TWI486944B - Data driver - Google Patents
Data driver Download PDFInfo
- Publication number
- TWI486944B TWI486944B TW102110076A TW102110076A TWI486944B TW I486944 B TWI486944 B TW I486944B TW 102110076 A TW102110076 A TW 102110076A TW 102110076 A TW102110076 A TW 102110076A TW I486944 B TWI486944 B TW I486944B
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- voltage
- level
- data
- pixel
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Description
本發明是有關於一種驅動器,且特別是有關於一種資料驅動器。This invention relates to a drive and, more particularly, to a data drive.
於液晶顯示器之驅動方式中,為了避免破壞液晶分子的物理特性,必需輪流使用不同極性之電壓,來驅動液晶分子。於使用固定不變的共同電壓之驅動方式中,資料驅動器係藉由轉換其所輸出之電壓的極性,以適當地驅動液晶分子。In the driving method of the liquid crystal display, in order to avoid damaging the physical properties of the liquid crystal molecules, it is necessary to alternately use voltages of different polarities to drive the liquid crystal molecules. In a driving method using a fixed common voltage, the data driver appropriately drives the liquid crystal molecules by converting the polarity of the voltage outputted therefrom.
傳統上,當資料驅動器驅動液晶分子時,驅動電壓之位準範圍係約為-6伏特至6伏特。此時,於資料驅動器中所使用之電路元件所需承受之最大跨壓可能為12伏特(-6~6伏特)。為了於驅動液晶顯示器的過程中承受12伏特之跨壓,資料驅動器必需使用可耐高壓(high voltage)之電路元件。然而,使用可耐高壓之電路元件之資料驅動器卻具有尺寸過大及成本高昂的問題。因此,如何減小資料驅動器之尺寸並降低成本,乃業界所致力之方向之一。Conventionally, when a data driver drives liquid crystal molecules, the level of the driving voltage is about -6 volts to 6 volts. At this point, the maximum voltage across the circuit components used in the data driver may be 12 volts (-6 to 6 volts). In order to withstand a voltage of 12 volts during the driving of the liquid crystal display, the data driver must use circuit components that can withstand high voltages. However, the use of data drivers that can withstand high voltage circuit components is problematic in size and cost. Therefore, how to reduce the size of the data driver and reduce the cost is one of the direction of the industry.
本發明係有關於一種資料驅動器,係減少可耐高壓 電路元件之使用,能於不會增加系統之消耗功率之前提之下,減小資料驅動器之尺寸及晶片面積,並降低成本。The invention relates to a data driver, which is capable of reducing high voltage resistance The use of circuit components can reduce the size and wafer area of the data driver and reduce the cost without increasing the power consumption of the system.
根據本發明之第一方面,提出一種資料驅動器,用以根據多個畫素資料對應地驅動一顯示面板之多條資料線。此些畫素資料包括一第一畫素資料及一第二畫素資料。該資料驅動器包括一第一資料處理電路、一第二資料處理電路及一多工器電路。第一資料處理電路與一第二資料處理電路用以處理此些畫素資料。第一資料處理電路根據第一畫素資料提供一正畫素電壓,第二資料處理電路根據第二畫素資料提供一負畫素電壓。多工器電路包括多個多工器單元,各此些多工器單元包括一第一輸入端、一第二輸入端、一輸出端、一第一切換器及一第二切換器。第一輸入端及一第二輸入端分別用以接收正畫素電壓與負畫素電壓。輸出端耦接至此些資料線之一。第一切換器具有一第一開關、一第二開關及一第三開關。第一及第二開關係串聯耦接於第一輸入端與輸出端之間,且第一及第二開關之間之一第一節點係經由第三開關選擇性地接地。第二切換器具有一第四開關、一第五開關及一第六開關。第四及第五開關係串聯耦接於第二輸入端與輸出端之間,且第四及第五開關之間之一第二節點係經由第六開關選擇性地接地。當第一及第二開關導通時,第六開關導通。當第四及第五開關導通時,第三開關導通。According to a first aspect of the present invention, a data driver is provided for driving a plurality of data lines of a display panel correspondingly according to a plurality of pixel data. The pixel data includes a first pixel data and a second pixel data. The data driver includes a first data processing circuit, a second data processing circuit, and a multiplexer circuit. The first data processing circuit and a second data processing circuit are configured to process the pixel data. The first data processing circuit provides a positive pixel voltage based on the first pixel data, and the second data processing circuit provides a negative pixel voltage based on the second pixel data. The multiplexer circuit includes a plurality of multiplexer units, each of the multiplexer units including a first input end, a second input end, an output end, a first switch, and a second switch. The first input end and the second input end are respectively configured to receive a positive pixel voltage and a negative pixel voltage. The output end is coupled to one of the data lines. The first switch has a first switch, a second switch and a third switch. The first and second open relationships are coupled in series between the first input end and the output end, and one of the first nodes between the first and second switches is selectively grounded via the third switch. The second switch has a fourth switch, a fifth switch and a sixth switch. The fourth and fifth open relationships are coupled in series between the second input end and the output end, and one of the second nodes between the fourth and fifth switches is selectively grounded via the sixth switch. When the first and second switches are turned on, the sixth switch is turned on. When the fourth and fifth switches are turned on, the third switch is turned on.
根據本發明之第二方面,提出一種資料驅動器,用以根據多個畫素資料對應地驅動一顯示面板之多條資料線此些 畫素資料包括一第一畫素資料及一第二畫素資料。資料驅動器包括一第一資料處理電路、一第二資料處理電路及一多工器電路。第一資料處理電路用以根據第一畫素資料提供一正畫素電壓。第二資料處理電路包括一位準移位器、一數位類比轉換器及一輸出緩衝器。位準移位器用以接收第二畫素資料。第二畫素資料之電壓位準係介於一接地位準與一第一正位準之間,並用以調整第二畫素資料之電壓位準為介於一第一負位準與第一正位準之間之位準,接著調整第二畫素資料之電壓位準為介於第一負位準與接地位準之間之位準,之後調整第二畫素資料之電壓位準為介於一第二負位準與接地位準之間之位準。輸出緩衝器用以暫存負畫素電壓。多工器電路用以將正畫素電壓與負畫素電壓輸出至此些資料線之其二。第一負位準之絕對值係小於第二負位準之絕對值。According to a second aspect of the present invention, a data driver is provided for driving a plurality of data lines of a display panel correspondingly according to a plurality of pixel data. The pixel data includes a first pixel data and a second pixel data. The data driver includes a first data processing circuit, a second data processing circuit, and a multiplexer circuit. The first data processing circuit is configured to provide a positive pixel voltage according to the first pixel data. The second data processing circuit includes a one-bit shifter, a digital analog converter, and an output buffer. The level shifter is configured to receive the second pixel data. The voltage level of the second pixel data is between a ground level and a first positive level, and is used to adjust the voltage level of the second pixel data to be between a first negative level and the first The level between the positive levels is adjusted, and then the voltage level of the second pixel data is adjusted to be between the first negative level and the ground level, and then the voltage level of the second pixel data is adjusted to be The level between a second negative level and the ground level. The output buffer is used to temporarily store the negative pixel voltage. The multiplexer circuit is used to output the normal pixel voltage and the negative pixel voltage to the second of the data lines. The absolute value of the first negative level is less than the absolute value of the second negative level.
根據本發明之第三方面,提出一種資料驅動器,用以根據多個畫素資料對應地驅動一顯示面板之多條資料線。此些畫素資料包括多個第一畫素資料及多個第二畫素資料。資料驅動器包括一第一資料處理電路、一第二資料處理電路及一多工器電路。第一資料處理電路。第一資料處理電路用以根據此些第一畫素資料提供多個正畫素電壓。第二資料處理電路,包括一前級位準移位器、一移位暫存器、一移位暫存器、一線緩衝器、一後級位準移位器、數位類比轉換器及一輸出緩衝器。前級位準移位器用以循序地接收此些第二畫素資料,此些第二畫素資料所對應之電壓位準係介於一接地位準與一第一正位準之間,並調整此些第 二畫素資料之電壓位準為介於一第一負位準與接地位準之間之電壓位準。移位暫存器用以循序地接收前級位準移位器輸出之此些第二畫素資料且並列式地輸出。線緩衝器用以暫存移位暫存器輸出之此些第二畫素資料。後級位準移位器用以調整線緩衝器輸出之此些第二素資料之電壓位準為介於一第二負位準與接地位準之間之電壓位準。數位類比轉換器用以轉換後級位準移位器輸出之此些第二畫素資料為複數個負畫素電壓。輸出緩衝器用以暫存此些負畫素電壓。多工器電路用以將此些正畫素電壓與此些負畫素電壓輸出至對應之此些資料線。第一負位準之絕對值係小於第二負位準之絕對值。According to a third aspect of the present invention, a data driver is provided for driving a plurality of data lines of a display panel correspondingly according to a plurality of pixel data. The pixel data includes a plurality of first pixel data and a plurality of second pixel data. The data driver includes a first data processing circuit, a second data processing circuit, and a multiplexer circuit. The first data processing circuit. The first data processing circuit is configured to provide a plurality of positive pixel voltages based on the first pixel data. The second data processing circuit comprises a pre-level shifter, a shift register, a shift register, a line buffer, a post-level shifter, a digital analog converter and an output buffer. The pre-level shifter is configured to sequentially receive the second pixel data, wherein the voltage level corresponding to the second pixel data is between a ground level and a first positive level, and Adjust these The voltage level of the two pixel data is a voltage level between a first negative level and a ground level. The shift register is configured to sequentially receive the second pixel data output by the front level shifter and output it in parallel. The line buffer is used to temporarily store the second pixel data of the shift register output. The level level shifter is configured to adjust the voltage level of the second element data of the line buffer output to be a voltage level between a second negative level and a ground level. The digital analog converter converts the second pixel data output by the subsequent level shifter into a plurality of negative pixel voltages. The output buffer is used to temporarily store the negative pixel voltages. The multiplexer circuit is configured to output the positive pixel voltage and the negative pixel voltages to the corresponding data lines. The absolute value of the first negative level is less than the absolute value of the second negative level.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
100、400、640‧‧‧多工器電路100, 400, 640‧‧‧ multiplexer circuits
110、410、610‧‧‧第一資料處理電路110, 410, 610‧‧‧ first data processing circuit
120、420、620‧‧‧第二資料處理電路120, 420, 620‧‧‧ second data processing circuit
140、140’、440、640‧‧‧多工器電路140, 140', 440, 640‧‧‧ multiplexer circuits
141、142‧‧‧多工器單元141, 142‧‧‧ multiplexer unit
141a~141d‧‧‧切換器141a~141d‧‧‧Switcher
BD‧‧‧基底電壓切換電路BD‧‧‧Base voltage switching circuit
111、121、121’‧‧‧位準移位器111, 121, 121' ‧ ‧ position shifter
112、122、625‧‧‧數位類比轉換器112, 122, 625‧‧‧ digital analog converter
113、123、626‧‧‧輸出緩衝器113, 123, 626‧‧‧ output buffer
160、622‧‧‧移位暫存器160, 622‧‧‧ shift register
180、623‧‧‧線緩衝器180, 623‧‧ ‧ line buffer
621‧‧‧前級位準移位器621‧‧‧Pre-level shifter
624‧‧‧後級位準移位器624‧‧‧After level shifter
LS1~LS4、A~D‧‧‧位準移位單元LS1~LS4, A~D‧‧‧ level shifting unit
SW1~SW12、SW1’、SW2’‧‧‧開關SW1~SW12, SW1', SW2'‧‧‧ switch
IN1‧‧‧第一反相器IN1‧‧‧First Inverter
IN2‧‧‧第二反向器IN2‧‧‧Secondary reverser
第1圖繪示一種資料驅動器之方塊圖。Figure 1 is a block diagram of a data driver.
第2A圖繪示依照本發明第一實施例之多工器電路140之兩個多工器單元141及142之示意圖。2A is a schematic diagram showing two multiplexer units 141 and 142 of the multiplexer circuit 140 in accordance with the first embodiment of the present invention.
第2B圖繪示傳統之多工器電路之兩個多工器單元之示意圖。FIG. 2B is a schematic diagram showing two multiplexer units of a conventional multiplexer circuit.
第3圖繪示第2A圖之多工器單元141及142之電路圖之一例。FIG. 3 is a diagram showing an example of a circuit diagram of the multiplexer units 141 and 142 of FIG. 2A.
第4圖繪示第3圖之多工器單元所使用之切換訊號之一例之波形圖。FIG. 4 is a waveform diagram showing an example of a switching signal used by the multiplexer unit of FIG. 3.
第5A圖繪示依照本發明第二實施例之位準移位器121之方塊圖。Fig. 5A is a block diagram showing a level shifter 121 in accordance with a second embodiment of the present invention.
第5B圖繪示為傳統之位準移位器之方塊圖。Figure 5B is a block diagram of a conventional level shifter.
第6圖繪示為本發明第三實施例之資料驅動器之移位暫存器與線緩衝器之方塊圖。FIG. 6 is a block diagram showing a shift register and a line buffer of a data driver according to a third embodiment of the present invention.
請參照第1圖,其繪示為一種資料驅動器之方塊圖。資料驅動器100用以根據多個畫素資料D1~D2m對應地驅動一顯示面板之多條資料線DL1~DL2m。畫素資料D1~D2m包括第一畫素資料Dp1~Dpm及第二畫素資料Dn1~Dnm。資料驅動器100包括一第一資料處理電路110、一第二資料處理電路120及一多工器電路140。第一與一第二資料處理電路110及120用以處理此些畫素資料D1~D2m。第一資料處理電路110包括一位準移位器111、一數位類比轉換器112及一輸出緩衝器113。第二資料處理電路120包括一位準移位器121、一數位類比轉換器122及一輸出緩衝器123。第一及第二資料處理電路110及120並共用一移位暫存器160與一線緩衝器180。Please refer to FIG. 1 , which is a block diagram of a data driver. The data driver 100 is configured to drive a plurality of data lines DL1 DL DL2m of a display panel correspondingly according to the plurality of pixel data D1 D D2m. The pixel data D1~D2m include the first pixel data Dp1~Dpm and the second pixel data Dn1~Dnm. The data driver 100 includes a first data processing circuit 110, a second data processing circuit 120, and a multiplexer circuit 140. The first and second data processing circuits 110 and 120 are configured to process the pixel data D1 to D2m. The first data processing circuit 110 includes a one-bit shifter 111, a digital analog converter 112, and an output buffer 113. The second data processing circuit 120 includes a one-bit shifter 121, a digital analog converter 122, and an output buffer 123. The first and second data processing circuits 110 and 120 share a shift register 160 and a line buffer 180.
移位暫存器160用以循序地(sequentially)接收此些畫素資料D1~D2m,並且並列式地輸出此些畫素資料D1~D2m。線緩衝器180用以接收從移位暫存器160輸出之此些畫素資料D1~D2m,並分別輸出第一畫素資料Dp1~Dpm(正極性畫素資料)及第二畫素資料Dn1~Dnm(負極性畫素資料)至位準移位器111及121。The shift register 160 is configured to sequentially receive the pixel data D1 D D2m and output the pixel data D1 D D2m in parallel. The line buffer 180 is configured to receive the pixel data D1~D2m outputted from the shift register 160, and output the first pixel data Dp1~Dpm (positive pixel data) and the second pixel data Dn1, respectively. ~Dnm (negative pixel data) to level shifters 111 and 121.
數位類比轉換器112及122分別用以轉換位準移位器111及121輸出之第一及第二畫素資料Dp1~Dpm及Dn1~Dnm為正畫素電壓Vp1~Vpm及負畫素電壓Vn1~Vnm。輸出緩衝器113及123分別用以暫存正畫素電壓Vp1~Vpm及負畫素電壓Vn1~Vnm。多工器電路140係根據正畫素電壓Vp1~Vpm及負畫素電壓Vn1~Vnm,來驅動資料線DL1~DL2m。於此處第一資料處理電路110與第二資料處理電路120所包含之各元件僅為一例,並非用以限制本發明。只要能將第一畫素資料Dp1~Dpm及第二畫素資料Dn1~Dnm分別轉換成第一畫素資料Dp1~Dpm及第二畫素資料Dn1~Dnm之資料處理電路皆在本發明之範圍之內。以下將以第一畫素資料Dp代表第一畫素資料Dp1~Dpm之一,第二畫素資料Dn代表第一畫素資料Dn1~Dnm之一來說明各實施例。The digital analog converters 112 and 122 respectively convert the first and second pixel data Dp1~Dpm and Dn1~Dnm outputted by the level shifters 111 and 121 into positive pixel voltages Vp1 to Vpm and negative pixel voltage Vn1. ~Vnm. The output buffers 113 and 123 are used to temporarily store the normal pixel voltages Vp1 to Vpm and the negative pixel voltages Vn1 to Vnm, respectively. The multiplexer circuit 140 drives the data lines DL1 to DL2m in accordance with the normal pixel voltages Vp1 to Vpm and the negative pixel voltages Vn1 to Vnm. The components included in the first data processing circuit 110 and the second data processing circuit 120 are merely examples, and are not intended to limit the present invention. The data processing circuit capable of converting the first pixel data Dp1~Dpm and the second pixel data Dn1~Dnm into the first pixel data Dp1~Dpm and the second pixel data Dn1~Dnm respectively is within the scope of the present invention. within. Hereinafter, each embodiment will be described with the first pixel data Dp representing one of the first pixel data Dp1 to Dpm, and the second pixel data Dn representing one of the first pixel data Dn1 to Dnm.
於本發明之實施例中,可耐高壓(high voltage)之電路元件例如可定義為:藉由2.5微米製程所實現之電路元件,其例如係可承受小於32伏特之電壓。可耐中壓(medium voltage)之電路元件,例如可定義為:藉由0.6微米製程所實現之電路元件,其例如係可承受小於6伏特之電壓。於設計資料驅動器100的過程中,申請人發現,由於第1圖之多工器電路140與位準移位器121之須承受之電壓的最高位準為12伏特(-6~6伏特),因此需要使用到可耐高壓之電路元件。In an embodiment of the invention, a high voltage circuit component can be defined, for example, as a circuit component implemented by a 2.5 micron process that can withstand, for example, a voltage of less than 32 volts. A circuit component that can withstand a medium voltage can be defined, for example, as a circuit component implemented by a 0.6 micron process that can withstand, for example, a voltage of less than 6 volts. In the process of designing the data driver 100, the Applicant has found that since the maximum level of the voltage tolerated by the multiplexer circuit 140 and the level shifter 121 of FIG. 1 is 12 volts (-6-6 volts), Therefore, it is necessary to use circuit components that can withstand high voltage.
於本發明之一實施例中,係改良多工器電路140的架構,以減少可耐高壓之電路元件之使用。再者,於本發明之另一實施例中,係改良位準移位器121之架構,以減少可耐高壓之電路元件之使用。藉此,使得於本發明所提出之資料驅動器中,能減少可耐高壓電路元件之使用,且 還能於不會增加系統之消耗功率之前提之下,減小資料驅動器之尺寸及晶片面積,並降低成本。茲以多個實施例說明本發明之資料驅動器。In one embodiment of the invention, the architecture of the multiplexer circuit 140 is modified to reduce the use of circuit components that are resistant to high voltages. Moreover, in another embodiment of the invention, the architecture of the level shifter 121 is modified to reduce the use of circuit components that are resistant to high voltages. Thereby, in the data driver proposed by the invention, the use of the high voltage resistant circuit component can be reduced, and It is also possible to reduce the size and wafer area of the data driver and reduce the cost without increasing the power consumption of the system. The data drive of the present invention is illustrated in a number of embodiments.
本實施例係改良多工器電路140的架構,以減少可耐高壓之電路元件之使用。茲將本實施例之多工器單元說明如下。This embodiment is an improved architecture of multiplexer circuit 140 to reduce the use of circuit components that are resistant to high voltages. The multiplexer unit of this embodiment will be described below.
多工器電路140包括m個多工器單元。請參照第2A圖,其繪示依照本發明第一實施例之多工器電路140之兩個多工器單元141及142之示意圖。多工器單元141包括一第一輸入端I1、一第二輸入端I2、一輸出端O1、一第一切換器141a及一第二切換器141b。第一輸入端I1及第二輸入端I2分別用以接收正畫素電壓Vp與負畫素電壓Vn。輸出端O1耦接至此些資料線DL1~DL2m之一,例如係耦接至資料線DL1。The multiplexer circuit 140 includes m multiplexer units. Referring to FIG. 2A, a schematic diagram of two multiplexer units 141 and 142 of the multiplexer circuit 140 in accordance with the first embodiment of the present invention is shown. The multiplexer unit 141 includes a first input terminal I1, a second input terminal I2, an output terminal O1, a first switcher 141a, and a second switcher 141b. The first input terminal I1 and the second input terminal I2 are respectively configured to receive the positive pixel voltage Vp and the negative pixel voltage Vn. The output terminal O1 is coupled to one of the data lines DL1 DL DL2m, for example, to the data line DL1.
第一切換器141a具有一開關SW1、一開關SW2及一開關SW3。開關SW1及SW2係串聯耦接於第一輸入端I1與輸出端O1之間,且開關SW1及開關SW2之間之一節點n1係經由開關SW3選擇性地接地。第二切換器141b具有一開關SW4、一開關SW5及一開關SW6。開關SW4及SW5係串聯耦接於第二輸入端I2與輸出端O1之間,且開關SW4及SW5之間之一節點n2係經由開關SW6選擇性地接地。The first switch 141a has a switch SW1, a switch SW2, and a switch SW3. The switches SW1 and SW2 are coupled in series between the first input terminal I1 and the output terminal O1, and one node n1 between the switch SW1 and the switch SW2 is selectively grounded via the switch SW3. The second switch 141b has a switch SW4, a switch SW5 and a switch SW6. The switches SW4 and SW5 are coupled in series between the second input terminal I2 and the output terminal O1, and one node n2 between the switches SW4 and SW5 is selectively grounded via the switch SW6.
當開關SW1及SW2導通時,開關SW6導通,使得開關SW4及SW5之間之節點n2經由開關SW6耦接至地,以使開關SW4之最大跨壓與開關SW5之最大跨壓為第二輸入端I2與輸出端O1之間的最大電壓差之半。當開關SW4及SW5導通時,開關SW3導通,使得開關SW1及SW2 之間之節點n1經由開關SW3耦接至地,以使開關SW1與SW2之最大跨壓為第一輸入端I1與輸出端O1之間的最大電壓差之半。When the switches SW1 and SW2 are turned on, the switch SW6 is turned on, so that the node n2 between the switches SW4 and SW5 is coupled to the ground via the switch SW6, so that the maximum voltage across the switch SW4 and the maximum voltage across the switch SW5 are the second input. Half of the maximum voltage difference between I2 and output O1. When the switches SW4 and SW5 are turned on, the switch SW3 is turned on, so that the switches SW1 and SW2 are turned on. The node n1 is coupled to ground via the switch SW3 such that the maximum voltage across the switches SW1 and SW2 is half the maximum voltage difference between the first input terminal I1 and the output terminal O1.
茲將本實施例之多工器單元與傳統之多工器單元之作動方式比較如下。其中,係假設正畫素電壓Vp之位準介於0伏特與6伏特之間,負畫素電壓Vn之位準介於-6伏特與0伏特之間。The operation of the multiplexer unit of the present embodiment and the conventional multiplexer unit are compared as follows. Among them, it is assumed that the level of the positive pixel voltage Vp is between 0 volts and 6 volts, and the level of the negative pixel voltage Vn is between -6 volts and 0 volts.
請參照第2B圖,其繪示傳統之多工器電路之兩個多工器單元之示意圖。於傳統之多工器電路140’中,當開關SW1’導通且開關SW2’不導通時,輸出端O1輸出正畫素電壓Vp。此時開關SW2’之兩端所承受之跨壓係為輸入端I2之負畫素電壓Vn(-6~0伏特)與輸出端O1之正畫素電壓Vp(0~6伏特)之電壓差,此電壓差之最大值為12伏特。因此,此時所使用之開關SW2’必需為可耐12伏特之開關。同理可知,當輸出端O1輸出負畫素電壓Vn時,開關SW1’亦將承受最大為12伏特之跨壓。因此,於傳統之多工器電路140’中,開關SW1’與SW2’均需使用可耐高壓之電路元件來實現。Please refer to FIG. 2B, which shows a schematic diagram of two multiplexer units of a conventional multiplexer circuit. In the conventional multiplexer circuit 140', when the switch SW1' is turned on and the switch SW2' is not turned on, the output terminal O1 outputs the positive pixel voltage Vp. At this time, the voltage across the switch SW2' is the voltage difference between the negative pixel voltage Vn (-6~0 volts) of the input terminal I2 and the positive pixel voltage Vp (0~6 volts) of the output terminal O1. The maximum value of this voltage difference is 12 volts. Therefore, the switch SW2' used at this time must be a switch that can withstand 12 volts. Similarly, when the output terminal O1 outputs the negative pixel voltage Vn, the switch SW1' will also withstand a voltage across a maximum of 12 volts. Therefore, in the conventional multiplexer circuit 140', both of the switches SW1' and SW2' need to be implemented using high voltage resistant circuit components.
請參照前述之第2A圖。然而,於本實施例之多工器電路140中,當開關SW1及SW2導通且開關SW4及SW5不導通時,輸出端O1輸出正畫素電壓Vp。此時開關SW6將會導通,使得節點n2接地,此時開關SW4及開關SW5之最大跨壓係為第二輸入端I2與輸出端O1之間的最大電壓差之半,亦即為正畫素電壓Vp(0~6伏特)及負畫素電壓Vn(-6~0伏特)之最大電壓差12伏特之半。此時,各開關SW4及SW5之最大跨壓為6伏特。同理可知,當開關SW1及SW2不導通且開關SW4及SW5導通時,輸出端O1輸出負畫素電壓Vn。此時開關SW3將會導通,使得開關SW1及SW2 之最大跨壓為6伏特。因此,開關SW1、SW2、SW3及SW4係可藉由可耐中壓之電路元件來實現。Please refer to Figure 2A above. However, in the multiplexer circuit 140 of the present embodiment, when the switches SW1 and SW2 are turned on and the switches SW4 and SW5 are not turned on, the output terminal O1 outputs the positive pixel voltage Vp. At this time, the switch SW6 will be turned on, so that the node n2 is grounded. At this time, the maximum voltage across the switch SW4 and the switch SW5 is half of the maximum voltage difference between the second input terminal I2 and the output terminal O1, that is, the positive pixel. The maximum voltage difference between voltage Vp (0~6 volts) and negative pixel voltage Vn (-6~0 volts) is half of 12 volts. At this time, the maximum voltage across the switches SW4 and SW5 is 6 volts. Similarly, when the switches SW1 and SW2 are not turned on and the switches SW4 and SW5 are turned on, the output terminal O1 outputs a negative pixel voltage Vn. At this time, the switch SW3 will be turned on, so that the switches SW1 and SW2 The maximum crossover voltage is 6 volts. Therefore, the switches SW1, SW2, SW3, and SW4 can be realized by circuit elements that can withstand medium voltage.
由於電路元件大小係相關於長寬比(L/W),故吾人可推知:一個可耐高壓之電路元件的尺寸係大於可耐中壓之電路元件的尺寸的十六倍以上。故知,於多工器單元141中,係使用兩個可耐中壓之開關SW1及SW2,來取代傳統之多工器單元141’中之一個可耐高壓之開關SW1’,並藉由開關SW3來提供接地之電壓。整體而言,開關SW1、SW2及SW3之總面積還是小於開關SW1’之面積。因此,由於本實施例之多工器電路不需使用可耐高壓之電路元件,故能減小使用多工器單元之資料驅動器之尺寸。Since the circuit component size is related to the aspect ratio (L/W), it can be inferred that the size of a circuit element capable of withstanding high voltage is more than sixteen times larger than the size of a circuit component capable of withstanding medium voltage. Therefore, in the multiplexer unit 141, two intermediate voltage-resistant switches SW1 and SW2 are used instead of one of the conventional multiplexer units 141' which can withstand high voltage, and the switch SW3 is used. To provide the voltage of the ground. Overall, the total area of the switches SW1, SW2, and SW3 is still smaller than the area of the switch SW1'. Therefore, since the multiplexer circuit of the present embodiment does not require the use of circuit components that can withstand high voltage, the size of the data driver using the multiplexer unit can be reduced.
於第2A圖中,多工器單元142之架構與多工器單元141相仿,故不於此重述。其中,多工器單元142之第一及第二輸入端,係分別耦接至多工器單元141之第一及第二輸入端I1及I2,如第2A圖所繪示。多工器單元141及142之間的操作方式為:當輸出端O1輸出正畫素電壓Vp時,輸出端O2輸出負畫素電壓Vn。當輸出端O1輸出負畫素電壓Vn時,輸出端O2輸出正畫素電壓Vp。In FIG. 2A, the architecture of the multiplexer unit 142 is similar to that of the multiplexer unit 141, and therefore will not be repeated here. The first and second input ends of the multiplexer unit 142 are respectively coupled to the first and second input terminals I1 and I2 of the multiplexer unit 141, as shown in FIG. 2A. The operation mode between the multiplexer units 141 and 142 is such that when the output terminal O1 outputs the positive pixel voltage Vp, the output terminal O2 outputs the negative pixel voltage Vn. When the output terminal O1 outputs the negative pixel voltage Vn, the output terminal O2 outputs the positive pixel voltage Vp.
請參照第3圖,其繪示第2A圖之多工器單元141及142之電路圖之一例。於此例中,開關SW1、SW2、SW4及SW5係為傳輸閘(Transmission Gate,TG),且係由可耐中壓之電晶體所實現。再者,開關SW7、SW8、SW10、SW11亦可為傳輸閘且由可耐中壓之電晶體所實現。各傳輸閘包括一P型金氧半電晶體及一N型金氧半電晶體。開關SW1、開關SW2、開關SW4及開關SW5分別包括並聯耦接之一PMOS 電晶體及一NMOS電晶體。開關SW3及SW6係為電晶體。再者,開關SW9、SW12亦可由電晶體所實現。請同時參照第4圖,其繪示為第3圖之多工器單元所使用之切換訊號之一例之波形圖。於此例中,切換訊號包括多個控制訊號S1~S8,其中控制訊號S1B~S8B係分別為控制訊號S1~S8之反相訊號。Referring to FIG. 3, an example of a circuit diagram of the multiplexer units 141 and 142 of FIG. 2A is shown. In this example, the switches SW1, SW2, SW4, and SW5 are transmission gates (TGs) and are implemented by a medium voltage-resistant transistor. Furthermore, the switches SW7, SW8, SW10, and SW11 may also be transmission gates and implemented by a transistor that is resistant to medium voltage. Each of the transfer gates includes a P-type MOS transistor and an N-type MOS transistor. The switch SW1, the switch SW2, the switch SW4 and the switch SW5 respectively comprise one PMOS coupled in parallel. A transistor and an NMOS transistor. The switches SW3 and SW6 are transistors. Furthermore, the switches SW9 and SW12 can also be realized by a transistor. Please also refer to FIG. 4, which is a waveform diagram showing an example of a switching signal used by the multiplexer unit of FIG. In this example, the switching signal includes a plurality of control signals S1 to S8, wherein the control signals S1B to S8B are respectively inverted signals of the control signals S1 to S8.
此外,多工器電路140還包括一基底電壓切換電路BD,用以根據切換信號S4提供各N型金氧半電晶體一負基底電壓,且提供各P型金氧半電晶體一正基底電壓。如第3圖所示,基底電壓切換電路BD包括第一反相器IN1以及第二反相器IN2。第一反相器IN1耦接於一正電壓(例如6伏)及一接地電壓(例如0伏)之間,用以根據該切換信號S4提供第一基底電壓。第二反相器IN2耦接於一負電壓(-6伏)及接地電壓之間,用以根據切換信號S4提供第二基底電壓。基底電壓切換電路BD可分別提供第一基底電壓及第二基底電壓至第一切換器141a之開關SW2及第二切換器141b之開關SW5。進一步說,基底電壓切換電路BD可提供第一基底電壓至開關SW2之PMOS電晶體之基底及開關SW5之PMOS電晶體之基底,且提供第二基底電壓至開關SW2之NMOS電晶體之基底及開關SW5之NMOS電晶體之基底。請同時參考第4圖。開關SW2及開關SW5亦受控於切換信號S3。如第3圖所示,開關SW2及開關SW5係受控於切換信號S3,且切換信號S3係耦接於開關SW2之NMOS電晶體的一閘極及開關SW5之PMOS電晶體之一閘極。在切換信號S4切換於一正位準及一負位準之間的一轉換 時段時,切換信號S3係轉換為一接地位準。此外,當切換信號S4分別位在負位準及正位準時,切換信號S3係分別位在正位準及負位準。如此,於第4圖之時段tm中,控制訊號S3及S7較佳地係轉換為接地電壓。如此可避免於開啟或關閉傳輸閘時產生順向基底偏壓(forward body bias),並使得傳輸閘之P型金氧半電晶體與N型金氧半電晶體能夠正確地動作。In addition, the multiplexer circuit 140 further includes a base voltage switching circuit BD for providing a negative base voltage of each of the N-type MOS transistors according to the switching signal S4, and providing a positive base voltage of each of the P-type MOS transistors. . As shown in FIG. 3, the substrate voltage switching circuit BD includes a first inverter IN1 and a second inverter IN2. The first inverter IN1 is coupled between a positive voltage (for example, 6 volts) and a ground voltage (for example, 0 volts) for providing a first substrate voltage according to the switching signal S4. The second inverter IN2 is coupled between a negative voltage (-6 volts) and a ground voltage for providing a second substrate voltage according to the switching signal S4. The substrate voltage switching circuit BD can respectively supply the first substrate voltage and the second substrate voltage to the switch SW2 of the first switch 141a and the switch SW5 of the second switch 141b. Further, the substrate voltage switching circuit BD can provide a first substrate voltage to the base of the PMOS transistor of the switch SW2 and the base of the PMOS transistor of the switch SW5, and provide the second substrate voltage to the base and switch of the NMOS transistor of the switch SW2. The base of the NMOS transistor of SW5. Please also refer to Figure 4. The switch SW2 and the switch SW5 are also controlled by the switching signal S3. As shown in FIG. 3, the switch SW2 and the switch SW5 are controlled by the switching signal S3, and the switching signal S3 is coupled to a gate of the NMOS transistor of the switch SW2 and a gate of the PMOS transistor of the switch SW5. Switching between switching signal S4 to a positive level and a negative level During the time period, the switching signal S3 is converted to a ground level. In addition, when the switching signal S4 is respectively at the negative level and the positive level, the switching signal S3 is respectively at the positive level and the negative level. Thus, in the period tm of FIG. 4, the control signals S3 and S7 are preferably converted to a ground voltage. This avoids the forward body bias when the transfer gate is turned on or off, and enables the P-type MOS transistor and the N-type MOS transistor to operate correctly.
於第3及4圖所繪示之詳細電路圖與各種訊號之時序圖中,係為實作中所能實現本發明之多工器電路之一例,並非用以限制本發明。因此,具有通常知識者能針對此處所揭露之技術內容予以修改,亦能達到實現本實施例所提出之多工器電路之目的。The detailed circuit diagrams and the timing diagrams of the various signals shown in Figures 3 and 4 are examples of multiplexer circuits in which the present invention can be implemented, and are not intended to limit the present invention. Therefore, those having ordinary knowledge can modify the technical content disclosed herein, and can achieve the purpose of implementing the multiplexer circuit proposed in the embodiment.
於本實施例中,由於資料驅動器所使用之多工器電路不需使用可耐高壓之電路元件,故能夠減小資料驅動器之尺寸,並降低成本。In the present embodiment, since the multiplexer circuit used by the data driver does not need to use a circuit component that can withstand high voltage, the size of the data driver can be reduced and the cost can be reduced.
本實施例係改良第1圖之位準移位器121的架構,以減少可耐高壓之電路元件之使用。茲將本實施例之位準移位器說明如下。This embodiment improves the architecture of the level shifter 121 of Figure 1 to reduce the use of circuit components that are resistant to high voltages. The level shifter of this embodiment will be described below.
請同時參照第1及5A圖,第5A圖繪示依照本發明第二實施例之位準移位器121之方塊圖。位準移位器121包括多個位準移位單元,例如是四個位準移位單元LS1~LS4。位準移位單元LS1用以接收第二畫素資料Dn,第二畫素資料Dn所對應之電壓位準係介於一接地位準GND與一第一正位準PL1之間之電壓位準。位準移位單元LS2用以調整位準移位單元LS1輸出之第二畫素資料Dn之電壓位準為介於一第一負位準NL1與第 一正位準PL1之間之電壓位準。位準移位單元LS3用以調整位準移位單元LS2輸出之第二畫素資料Dn之電壓位準為介於第一負位準NL1與接地位準GND之間之電壓位準。位準移位單元LS4用以調整位準移位單元LS3輸出之第二畫素資料Dn之電壓位準為介於一第二負位準NL2與接地位準GND之間之電壓位準。然後,第1圖之數位類比轉換器122將轉換位準移位單元NL4輸出之第二畫素資料Dn為一負畫素電壓Vn。Please refer to FIG. 1 and FIG. 5A simultaneously, and FIG. 5A is a block diagram of the level shifter 121 according to the second embodiment of the present invention. The level shifter 121 includes a plurality of level shifting units, for example, four level shifting units LS1 to LS4. The level shifting unit LS1 is configured to receive the second pixel data Dn, and the voltage level corresponding to the second pixel data Dn is a voltage level between a ground level GND and a first positive level PL1. . The level shifting unit LS2 is configured to adjust the voltage level of the second pixel data Dn output by the level shifting unit LS1 to be between a first negative level NL1 and The voltage level between a positive level PL1. The level shifting unit LS3 is configured to adjust the voltage level of the second pixel data Dn output by the level shifting unit LS2 to be a voltage level between the first negative level NL1 and the ground level GND. The level shifting unit LS4 is configured to adjust the voltage level of the second pixel data Dn output by the level shifting unit LS3 to be a voltage level between a second negative level NL2 and a ground level GND. Then, the digital analog converter 122 of FIG. 1 converts the second pixel data Dn outputted by the conversion level shifting unit NL4 to a negative pixel voltage Vn.
於本實施例中,第一負位準NL1之絕對值係小於第二負位準NL2之絕對值。較佳地,第一正位準PL1之絕對值係實質上相等於第一負位準NL1之絕對值。第一正位準PL1係為低電壓位準,第一負位準NL1係為低電壓位準,第二負位準NL2係為中電壓位準。舉例來說,第一正位準PL1係實質上為1.8伏特,第一負位準NL1係實質上為-1.8伏特,第二負位準NL2係實質上為-6伏特。In this embodiment, the absolute value of the first negative level NL1 is less than the absolute value of the second negative level NL2. Preferably, the absolute value of the first positive level PL1 is substantially equal to the absolute value of the first negative level NL1. The first positive level PL1 is a low voltage level, the first negative level NL1 is a low voltage level, and the second negative level NL2 is a medium voltage level. For example, the first positive level PL1 is substantially 1.8 volts, the first negative level NL1 is substantially -1.8 volts, and the second negative level NL2 is substantially -6 volts.
藉由使用本實施例中提出之位準移位器121,係可減小資料驅動器之尺寸,茲將原因說明如下。By using the level shifter 121 proposed in the embodiment, the size of the data driver can be reduced, and the reason will be explained as follows.
請參照第5B圖,其繪示為傳統之位準移位器之方塊圖。由於使用傳統之位準移位器121’之資料驅動器中,需使用可耐高壓之電路元件,故資料驅動器會具有較大的尺寸。傳統之位準移位器121’包括四個位準移位單元A~D。於位準移位單元C中,係調整位準移位單元B輸出之第二畫素資料Dn為介於-6伏特與6伏特之間。亦即,位準移位單元C需承受之電壓位準之差值係為12伏特,已超過可耐中壓(6伏特)之範圍,故位準移位單元C需使用可耐高壓之電路元件。Please refer to FIG. 5B, which is a block diagram of a conventional level shifter. Since the data driver using the conventional level shifter 121' requires a high voltage resistant circuit component, the data driver has a large size. The conventional level shifter 121' includes four level shifting units A to D. In the level shifting unit C, the second pixel data Dn output by the level shifting unit B is between -6 volts and 6 volts. That is to say, the difference between the voltage level to be withstood by the level shifting unit C is 12 volts, which has exceeded the range of the medium voltage (6 volts), so the level shifting unit C needs to use a circuit capable of withstanding high voltage. element.
請參照前述之第5A圖。於本實施例之位準移位器121中, 所使用之四個位準移位單元LS1~LS4中之元件所承受的跨壓皆不超過6伏特,故不需使用可耐高壓之電路元件。亦即,由於位準移位單元LS1及LS3中之元件所承受的跨壓最高為1.8伏特,故位準移位單元LS1及LS3係可以可耐低電壓之電路元件來實現。而由於位準移位單元LS2及LS4中之元件所承受的跨壓最高分別為3.6伏特(-1.8~1.8伏特)及6伏特(-6~0伏特),故位準移位單元LS2及LS4係可以可耐中電壓之電路元件來實現。Please refer to Figure 5A above. In the level shifter 121 of the embodiment, The components of the four level shifting units LS1 to LS4 used do not exceed 6 volts across the voltage, so that high voltage resistant circuit components are not required. That is, since the components in the level shifting units LS1 and LS3 are subjected to a maximum voltage of 1.8 volts, the level shifting units LS1 and LS3 can be realized by circuit components resistant to low voltage. Since the components in the level shifting units LS2 and LS4 are subjected to a maximum voltage of 3.6 volts (-1.8 to 1.8 volts) and 6 volts (-6 to 0 volts), respectively, the level shifting units LS2 and LS4 are used. It can be realized by circuit components that can withstand medium voltage.
由於一個可耐高壓之電路元件的尺寸係大於可耐中壓之電路元件的尺寸的十六倍以上,而相較於傳統之位準移位器,本實施例之位準移位器不需使用可耐高壓之電路元件,因此,於使用本實施例之位準移位器之資料驅動器中,不需使用可耐高壓之電路元件,故能夠減小資料驅動器之尺寸,並降低成本。Since the size of a circuit element capable of withstanding high voltage is more than sixteen times larger than the size of the circuit element capable of withstanding medium voltage, the level shifter of this embodiment does not need to be compared with the conventional level shifter. Since the circuit element capable of withstanding high voltage is used, in the data driver using the level shifter of the present embodiment, the circuit element capable of withstanding high voltage is not required, so that the size of the data driver can be reduced and the cost can be reduced.
請參照第6圖,其繪示依照本發明第三實施例之資料驅動器之方塊圖。資料驅動器600用以根據多個畫素資料對應地驅動一顯示面板之多條資料線,此些畫素資料包括多個第一畫素資料Dp1~Dpm(正極性畫素資料)及多個第二畫素資料Dn1~Dnm(負極性畫素資料)。資料驅動器600包括一第一資料處理電路610、一第二資料處理電路620及一多工器電路640。第一資料處理電路610包括一移位暫存器612、一線緩衝器613、一位準移位器614、一數位類比轉換器615及一輸出緩衝器616。第一資料處理電路610用以根據第一畫素資料Dp1~Dpm提供多個正畫素電壓Vp1~Vpm。Please refer to FIG. 6, which is a block diagram of a data driver in accordance with a third embodiment of the present invention. The data driver 600 is configured to drive a plurality of data lines of a display panel correspondingly according to the plurality of pixel data, wherein the pixel data includes a plurality of first pixel data Dp1~Dpm (positive pixel data) and a plurality of Two pixel data Dn1 ~ Dnm (negative pixel data). The data driver 600 includes a first data processing circuit 610, a second data processing circuit 620, and a multiplexer circuit 640. The first data processing circuit 610 includes a shift register 612, a line buffer 613, a one-bit shifter 614, a digital analog converter 615, and an output buffer 616. The first data processing circuit 610 is configured to provide a plurality of positive pixel voltages Vp1 VVpm according to the first pixel data Dp1 DDpm.
第二資料處理電路620包括一前級位準移位器621、一移位暫存器622、一線緩衝器623、一後級位準移位器624、一數位類比轉換器625及一輸出緩衝器626。茲將第二資料處理電路620之各元件及操作方式說明如下。The second data processing circuit 620 includes a pre-level shifter 621, a shift register 622, a line buffer 623, a post-level shifter 624, a digital analog converter 625, and an output buffer. 626. The components and operation of the second data processing circuit 620 are described below.
前級位準移位器621用以循序地接收第二畫素資料Dn1~Dnm,例如每次係接收k筆資料(k<m)。此些第二畫素資料Dn1~Dnm所對應之電壓位準係介於一接地位準GND與一第一正位準之間PL1。前級位準移位器621調整此些第二畫素資料Dn1~Dnm之電壓位準為介於一第一負位準NL1與一接地位準GND之間之電壓位準。前級位準移位器621係包括第5A圖中之三個位準移位單元LS1~LS3,其操作方式係不於此重述。The pre-level shifter 621 is configured to sequentially receive the second pixel data Dn1~Dnm, for example, each time receiving k-gram data (k<m). The voltage level corresponding to the second pixel data Dn1~Dnm is between a ground level GND and a first positive level PL1. The pre-level shifter 621 adjusts the voltage level of the second pixel data Dn1~Dnm to a voltage level between a first negative level NL1 and a ground level GND. The pre-level shifter 621 includes three level shifting units LS1 LS LS3 in FIG. 5A, and the operation mode thereof is not described again.
移位暫存器622用以循序地接收前級位準移位器621輸出之此些第二畫素資料Dn1~Dnm且並列式地輸出,例如每次係接收k筆資料(k<m),並於接收到m筆資料後將m筆資料一起輸出。線緩衝器723用以暫存移位暫存器622輸出之第二畫素資料Dn1~Dnm。The shift register 622 is configured to sequentially receive the second pixel data Dn1~Dnm outputted by the pre-level shifter 621 and output them in parallel, for example, receiving k-gram data each time (k<m) And after receiving the m pen data, the m pen data is output together. The line buffer 723 is used to temporarily store the second pixel data Dn1~Dnm outputted by the shift register 622.
後級位準移位器624用以調整線緩衝器623輸出之第二素資料Dn1~Dnm之電壓位準為介於一第二負位準NL2與接地位準GND之間之電壓位準。後級位準移位器624係包括第5A圖中之位準移位單元LS4。數位類比轉換器625用以轉換後級位準移位器624輸出之此些第二畫素資料Dn1~Dnm為多個負畫素電壓Vn1~Vnm。輸出緩衝器626用以暫存負畫素電壓Vn1~Vnm。多工器電路640用以將正畫素電壓Vp1~Vpm與負畫素電壓Vn1~Vnm輸出至對應之資料線DL1~DL2m。The post level shifter 624 is configured to adjust the voltage level of the second prime data Dn1~Dnm outputted by the line buffer 623 to be a voltage level between a second negative level NL2 and a ground level GND. The post level shifter 624 includes the level shifting unit LS4 in FIG. 5A. The digital analog converter 625 is configured to convert the second pixel data Dn1 DDnm outputted by the subsequent level shifter 624 into a plurality of negative pixel voltages Vn1 VVnm. The output buffer 626 is used to temporarily store the negative pixel voltages Vn1 VVnm. The multiplexer circuit 640 is configured to output the front pixel voltages Vp1 to Vpm and the negative pixel voltages Vn1 to Vnm to the corresponding data lines DL1 to DL2m.
於本實施例中,第一負位準NL1之絕對值係小於第二負位 準NL2之絕對值。較佳地,第一正位準PL1之絕對值係實質上相等於第一負位準NL1之絕對值。第一正位準PL1係為低電壓位準,第一負位準NL1係為低電壓位準,第二負位準NL2係為中電壓位準。舉例來說,第一正位準PL1係實質上為1.8伏特,第一負位準NL1係實質上為-1.8伏特,第二負位準NL2係實質上為-6伏特。相仿於第二實施例的是,由於前級與後級位準移位器621及624之元件所承受之電壓的最高分別為3.6伏特(-1.8~1.8伏特)與6伏特(-6~0伏特),因此,位準移位器不需使用可耐高壓之電路元件來實現。In this embodiment, the absolute value of the first negative level NL1 is less than the second negative position. The absolute value of quasi-NL2. Preferably, the absolute value of the first positive level PL1 is substantially equal to the absolute value of the first negative level NL1. The first positive level PL1 is a low voltage level, the first negative level NL1 is a low voltage level, and the second negative level NL2 is a medium voltage level. For example, the first positive level PL1 is substantially 1.8 volts, the first negative level NL1 is substantially -1.8 volts, and the second negative level NL2 is substantially -6 volts. Similar to the second embodiment, since the components of the pre-stage and post-level shifters 621 and 624 are subjected to voltages of up to 3.6 volts (-1.8 to 1.8 volts) and 6 volts (-6 to 0), respectively. Volts) Therefore, the level shifter does not need to be implemented with high voltage resistant circuit components.
相較於第二實施例,本實施例更能減小資料驅動器之尺寸,茲將其原因說明如下。假設第二畫素資料Dn1~Dnm係為512筆資料(m=512),且每一組位準移位單元LS1~LS3係可接收8筆資料(k=8)。於第二實施例中,由於第5A圖之位準移位單元LS1~LS3係並列式地接收此些資料,故位準位移器121需使用64(512/8=64)組位準移位單元LS1~LS3,來並列式地調整512筆第二畫素資料所對應之電壓位準。Compared with the second embodiment, the embodiment can reduce the size of the data driver more, and the reason is explained as follows. Assume that the second pixel data Dn1~Dnm is 512 pieces of data (m=512), and each group of level shifting units LS1~LS3 can receive 8 pieces of data (k=8). In the second embodiment, since the level shifting units LS1 to LS3 of FIG. 5A receive the data side by side, the level shifter 121 needs to use 64 (512/8=64) group level shifts. Units LS1~LS3 adjust the voltage level corresponding to 512 second pixel data in parallel.
而於本實施例中。係將一組位準移位單元LS1~LS3作為前級位準移位器621,並設置於移位暫存器之前。前級位準移位器621係循序地接收8筆資料,以串列式地調整512筆第二畫素資料所對應之電壓位準。因此,於本實施例係僅需使用一組位準移位單元LS1~LS3,而能大大地減小使用位準移位器之資料驅動器的尺寸。In the present embodiment. A set of level shifting units LS1 LS LS3 is used as the pre-level shifter 621 and is placed before the shift register. The pre-level shifter 621 sequentially receives eight pieces of data to adjust the voltage level corresponding to the 512 second pixel data in a serial manner. Therefore, in this embodiment, only one set of level shifting units LS1 to LS3 is required, and the size of the data driver using the level shifter can be greatly reduced.
此外,於本實施例中,前級位準移位器621所輸出之第二畫素資料之電壓位準為介於第一負位準NL1與接地位準GND之間之電壓位準,故移位暫存器622與線緩衝器623之電路元件所使用之電壓位準亦介 於第一負位準NL1與接地位準GND之間。而於第6圖中,移位暫存器622與線緩衝器623之電路元件所使用之電壓位準係介於第一正位準PL1與接地位準GND之間。於實作中,由於第一正位準PL1與第一負位準NL1的絕對值係實質上為相同,因此,本實施例之資料驅動器係不會增加系統所消耗之功率。In addition, in this embodiment, the voltage level of the second pixel data output by the pre-level level shifter 621 is a voltage level between the first negative level NL1 and the ground level GND, so The voltage level used by the circuit components of the shift register 622 and the line buffer 623 is also Between the first negative level NL1 and the ground level GND. In FIG. 6, the voltage level used by the circuit components of the shift register 622 and the line buffer 623 is between the first positive level PL1 and the ground level GND. In practice, since the absolute values of the first positive level PL1 and the first negative level NL1 are substantially the same, the data driver of the present embodiment does not increase the power consumed by the system.
於本發明上述之第一實施例所揭露之資料驅動器中,由於多工器電路不須使用可耐高壓的電路元件,故能減少耐高壓之電路元件的數目,以減小多工器電路的尺寸來到減小資料驅動器的尺寸的目的。再者,於第二實施例中,由於位準移位電路不須使用可耐高壓的電路元件,故亦能達到減少高壓之電路元件,以減小位準移位電路的尺寸而能達到減小資料驅動器尺寸之目的。而且,本發明第三實施例之位準移位器還能串列式地調整資料之位準,故能更有效地減小資料驅動器的尺寸,降低成本,且還不會增加系統之消耗功率。In the data driver disclosed in the first embodiment of the present invention, since the multiplexer circuit does not need to use a circuit component capable of withstanding high voltage, the number of circuit components resistant to high voltage can be reduced to reduce the multiplexer circuit. Size comes to the purpose of reducing the size of the data drive. Furthermore, in the second embodiment, since the level shifting circuit does not need to use a circuit element capable of withstanding high voltage, the circuit component for reducing the high voltage can be reduced to reduce the size of the level shifting circuit and can be reduced. The purpose of the small data drive size. Moreover, the level shifter of the third embodiment of the present invention can also adjust the level of the data in series, so that the size of the data driver can be more effectively reduced, the cost is reduced, and the power consumption of the system is not increased. .
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
141‧‧‧多工器單元141‧‧‧Multiplexer unit
141a、141b‧‧‧切換器141a, 141b‧‧‧Switch
SW1~SW6‧‧‧開關SW1~SW6‧‧‧ switch
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102110076A TWI486944B (en) | 2008-06-26 | 2008-06-26 | Data driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102110076A TWI486944B (en) | 2008-06-26 | 2008-06-26 | Data driver |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201329950A TW201329950A (en) | 2013-07-16 |
TWI486944B true TWI486944B (en) | 2015-06-01 |
Family
ID=49225805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102110076A TWI486944B (en) | 2008-06-26 | 2008-06-26 | Data driver |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI486944B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608344A (en) * | 1995-10-19 | 1997-03-04 | Sgs-Thomson Microelectronics, Inc. | Comparator circuit with hysteresis |
US20080089003A1 (en) * | 2006-10-17 | 2008-04-17 | Tomokazu Kojima | Driving voltage output circuit |
-
2008
- 2008-06-26 TW TW102110076A patent/TWI486944B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608344A (en) * | 1995-10-19 | 1997-03-04 | Sgs-Thomson Microelectronics, Inc. | Comparator circuit with hysteresis |
US20080089003A1 (en) * | 2006-10-17 | 2008-04-17 | Tomokazu Kojima | Driving voltage output circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201329950A (en) | 2013-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI395187B (en) | Data driver | |
CN100479326C (en) | Differential amplifier and data driver employing the differential amplifier | |
CN101552841B (en) | Output amplifier circuit, output circuit, data driver and display device | |
US10650770B2 (en) | Output circuit and data driver of liquid crystal display device | |
US5903234A (en) | Voltage generating apparatus | |
US6046719A (en) | Column driver with switched-capacitor D/A converter | |
CN100552764C (en) | Improvement of Inverted Drive LCD | |
TWI431580B (en) | Display driving circuit | |
TWI398098B (en) | Output buffer circuit capable of enhancing stability | |
JP2004212939A (en) | Two-way driving circuit and driving method for flat plate display device | |
JP2005266738A (en) | Source driver and liquid crystal display | |
US7772912B2 (en) | Level shift circuit and method thereof | |
JP7556780B2 (en) | Signal level conversion circuit, drive circuit, display driver and display device | |
US10902806B2 (en) | Half-power buffer amplifier, source driver, and display apparatus including the same | |
JP2022101795A5 (en) | ||
CN105321491B (en) | Gate driving circuit and the liquid crystal display using gate driving circuit | |
US9230470B2 (en) | Data driver and a display apparatus including the same | |
US9053655B2 (en) | Driver of display unit | |
US10586498B2 (en) | Source driver and display apparatus including the same | |
CN101620830B (en) | Data driver | |
TWI486944B (en) | Data driver | |
US7411536B1 (en) | Digital-to-analog converter | |
JP2009225457A (en) | Differential amplifier, data driver for display device using same, and control method of differential amplifier | |
TWI398848B (en) | Source driving circuit | |
TWI441451B (en) | Output buffering circuit, amplifier device, and display device with reduced power consumption |