TWI486793B - 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品 - Google Patents

地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品 Download PDF

Info

Publication number
TWI486793B
TWI486793B TW100146651A TW100146651A TWI486793B TW I486793 B TWI486793 B TW I486793B TW 100146651 A TW100146651 A TW 100146651A TW 100146651 A TW100146651 A TW 100146651A TW I486793 B TWI486793 B TW I486793B
Authority
TW
Taiwan
Prior art keywords
area
candidate
naming
region
name
Prior art date
Application number
TW100146651A
Other languages
English (en)
Other versions
TW201324193A (zh
Inventor
Wen Tsui
Tai Ting Wu
Shin Yi Wu
Yu Hsiang Hsiao
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100146651A priority Critical patent/TWI486793B/zh
Priority to CN201210037466.XA priority patent/CN103164498B/zh
Priority to US13/604,278 priority patent/US9507866B2/en
Publication of TW201324193A publication Critical patent/TW201324193A/zh
Application granted granted Critical
Publication of TWI486793B publication Critical patent/TWI486793B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Processing Or Creating Images (AREA)

Description

地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品
本揭露是有關於一種地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品。
目前的位基服務(Location-Based Service,LBS)及地圖服務在表達位置資訊或提供使用者查詢時,以經緯度、地址或正式行政地名方式的查詢為主。但無法/不易查詢一些眾所周知或約定俗成的非正式地名(如貓空、士林夜市)。在查詢非正式地名時,(1)由於非正式地名眾多,且可能不斷有新的稱呼出現,難以列舉;(2)非正式地名通常沒有明確的地理疆界劃分;(3)各人對於非正式地名之範圍認知各異。
此外,以涵義(semantic)為基礎的位置呈現對使用者在位置分享、交換或判讀時可能是自然有效的方式。行動應用與行動商務亦可藉此獲得有用資訊,提供契合使用者需求的服務。然而,目前以座標(經緯度定義、地址或正式行政地名)為主的定位系統對於提供涵義資訊仍不足夠。
故而,本案揭露若干實施例,找出涵義公開區域(public semantic region)之可能涵蓋範圍及其名稱。在底下,所謂的涵義公開區域,例如,貓空,這類型的涵義公開區域通常沒有明確的地理劃分界線但其屬性鮮明(通常是一個商圈或夜市等)。
本揭露實施例係有關於一種地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品,其將含有地理位置資訊的使用者產生內容(user generated content,UGC)做為資料來源,對個別區域計算其密度資訊,以進行分群(clustering)以及資料探勘來找出涵義公開區域及其名稱。
根據本揭露之一實施例,提出一種位置呈現方法,執行於一地理位置呈現系統以辨認一涵義公開區域,該方法包括:針對包括個別地理名稱資訊之複數筆使用者產生內容,進行密度分群,以產生複數候選區域;針對該些候選區域,個別進行一命名操作,以擷取並確認該些候選區域之一共同區域名稱,以當成該涵義公開區域之一名稱;以及對於該些候選區域,根據一空間密度分析來偵測一區域範圍,以當成該涵義公開區域之一位置範圍。
根據本揭露之另一實施例,提出一種位置呈現系統,辨認一涵義公開區域,該位置呈現系統包括:一密度分群模組,針對包括個別地理名稱資訊之複數筆使用者產生內容,進行密度分群,以產生複數候選區域;一命名操作模組,針對該些候選區域,個別進行一命名操作,以擷取並確認該些候選區域之一共同區域名稱,以當成該涵義公開區域之一名稱;以及一區域範圍偵測模組,對於該些候選區域,根據一空間密度分析來偵測一區域範圍,以當成該涵義公開區域之一位置範圍。
根據本揭露之又一實施例,提出一種內儲程式之電腦可讀取記錄媒體,當電腦載入該程式並執行後,可完成如上述之位置呈現方法。
根據本揭露之又另一實施例,提出一種內儲位置呈現程式之電腦程式產品,當電腦載入該電腦程式並執行後,可完成如上述之方法。
為了對本案之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下:
本揭露實施例係有關於一種地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品,其利用商店在空間密集度資訊與對商店評論的資料探勘,定義出具有地理名稱與位置涵蓋範圍之涵義公開區域。
請參考第1圖,其顯示根據本案一實施例之找出涵義公開區域之操作流程圖。如第1圖所示,於步驟110中,蒐集使用者產生內容(UGC)。使用者產生內容可能包括但不受限於,網頁上的店家相關資訊(如地址、地理名稱等)及對此店家的評論資料。
於步驟115中,針對所收集的使用者產生內容進行密度分群(density-based clustering),以產生候選區域(region candidate)。在底下,候選區域、分群、群組原則上具有相同或相似意義。在劃分候選區域的範圍時,令各候選區域的密度彼此不同,以得到多個候選區域。亦即,對不同區域選取不同且適當的密度做分群,以得到多個候選區域。或者,亦可設定多組半徑參數以得到多個候選區域。
於步驟120中,針對各候選區域,進行命名操作,以確認此區域之名稱。比如,於步驟120中,利用資訊擷取(information extraction)演算法及/或自然語言處理(natural language processing,NLP)演算法,對每一個分群做名稱的擷取並驗證所擷取出的名稱。若是資料(如商家相關資料)分布不是集中在少數幾個分群,此名稱便不被採用,並依據其結果調整其擷取準則(extracting criteria)的嚴謹寬鬆度,進而獲得適當名稱。步驟120之細節如後。
於步驟122中,對候選區域試著取出可能命名。取出可能命名之方式可以有多種,但其細節在此並不加以限定。
於步驟124中,判斷是否可以取出命名。也就是說,在步驟122時,有可能取不出名稱(比如,擷取準則設得不好的話,就有可能取不出名稱)。如果取不出命名的話,就要試著調整擷取準則。
於步驟126中,驗証此可能命名是否通過。若是分布不是集中在少數幾個群組,則此命名便不被採用。也就是說,如果命名適當的話,則群組的密度會較高,反之亦然。以○○夜市為例,商家的評論資料如果含有○○的話,則此商家原則上應該會比較可能位於○○商圈內,所以,如果所找出的命名為「○○」的話,則資料含有「○○」的商家分布應該是集中在○○商圈。第2A圖與第2B圖分別顯示出,區域命名分布210(region name distribution)與非區域命名分布(non-region name distribution)220的例子。所謂的「區域命名分布」是指,如果所找出的命名屬於合理的區域命名的話,則使用者產生內容之分布較為集中。所謂的「非區域命名分布」是指,如果所找出的命名不屬於合理的區域命名的話,則使用者產生內容之分布較為分散。
第3A圖~第3D圖顯示根據一實施例之命名驗証之示意圖。第3A圖顯示多個候選區域310~370。第3B圖顯示出,各候選區域中具有某命名之分布點。第3C圖則是對於具有此命名之分布點進行計算其數量並排序,假設其數量為n1~n4...。第3D圖中,對於數量進行累積,直到符合某一臨界條件(比如,80%)為止。亦即,如第3D圖所示,假設(n1+n2...nk)(nk代表前k個區域的分布點數量)佔了所有數量(n1+n2+n3+n4…)的臨界條件(比如但不受限於80%)且k小於門檻值的話,則代表密度集中度高。反之,如果要累加k個候選區域(k大於門檻值)的數量才能超過臨界條件的話,則代表其密度集中度較低。密度集中度高的命名會被視為通過驗証。此外,此臨界條件與門檻值皆是可以調整的。
如果通過命名驗証的話,則流程接續至步驟130;反之,如果未能通過命名驗証的話,則流程接續至步驟128。
於步驟128中,決定是否尚可調整擷取準則。如果不可調整擷取準則的話,代表擷取準則不論是嚴謹或寬鬆皆無法得到適當名稱,所以,命名操作失敗。
於步驟129中,調整擷取準則。如果擷取準則較鬆的話,可能會得到不相干名稱,導致得到一些雜訊,影響結果。但另一方面,如果擷取準則較嚴的話,則原本應該被擷取的資訊可能會被遺漏,甚至可能取不出名稱。更甚者,在一實施例中,可先預設擷取準則為嚴謹,如果找不出的話,再逐漸放鬆擷取準則,直到最鬆的擷取準則為止。如果調整到最鬆的擷取準則都無法找到適當名稱的話,則會放棄此候選區域。
於步驟130中,對於名稱確認之區域,根據一空間密度分析來偵測並確認其區域範圍。步驟130包括3個子步驟132~136。
於步驟132中,找出核心區域。比如,對於具有相同命名的多個候選區域,以名稱密度最高的候選區域(群組)為核心區域。名稱密度的意思是,在此候選區域內,具有此命名的商家數量佔所有商家數量的百分比。
第4圖顯示出根據一實施例之群組之名稱密度的示意圖。於第4圖中,參考符號410~470分別代表各候選區域。由於候選區域470具有最高的名稱密度,所以,以候選區域470當成核心區域。
於步驟134中,找出外圍區域。找出該些候選區域所共同形成的一最外圍範圍,以做為涵義公開區域之一外圍區域。比如,尋找出具有此命名的所有群組(候選區域)的集合所形成的最外圍的座標點,座標點所對應到的店家評論文章必須提到該命名。座標點去涵蓋核心區域的所有座標點會形成扇形區域;各扇形區域與核心區域將形成不規則多邊形,如第5圖所示。第5圖顯示根據一實施例之外圍區域500。選擇外圍區域的詳細做法比如但不受限於,在核心區域任選兩點,直到選到的兩點與該座標點能圍成最大面積的三角形,則該三角形視為外圍區域。
於步驟136中,核心區域與外圍區域整合於地圖資訊,以找出此涵義公開區域的位置範圍。經由地圖資訊所提供的街道資料,若相鄰兩外圍座標點之最短路徑落於核心區域和扇形範圍之外,則以此最短路徑作為該區域外圍;核心區域、扇形範圍、該(些)最短路徑所圍成的範圍,是為該涵義公開區域的一位置範圍。第6圖顯示根據一實施例所找出此涵義公開區域的位置範圍600。
於找出此涵義公開區域的位置範圍後,便可找出/確認此涵義公開區域(步驟140)。在本實施例中,不但可找出涵義公開區域的命名,亦可確認其位置範圍。
此外,在一實施例中,命名操作與區域範圍偵測可互相幫助。進一步說,如第1圖所示,如果抽不出名稱的話,則此候選區域會被放棄,亦即這樣有助於區域範圍的偵測。另一方面,在步驟115的圈選候選區域時,並非毫無根據的隨便圈選,而是將依據密度屬性來圈選候選區域。亦即,候選區域的密度資訊是有意涵的,其代表,如果具備有意義名稱的商家密度較高的話,代表這些商家可能是位於涵義公開區域內,所以,這樣的候選區域圈選方式將有助於找到有意義的名稱。
請參考第7圖,其為根據本案另一實施例之找出涵義公開區域之操作流程圖。步驟710、715與740可相同或類似於第1圖之步驟110、115與140,故其細節在此省略。
於步驟720中,進行區域範圍偵測。步驟720包括步驟722。於步驟722中,找出這些候選區域間的關係。比如,找出這些候選區域之間是否存在:相等集合、母子集合、部份重疊集合等等。對於有關係的候選區域會一起進行下一步驟730的命名操作。這是因為,彼此有關係的多個候選區域有可能會位於同一涵義公開區域內,所以,在本實施例中,可再對這些彼此有關係的多個候選區域一起進行命名操作。
舉例來說,假設步驟715產生候選區域1~候選區域6,候選區域1~2之間存在關係,至於其餘的候選區域3~6則彼此之間不存在關係。在一實施例中,對候選區域1~2一起進行命名操作,而對於候選區域3~6則個別進行命名操作。
步驟730原則上大部份相同於步驟120。步驟730包括步驟732、734、736、738與739原則上大部份相同於步驟1222、124、126、128與129。
不過,如果是對彼此有關係存在的多個候選區域一起進行命名操作的話,在步驟734中,會進行(1)判斷能否抽出名字,(2)判斷所抽出的名字是否一樣。這是因為,如前述,彼此之間有關係存在的多個候選區域有可能會位於同一涵義公開區域內。所以,如果對這些彼此之間有關係存在的多個候選區域所取出的個別名稱並不相同的話,則代表所取出的名稱並非所想要的名稱。
在此另一實施例中,利用候選區域間的關係(比如,子集合與母集合的名稱共同性的關係),對每個群組(候選區域)取出其共同名稱及並設計其信心值,而該些群組所共同形成的一最外圈範圍即為該涵義公開區域之位置範圍。
未來如果時間改變及/或有資料新增的話,更可以重新定義涵義公開區域的範圍與名稱。對於新增資料,可以在一定時間內重新執行上述二個實施例之任一以重新定義涵義公開區域的範圍與名稱。
或者,於本案之另一可能實施例中,對於短時間內增加的新資料(比如,有新商家出現等),(1)可利用法則式(Rule base)的機制,或是(2)可利用部份區域重新處理(Partial Area Reprocess)於區域重新運作上述二個實施例,進而更新涵義公開區域的範圍及/或名稱,甚至產生新的涵義公開區域。
更進一步,如果新資料落於先前已命名好的涵義公開區域的話,則對此涵義公開區域重做區域範圍偵測(可用第1圖或第7圖的方式)來更新此涵義公開區域的範圍。
如果新資料落於尚未命名的區域的話,則對此尚未命名區域重做命名操作與區域範圍偵測(可用第1圖或第7圖的方式)來更新此公開區域的名稱(亦即試著找出其命名)與範圍。
如果新資料不落於任何一個區域的話,則請參考第8圖,其顯示根據本案又另一實施例之部份區域重新處理流程圖。如第8圖所示,於步驟810中,取得此新的使用者產生內容。於步驟815中,對於包括此新資料的區域進行密度分群以產生新的候選區域。於步驟820中,對於新的候選區域進行命名操作。步驟820可相同或相似於第1圖的步驟120及/或第7圖的步驟730,故其細節省略。
於步驟830中,進行區域範圍偵測。對於命名相同於新候選區域的候選區域重做區域範圍偵測。步驟830可相同或相似於第1圖的步驟130及/或第7圖的步驟720,故其細節省略。
另外,於第8圖中,雖然是先進行命名操作,後進行區域範圍偵測。但在本案之其他可能實施例中,亦可先進行區域範圍偵測,後進行命名操作。此皆在本案精神範圍內。
第9A圖與第9B圖顯示根據本案又另一實施例之部份區域重新處理之示意圖。部份區域重新處理是因應新增資料(座標點)而被影響的座標點重新做運算。由於該新增座標點的加入,群組密度可能改變。故而,對密度改變的座標點重新分群、進行命名操作與範圍偵測。
請同時參考第9A圖與第9B圖,其解釋如何因應新座標點加入而重新分群。座標點Xr=5被涵蓋在經由半徑參數為5所產生的候選區域910;座標點Xr=10被涵蓋在經由半徑參數為10所產生的候選區域920。當新座標點Xr=6(第9B圖)加入時,座標點Xr=5所在的候選區域910之範圍並沒有因為座標點Xr=6加入而產生變化。但是因座標點Xr=6加入,以半徑參數為8所產生的新候選區域930就可以涵蓋候選區域920原先涵蓋的所有座標點。對於座標點Xr=6,產生一個新的候選區域940,其半徑參數為6。
在本案其他可能實施例更揭露位置呈現系統,其包括:密度分群模組、命名操作模組與區域範圍偵測模組。密度分群模組可執行第1圖之步驟115、第7圖之步驟715與第8圖之步驟815,故其細節不再重述。命名操作模組可執行第1圖之步驟120、第7圖之步驟730與第8圖之步驟820,故其細節不再重述。區域範圍偵測模組可執行第1圖之步驟130、第7圖之步驟720與第8圖之步驟830,故其細節不再重述。
另外,密度分群模組、命名操作模組與區域範圍偵測模組可利用如處理單元、數位訊號處理單元、數位視訊處理單元實施,或是以可程式化的集積電路如微控制器、元件可程式邏輯閘陣列(FPGA,Field Programmable Gate Array)之類的電路來實現,其中例如以硬體描述(HDL,Hardware description language)來設計。
另外,本案上述之方法(如第1圖、第7圖與第8圖)亦可以軟體程式來實現。如依據本案之方法之一實施例的程式碼記錄在一記憶媒體之中,如記憶體如ROM、RAM及之類的媒體、或光學或磁性或其他記錄媒體,或是實現為韌體(firmware)。當運算裝置之處理單元,從記憶有依本揭露之方法之程式碼之記憶媒體讀取並執行,能實現依本揭露之方法。再者,本揭露之上述方法可以軟硬體結合之方式實現。
再者,本案其他可能實施例揭露一種電腦可讀取記錄媒體,其上記載有程式,該程式被執行後可以執行本案上述實施例之內容。
再者,本案其他可能實施例揭露一種提出一種內儲位置呈現程式之電腦程式產品,當電腦載入該電腦程式並執行後,可以執行本案上述實施例之內容。
在本案上述實施例中,涵義公開區域可能包括了區域名稱及/或地標(landmark)等,其符合人們溝通直覺,且其包括輕量資訊,可供人們快速判讀。
對於本案上述實施例之可能應用包括,比如但不受限於,相片標籤(photo tagging)、具位置標籤的擴展查詢(Query expansion with location tag)、網路內容之位置標籤(auto location tagging for web content)與社群網站之個人位置分享技術、行動應用、行動商務等。
以相片標籤而言,使用者在利用具全球定位系統(Global Positioning System,GPS)功能的相機拍攝相片後,在將相片分享至網路上時,可根據本案上述實施例之技術,利用GPS的位置資訊來分辨出此相片拍攝的涵義公開區域。使用者在網路上分享相片時,其所分享的資訊將可以包括涵義公開區域的相關資訊。比如,使用者所分享資訊除了相片外,亦可包括如涵義公開區域(比如○○夜市)等資訊,以顯示出使用者乃是在○○夜市拍攝此相片。
以具位置標籤的擴展查詢而言,可利用本案上述實施例來判斷出商家落於哪一個涵義公開區域。故而,在網路上的商家介紹資訊可以更包括此商家乃是位於哪一個涵義公開區域。如此一來,比如,可在網路上找出位於此一涵義公開區域內的所有咖啡店。
對於網路內容之位置標籤而言,對於使用者所分享的資訊(比如商家介紹評論等)可以加入涵義公開區域標籤。比如,在商家介紹評論等中加入「○○夜市」標籤,如此一來,在搜尋「○○夜市」時,此商家就會被搜尋到。
對於社群網站之個人位置分享技術而言,比如,臉書(facebook)的打卡(check-in)技術,可利用本案上述實施例來判斷出使用者位置落於哪一個涵義公開區域。所以,當使用者在分享其所在位置資訊時,其分享資訊可以更包括涵義公開區域標籤。更甚者,使用者可根據親近程度設定資訊分享等級/程度。較親近朋友可以看到比較多的分享資訊(比如,可以看到使用者打卡於「○○市○○商圈」);對於較不親近的朋友則只能看到較少的分享資訊(比如,只能看到使用者打卡於「○○市」)。
綜上所述,雖然本案已以實施例揭露如上,然其並非用以限定本案。本案所屬技術領域中具有通常知識者,在不脫離本案之精神和範圍內,當可作各種之更動與潤飾。因此,本案之保護範圍當視後附之申請專利範圍所界定者為準。
110~140...步驟
210...區域命名分布
220...非區域命名分布
310~370...候選區域
410~470...候選區域
500...外圍區域
600...位置範圍
710~740...步驟
810~840...步驟
Xr=5、Xr=10、Xr=6...座標點
910~940...候選區域
第1圖顯示根據一實施例之找出涵義公開區域之操作流程圖。
第2A圖與第2B圖分別顯示出,區域命名分布(region name distribution)與非區域命名分布(non-region name distribution)的例子。
第3A圖~第3D圖顯示根據一實施例之命名驗証之示意圖。
第4圖顯示出根據一實施例之群組之名稱密度的示意圖。
第5圖顯示根據一實施例之外圍區域。
第6圖顯示根據一實施例所找出此涵義公開區域的位置範圍。
第7圖為根據本案另一實施例之找出涵義公開區域之操作流程圖。
第8圖顯示根據本案又另一實施例之部份區域重新處理流程圖。
第9A圖與第9B圖顯示根據本案又另一實施例之部份區域重新處理之示意圖。
110~140...步驟

Claims (23)

  1. 一種位置呈現方法,執行於一地理位置呈現系統以辨認一涵義公開區域,該方法包括:針對包括個別地理名稱資訊之複數筆使用者產生內容,進行密度分群,以產生複數候選區域;針對該些候選區域,個別進行一命名操作,以擷取並確認該些候選區域之一共同區域名稱,以當成該涵義公開區域之一名稱;以及對於該些候選區域,根據一空間密度分析來偵測一區域範圍,以當成該涵義公開區域之一位置範圍。
  2. 如申請專利範圍第1項所述之位置呈現方法,其中,該命名操作步驟包括:對該候選區域試著取出一可能命名。
  3. 如申請專利範圍第2項所述之位置呈現方法,其中,該命名操作步驟包括:判斷是否可以對該候選區域取出該可能命名;如果無法取出任一可能命名的話,則調整一擷取準則;如果無法調整該擷取準則,則判斷該命名操作步驟失敗並丟棄該候選區域。
  4. 如申請專利範圍第3項所述之位置呈現方法,其中,該命名操作步驟包括:驗証該可能命名是否通過。
  5. 如申請專利範圍第4項所述之位置呈現方法,其中,該命名操作步驟包括:若該候選區域內之該些使用者產生內容集中分布,則判斷該可能命名通過驗証;若該候選區域內之該些使用者產生內容分散分布,則判斷該可能命名不通過驗証;如果該可能命名不通過驗証的話,則調整該擷取準則;以及如果無法調整該擷取準則,則判斷該命名操作步驟失敗並丟棄該候選區域。
  6. 如申請專利範圍第3項所述之位置呈現方法,其中,該命名操作步驟包括:於調整該擷取準則時,逐漸放鬆該擷取準則,直到該擷取準則為最鬆為止。
  7. 如申請專利範圍第6項所述之位置呈現方法,其中,該區域範圍偵測步驟包括:對於通過該命名操作步驟且具有相同命名的該些候選區域,將具有一最高名稱密度的該些候選區域之一做為該涵義公開區域之一核心區域,其中,該名稱密度代表,具有該命名的該些使用者產生內容佔所有使用者產生內容的數量百分比。
  8. 如申請專利範圍第7項所述之位置呈現方法,其中,該區域範圍偵測步驟包括:對於通過該命名操作步驟且具有相同命名的該些候選區域,找出該些候選區域所共同形成的一最外圍範圍,以做為該涵義公開區域之一外圍區域。
  9. 如申請專利範圍第8項所述之位置呈現方法,其中,該區域範圍偵測步驟包括:將該核心區域與該外圍區域整合於一地圖資訊,以找出該涵義公開區域的該位置範圍。
  10. 如申請專利範圍第1項所述之位置呈現方法,其中,該區域範圍偵測步驟包括:找出該些候選區域間的關係,以對於該些彼此有關係的該些候選區域一起進行該命名操作步驟。
  11. 如申請專利範圍第10項所述之位置呈現方法,其中,如果是對彼此有關係的該些候選區域一起進行該命名操作步驟的話,該命名操作步驟包括:判斷是否可以取出各該些候選區域之個別可能命名;以及判斷所取出的該些個別可能命名是否一樣。
  12. 如申請專利範圍第11項所述之位置呈現方法,其中,對於利用該些候選區域間的關係,對該些候選區域取出一共同名稱,而該些候選區域所共同形成的一最外圈範圍即為該涵義公開區域之該位置範圍。
  13. 如申請專利範圍第1項所述之位置呈現方法,其中,如果一新使用者產生內容落於該涵義公開區域的話,則對該涵義公開區域重做該區域範圍偵測步驟。
  14. 如申請專利範圍第1項所述之位置呈現方法,其中,如果一新使用者產生內容落於尚未命名的該些候選區域的話,則對尚未命名的該些候選區域重做該命名操作步驟與該區域範圍偵測步驟。
  15. 如申請專利範圍第1項所述之位置呈現方法,其中,如果一新使用者產生內容不落於任一該些候選區域的話,對於包括該新使用者產生內容的一區域進行密度分群以產生至少一新候選區域;對於該至少一新候選區域進行該命名操作步驟;以及對於與該至少新候選區域有相同命名的該些候選區域重做該區域範圍偵測步驟。
  16. 一種位置呈現系統,辨認一涵義公開區域,該位置呈現系統包括:一密度分群模組,針對包括個別地理名稱資訊之複數筆使用者產生內容,進行密度分群,以產生複數候選區域;一命名操作模組,針對該些候選區域,個別進行一命名操作,以擷取並確認該些候選區域之一共同區域名稱,以當成該涵義公開區域之一名稱;以及一區域範圍偵測模組,對於該些候選區域,根據一空間密度分析來偵測一區域範圍,以當成該涵義公開區域之一位置範圍。
  17. 如申請專利範圍第16項所述之位置呈現系統,其中:該命名操作模組對該候選區域試著取出一可能命名;該命名操作模組判斷是否可以對該候選區域取出該可能命名;如果無法取出任一可能命名的話,該命名操作模組調整一擷取準則;如果無法調整該擷取準則,該命名操作模組判斷該命名操作失敗並丟棄該候選區域;該命名操作模組驗証該可能命名是否通過;若該候選區域內之該些使用者產生內容集中分布,則該命名操作模組判斷該可能命名通過驗証;若該候選區域內之該些使用者產生內容分散分布,則該命名操作模組判斷該可能命名不通過驗証;如果該可能命名不通過驗証的話,則該命名操作模組調整該擷取準則;以及如果無法調整該擷取準則,則該命名操作模組判斷該命名操作失敗並丟棄該候選區域;其中,於調整該擷取準則時,逐漸放鬆該擷取準則,直到該擷取準則為最鬆為止。
  18. 如申請專利範圍第17項所述之位置呈現系統,其中,對於通過該命名操作步驟且具有相同命名的該些候選區域,該區域範圍偵測模組將具有一最高名稱密度的該些候選區域之一做為該涵義公開區域之一核心區域,其中,該名稱密度代表,具有該命名的該些使用者產生內容佔所有使用者產生內容的數量百分比;對於通過該命名操作步驟且具有相同命名的該些候選區域,該區域範圍偵測模組找出該些候選區域所共同形成的一最外圍範圍,以做為該涵義公開區域之一外圍區域;以及該區域範圍偵測模組將該核心區域與該外圍區域整合於一地圖資訊,以找出該涵義公開區域的該位置範圍。
  19. 如申請專利範圍第18項所述之位置呈現系統,其中:該區域範圍偵測模組找出該些候選區域間的關係,以對於該些彼此有關係的該些候選區域一起進行該命名操作;以及如果是對彼此有關係的該些候選區域一起進行該命名操作的話,該命名操作模組判斷是否可以取出各該些候選區域之個別可能命名,並判斷所取出的該些個別可能命名是否一樣。
  20. 如申請專利範圍第19項所述之位置呈現系統,其中,對於利用該些候選區域間的關係,對該些候選區域取出一共同名稱,而該些候選區域所共同形成的一最外圈範圍即為該涵義公開區域之一位置範圍。
  21. 如申請專利範圍第16項所述之位置呈現系統,其中,如果一新使用者產生內容落於該涵義公開區域的話,則對該涵義公開區域重做該區域範圍偵測;如果該新使用者產生內容落於尚未命名的該些候選區域的話,則對尚未命名的該些候選區域重做該命名操作與該區域範圍偵測;以及如果該新使用者產生內容不落於任一該些候選區域的話,對於包括該新使用者產生內容的一區域進行密度分群以產生至少一新候選區域,對於該至少一新候選區域進行該命名操作,對於與該至少新候選區域有相同命名的該些候選區域重做該區域範圍偵測。
  22. 一種內儲程式之電腦可讀取記錄媒體,當電腦載入該程式並執行後,可完成如申請專利範圍第1-15項之任一項所述之方法。
  23. 一種內儲位置呈現程式之電腦程式產品,當電腦載入該電腦程式並執行後,可完成如申請專利範圍第1-15項之任一項所述之方法。
TW100146651A 2011-12-15 2011-12-15 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品 TWI486793B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW100146651A TWI486793B (zh) 2011-12-15 2011-12-15 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品
CN201210037466.XA CN103164498B (zh) 2011-12-15 2012-02-17 地理位置呈现系统与方法
US13/604,278 US9507866B2 (en) 2011-12-15 2012-09-05 Geographical location rendering system and method and computer readable recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100146651A TWI486793B (zh) 2011-12-15 2011-12-15 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品

Publications (2)

Publication Number Publication Date
TW201324193A TW201324193A (zh) 2013-06-16
TWI486793B true TWI486793B (zh) 2015-06-01

Family

ID=48587592

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100146651A TWI486793B (zh) 2011-12-15 2011-12-15 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品

Country Status (3)

Country Link
US (1) US9507866B2 (zh)
CN (1) CN103164498B (zh)
TW (1) TWI486793B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105282699A (zh) * 2014-07-11 2016-01-27 碁晔科技股份有限公司 移动式社群彼此分享监看的方法
CN108073581B (zh) * 2016-11-08 2021-12-07 北京国双科技有限公司 地图区域名称的显示方法及装置
CN110245200A (zh) * 2019-05-30 2019-09-17 浙江浙大中控信息技术有限公司 一种电子地图点状要素防压盖自动标注的方法
CN112306332B (zh) 2020-10-29 2023-02-10 腾讯科技(深圳)有限公司 确定选中目标的方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030177000A1 (en) * 2002-03-12 2003-09-18 Verity, Inc. Method and system for naming a cluster of words and phrases
US20090132469A1 (en) * 2007-11-16 2009-05-21 Urban Mapping, Inc. Geocoding based on neighborhoods and other uniquely defined informal spaces or geographical regions
US20100106801A1 (en) * 2008-10-22 2010-04-29 Google, Inc. Geocoding Personal Information
TW201140466A (en) * 2009-10-12 2011-11-16 Qualcomm Inc Method and apparatus for automated determination of features on an electronic map

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045010A1 (de) * 2004-09-16 2006-04-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Informationspunkt
TWI338846B (en) 2006-12-22 2011-03-11 Univ Nat Pingtung Sci & Tech A method for grid-based data clustering
US7885791B2 (en) 2007-02-21 2011-02-08 British Telecommunications Public Limited Company Method for capturing local and evolving clusters
US8521680B2 (en) 2009-07-31 2013-08-27 Microsoft Corporation Inferring user-specific location semantics from user data
US8275649B2 (en) 2009-09-18 2012-09-25 Microsoft Corporation Mining life pattern based on location history
US20110087685A1 (en) 2009-10-09 2011-04-14 Microsoft Corporation Location-based service middleware
US9542471B2 (en) * 2010-12-30 2017-01-10 Telefonaktiebolaget Lm Ericsson (Publ) Method of building a geo-tree
CN102156726B (zh) * 2011-04-01 2013-12-25 中国测绘科学研究院 基于语义相似度的地理要素查询扩展方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030177000A1 (en) * 2002-03-12 2003-09-18 Verity, Inc. Method and system for naming a cluster of words and phrases
US20090132469A1 (en) * 2007-11-16 2009-05-21 Urban Mapping, Inc. Geocoding based on neighborhoods and other uniquely defined informal spaces or geographical regions
US20100106801A1 (en) * 2008-10-22 2010-04-29 Google, Inc. Geocoding Personal Information
TW201140466A (en) * 2009-10-12 2011-11-16 Qualcomm Inc Method and apparatus for automated determination of features on an electronic map

Also Published As

Publication number Publication date
US20130156324A1 (en) 2013-06-20
US9507866B2 (en) 2016-11-29
TW201324193A (zh) 2013-06-16
CN103164498A (zh) 2013-06-19
CN103164498B (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
Miah et al. A big data analytics method for tourist behaviour analysis
Zielstra et al. Positional accuracy analysis of Flickr and Panoramio images for selected world regions
Jankowski et al. Discovering landmark preferences and movement patterns from photo postings
US20140278291A1 (en) Discovering functional groups
Han et al. Adaptive landmark recommendations for travel planning: Personalizing and clustering landmarks using geo-tagged social media
US20170039264A1 (en) Area modeling by geographic photo label analysis
KR101519879B1 (ko) 계층적 컨텍스트 모델을 이용하여 컨텐츠를 추천하기 위한 장치 및 그 방법
US20160299639A1 (en) User interface for providing geographically delineated content
US20170011063A1 (en) Systems and Methods to Facilitate Submission of User Images Descriptive of Locations
Lee et al. Spatio-temporal provenance: Identifying location information from unstructured text
TWI486793B (zh) 地理位置呈現之系統、方法、其電腦可讀取記錄媒體與其電腦程式產品
CN108228593B (zh) 兴趣点重要度测量方法和装置
Vu et al. GeoSocialBound: an efficient framework for estimating social POI boundaries using spatio--textual information
TW201931172A (zh) 基於地理位置的興趣點檢索方法和裝置
Leung et al. Tourists visit and photo sharing behavior analysis: A case study of Hong Kong temples
Van Canneyt et al. Using social media to find places of interest: a case study
Pereira et al. crowdsensing in the web: Analyzing the citizen experience in the urban space
Chatterjee et al. SAGEL: smart address geocoding engine for supply-chain logistics
Nuzir et al. Dynamic Land-Use Map Based on Twitter Data.
Vaziri et al. Discovering tourist attractions of cities using Flickr and OpenStreetMap data
Vu et al. Low-complexity detection of POI boundaries using geo-tagged tweets: A geographic proximity based approach
Min et al. A survey on context-aware mobile visual recognition
Viana et al. Mobile photo recommendation and logbook generation using context-tagged images
Kelm et al. Georeferencing in social networks
Deeksha et al. A spatial clustering approach for efficient landmark discovery using geo-tagged photos