託明欣生物科技有限公司進行定序,如序列識別號1所示。The genomic DNA of the strain will be extracted as a prokaryotic universal primer pair FD1 (5'-AGA GTT TGA TCC TGG CTC AG-3') and RD1 (5'-AAG GAG GTG ATC CAG CC-3'), and the following list 1. The polymerase chain reaction (PCR) reagents and conditions shown in Table 2, the 16S rDNA fragment of the strain was amplified, and then entrusted to Mingxin Biotechnology Co., Ltd. for sequencing, as shown in sequence identification number 1.

菌體16S rDNA的比對Alignment of bacterial 16S rDNA

將序列識別號1所示之16S rDNA於美國衛生暨醫療研究院(National Institues of Health,NIH)所設立的基因庫網站(National Center for Biotechnology Information,NCBI;www.ncbi.nlm.nih.gov),應用網站中的BLAST軟體將定序出的16S rDNA序列與GenBank資料庫中已發表序列進行比對,分析其序列相似度,並完成微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)株AT-A2T於NCBI序列資料庫(www.ncbi.nlm.nih.gov.)的註冊,序號為JN713899。The 16S rDNA shown in SEQ ID NO: 1 is set up at the National Center for Biotechnology Information (NCBI; www.ncbi.nlm.nih.gov) established by the National Institute for Health and Medical Research (NIH). The BLAST software in the application website compares the sequenced 16S rDNA sequence with the published sequence in the GenBank database, analyzes the sequence similarity, and completes the thermophilic thermophila ( Tepidimonas fonticaldi sp.nov). .) The strain AT-A2T is registered in the NCBI sequence database (www.ncbi.nlm.nih.gov.) under the serial number JN713899.

親緣關係樹的建構Construction of kinship tree

根據上述的序列相似度,將與實驗菌株相似度較高之已知模式菌株的16S rDNA基因序列及編號(accession number),利用BioEdit軟體與CLUSTAL_X建構親緣關係樹,並計算各菌株間之同源性關係,並繪製出樹狀圖如第1圖,由此確認所採集之菌株為新穎、親緣關係接近已知的嗜熱溫單胞菌(Tepidimonas thermarum AA-1T)。According to the above sequence similarity, the 16S rDNA gene sequence and accession number of the known model strains with higher similarity to the experimental strains were constructed using BioEdit software and CLUSTAL_X, and the homology between the strains was calculated. The relationship was plotted and a dendrogram was drawn as in Fig. 1, thereby confirming that the collected strain was novel and closely related to the known Tepidimonas thermarum AA-1T.

[實施例2]胞外蛋白的金屬離子鍵結分析[Example 2] Metal ion bonding analysis of extracellular proteins

蛋白的收集Protein collection

為驗證新穎的微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)及模式菌株(水生棲熱菌(Thermus aquaticus BCRC 17110))與其他嗜熱菌株所分泌的蛋白(含胞內及胞外)與鈣離 子鍵結的能力,分別以接種環刮取瓊脂平板培養基上的純菌落加入100mL的1/5 TSB液態培養基(配方:經胰蛋白酶分解的酪蛋白1.7g/L、經酵素分解的大豆粉0.3g/L、右旋糖0.25g/L、氯化鈉0.5g/L及亞磷酸鉀0.25g/L)中,在200rpm、55℃狀態下增殖培養3~5天。To validate novel proteins secreted by Tepidimonas fonticaldi sp. nov. and model strains ( Thermus aquaticus BCRC 17110) and other thermophilic strains (including intracellular and Extracellular) ability to bind to calcium ions, respectively, by inoculating the ring to scrape the pure colonies on the agar plate medium and adding 100 mL of 1/5 TSB liquid medium (formulation: trypsin-decomposed casein 1.7 g/L, enzyme) In the decomposed soybean powder 0.3 g/L, dextrose 0.25 g/L, sodium chloride 0.5 g/L, and potassium phosphite 0.25 g/L, the cells were cultured at 200 rpm and 55 ° C for 3 to 5 days.

增殖培養完成後,將培養得到的菌液以10,000rpm離心10分鐘,含胞外蛋白的上清液再以氣壓式蛋白質濃縮儀濃縮,濃縮倍數為10倍,作為後續試驗的胞外蛋白樣品。離心後的菌體顆粒利用超音波破碎器將細胞打破,使胞內蛋白流出,作為後續實驗用之胞內蛋白樣品。After the completion of the proliferation culture, the cultured bacterial solution was centrifuged at 10,000 rpm for 10 minutes, and the supernatant containing the extracellular protein was concentrated by a barometric protein concentrator at a magnification of 10 times as a sample of the extracellular protein of the subsequent test. The cells after centrifugation were disrupted by an ultrasonic breaker to cause intracellular proteins to flow out as a sample of intracellular proteins for subsequent experiments.

蛋白質濃度的定量Quantification of protein concentration

取100μL試驗用蛋白質溶液,加入400μL Bio-Rad蛋白質測定液,經15分鐘呈色反應後,以分光光度計在595nm的可見光源下量測吸光度,將吸光度代入檢量線求出蛋白質濃度,以評估微生物分泌之蛋白質含量。100 μL of the test protein solution was added, 400 μL of Bio-Rad protein assay solution was added, and after 15 minutes of color reaction, the absorbance was measured by a spectrophotometer under a visible light source of 595 nm, and the absorbance was substituted into the calibration line to determine the protein concentration. Assess the protein content secreted by the microorganisms.

胞內和胞外蛋白的鈣離子鍵結效能試驗Calcium ion binding efficiency test of intracellular and extracellular proteins

為了探討胞內和胞外蛋白與金屬離子的鍵結效能,將上述獲得之各嗜熱菌的胞內與胞外蛋白進行鈣離子鍵結效能試驗。In order to investigate the binding efficiency of intracellular and extracellular proteins to metal ions, the intracellular and extracellular proteins of each of the thermophilic bacteria obtained above were subjected to a calcium ion binding efficacy test.

將上述的胞內/胞外蛋白溶液50ppm與以CaCl2 .2H2 O配製成100ppm的鈣離子儲備溶液1:1均勻混合,混合液於100℃溫度下隔水加熱1小時。隔水加熱結束後,混合液以薄膜孔徑大小為3KDa的超過濾系統(ultrafiltration system)過濾, 使蛋白被截流在薄膜上,而未與蛋白鍵結的鈣離子濾出液則以去離子水稀釋至儀器檢測範圍內(0~5ppm)後,以感應耦合電漿原子發射光譜儀(ICP)量測分析,最後由濾液中的殘留Ca2+ 濃度推算蛋白對鈣離子之鍵結效能。結果如下表3與第2圖所示。The above intracellular/extracellular protein solution was 50 ppm with CaCl 2 . 2H 2 O was formulated into a 100 ppm calcium ion stock solution and uniformly mixed 1:1, and the mixture was heated at 100 ° C for 1 hour in water. After the completion of the water-blocking heating, the mixture was filtered through an ultrafiltration system with a membrane pore size of 3 kDa to allow the protein to be trapped on the membrane, while the calcium ion filtrate not bound to the protein was diluted with deionized water. After measuring within the detection range of the instrument (0~5ppm), it is measured by inductively coupled plasma atomic emission spectrometry (ICP). Finally, the residual Ca 2+ concentration in the filtrate is used to estimate the bonding effect of the protein on calcium ions. The results are shown in Table 3 and Figure 2 below.

由上表3與第2圖所示,胞外蛋白的鈣離子鍵結效能遠比胞內蛋白來的顯著,同時,菌株AT-A2的鈣離子鍵結效能最佳,為每毫克蛋白0.327mg的Ca2+ 離子,其餘菌株的鈣離子鍵結效能均低於每毫克蛋白0.1mg的Ca2+As shown in Table 3 and Figure 2 above, the calcium ion binding efficiency of extracellular proteins is much more remarkable than that of intracellular proteins. At the same time, the strain AT-A2 has the best calcium ion bonding efficiency, which is 0.327 mg per mg of protein. Ca 2+ ions, the other strains have a calcium ion binding efficiency lower than 0.1 mg Ca 2+ per milligram of protein.

環境條件的鈣離子鍵結效能試驗Calcium ion bonding efficiency test of environmental conditions

為了探討溫度、壓力、酸鹼度等的環境因子對微嗜熱乙型 溫單胞菌(Tepidimonas fonticaldi sp.nov.)的胞外蛋白與鈣離子鍵結效能的影響,設計下列實驗:(1)將50ppm的上述胞外蛋白樣品在25℃、pH 7的環境下,以試驗壓力分別為10atm、30atm、50atm的條件處理10分鐘;(2)將50ppm的上述胞外蛋白樣品在25℃、1大氣壓環境下,以試驗酸鹼度分別為pH 2、pH 4、pH 6、pH 7、pH 8、pH 10的條件處理10分鐘;(3)將50ppm的上述胞外蛋白樣品在pH 7環境下,以試驗溫度分別為100℃、125℃、150℃的條件處理10分鐘。In order to investigate the effects of environmental factors such as temperature, pressure, pH and other factors on the extracellular protein and calcium ion binding efficiency of Tepidimonas fonticaldi sp. nov., the following experiments were designed: (1) 50 ppm of the above extracellular protein sample was treated at a test pressure of 10 atm, 30 atm, 50 atm for 10 minutes at 25 ° C, pH 7, and (2) 50 ppm of the above extracellular protein sample at 25 ° C, 1 atm. Under the environment, the test pH is 2, pH 4, pH 6, pH 7, pH 8, pH 10 for 10 minutes; (3) 50 ppm of the above extracellular protein sample in the pH 7 environment to test The temperature was treated at 100 ° C, 125 ° C, and 150 ° C for 10 minutes.

之後,以上述的蛋白溶液50ppm與以CaCl2 .2H2 O配製成100ppm的鈣離子儲備溶液1:1均勻混合,混合液於上述試驗環境條件下再處理10分鐘。試驗完成後,混合液以薄膜孔徑大小為3KDa的超過濾系統(ultrafiltration system)過濾,使蛋白被截流在薄膜上,而未與蛋白鍵結的鈣離子濾出液則以去離子水稀釋至儀器檢測範圍內(0~5ppm)後,以感應耦合電漿原子發射光譜儀(ICP)量測分析,最後由濾液中的殘留Ca2+ 濃度推算蛋白對鈣離子之鍵結效能。After that, the above protein solution was 50 ppm with CaCl 2 . 2H 2 O was formulated into a 100 ppm calcium ion stock solution and uniformly mixed 1:1, and the mixed solution was further treated under the above test conditions for 10 minutes. After the test was completed, the mixture was filtered through an ultrafiltration system with a membrane pore size of 3 kDa to allow the protein to be trapped on the membrane, while the calcium ion filtrate not bound to the protein was diluted with deionized water to the instrument. After detection (0~5ppm), it was measured by inductively coupled plasma atomic emission spectrometry (ICP). Finally, the binding effect of protein on calcium ion was estimated from the residual Ca 2+ concentration in the filtrate.

結果如第3至5圖所示,本發明之微嗜熱乙型溫單胞菌在高溫、高壓及廣pH條件下,皆具有對鈣離子的優良鍵結效能。As a result, as shown in Figs. 3 to 5, the Thermophilic Thermophilum type of the present invention has excellent binding efficiency to calcium ions under high temperature, high pressure and wide pH conditions.

稀土金屬離子的鍵結效能Bonding efficiency of rare earth metal ions

為了探討微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp. nov.)之胞外蛋白與稀土金屬離子的鍵結效能,設計下列實驗:將上述胞外蛋白樣品10ppm與含有鈰(Ce)、鏑(Dy)、鉺(Er)、銪(Eu)、釓(Gd)、鈥(Ho)、鑭(La)、鎦(Lu)、釹(Nd)、鐠(Pr)、鈧(Sc)、釤(Sm)、鋱(Tb)、釷(Th)、銩(Tm)、鈾(U)、鐿(Yb)及釔(Y)金屬離子10ppm的標準溶液1:1均勻混合,在100℃、pH 2的條件下反應20分鐘。之後,依前述方法,測定該胞外蛋白與鏑(Dy)、鑭(La)、釹(Nd)、鈧(Sc)、釤(Sm)、鐿(Yb)、釔(Y)稀土金屬離子的鍵結效能,鍵結效能以每毫克微莫耳金屬離子(μ mole metal/mg protein)表示,結果如第6至12圖所示。In order to investigate the binding efficiency of the extracellular protein of Tepidimonas fonticaldi sp. nov. to rare earth metal ions, the following experiment was designed: 10 ppm of the above extracellular protein sample and containing cerium (Ce), Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sc 1:1 (Sm), 鋱 (Tb), 钍 (Th), 銩 (Tm), uranium (U), yttrium (Yb) and yttrium (Y) metal ions 10ppm standard solution 1:1 uniform mixing, at 100 ° C, The reaction was carried out for 20 minutes under the conditions of pH 2. Thereafter, the extracellular protein and the rare earth metal ions of Dy, La, Nd, Sc, Sm, Yb, Y (Y) are measured according to the aforementioned method. bonding performance, effectiveness bonded per mg of metal ions micromolar mole metal / mg protein) indicates the result of 6 to 12 as shown in FIG.

二價及三價金屬離子的鍵結效能試驗Bonding effectiveness test of divalent and trivalent metal ions

將上述胞外蛋白樣品10ppm與含有鋁(Al)、硼(B)、鋇(Ba)、鉍(Bi)、鈣(Ca)、鎘(Cd)、鈷(Co)、鉻(Cr)、銅(Cu)、鐵(Fe)、鎵(Ga)、銦(In)、鉀(K)、鋰(Li)、鎂(Mg)、錳(Mn)、鈉(Na)、鎳(Ni)、鉛(Pb)、鍶(Sr)、鉈(Tl)、鋅(Zn)金屬離子10ppm的標準溶液1:1均勻混合,在100℃、pH 2的條件下反應20分鐘,之後,依上述方法,測定該胞外蛋白與鋇(Ba)、鈣(Ca)、銦(In)、金屬離子的鍵結效能,鍵結效能以鍵結效能以每毫克微莫耳金屬離子(μ mole metal/mg protein)表示,結果如第13至15圖所示。The above extracellular protein sample was 10 ppm and contained aluminum (Al), boron (B), barium (Ba), bismuth (Bi), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper. (Cu), iron (Fe), gallium (Ga), indium (In), potassium (K), lithium (Li), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), strontium (Sr), strontium (Tl), zinc (Zn) metal ions 10ppm standard solution 1:1 uniform mixing, reaction at 100 ° C, pH 2 for 20 minutes, after which, according to the above method The binding efficiency of the extracellular protein to barium (Ba), calcium (Ca), indium (In), and metal ions, and bonding efficiency with bonding efficiency of μ mole metal/mg protein per milligram. The results are shown in Figures 13-15.

貴金屬離子的鍵結效能Bonding efficiency of noble metal ions

將上述胞外蛋白樣品10ppm與含有金(Au)、鈀(Pd)、鉑(Pt)、銠(Rh)金屬離子10ppm的標準溶液1:1均勻混合,在25℃、 pH 2的條件下反應20分鐘,之後,依上述方法,測定該胞外蛋白與貴金屬離子的鍵結效能,鍵結效能以鍵結效能以每毫克微莫耳金屬離子(μ mole metal/mg protein)表示,結果如第16至19圖所示。10 ppm of the above extracellular protein sample was uniformly mixed with a standard solution containing 10 ppm of gold (Au), palladium (Pd), platinum (Pt), and rhodium (Rh) metal ions, and reacted at 25 ° C and pH 2 After 20 minutes, the binding efficiency of the extracellular protein to the noble metal ion was determined by the above method, and the binding efficiency was expressed by the binding efficiency per μm of metal ion (mg). Figures 16 to 19 are shown.

從第6至19圖之數據可知,本發明之微嗜熱乙型溫單胞菌之胞外蛋白對於廣泛的二價或三價金屬離子、稀土及貴皆金屬離子具有優良的鍵結能力。As can be seen from the data of Figures 6 to 19, the extracellular protein of Thermophilus thermophilum of the present invention has excellent binding ability to a wide range of divalent or trivalent metal ions, rare earths and noble metal ions.

[比較例1]商用蛋白對貴金屬離子的鍵結效能[Comparative Example 1] Bonding efficiency of commercial proteins to noble metal ions

將50ppm商用蛋白,包括卵清蛋白(ovalbumin)、牛血清白蛋白(BSA)及溶解酶(lysozyme)與鈀(Pd)金屬離子10ppm的標準溶液20:1,在25℃、pH 4的條件下反應60分鐘;以及50ppm商用蛋白,包括卵清蛋白(ovalbumin)及牛血清白蛋白(BSA),以及100ppm溶解酶(lysozyme)與金(Au)金屬離子10ppm的標準溶液,在25℃、pH 4的條件下反應60分鐘。之後,依實施例2之方法,測定上述商用蛋白與貴金屬離子的鍵結效能。鍵結效能以鍵結效能以每毫克微莫耳金屬離子(μ mole metal/mg protein)表示。50ppm commercial protein, including ovalbumin, bovine serum albumin (BSA) and lysozyme (ply) metal ion 10ppm standard solution 20:1, at 25 ° C, pH 4 conditions Reaction for 60 minutes; and 50 ppm of commercial protein, including ovalbumin and bovine serum albumin (BSA), and 100 ppm of lysozyme and gold (Au) metal ion 10 ppm standard solution at 25 ° C, pH 4 The reaction was carried out for 60 minutes. Thereafter, the binding efficiency of the above commercial protein to noble metal ions was measured by the method of Example 2. The bonding efficiency is expressed in terms of bonding efficiency per μm of metal/mg protein.

結果如第20圖所示,卵清蛋白、牛血清白蛋白及溶解酶對金(Au)的吸附量為分別為0.18、0.20及0.10,對鈀(Pd)的吸附量分別為0.86、0.98及0.98。相較之下,本案之微嗜熱乙型溫單胞菌(AT-A2)之胞外蛋白對金(Au)及鈀(Pd)吸附效果為1.33及3.13,顯示本案之微嗜熱乙型溫單胞菌之胞外蛋白對於有價金屬離子的鍵結能力遠比商用蛋白佳。As shown in Fig. 20, the adsorption amounts of ovalbumin, bovine serum albumin and lytic enzyme on gold (Au) were 0.18, 0.20 and 0.10, respectively, and the adsorption amounts to palladium (Pd) were 0.86 and 0.98, respectively. 0.98. In contrast, the extracellular protein of Thermophilic B. thermophilum (AT-A2) in this case has an adsorption effect on gold (Au) and palladium (Pd) of 1.33 and 3.13, indicating the micro-thermophilic type B in this case. The extracellular protein of Thermomonas has a much stronger binding ability to valuable metal ions than commercial proteins.

[實施例3]金屬離子的脫附[Example 3] Desorption of metal ions

於實施例2中含有微嗜熱乙型溫單胞菌之胞外蛋白及稀土金屬離子或貴金屬離子溶液之反應系統中,添加40ml的脫附劑(氨三乙酸),在25℃環境下靜置30分鐘進行脫附處理,分別得到各反應系統中所含之金屬。In the reaction system containing the extracellular protein of M. thermophilum and the rare earth metal ion or noble metal ion solution in Example 2, 40 ml of a desorbent (ammonia triacetate) was added, and the solution was allowed to stand at 25 ° C. The desorption treatment was carried out for 30 minutes to obtain the metals contained in the respective reaction systems.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

<110> 財團法人工業技術研究院<110> Institute of Industrial Technology

<120> 有價金屬回收的方法<120> Method of valuable metal recovery

<130> 0965-A24070-CIPTW<130> 0965-A24070-CIPTW

<160> 1<160> 1

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 1276<211> 1276

<212> DNA<212> DNA

<213> Tepidimonas thermarum AA-1<213> Tepidimonas thermarum AA-1

<400> 1 <400> 1

Claims (11)

一種有價金屬回收的方法,包括:提供一單離的嗜熱菌的胞外蛋白與含有金屬離子之溶液接觸,生成金屬離子與蛋白的複合物;以及收集該複合物,其中該嗜熱菌為寄存於中華民國食品工業發展研究所生物資源保存及研究中心(BCRC),寄存編號BCRC 80391之微嗜熱乙型溫單胞菌(Tepidimonas fonticaldi sp.nov.)。A method for recovering valuable metals, comprising: providing an isolated extracellular protein of thermophilic bacteria in contact with a solution containing metal ions to form a complex of metal ions and proteins; and collecting the complex, wherein the thermophilic bacteria are Hosted in the Center for Bioresource Conservation and Research (BCRC) of the Republic of China Food Industry Development Institute, and registered with Tepidimonas fonticaldi sp. nov. 如申請專利範圍第1項所述之有價金屬回收的方法,更包括:對該金屬離子與蛋白所形成的複合物進行脫附處理,得到該金屬離子。 The method for recovering valuable metals according to claim 1, further comprising: desorbing the composite formed by the metal ions and the protein to obtain the metal ions. 如申請專利範圍第2項所述之有價金屬回收的方法,其中該脫附劑包括氨三乙酸(nitrilotriacetic acid,NTA)、乙二胺四乙酸(Ethylenediaminetetraacetates,EDTA)或其組合。 The method of recovering valuable metals according to claim 2, wherein the desorbing agent comprises nitrilotriacetic acid (NTA), Ethylenediamine tetraacetate (EDTA) or a combination thereof. 如申請專利範圍第1項所述之有價金屬回收的方法,其中該嗜熱菌包括如序列識別號1所示之16S rDNA序列。 The method of recovering valuable metals according to claim 1, wherein the thermophilic bacteria comprises a 16S rDNA sequence as shown in SEQ ID NO: 1. 如申請專利範圍第1項所述之有價金屬回收的方法,其中該金屬離子包括稀土金屬離子或貴金屬離子。 A method of recovering valuable metals as described in claim 1, wherein the metal ion comprises a rare earth metal ion or a noble metal ion. 如申請專利範圍第5項所述之有價金屬回收的方法,其中稀土金屬離子包括鈰(Ce)、鏑(Dy)、鉺(Er)、銪(Eu)、釓(Gd)、鈥(Ho)、鑭(La)、鎦(Lu)、釹(Nd)、鐠(Pr)、鈧(Sc)、釤(Sm)、鋱(Tb)、釷(Th)、銩(Tm)、鈾(U)、鐿(Yb)、釔(Y)或前述之組合。 A method for recovering valuable metals as described in claim 5, wherein the rare earth metal ions include cerium (Ce), dysprosium (Dy), cerium (Er), europium (Eu), cerium (Gd), cerium (Ho). , La, Lu, Nd, Pr, Sc, Sm, Tb, Th, Tm, U , Yb, Y (Y) or a combination of the foregoing. 如申請專利範圍第5項所述之有價金屬回收的方法,其 中該貴金屬離子包括金(Au)、銀(Ag)、鉑(Pt)、鈀(Pd)、銠(Rh)、銥(Ir)或前述之組合。 A method for recovering valuable metals as described in claim 5, The noble metal ions include gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir) or a combination thereof. 如申請專利範圍第1項所述之有價金屬回收的方法,其中,該嗜熱菌的胞外蛋白與含有金屬離子之溶液的接觸在25~100℃的環境進行。 The method for recovering valuable metals according to claim 1, wherein the contact of the extracellular protein of the thermophilic bacteria with the solution containing the metal ions is carried out in an environment of 25 to 100 °C. 如申請專利範圍第1項所述之有價金屬回收的方法,其中,該嗜熱菌的胞外蛋白與含有金屬離子之溶液的接觸在pH 2~6的酸鹼度下進行。 The method for recovering valuable metals according to claim 1, wherein the contact of the extracellular protein of the thermophilic bacteria with the solution containing the metal ions is carried out at a pH of 2 to 6. 如申請專利範圍第1項所述之有價金屬回收的方法,其中,該含有金屬離子之溶液包括地熱水、鍋爐內溶液、工業廢水或硬水。 The method for recovering valuable metals according to claim 1, wherein the metal ion-containing solution comprises geothermal water, a solution in a boiler, industrial wastewater or hard water. 如申請專利範圍第1項所述之有價金屬回收的方法,其用於鍋爐設備、地表管線、地熱生產井、工業廢水或硬水的處理。A method for recovering valuable metals as described in claim 1 for use in the treatment of boiler equipment, surface pipelines, geothermal production wells, industrial wastewater or hard water.
TW102140228A 2013-11-06 2013-11-06 Methods for recycling valuble metal TWI487790B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102140228A TWI487790B (en) 2013-11-06 2013-11-06 Methods for recycling valuble metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102140228A TWI487790B (en) 2013-11-06 2013-11-06 Methods for recycling valuble metal

Publications (2)

Publication Number Publication Date
TW201518509A TW201518509A (en) 2015-05-16
TWI487790B true TWI487790B (en) 2015-06-11

Family

ID=53720800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140228A TWI487790B (en) 2013-11-06 2013-11-06 Methods for recycling valuble metal

Country Status (1)

Country Link
TW (1) TWI487790B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632116B (en) * 2016-12-29 2018-08-11 財團法人工業技術研究院 Valuable metal selectively adsorbing electrode and method for selectively recovering valuable metals
US10323331B2 (en) 2016-12-29 2019-06-18 Industrial Technology Research Institute Valuable metal selectively adsorbing electrode and method for selectively recovering valuable metals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chen, WM et al., "Tepidimonas fonticaldi sp nov., a slightly thermophilic betaproteobacterium isolated from a hot spring", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY Volume: 63 Published: MAY 2013 Page: 1810-1816 *
Tek C. KHOO et al., "Interactions of calcium and other metal ions with caldolysin, the thermostable proteinase from Thermus aquaticus strain T351", Biochem. J. (1984) 221, 407-413. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632116B (en) * 2016-12-29 2018-08-11 財團法人工業技術研究院 Valuable metal selectively adsorbing electrode and method for selectively recovering valuable metals
US10323331B2 (en) 2016-12-29 2019-06-18 Industrial Technology Research Institute Valuable metal selectively adsorbing electrode and method for selectively recovering valuable metals

Also Published As

Publication number Publication date
TW201518509A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
Reed et al. Bioleaching of rare earth elements from waste phosphors and cracking catalysts
Zhu et al. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea
Makhdoumi-Kakhki et al. Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran
AU2016100971A4 (en) Method for remediating contaminated soil using microorganism strain having ability to produce urease
Lerm et al. Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime
CN101781653B (en) Jujube tree metallothionein gene and application thereof to treatment of heavy metal pollution
CN103620070B (en) Indium recovery method
TWI487790B (en) Methods for recycling valuble metal
CN107287225A (en) Gold ion is detected and adsorption system and its Host Strains, gold ion recovery method
CN102924602A (en) Gold ion adsorption protein and method for enriching and recovering gold ion
WO2014178360A1 (en) Microorganism having ability to elute rare earth element, method for eluting rare earth element, microorganism having ability to solidify rare earth element and method for solidifying rare earth element
US8968687B2 (en) Method for recycling metals
TWI510618B (en) A method for inhibiting salt formation and a mehtod for treating high temperature wastewater
CN106635854A (en) Oligographic bacterium composition and application of oligographic bacterium composition in inhibition on generation of jarosite in biological leaching
CN111057775B (en) Specific novel molecular target for identifying salmonella and rapid detection method thereof
Allward et al. Potential for manganese biofouling in water transmission lines using model reactors
TW200840870A (en) Method of pre-treating in pleural effusion for detection of mycobacterium tuberculosis
CN109423456B (en) Azotobacter chroococcum as well as identification method and application thereof
Wazeck Heavy metal extraction from electroplating sludge using Bacillus subtilis and Saccharomyces cerevisiae (Schwermetallgewinnung aus Galvanikschlämmen durch Bacillus subtilis und Saccharomyces cerevisiae)
Vanneste et al. Isolation of copper and streptomycin resistant phytopathogenic Pseudomonas syringae from lakes and rivers in the central North Island of New Zealand
Abdellatif et al. First report of citrus bacterial blast and citrus black pit caused by Pseudomonas syringe pv. syringae in Tunisia
CN111662847B (en) Enterobacter antimonoroxide and application thereof
CN103421702A (en) Bacteria Lysinibacillus sp. for adsorbing gold and antimony
CN109423458B (en) Rhodococcus and identification method and application thereof
US8828238B2 (en) Thermophilic bacterium and uses of extracellular proteins therefrom