TWI485995B - Portable computing device with a saw-less transceiver - Google Patents

Portable computing device with a saw-less transceiver Download PDF

Info

Publication number
TWI485995B
TWI485995B TW100119490A TW100119490A TWI485995B TW I485995 B TWI485995 B TW I485995B TW 100119490 A TW100119490 A TW 100119490A TW 100119490 A TW100119490 A TW 100119490A TW I485995 B TWI485995 B TW I485995B
Authority
TW
Taiwan
Prior art keywords
signal
inbound
baseband
signals
filter
Prior art date
Application number
TW100119490A
Other languages
Chinese (zh)
Other versions
TW201212553A (en
Inventor
Ahmadreza Rofougaran
Hooman Darabi
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/070,980 external-priority patent/US8483642B2/en
Priority claimed from US13/076,116 external-priority patent/US8761710B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW201212553A publication Critical patent/TW201212553A/en
Application granted granted Critical
Publication of TWI485995B publication Critical patent/TWI485995B/en

Links

Landscapes

  • Transceivers (AREA)
  • Transmitters (AREA)

Description

可攜式計算裝置Portable computing device

本發明涉及無線通信領域,更具體地說,本發明涉及無線電收發器。The present invention relates to the field of wireless communications, and more particularly to a radio transceiver.

已知通信系統支援無線和/或有線連接的通信裝置間的無線和有線通信。這些通信系統的範圍從國家和/或國際蜂窩電話系統到網際網路甚至到點對點家用無線網路。各種類型的通信系統可分別創建,並根據一種或多種通信標準運行。例如,無線通信系統可以根據一種或多種標準運行,這些標準包括但不限於IEEE802.11、藍牙、高級移動電話服務(AMPS)、數位AMPS、移動通信全球系統(GSM)、碼分多址(CDMA)、本地多點分散式系統(LMDS)、多通道多點分散式系統(MMDS)、射頻標識(RFID)、增強型分組無線通信業務(EDGE)、通用分組無線業務(GPRS)、WCDMA、長期演進(LTE)、微波存取全球互通(WiMAX)和/或其變型。Communication systems are known to support wireless and wireline communication between wireless and/or wired connected communication devices. These communication systems range from national and/or international cellular telephone systems to the Internet and even to point-to-point home wireless networks. Various types of communication systems can be created separately and operate in accordance with one or more communication standards. For example, a wireless communication system can operate in accordance with one or more standards including, but not limited to, IEEE 802.11, Bluetooth, Advanced Mobile Phone Service (AMPS), Digital AMPS, Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA) ), local multipoint decentralized system (LMDS), multi-channel multi-point decentralized system (MMDS), radio frequency identification (RFID), enhanced packet radio communication service (EDGE), general packet radio service (GPRS), WCDMA, long-term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX) and/or variants thereof.

根據無線通信系統的類型,無線通信裝置(例如蜂窩電話、雙向無線電、個人數位助手(PDA)、個人電腦(PC)、手提電腦、家庭娛樂設備、RFID讀卡器、RFID標籤等)與其他無線通信裝置直接或間接通信。對於直接通信(又稱為點對點通信),參與的無線通信裝置將它們的接收器和發射器調諧到相同的頻道(例如無線通信系統的多個射頻載波中的一個或一些系統特定的射頻頻率)並通過這些頻道通信。對於間接無線通信,每個無線通信裝置與相關 基站(例如用於蜂窩服務)和/或通過分配的頻道與相關接入點(例如用於家庭內或建築物內的無線網路)直接通信。為了完成無線通信裝置間的通信鏈結,相關基站和/或相關接入點通過系統控制器、通過公共交換電話網、通過網際網路和/或通過一些其他廣域網相互直接通信。Depending on the type of wireless communication system, wireless communication devices (such as cellular phones, two-way radios, personal digital assistants (PDAs), personal computers (PCs), laptops, home entertainment devices, RFID readers, RFID tags, etc.) and other wireless devices The communication device communicates directly or indirectly. For direct communication (also known as point-to-point communication), participating wireless communication devices tune their receivers and transmitters to the same channel (eg, one or some of the system-specific RF frequencies of a plurality of radio frequency carriers of a wireless communication system) And communicate through these channels. For indirect wireless communication, each wireless communication device is associated with The base station (e.g., for cellular services) and/or communicates directly with associated access points (e.g., for use in a wireless network within a home or building) through assigned channels. In order to complete the communication link between the wireless communication devices, the relevant base stations and/or associated access points communicate directly with each other through the system controller, through the public switched telephone network, over the Internet, and/or through some other wide area network.

對於每個參與無線通信的無線通信裝置,它包括內置無線電收發器(即接收器和發射器)或與相關無線電收發器相連(例如用於家庭和/或建築物內無線通信網路的基站、RF數據機等)。已知接收器與天線相連並包括低雜訊放大器、一個或多個中頻級(stage)、濾波級和資料恢復級。低雜訊放大器通過天線接收入站RF信號然後將其放大。一個或多個中頻級將放大的RF信號與一個或多個本地振盪混合,從而將放大的RF信號轉換為基帶信號或中頻信號。濾波級濾波基帶信號或中頻信號以衰減不需要的帶外信號,從而生成濾波的信號。資料恢復級根據特定的無線通信標準恢復濾波的信號中的資料。For each wireless communication device participating in wireless communication, it includes a built-in radio transceiver (ie, a receiver and a transmitter) or is connected to an associated radio transceiver (eg, a base station for a home and/or in-building wireless communication network, RF data machine, etc.). Receivers are known to be connected to an antenna and include a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives the inbound RF signal through the antenna and then amplifies it. The one or more intermediate frequency stages mix the amplified RF signal with one or more local oscillations to convert the amplified RF signal to a baseband signal or an intermediate frequency signal. The filter stage filters the baseband signal or the intermediate frequency signal to attenuate unwanted out-of-band signals to generate a filtered signal. The data recovery stage recovers the data in the filtered signal according to a particular wireless communication standard.

已知發射器包括資料調製級、一個或多個中頻級以及功率放大器。資料調製級根據特定的無線通信標準將資料轉換為基帶信號。一個或多個中頻級將基帶信號與一個或多個本地振盪混合以產生RF信號。功率放大器放大RF信號,然後通過天線將其發射。Known transmitters include a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts the data to a baseband signal according to a particular wireless communication standard. One or more intermediate frequency stages mix the baseband signal with one or more local oscillations to produce an RF signal. The power amplifier amplifies the RF signal and then transmits it through the antenna.

為了實施無線電收發器,無線通信裝置包括多個積體電路和多個分立組件。圖1示出了支持2G和3G蜂窩電話協定的無線通信裝置的一個例子。如圖所示,無線通信裝置包括基帶處理IC、電源管理IC、無線電收發器IC、發射/接收(T/R)切換器、天線以及多個分立元件。分立元件包括表面聲波(SAW)濾波器、功率放大器、雙工器、電感和電容。這些分立元件增加了無線通信裝置的材料成本,但是它們並不是實現2G和3G協定的精確性能需求所必須的。In order to implement a radio transceiver, the wireless communication device includes a plurality of integrated circuits and a plurality of discrete components. Figure 1 shows an example of a wireless communication device supporting 2G and 3G cellular telephone protocols. As shown, the wireless communication device includes a baseband processing IC, a power management IC, a radio transceiver IC, a transmit/receive (T/R) switch, an antenna, and a plurality of discrete components. Discrete components include surface acoustic wave (SAW) filters, power amplifiers, duplexers, inductors, and capacitors. These discrete components increase the material cost of wireless communication devices, but they are not required to achieve the precise performance requirements of the 2G and 3G protocols.

隨著積體電路工藝技術的發展,無線通信裝置製造商希望無 線收發器IC製造商根據IC製造工藝的進步更新它們的IC。例如,由於製造工藝過程的改變(例如使用更小的電晶體型號),針對更新的製造工藝過程重新設計無線收發器IC。由於大多數數位電路隨著IC製造工藝過程而縮小,IC數位部分的重新設計是一個相對簡單的過程。但是,由於大多數類比電路(例如電感、電容等)不隨IC過程而縮小,類比部分的重新設計不是一個簡單的任務。因此,無線收發器IC製造商投入了巨大努力來生產使用更新IC製造工藝過程的IC。With the development of integrated circuit technology, wireless communication device manufacturers hope that there is no Line transceiver IC manufacturers update their ICs based on advances in IC manufacturing processes. For example, wireless transceiver ICs are redesigned for newer manufacturing processes due to changes in the manufacturing process (eg, using smaller transistor models). Since most digital circuits shrink with the IC manufacturing process, the redesign of the digital portion of the IC is a relatively simple process. However, since most analog circuits (such as inductors, capacitors, etc.) do not shrink with IC processes, the redesign of the analog part is not a simple task. As a result, wireless transceiver IC manufacturers have put a lot of effort into producing ICs that use the updated IC manufacturing process.

本發明提供一種裝置和操作方法,並在以下附圖說明和具體實施方式部分以及權利要求中給出進一步的描述。The present invention provides a device and method of operation, and further description is given in the following description of the drawings and the detailed description of the embodiments and claims.

根據本發明的一個方面,提出一種可攜式計算裝置(computing device),包括:前端模組,用於與天線部連接並用於從一個或多個入站射頻信號中分離出一個或多個出站射頻信號;無表面聲波(less-SAW)接收器,用於:通過下列步驟將所述一個或多個入站射頻信號轉換為一個或多個入站中頻信號,其中:將基帶濾波器回應變頻為中頻濾波器回應和射頻濾波器回應中至少一種;當所述基帶濾波器回應變頻為所述射頻濾波器回應時根據所述射頻濾波器響應濾波所述一個或多個入站射頻信號;以及當所述基帶濾波器回應變頻為所述中頻濾波器回應時根據所述中頻濾波器響應濾波所述一個或多個入站中頻信號;以及 將所述一個或多個入站中頻信號轉換為一個或多個入站符號流;無表面聲波發射器,用於將一個或多個出站符號流轉換為所述一個或多個出站射頻信號;以及基帶處理單元,用於:將出站資料轉換為所述一個或多個出站符號流;以及將所述一個或多個入站符號流轉換為入站資料。According to an aspect of the invention, a portable computing device is provided, comprising: a front end module for connecting to an antenna portion and for separating one or more outputs from one or more inbound radio frequency signals Station radio frequency signal; a surfaceless acoustic wave (less-SAW) receiver for: converting the one or more inbound radio frequency signals into one or more inbound IF signals by: Responding to at least one of an intermediate frequency filter response and an RF filter response; filtering the one or more inbound radio frequencies according to the RF filter response when the baseband filter responds to the RF filter response And filtering the one or more inbound intermediate frequency signals according to the intermediate frequency filter response when the baseband filter is responsive to the intermediate frequency filter response; and Converting the one or more inbound IF signals into one or more inbound symbol streams; a surface acoustic wave transmitter for converting one or more outbound symbol streams into the one or more outbounds And a baseband processing unit for: converting outbound data into the one or more outbound symbol streams; and converting the one or more inbound symbol streams into inbound data.

優選地,所述可攜式計算裝置還包括:所述前端模組還用於從一個或多個第二入站射頻信號中分離出一個或多個第二出站射頻信號,其中所述一個或多個入站和出站射頻信號位於第一頻帶中,所述一個或多個第二入站射頻信號位於第二頻帶中;所述無表面聲波接收器還用於:將所述一個或多個第二入站射頻信號轉換為一個或多個第二入站中頻信號,其中:將第二基帶濾波器回應變頻為第二中頻濾波器回應和第二射頻濾波器回應中至少一種;當所述第二基帶濾波器回應變頻為所述第二射頻濾波器回應時根據所述第二射頻濾波器響應濾波所述一個或多個第二入站射頻信號;以及當所述第二基帶濾波器回應變頻為所述第二中頻濾波器回應時根據所述第二中頻濾波器響應濾波所述一個或多個第二入站中頻信號;以及將所述一個或多個第二入站中頻信號轉換為一個或多個第二入站符號流;無表面聲波發射器還用於將一個或多個第二出站符號流轉換為所述一個或多個第二出站射頻信號;以及所述基帶處理單元還用於: 將第二出站資料轉換為所述一個或多個第二出站符號流;以及將所述一個或多個第二入站符號流轉換為第二入站資料。Preferably, the portable computing device further includes: the front end module further configured to separate one or more second outbound radio frequency signals from the one or more second inbound radio frequency signals, wherein the one Or a plurality of inbound and outbound radio frequency signals are located in a first frequency band, and the one or more second inbound radio frequency signals are located in a second frequency band; the surface acoustic wave receiver is further configured to: Converting the plurality of second inbound radio frequency signals into one or more second inbound intermediate frequency signals, wherein: converting the second baseband filter response to at least one of a second intermediate frequency filter response and a second RF filter response Filtering the one or more second inbound radio frequency signals according to the second radio frequency filter response when the second baseband filter responds to the second radio frequency filter response; and when the second The baseband filter response frequency transforms the one or more second inbound intermediate frequency signals according to the second intermediate frequency filter response when the second intermediate frequency filter responds; and the one or more Two-input IF signal conversion One or more second inbound symbol streams; the surfaceless acoustic wave transmitter is further configured to convert one or more second outbound symbol streams into the one or more second outbound radio frequency signals; and the baseband processing The unit is also used to: Converting the second outbound data to the one or more second outbound symbol streams; and converting the one or more second inbound symbol streams to the second inbound material.

優選地,所述前端模組包括:天線調諧單元,與所述天線部連接並被調諧以用於提供與所述天線部的阻抗相匹配的阻抗;一個或多個功率放大器,用於放大所述一個或多個出站射頻信號以產生一個或多個放大的出站射頻信號;分離模組,與所述無表面波接收器、所述天線調諧單元以及所述一個或多個功率放大器相連,所述分離模組用於:向所述天線調諧單元輸出所述一個或多個放大的出站射頻信號;以及在所述分離模組與所述無表面波接收器的連接中衰減所述一個或多個放大的出站射頻信號從而將所述一個或多個入站射頻信號從所述一個或多個出站射頻信號中分離。Advantageously, the front end module includes an antenna tuning unit coupled to the antenna portion and tuned for providing an impedance matching the impedance of the antenna portion; one or more power amplifiers for amplifying the Deriving one or more outbound radio frequency signals to generate one or more amplified outbound radio frequency signals; a separation module coupled to the surfaceless wave receiver, the antenna tuning unit, and the one or more power amplifiers The separation module is configured to: output the one or more amplified outbound radio frequency signals to the antenna tuning unit; and attenuate the connection between the separation module and the surfaceless wave receiver One or more amplified outbound radio frequency signals thereby separating the one or more inbound radio frequency signals from the one or more outbound radio frequency signals.

優選地,所述基帶處理單元還用於生成以下至少一項:天線調諧單元控制信號,用於根據所述天線部的阻抗變化調節所述天線調諧單元的阻抗;分離控制信號,用於調節所述一個或多個出站RF信號的衰減;以及功率放大器控制信號,用於調節所述一個或多個功率放大器的一個或多個參數。Preferably, the baseband processing unit is further configured to generate at least one of: an antenna tuning unit control signal, configured to adjust an impedance of the antenna tuning unit according to an impedance change of the antenna portion; and separate a control signal for adjusting the Determining attenuation of one or more outbound RF signals; and power amplifier control signals for adjusting one or more parameters of the one or more power amplifiers.

優選地,所述無表面波發射器包括:上變頻混頻模組,用於將所述一個或多個出站符號流轉換為一個或多個上變頻信號;發射變頻帶通濾波器,用於:將第二基帶濾波器回應變頻為第二射頻帶通濾波器回應;以及 根據所述第二射頻帶通濾波器響應濾波所述一個或多個上變頻信號以產生一個或多個濾波的上變頻信號;以及輸出模組,用於調節(condition)所述一個或多個濾波的上變頻信號以產生一個或多個調節的上變頻信號;以及功率放大器驅動器,用於放大所述一個或多個調節的上變頻信號以產生所述一個或多個出站射頻信號。Preferably, the surface-free wave transmitter comprises: an up-conversion mixing module, configured to convert the one or more outbound symbol streams into one or more up-converted signals; and transmit a variable-frequency band-pass filter, In: converting the second baseband filter response to a second RF bandpass filter response; Filtering the one or more upconverted signals in response to the second RF bandpass filter to generate one or more filtered upconverted signals; and outputting a module for conditioning the one or more The filtered upconverted signal to produce one or more adjusted upconverted signals; and a power amplifier driver for amplifying the one or more adjusted upconverted signals to generate the one or more outbound radio frequency signals.

優選地,所述基帶處理單元還用於:生成發射器控制信號,所述發射器控制信號用於調節以下至少一項:所述第二基帶濾波器回應、所述第二射頻帶通濾波器回應以及所述功率放大器驅動器的參數。Preferably, the baseband processing unit is further configured to: generate a transmitter control signal, where the transmitter control signal is used to adjust at least one of: the second baseband filter response, the second RF bandpass filter Response and parameters of the power amplifier driver.

優選地,所述無表面波接收器包括:射頻-中頻接收器部,包括:低雜訊放大器,用於放大所述一個或多個入站射頻信號以產生一個或多個放大的入站射頻信號;中頻下變頻模組,用於將所述一個或多個放大的入站射頻信號轉換為所述一個或多個入站中頻信號;以及具有所述射頻帶通濾波器響應的變頻帶通濾波器,用於濾波所述一個或多個入站射頻信號或濾波所述一個或多個入站中頻信號;以及中頻-基帶接收器部,用於將所述一個或多個入站中頻信號轉換為一個或多個入站符號流。Advantageously, said surfaceless wave receiver comprises: a radio frequency-intermediate frequency receiver portion comprising: a low noise amplifier for amplifying said one or more inbound radio frequency signals to produce one or more amplified inbound stations a radio frequency signal; an intermediate frequency down conversion module for converting the one or more amplified inbound radio frequency signals into the one or more inbound intermediate frequency signals; and having the radio frequency band pass filter response a variable frequency band pass filter for filtering the one or more inbound radio frequency signals or filtering the one or more inbound intermediate frequency signals; and an intermediate frequency-baseband receiver portion for using the one or more The inbound IF signals are converted to one or more inbound symbol streams.

優選地,所述基帶處理單元還用於:生成接收器控制信號,所述接收器控制信號用於調節以下至少一項:所述基帶濾波器回應、所述射頻帶通濾波器回應以及所述低雜訊放大器的參數。Preferably, the baseband processing unit is further configured to: generate a receiver control signal, where the receiver control signal is used to adjust at least one of: the baseband filter response, the radio frequency bandpass filter response, and the Low noise amplifier parameters.

優選地,所述可攜式計算裝置還包括:第一積體電路,用於支援所述基帶處理單元、所述無表面波接收器和所述無表面波發射器;以及 第二積體電路,用於支援所述前端模組。Preferably, the portable computing device further includes: a first integrated circuit for supporting the baseband processing unit, the surfaceless wave receiver, and the surfaceless wave emitter; The second integrated circuit is configured to support the front end module.

優選地,所述可攜式計算裝置還包括以下至少一項:處理模組,用於:執行一個或多個可攜式計算裝置功能生成所述出站資料;以及執行所述一個或多個可攜式計算裝置功能處理所述輸入資料;以及電源管理單元,用於執行所述可攜式計算裝置的一個或多個電源管理功能。Preferably, the portable computing device further includes at least one of: a processing module, configured to: execute one or more portable computing device functions to generate the outbound data; and execute the one or more The portable computing device functions to process the input data; and a power management unit for performing one or more power management functions of the portable computing device.

根據另一方面,提出一種可攜式計算裝置,包括:前端模組,所述前端模組包括:多個功率放大器,其中所述多個功率放大器中的功率放大器放大多個出站射頻信號中的第一出站射頻信號;多個分離模組,其中所述多個分離模組中的分離模組從所述第一出站射頻信號中分離多個入站射頻信號中的第一入站射頻信號;以及至少一個天線調諧單元,用於根據控制信號提供與天線部的阻抗相匹配的阻抗,其中所述天線調諧單元從所述天線部接收所述第一入站射頻信號,並向所述天線部輸出所述第一出站射頻信號;無表面聲波接收器,用於將所述多個入站射頻信號轉換為多個入站符號流;無表面聲波發射器,用於將多個出站符號流轉換為所述多個出站射頻信號;以及基帶處理單元,用於:根據所述天線部的阻抗變化生成所述控制信號;將多個出站資料轉換為所述多個出站符號流;以及將所述多個入站符號流轉換為多個入站資料。According to another aspect, a portable computing device is provided, comprising: a front end module, the front end module comprising: a plurality of power amplifiers, wherein a power amplifier of the plurality of power amplifiers amplifies a plurality of outbound RF signals a first outbound radio frequency signal; a plurality of separation modules, wherein the separation module of the plurality of separation modules separates the first inbound of the plurality of inbound radio frequency signals from the first outbound radio frequency signal a radio frequency signal; and at least one antenna tuning unit for providing an impedance matching the impedance of the antenna portion according to the control signal, wherein the antenna tuning unit receives the first inbound radio frequency signal from the antenna portion, and The antenna portion outputs the first outbound radio frequency signal; the surface acoustic wave receiver is configured to convert the plurality of inbound radio frequency signals into a plurality of inbound symbol streams; and the surface acoustic wave transmitter is configured to Converting an outbound symbol stream into the plurality of outbound radio frequency signals; and a baseband processing unit configured to: generate the control signal according to an impedance change of the antenna portion; convert a plurality of outbound data The plurality of outbound symbol stream; and the plurality of inbound symbol stream into a plurality of inbound data.

優選地,所述可攜式計算裝置還包括:所述多個功率放大器中的第二功率放大器放大多個出站射頻信號中的第二出站射頻信號,其中所述第一出站射頻信號位於第一頻帶中,所述第二出站射頻信號位於第二頻帶中;所述多個分離模組中的第二分離模組從所述第二出站射頻信號中分離多個入站射頻信號中的第二入站射頻信號;頻帶切換器,與所述天線部和所述至少一個天線調諧單元相連;以及所述至少一個天線調諧單元中的第二天線調諧單元用於根據第二控制信號提供與天線部的阻抗相匹配的第二阻抗,其中所述第二天線調諧單元通過所述頻帶切換器從所述天線部接收所述第二入站射頻信號,並通過所述頻帶切換器向所述天線部輸出所述第二出站射頻信號。Preferably, the portable computing device further includes: a second power amplifier of the plurality of power amplifiers amplifying a second outbound radio frequency signal of the plurality of outbound radio frequency signals, wherein the first outbound radio frequency signal Located in the first frequency band, the second outbound radio frequency signal is located in the second frequency band; the second separation module of the plurality of separation modules separates the plurality of inbound radio frequencies from the second outbound radio frequency signal a second inbound radio frequency signal in the signal; a band switch coupled to the antenna portion and the at least one antenna tuning unit; and a second antenna tuning unit in the at least one antenna tuning unit for The control signal provides a second impedance that matches the impedance of the antenna portion, wherein the second antenna tuning unit receives the second inbound radio frequency signal from the antenna portion through the band switch and passes the frequency band The switch outputs the second outbound radio frequency signal to the antenna portion.

優選地,所述分離模組還用於:向所述至少一個天線調諧單元輸出所述第一出站射頻信號;以及在所述分離模組與所述無表面波接收器的連接中衰減所述第一出站射頻信號從而將所述第一入站射頻信號從所述第一出站射頻信號中分離。Preferably, the separation module is further configured to: output the first outbound radio frequency signal to the at least one antenna tuning unit; and attenuate the connection between the separation module and the surface waveless receiver Deriving the first outbound radio frequency signal to separate the first inbound radio frequency signal from the first outbound radio frequency signal.

優選地,所述可攜式計算裝置還包括:所述基帶處理模組生成分離控制信號;以及所述分離模組調節所述出站射頻信號的所述衰減。Preferably, the portable computing device further includes: the baseband processing module generates a separation control signal; and the separation module adjusts the attenuation of the outbound radio frequency signal.

優選地,所述無表面波發射器包括:上變頻混頻模組,用於將所述一個或多個出站符號流轉換為一個或多個上變頻信號;發射變頻帶通濾波器,用於:將第二基帶濾波器回應變頻為第二射頻帶通濾波器回應;以及 根據所述第二射頻帶通濾波器響應濾波所述一個或多個上變頻信號以產生一個或多個濾波的上變頻信號;以及輸出模組,用於調節(condition)所述一個或多個濾波的上變頻信號以產生一個或多個調節的上變頻信號;以及功率放大器驅動器,用於放大所述一個或多個調節的上變頻信號以產生所述一個或多個出站射頻信號。Preferably, the surface-free wave transmitter comprises: an up-conversion mixing module, configured to convert the one or more outbound symbol streams into one or more up-converted signals; and transmit a variable-frequency band-pass filter, In: converting the second baseband filter response to a second RF bandpass filter response; Filtering the one or more upconverted signals in response to the second RF bandpass filter to generate one or more filtered upconverted signals; and outputting a module for conditioning the one or more The filtered upconverted signal to produce one or more adjusted upconverted signals; and a power amplifier driver for amplifying the one or more adjusted upconverted signals to generate the one or more outbound radio frequency signals.

優選地,所述基帶處理單元還用於:生成發射器控制信號,所述發射器控制信號用於調節以下至少一項:所述第二基帶濾波器回應、所述第二射頻帶通濾波器回應以及所述功率放大器驅動器的參數。Preferably, the baseband processing unit is further configured to: generate a transmitter control signal, where the transmitter control signal is used to adjust at least one of: the second baseband filter response, the second RF bandpass filter Response and parameters of the power amplifier driver.

優選地,所述無表面波接收器包括:射頻-中頻接收器部,包括:低雜訊放大器部,用於放大所述多個入站射頻信號以產生多個放大的入站射頻信號;中頻下變頻模組,用於將所述多個放大的入站射頻信號轉換為多個入站中頻信號;以及具有所述射頻帶通濾波器回應的變頻帶通濾波器,用於濾波所述多個入站射頻信號或濾波所述多個入站中頻信號;以及中頻-基帶接收器部,用於將所述多個入站中頻信號轉換為多個入站符號流。Preferably, the surface-free wave receiver comprises: a radio frequency-intermediate frequency receiver unit, comprising: a low noise amplifier unit, configured to amplify the plurality of inbound radio frequency signals to generate a plurality of amplified inbound radio frequency signals; An intermediate frequency down conversion module for converting the plurality of amplified inbound radio frequency signals into a plurality of inbound intermediate frequency signals; and a variable frequency band pass filter having the RF band pass filter response for filtering The plurality of inbound radio frequency signals or filtering the plurality of inbound intermediate frequency signals; and an intermediate frequency-baseband receiver unit for converting the plurality of inbound intermediate frequency signals into a plurality of inbound symbol streams.

優選地,所述基帶處理單元還用於:生成接收器控制信號,所述接收器控制信號用於調節以下至少一項:所述基帶濾波器回應、所述射頻帶通濾波器回應以及所述低雜訊放大器的參數。Preferably, the baseband processing unit is further configured to: generate a receiver control signal, where the receiver control signal is used to adjust at least one of: the baseband filter response, the radio frequency bandpass filter response, and the Low noise amplifier parameters.

優選地,所述可攜式計算裝置還包括:第一積體電路,用於支援所述第一基帶處理單元、所述無表面波接收器和所述無表面波發射器;以及第二積體電路,用於支援所述前端模組。Preferably, the portable computing device further includes: a first integrated circuit for supporting the first baseband processing unit, the surfaceless wave receiver and the surfaceless wave transmitter; and a second product a body circuit for supporting the front end module.

優選地,所述可攜式計算裝置還包括以下至少一項:處理模組,用於:執行一個或多個可攜式計算裝置功能生成所述出站資料;以及執行所述一個或多個可攜式計算裝置功能處理所述輸入;以及電源管理單元,用於執行所述可攜式計算裝置的一個或多個電源管理功能。Preferably, the portable computing device further includes at least one of: a processing module, configured to: execute one or more portable computing device functions to generate the outbound data; and execute the one or more The portable computing device functions to process the input; and a power management unit for performing one or more power management functions of the portable computing device.

本發明的各種優點、各個方面和創新特徵以及具體實施例的細節,將在以下的說明書和附圖中進行詳細介紹。The various advantages, aspects, and features of the invention, as well as the details of the specific embodiments, are described in the following description and drawings.

10‧‧‧可攜式計算通信裝置10‧‧‧Portable computing communication device

12‧‧‧片上系統(SOC)12‧‧‧System on a Chip (SOC)

14‧‧‧前端模組(FEM)14‧‧‧ Front End Module (FEM)

16‧‧‧天線16‧‧‧Antenna

18‧‧‧無表面聲波接收器部18‧‧‧No surface acoustic wave receiver

20‧‧‧無表面聲波發射器部20‧‧‧No surface acoustic wave transmitter

22‧‧‧基帶處理單元22‧‧‧Baseband processing unit

24‧‧‧處理模組24‧‧‧Processing module

26‧‧‧電源管理單元26‧‧‧Power Management Unit

28‧‧‧接收器(RX)射頻(RF)-中頻(IF)部28‧‧‧ Receiver (RX) Radio Frequency (RF) - Intermediate Frequency (IF) Department

30‧‧‧接收器(RX)IF-基帶(BB)部30‧‧‧Receiver (RX) IF-Baseband (BB)

32‧‧‧變頻帶通濾波器(FTBPF)32‧‧‧Variable Bandpass Filter (FTBPF)

34-36‧‧‧功率放大器(PA)34-36‧‧‧Power Amplifier (PA)

38-40‧‧‧接收器-發射器(RX-TX)分離模組38-40‧‧‧Receiver-transmitter (RX-TX) separation module

42-44‧‧‧天線調諧單元(ATU)42-44‧‧‧Antenna Tuning Unit (ATU)

46‧‧‧頻帶(FB)切換器46‧‧‧Band (FB) switcher

50‧‧‧前端模組(FEM)50‧‧‧ Front End Module (FEM)

52‧‧‧片上系統(SOC)52‧‧‧System on Chip (SOC)

54‧‧‧天線調諧單元(ATU)54‧‧‧Antenna Tuning Unit (ATU)

60‧‧‧前端模組(FEM)網路60‧‧‧ Front End Module (FEM) Network

62-68‧‧‧前端模組(FEM)62-68‧‧‧ Front End Module (FEM)

70‧‧‧RF連接70‧‧‧RF connection

78‧‧‧RF連接78‧‧‧RF connection

80‧‧‧前端模組(FEM)網路80‧‧‧ Front End Module (FEM) Network

82‧‧‧變頻模組82‧‧‧Inverter Module

86‧‧‧RF-RF變頻模組86‧‧‧RF-RF inverter module

90‧‧‧RF連接90‧‧‧RF connection

100‧‧‧片上系統(SOC)100‧‧‧System on Chip (SOC)

110‧‧‧片上系統(SOC)110‧‧‧System on Chip (SOC)

112‧‧‧中頻(IF)-基帶(BB)接收器部112‧‧‧Intermediate (IF)-Baseband (BB) Receiver Unit

114‧‧‧BB-IF發射器部114‧‧‧BB-IF Transmitter Department

120‧‧‧前端模組(FEM)網路120‧‧‧ Front End Module (FEM) Network

122‧‧‧RF連接122‧‧‧RF connection

124-130‧‧‧RX RF-IF部124-130‧‧‧RX RF-IF Department

132-138‧‧‧TX IF-RF部132-138‧‧‧TX IF-RF Department

140‧‧‧片上系統(SOC)140‧‧‧System on a Chip (SOC)

142‧‧‧前端模組(FEM)網路142‧‧‧ Front End Module (FEM) Network

144‧‧‧中頻(IF)-基帶(BB)接收器部144‧‧‧Intermediate (IF)-Baseband (BB) Receiver Unit

146‧‧‧BB-IF發射器部146‧‧‧BB-IF Transmitter Department

148‧‧‧RX RF-IF部148‧‧‧RX RF-IF Department

150‧‧‧TX IF-RF部150‧‧‧TX IF-RF Department

152-154‧‧‧RF連接152-154‧‧‧RF connection

160‧‧‧片上系統(SOC)160‧‧‧System on Chip (SOC)

162‧‧‧前端模組(FEM)網路162‧‧‧ Front End Module (FEM) Network

164‧‧‧無SAW接收器(RX)下變頻部164‧‧‧No SAW Receiver (RX) Downconverting Unit

166‧‧‧無SAW發射器(TX)上變頻部166‧‧‧No SAW Transmitter (TX) Upconverting Unit

168-174‧‧‧FEM168-174‧‧‧FEM

176‧‧‧RF連接176‧‧‧RF connection

180‧‧‧片上系統(SOC)180‧‧‧System on a Chip (SOC)

182‧‧‧前端模組(FEM)182‧‧‧ Front End Module (FEM)

190‧‧‧片上系統(SOC)190‧‧‧System on a Chip (SOC)

192‧‧‧前端模組(FEM)192‧‧‧ Front End Module (FEM)

200‧‧‧片上系統(SOC)200‧‧‧System on Chip (SOC)

202‧‧‧無SAW發射器部202‧‧‧No SAW Transmitter Department

204‧‧‧RF-IF接收器部204‧‧‧RF-IF Receiver Division

206‧‧‧低雜訊放大器模組(LNA)206‧‧‧Low Noise Amplifier Module (LNA)

208‧‧‧混頻模組208‧‧‧mixing module

210-212‧‧‧混頻暫存器210-212‧‧‧mixing register

214-220‧‧‧暫存器214-220‧‧‧ register

222‧‧‧變頻帶通濾波器(FTBPF)222‧‧‧Variable Bandpass Filter (FTBPF)

224‧‧‧接收器IF-BB部224‧‧‧ Receiver IF-BB

230‧‧‧片上系統(SOC)230‧‧‧System on Chip (SOC)

232‧‧‧RF-IF接收器部232‧‧‧RF-IF Receiver Division

234‧‧‧變頻帶通濾波器(FTBPF)234‧‧‧Variable Bandpass Filter (FTBPF)

236、238‧‧‧濾波器236, 238‧‧‧ filter

240‧‧‧片上系統(SOC)240‧‧‧System on a Chip (SOC)

242‧‧‧RF-IF接收器部242‧‧‧RF-IF Receiver Division

244-246‧‧‧低雜訊放大器模組(LNA)244-246‧‧‧Low Noise Amplifier Module (LNA)

248‧‧‧混頻模組248‧‧‧mixing module

250-252‧‧‧互阻放大器(TIA)250-252‧‧‧Transimpedance Amplifier (TIA)

254-256‧‧‧阻抗(Z)254-256‧‧‧impedance (Z)

258-260‧‧‧暫存器258-260‧‧‧ register

270‧‧‧片上系統(SOC)270‧‧‧System on Chip (SOC)

271‧‧‧RF-IF接收器部271‧‧‧RF-IF Receiver Division

272‧‧‧RF變頻帶通濾波器(FTBPF)272‧‧‧RF variable frequency bandpass filter (FTBPF)

274-276‧‧‧低雜訊放大器模組(LNA)274-276‧‧‧Low Noise Amplifier Module (LNA)

278‧‧‧混頻模組278‧‧‧mixing module

280-282‧‧‧互阻放大器(TIA)280-282‧‧‧Transimpedance Amplifier (TIA)

284-286‧‧‧阻抗(Z)284-286‧‧‧ Impedance (Z)

288‧‧‧IF FTBPF288‧‧‧IF FTBPF

290‧‧‧片上系統(SOC)290‧‧‧System on Chip (SOC)

292‧‧‧RF-IF接收器部292‧‧‧RF-IF Receiver Division

294‧‧‧IF FTBPF294‧‧‧IF FTBPF

300‧‧‧片上系統(SOC)300‧‧‧System on a Chip (SOC)

302‧‧‧雙頻帶RF-IF接收器部302‧‧‧Dual Band RF-IF Receiver Unit

304‧‧‧變頻帶通濾波器(FTBPF)304‧‧‧Variable Bandpass Filter (FTBPF)

306-308‧‧‧低雜訊放大器模組(LNA)306-308‧‧‧Low Noise Amplifier Module (LNA)

310-312‧‧‧混頻模組310-312‧‧‧ Mixing Module

314-320‧‧‧混頻暫存器314-320‧‧‧mixer register

322-328‧‧‧濾波器322-328‧‧‧Filter

330‧‧‧片上系統(SOC)330‧‧‧System on Chip (SOC)

332‧‧‧RF-IF接收器部332‧‧‧RF-IF Receiver Division

334‧‧‧RF變頻帶通濾波器(FTBPF)334‧‧‧RF variable frequency bandpass filter (FTBPF)

336‧‧‧低雜訊放大器模組(LNA)336‧‧‧Low Noise Amplifier Module (LNA)

338‧‧‧變頻帶通濾波器(FTBPF)338‧‧‧Variable Bandpass Filter (FTBPF)

340‧‧‧混頻模組340‧‧‧mixing module

342-344‧‧‧混頻暫存器342-344‧‧‧mixer register

346-348‧‧‧濾波器346-348‧‧‧Filter

350‧‧‧片上系統(SOC)350‧‧‧System on a Chip (SOC)

352‧‧‧RF-IF接收器部352‧‧‧RF-IF Receiver Division

354‧‧‧變頻帶通濾波器(FTBPF)354‧‧‧Variable Bandpass Filter (FTBPF)

356‧‧‧低雜訊放大器模組(LNA)356‧‧‧Low Noise Amplifier Module (LNA)

360‧‧‧片上系統(SOC)360‧‧‧System on Chip (SOC)

362‧‧‧上變頻混頻模組362‧‧‧Upconversion Mixing Module

364‧‧‧發射器本地振盪模組(LO)364‧‧‧Transmitter Local Oscillation Module (LO)

366‧‧‧變頻帶通濾波器(FTBPF)366‧‧‧Variable Bandpass Filter (FTBPF)

368-370‧‧‧電容陣列368-370‧‧‧Capacitor array

372‧‧‧功率放大器驅動器(PAD)372‧‧‧Power Amplifier Driver (PAD)

380‧‧‧片上系統(SOC)380‧‧‧System on Chip (SOC)

382‧‧‧發射器部382‧‧‧Transmitter Department

390‧‧‧FEM390‧‧‧FEM

392‧‧‧LNA392‧‧‧LNA

394‧‧‧單端變頻帶通濾波器(FTBPF)394‧‧‧ Single-Ended Frequency Bandpass Filter (FTBPF)

396-402‧‧‧基帶阻抗(ZBB(s) )396-402‧‧‧baseband impedance (Z BB(s) )

404‧‧‧時鐘生成器404‧‧‧clock generator

410‧‧‧單端FTBPF410‧‧‧Single-ended FTBPF

412‧‧‧差分FTBPF412‧‧‧Differential FTBPF

414-420‧‧‧基帶阻抗(ZBB(s) )414-420‧‧‧baseband impedance (Z BB(s) )

422‧‧‧時鐘生成器422‧‧‧clock generator

430‧‧‧單端FTBPF430‧‧‧Single-ended FTBPF

432‧‧‧複基帶濾波器432‧‧‧Complex baseband filter

434‧‧‧時鐘生成器434‧‧‧clock generator

440‧‧‧差分FTBPF440‧‧‧Different FTBPF

442‧‧‧複基帶濾波器442‧‧‧Complex baseband filter

444‧‧‧時鐘生成器444‧‧‧clock generator

450-456‧‧‧基帶阻抗(ZBB(s) )450-456‧‧‧baseband impedance (Z BB(s) )

458‧‧‧正增益級(Gm)458‧‧‧ positive gain stage (Gm)

460‧‧‧負增益級(-GM)460‧‧‧negative gain stage (-GM)

470‧‧‧控制模組470‧‧‧Control Module

476‧‧‧時鐘生成器476‧‧‧clock generator

480-486‧‧‧可調基帶阻抗480-486‧‧‧ Adjustable baseband impedance

488‧‧‧可調正增益級488‧‧‧Adjustable positive gain stage

490‧‧‧可調負增益級490‧‧‧Adjustable negative gain stage

492‧‧‧可選電容網路492‧‧‧Optional Capacitor Network

494‧‧‧可編程的開關電容網路494‧‧‧Programmable switched capacitor network

496‧‧‧可編程的開關電容濾波器496‧‧‧Programmable switched capacitor filter

500‧‧‧Q RF-IF混頻器500‧‧‧Q RF-IF Mixer

502‧‧‧混頻暫存器502‧‧‧mixing register

504‧‧‧I混頻器504‧‧‧I mixer

510‧‧‧時鐘生成器510‧‧‧clock generator

522‧‧‧I混頻暫存器522‧‧‧I mixing register

523‧‧‧Q混頻暫存器523‧‧‧Q Mixing Register

530‧‧‧IF FTBPF(變頻帶通濾波器)模組530‧‧‧IF FTBPF (frequency conversion bandpass filter) module

532、534、536、538、540、542、544、546‧‧‧基帶阻抗(ZBBz(s) )532, 534, 536, 538, 540, 542, 544, 546‧‧‧ baseband impedance (Z BBz(s) )

550‧‧‧時鐘生成器550‧‧‧clock generator

560‧‧‧單端FTBPF560‧‧‧Single-ended FTBPF

562、564、566、568‧‧‧基帶阻抗(ZBB(s) )562, 564, 566, 568‧‧‧ baseband impedance (Z BB(s) )

572‧‧‧時鐘生成器572‧‧‧clock generator

580‧‧‧差分FTBPF580‧‧‧Differential FTBPF

582‧‧‧時鐘生成器582‧‧‧clock generator

590‧‧‧雙頻帶變頻帶通濾波器(FTBPF)590‧‧‧Dual Band Variable Frequency Bandpass Filter (FTBPF)

592、594、596、598‧‧‧基帶阻抗(ZBB (s))592, 594, 596, 598‧‧‧ baseband impedance (Z BB (s))

600‧‧‧時鐘生成器600‧‧‧clock generator

610‧‧‧雙頻帶差分變頻帶通濾波器(FTBPF)610‧‧‧Dual Band Differential Frequency Bandpass Filter (FTBPF)

612、614、616、618‧‧‧基帶阻抗(ZBB (s))612, 614, 616, 618‧‧‧ baseband impedance (Z BB (s))

622、624‧‧‧互阻放大器(TIA)622, 624‧‧‧Transimpedance Amplifier (TIA)

626、628‧‧‧相關阻抗(Z)626, 628‧‧‧related impedance (Z)

630‧‧‧差分I630‧‧Differential I

632‧‧‧差分Q632‧‧‧Differential Q

634‧‧‧時鐘生成器634‧‧‧clock generator

640、642‧‧‧相應阻抗(Z)640, 642‧‧‧corresponding impedance (Z)

670‧‧‧低雜訊放大器(LNA)670‧‧‧Low Noise Amplifier (LNA)

650、672、674、678‧‧‧FTBPF650, 672, 674, 678‧‧‧FTBPF

680‧‧‧4相FTBPF680‧‧‧4 phase FTBPF

682、684、686、688‧‧‧基帶阻抗ZBB (s)682, 684, 686, 688‧‧‧baseband impedance Z BB (s)

690‧‧‧疊加信號諧波690‧‧‧Superimposed signal harmonics

692‧‧‧信號饋通諧波692‧‧‧Signal feedthrough harmonics

700‧‧‧3相FTBPF(變頻帶通濾波器)700‧‧‧3-phase FTBPF (frequency conversion bandpass filter)

702、704、706‧‧‧基帶阻抗ZBB (s)702, 704, 706‧‧‧ baseband impedance Z BB (s)

708‧‧‧信號饋通諧波708‧‧‧Signal feedthrough harmonics

710‧‧‧疊加信號諧波710‧‧‧Superimposed signal harmonics

712‧‧‧4相FTBPF(變頻帶通濾波器)712‧‧‧4 phase FTBPF (frequency conversion bandpass filter)

714‧‧‧4相FTBPF(變頻帶通濾波器)714‧‧‧4-phase FTBPF (frequency conversion bandpass filter)

716‧‧‧4相FTBPF(變頻帶通濾波器)716‧‧‧4-phase FTBPF (frequency conversion bandpass filter)

720‧‧‧4相FTBPF(變頻帶通濾波器)720‧‧‧4-phase FTBPF (frequency conversion bandpass filter)

722‧‧‧複基帶阻抗ZBB,C (ω)722‧‧‧Complex baseband impedance Z BB,C (ω)

726‧‧‧複基帶阻抗726‧‧‧Complex baseband impedance

730‧‧‧低Q基帶濾波器730‧‧‧Low Q baseband filter

732‧‧‧m相FTBPF(變頻帶通濾波器)732‧‧‧m phase FTBPF (frequency bandpass filter)

734‧‧‧m相FTBPF(變頻帶通濾波器)734‧‧‧m phase FTBPF (frequency conversion bandpass filter)

736‧‧‧m相FTBPF(變頻帶通濾波器)736‧‧‧m phase FTBPF (frequency conversion bandpass filter)

738‧‧‧m相FTBPF(變頻帶通濾波器)738‧‧‧m phase FTBPF (frequency conversion bandpass filter)

740‧‧‧m相FTBPF(變頻帶通濾波器)740‧‧‧m phase FTBPF (frequency conversion bandpass filter)

750‧‧‧時鐘生成器750‧‧‧clock generator

752、754、756‧‧‧觸發器(DFF)752, 754, 756‧‧‧ triggers (DFF)

758、760、762‧‧‧脈衝收窄器(pulse narrower)758, 760, 762‧‧ ‧ pulse narrower

770‧‧‧時鐘生成器770‧‧‧clock generator

772、774、776‧‧‧觸發器(DFF)772, 774, 776‧‧‧ triggers (DFF)

790‧‧‧時鐘生成器790‧‧‧clock generator

792‧‧‧環振盪器792‧‧‧ Ring Oscillator

800‧‧‧時鐘生成器800‧‧‧clock generator

810‧‧‧時鐘生成器810‧‧‧clock generator

812、814、816‧‧‧時鐘信號1-3812, 814, 816‧‧‧ clock signals 1-3

818、820、822‧‧‧時鐘信號4-6818, 820, 822‧‧‧ clock signal 4-6

830‧‧‧前端模組(FEM)830‧‧‧ Front End Module (FEM)

832‧‧‧SOC832‧‧‧SOC

836‧‧‧功率放大器模組(PA)836‧‧‧Power Amplifier Module (PA)

838‧‧‧雙工器838‧‧‧Duplexer

840‧‧‧天線調諧單元(ATU)840‧‧‧Antenna Tuning Unit (ATU)

842‧‧‧平衡網路842‧‧‧Balanced network

844‧‧‧查找表(LUT)844‧‧‧ Lookup Table (LUT)

846‧‧‧處理模組846‧‧‧Processing module

848‧‧‧峰值檢測器848‧‧‧peak detector

850‧‧‧調諧引擎850‧‧‧Tune Engine

852‧‧‧低雜訊放大器模組(LNA)852‧‧‧Low Noise Amplifier Module (LNA)

860‧‧‧前端模組(FEM)860‧‧‧ Front End Module (FEM)

862‧‧‧SOC862‧‧‧SOC

866‧‧‧功率放大器模組(PA)866‧‧‧Power Amplifier Module (PA)

872‧‧‧峰值檢測器872‧‧‧peak detector

874‧‧‧調諧引擎874‧‧‧Tune Engine

876‧‧‧開關和低雜訊放大器模組(LNA)876‧‧‧Switch and Low Noise Amplifier Module (LNA)

880‧‧‧小信號平衡網路880‧‧‧Small signal balancing network

882‧‧‧大信號平衡網路882‧‧‧ Large Signal Balancing Network

890‧‧‧前端模組(FEM)890‧‧‧ Front End Module (FEM)

892‧‧‧SOC892‧‧‧SOC

896‧‧‧功率放大器模組(PA)896‧‧‧Power Amplifier Module (PA)

898‧‧‧雙工器898‧‧‧Duplexer

900‧‧‧平衡網路900‧‧‧Balanced network

902‧‧‧峰值檢測器902‧‧‧peak detector

904‧‧‧調諧引擎904‧‧‧Tune Engine

906‧‧‧洩漏量檢測906‧‧‧Discharge detection

908‧‧‧模組和低雜訊放大器模組(LNA)908‧‧‧Module and Low Noise Amplifier Module (LNA)

910‧‧‧前端模組(FEM)910‧‧‧ Front End Module (FEM)

912‧‧‧SOC912‧‧‧SOC

916‧‧‧功率放大器模組(PA)916‧‧‧Power Amplifier Module (PA)

918‧‧‧雙工器918‧‧‧Duplexer

920‧‧‧平衡網路920‧‧‧Balanced network

922‧‧‧峰值檢測器922‧‧‧peak detector

924‧‧‧低雜訊放大器模組(LNA)924‧‧‧Low Noise Amplifier Module (LNA)

926‧‧‧處理模組926‧‧‧Processing module

930‧‧‧前端模組(FEM)930‧‧‧ Front End Module (FEM)

932‧‧‧SOC932‧‧‧SOC

936‧‧‧功率放大器模組(PA)936‧‧‧Power Amplifier Module (PA)

938‧‧‧雙工器938‧‧‧Duplexer

940‧‧‧平衡網路940‧‧‧Balanced network

950‧‧‧前端模組(FEM)950‧‧‧ Front End Module (FEM)

952‧‧‧LNA952‧‧‧LNA

954‧‧‧功率放大器模組(PA)954‧‧‧Power Amplifier Module (PA)

956‧‧‧雙工器956‧‧‧Duplexer

958‧‧‧平衡網路958‧‧‧Balanced network

960‧‧‧前端模組(FEM)960‧‧‧ Front End Module (FEM)

962‧‧‧SOC962‧‧‧SOC

970‧‧‧平衡網路970‧‧‧Balanced network

972‧‧‧單端低雜訊放大器模組(LNA)972‧‧‧ Single-Ended Low Noise Amplifier Module (LNA)

974‧‧‧峰值檢測器974‧‧‧peak detector

976‧‧‧處理模組976‧‧‧Processing module

990‧‧‧前端模組(FEM)990‧‧‧ Front End Module (FEM)

992‧‧‧SOC992‧‧‧SOC

994‧‧‧功率放大器模組(PA)994‧‧‧Power Amplifier Module (PA)

996‧‧‧雙工器996‧‧‧Duplexer

998‧‧‧音注(tone injection)模組998‧‧‧ tone injection module

1000‧‧‧平衡網路1000‧‧‧Balanced network

1002‧‧‧峰值檢測器1002‧‧‧peak detector

1004‧‧‧處理模組1004‧‧‧Processing module

1006‧‧‧低雜訊放大器模組(LNA)1006‧‧‧Low Noise Amplifier Module (LNA)

1010‧‧‧前端模組(FEM)1010‧‧‧ Front End Module (FEM)

1012‧‧‧SOC1012‧‧‧SOC

1014‧‧‧功率放大器模組(PA)1014‧‧‧Power Amplifier Module (PA)

1016‧‧‧雙工器1016‧‧‧Duplexer

1018‧‧‧平衡網路1018‧‧‧Balanced network

1020‧‧‧處理模組1020‧‧‧Processing module

1022‧‧‧低雜訊放大器模組(LNA)1022‧‧‧Low Noise Amplifier Module (LNA)

1030‧‧‧平衡網路1030‧‧‧Balanced network

1032‧‧‧阻抗上變頻器1032‧‧‧impedance upconverter

1034‧‧‧基帶阻抗(Zbb)1034‧‧‧baseband impedance (Zbb)

1042、1044‧‧‧阻抗上變頻器1042, 1044‧‧‧ impedance upconverter

1046、1048‧‧‧基帶阻抗(Zbb)1046, 1048‧‧‧baseband impedance (Zbb)

1050‧‧‧負阻抗1050‧‧‧negative impedance

1052‧‧‧抗上變頻器1052‧‧‧Anti-up converter

1060‧‧‧偏振接收器1060‧‧‧Polarization Receiver

1062‧‧‧相位處理模組1062‧‧‧ phase processing module

1064、1066‧‧‧模數轉換器(ADC)1064, 1066‧‧• Analog to Digital Converter (ADC)

1068‧‧‧鎖相環(PLL)1068‧‧‧ phase-locked loop (PLL)

1070‧‧‧峰值檢測器1070‧‧‧peak detector

1072‧‧‧幅度處理模組1072‧‧‧Amplitude Processing Module

1082‧‧‧PLL1082‧‧‧PLL

1086‧‧‧編織連接1086‧‧‧Weaving connection

1100‧‧‧交織連接1100‧‧‧ Interwoven connection

1112‧‧‧MN1112‧‧‧MN

1126、1128‧‧‧互阻放大器(TIA)1126, 1128‧‧‧Transimpedance Amplifier (TIA)

圖1是現有技術無線通信裝置的示意框圖;圖2是根據本發明一個實施例的可攜式計算通信裝置的示意框圖;圖3是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖4是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖5是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖6是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖7是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖8是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖9是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖; 圖10是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖11是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖12是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖13是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖14是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖;圖15是根據本發明一個實施例的SOC的RF-IF接收器部的示意框圖;圖16是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖17是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖18是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖19是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖20是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖21是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖22是根據本發明另一個實施例的SOC的RF-IF接收器部的示意框圖;圖23是根據本發明一個實施例的SOC的發射器部的示意框圖; 圖24是根據本發明一個實施例的SOC的發射器部的示意框圖;圖25是根據本發明一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖26是根據本發明一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖27是根據本發明一個實施例的RF-IF接收器部的頻率響應的示意圖;圖28是根據本發明一個實施例的FTBPF的示意框圖;圖29是根據本發明一個實施例的FTBPF的基帶分量的相位和頻率回應的示意圖;圖30是根據本發明一個實施例的FTBPF的RF分量的相位和頻率回應的示意圖;圖31是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部件的部分的示意框圖;圖32是根據本發明另一個實施例的用於RF-IF接收器部件的時鐘生成器的示意框圖;圖33是根據本發明另一個實施例的RF-IF接收器部件的頻率回應的示意圖;圖34是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的部分的示意框圖;圖35是根據本發明另一個實施例的用於RF-IF接收器部件的時鐘生成器的示意框圖;圖36是根據本發明另一個實施例的RF-IF接收器部件的頻率回應的示意圖;圖37是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖38是根據本發明另一個實施例的用於RF-IF接收器部的時 鐘生成器的示意框圖;圖39是根據本發明另一個實施例的RF-IF接收器部的頻率回應的示意圖;圖40是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖41是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖42是根據本發明另一個實施例的RF-IF接收器部的頻率回應的示意圖;圖43是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的部分的示意框圖;圖44是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖45是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的部分的示意框圖;圖46是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖47是根據本發明一個實施例的複數基帶(BB)濾波器的示意框圖;圖48是根據本發明一個實施例的將複數BB濾波器頻率響應轉換為高Q值RF濾波器頻率回應的示意圖;圖49是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的部分的示意框圖;圖50是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖51是根據本發明另一個實施例的RF-IF接收器部的頻率回應的示意圖;圖52是根據本發明另一個實施例的包含FTBPF(變頻帶通濾 波器)的RF-IF接收器部的部分的示意框圖;圖53是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖54是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖55是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖56是根據本發明一個實施例的負阻的示意框圖;圖57是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖58是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖59是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖60是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器的示意框圖;圖61是根據本發明一個實施例的RF-IF接收器部的第一LO的頻率回應的示意圖;圖62是根據本發明一個實施例的RF-IF接收器部的第二LO的頻率回應的示意圖;圖63是根據本發明另一個實施例的包含FTBPF(變頻帶通濾波器)的RF-IF接收器部的一部分的示意框圖;圖64是根據本發明另一個實施例的包含混頻器的RF-IF接收器部的一部分的示意框圖;圖65是根據本發明另一個實施例的RF-IF接收器部的時鐘生成器的示意框圖;圖66是根據本發明一個實施例的跨阻抗(transimpedance)放大器(TIA)的示意框圖; 圖67是根據本發明一個實施例的包含FTBPF的低雜訊放大器(LNA)的示意框圖;圖68是根據本發明一個實施例的4相FTBPF(變頻帶通濾波器)的示意框圖;圖69是根據本發明一個實施例的4相FTBPF的頻率響應的示意圖;圖70是根據本發明另一個實施例的3相FTBPF(變頻帶通濾波器)的示意框圖;圖71是根據本發明一個實施例的3相FTBPF的時鐘信號的示意圖;圖72是根據本發明一個實施例的3相FTBPF的頻率響應的示意圖;圖73是根據本發明另一個實施例的4相FTBPF的示意框圖;圖74是根據本發明另一個實施例的4相FTBPF的示意框圖;圖75是根據本發明另一個實施例的4相FTBPF的示意框圖;圖76是根據本發明另一個實施例的4相FTBPF的示意框圖;圖77是根據本發明一個實施例的FTBPF的複數基帶阻抗的示意框圖;圖78是根據本發明一個實施例的4相FTBPF的示意框圖;圖79是根據本發明一個實施例的m相FTBPF的示意框圖;圖80是根據本發明一個實施例的m相FTBPF的示意框圖;圖81是根據本發明一個實施例的m相FTBPF的示意框圖;圖82是根據本發明一個實施例的m相FTBPF的示意框圖;圖83是根據本發明一個實施例的m相FTBPF的示意框圖;圖84是根據本發明一個實施例的m相FTBPF的頻率響應的示意圖;圖85是根據本發明一個實施例的m相FTBPF的時鐘生成器的示意框圖; 圖86是根據本發明另一個實施例的m相FTBPF的時鐘生成器的示意框圖;圖87是根據本發明另一個實施例的m相FTBPF的時鐘生成器的示意框圖;圖88是根據本發明一個實施例的3相FTBPF的時鐘生成器的示意框圖;圖89是根據本發明另一個實施例的3相FTBPF的時鐘生成器的示意框圖;圖90是根據本發明一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖91是根據本發明另一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖92是根據本發明另一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖93是根據本發明一個實施例的2G TX模式下前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖94是根據本發明一個實施例的2G TX模式下前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖95是根據本發明一個實施例的小信號平衡網路的示意框圖;圖96是根據本發明一個實施例的大信號平衡網路的示意框圖;圖97是根據本發明另一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖98是根據本發明另一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖;圖99是根據本發明另一個實施例的前端模組(FEM)和SOC中每一個的其中一部分的示意框圖; 圖100是根據本發明另一個實施例的前端模組(FEM)和LNA中每一個的其中一部分的示意框圖;圖101是根據本發明一個實施例的前端模組(FEM)和LNA中每一個的其中一部分的等效電路的示意框圖;圖102是根據本發明另一個實施例的前端模組(FEM)和LNA中每一個的其中一部分的示意框圖;圖103是根據本發明一個實施例的變壓器巴侖(transformer balun)的示意框圖;圖104是根據本發明一個實施例的變壓器巴侖(transformer balun)的實施示意圖;圖105是根據本發明另一個實施例的變壓器巴侖(transformer balun)的實施示意圖;圖106是根據本發明另一個實施例的前端模組(FEM)和LNA中每一個的其中一部分的示意框圖;圖107是根據本發明另一個實施例的前端模組(FEM)和LNA中每一個的其中一部分的示意框圖;圖108是根據本發明一個實施例的阻抗的示意框圖;圖109是根據本發明另一個實施例的阻抗的示意框圖;圖110是根據本發明一個實施例的平衡網路的示意框圖;圖111是根據本發明另一個實施例的平衡網路的示意框圖;圖112是根據本發明一個實施例的負阻抗的示意框圖;圖113是根據本發明一個實施例的偏振接收器的示意框圖;圖114是根據本發明一個實施例的暫存器電路的示意框圖;圖115是根據本發明一個實施例的編織連接(weaved connection)的示意框圖;圖116是根據本發明一個實施例的接收器的示意框圖。1 is a schematic block diagram of a prior art wireless communication device; FIG. 2 is a schematic block diagram of a portable computing communication device in accordance with one embodiment of the present invention; and FIG. 3 is a portable computing communication in accordance with another embodiment of the present invention. 4 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; and FIG. 5 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; 6 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 7 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; A schematic block diagram of a portable computing communication device of another embodiment; FIG. 9 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; 10 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 11 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 13 is a schematic block diagram of a portable computing communication device according to another embodiment of the present invention; FIG. 14 is a block diagram of a portable computing communication device according to another embodiment of the present invention; A schematic block diagram of a portable computing communication device; FIG. 15 is a schematic block diagram of an RF-IF receiver portion of a SOC according to an embodiment of the present invention; and FIG. 16 is an RF-IF receiving of a SOC according to another embodiment of the present invention. FIG. 17 is a schematic block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention; FIG. 18 is an RF-IF receiver section of a SOC according to another embodiment of the present invention. FIG. 19 is a schematic block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention; FIG. 20 is a schematic diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention. Block diagram; Figure 21 is a SOC in accordance with another embodiment of the present invention A schematic block diagram of an RF-IF receiver section; FIG. 22 is a schematic block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention; and FIG. 23 is a transmitter section of a SOC according to an embodiment of the present invention. Schematic block diagram; 24 is a schematic block diagram of a transmitter portion of a SOC according to an embodiment of the present invention; and FIG. 25 is a schematic diagram of a portion of an RF-IF receiver portion including an FTBPF (Frequency Bandpass Filter) according to an embodiment of the present invention. Figure 26 is a schematic block diagram of a clock generator for an RF-IF receiver section in accordance with one embodiment of the present invention; Figure 27 is a frequency response of an RF-IF receiver section in accordance with one embodiment of the present invention. 28 is a schematic block diagram of an FTBPF according to an embodiment of the present invention; FIG. 29 is a schematic diagram of phase and frequency response of a baseband component of an FTBPF according to an embodiment of the present invention; Schematic diagram of the phase and frequency response of the RF component of the FTBPF; FIG. 31 is a schematic block diagram of a portion of an RF-IF receiver component including an FTBPF (Frequency Bandpass Filter) in accordance with another embodiment of the present invention; A schematic block diagram of a clock generator for an RF-IF receiver component in accordance with another embodiment of the present invention; and FIG. 33 is a schematic diagram of frequency response of an RF-IF receiver component in accordance with another embodiment of the present invention; According to this issue A schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF (Frequency Bandpass Filter) of another embodiment; FIG. 35 is a clock generation for an RF-IF receiver component in accordance with another embodiment of the present invention. FIG. 36 is a schematic diagram of frequency response of an RF-IF receiver component in accordance with another embodiment of the present invention; FIG. 37 is a diagram including an FTBPF (Frequency Bandpass Filter) according to another embodiment of the present invention. A schematic block diagram of a portion of an RF-IF receiver portion; FIG. 38 is a timing for an RF-IF receiver portion in accordance with another embodiment of the present invention. A schematic block diagram of a clock generator; FIG. 39 is a schematic diagram of frequency response of an RF-IF receiver section according to another embodiment of the present invention; and FIG. 40 is a diagram showing an FTBPF (frequency band pass filter) according to another embodiment of the present invention. A schematic block diagram of a portion of an RF-IF receiver portion; FIG. 41 is a schematic block diagram of a clock generator for an RF-IF receiver portion in accordance with another embodiment of the present invention; FIG. 42 is another Schematic diagram of the frequency response of the RF-IF receiver section of one embodiment; FIG. 43 is a schematic block diagram of a portion of an RF-IF receiver section including an FTBPF (Frequency Bandpass Filter) in accordance with another embodiment of the present invention; 44 is a schematic block diagram of a clock generator for an RF-IF receiver section according to another embodiment of the present invention; and FIG. 45 is an RF including an FTBPF (Frequency Bandpass Filter) according to another embodiment of the present invention. -a schematic block diagram of a portion of an IF receiver portion; Figure 46 is a schematic block diagram of a clock generator for an RF-IF receiver portion in accordance with another embodiment of the present invention; Figure 47 is a diagram of a clock generator for an RF-IF receiver portion in accordance with one embodiment of the present invention; A schematic block diagram of a complex baseband (BB) filter; Figure 48 is based on this A schematic diagram of converting a complex BB filter frequency response to a high Q RF filter frequency response in accordance with one embodiment of the invention; and FIG. 49 is an RF-IF reception including an FTBPF (Frequency Variable Bandpass Filter) in accordance with another embodiment of the present invention. FIG. 50 is a schematic block diagram of a clock generator for an RF-IF receiver section in accordance with another embodiment of the present invention; FIG. 51 is an RF-in accordance with another embodiment of the present invention. Schematic diagram of the frequency response of the IF receiver section; FIG. 52 is a diagram showing the inclusion of FTBPF (inverter bandpass filter) according to another embodiment of the present invention. A schematic block diagram of a portion of an RF-IF receiver portion of a wave filter; FIG. 53 is a schematic block diagram of a clock generator for an RF-IF receiver portion according to another embodiment of the present invention; A schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF (Frequency Bandpass Filter) of another embodiment of the invention; FIG. 55 is a clock for an RF-IF receiver portion in accordance with another embodiment of the present invention. A schematic block diagram of a generator; FIG. 56 is a schematic block diagram of a negative resistance according to an embodiment of the present invention; and FIG. 57 is an RF-IF receiver including an FTBPF (Frequency Bandpass Filter) according to another embodiment of the present invention. A schematic block diagram of a portion of a portion; FIG. 58 is a schematic block diagram of a clock generator for an RF-IF receiver portion in accordance with another embodiment of the present invention; and FIG. 59 is a diagram showing an FTBPF (including an FTBPF) according to another embodiment of the present invention. A schematic block diagram of a portion of an RF-IF receiver portion of a variable frequency band pass filter; FIG. 60 is a schematic block diagram of a clock generator for an RF-IF receiver portion in accordance with another embodiment of the present invention; Is the frequency response of the first LO of the RF-IF receiver section in accordance with one embodiment of the present invention FIG. 62 is a schematic diagram showing the frequency response of the second LO of the RF-IF receiver section according to an embodiment of the present invention; FIG. 63 is an RF including an FTBPF (Frequency Bandpass Filter) according to another embodiment of the present invention. -a schematic block diagram of a portion of an IF receiver portion; Figure 64 is a schematic block diagram of a portion of an RF-IF receiver portion including a mixer in accordance with another embodiment of the present invention; Figure 65 is another embodiment in accordance with the present invention A schematic block diagram of a clock generator of an RF-IF receiver section of the example; FIG. 66 is a schematic block diagram of a transimpedance amplifier (TIA) in accordance with one embodiment of the present invention; 67 is a schematic block diagram of a low noise amplifier (LNA) including an FTBPF according to an embodiment of the present invention; and FIG. 68 is a schematic block diagram of a 4-phase FTBPF (frequency conversion band pass filter) according to an embodiment of the present invention; Figure 69 is a schematic diagram showing the frequency response of a 4-phase FTBPF according to an embodiment of the present invention; Figure 70 is a schematic block diagram of a 3-phase FTBPF (frequency conversion band pass filter) according to another embodiment of the present invention; A schematic diagram of a clock signal of a 3-phase FTBPF inventing an embodiment; FIG. 72 is a schematic diagram of a frequency response of a 3-phase FTBPF according to an embodiment of the present invention; and FIG. 73 is a schematic block diagram of a 4-phase FTBPF according to another embodiment of the present invention. Figure 74 is a schematic block diagram of a 4-phase FTBPF in accordance with another embodiment of the present invention; Figure 75 is a schematic block diagram of a 4-phase FTBPF in accordance with another embodiment of the present invention; Figure 76 is another embodiment in accordance with the present invention; Schematic block diagram of a 4-phase FTBPF; FIG. 77 is a schematic block diagram of complex baseband impedance of an FTBPF according to an embodiment of the present invention; FIG. 78 is a schematic block diagram of a 4-phase FTBPF according to an embodiment of the present invention; m according to an embodiment of the present invention FIG. 80 is a schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention; FIG. 81 is a schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention; FIG. 82 is a schematic diagram of a m-phase FTBPF according to an embodiment of the present invention; A schematic block diagram of an m-phase FTBPF of an embodiment; FIG. 83 is a schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention; and FIG. 84 is a schematic diagram of a frequency response of an m-phase FTBPF according to an embodiment of the present invention; Is a schematic block diagram of a clock generator of an m-phase FTBPF in accordance with one embodiment of the present invention; 86 is a schematic block diagram of a clock generator of an m-phase FTBPF according to another embodiment of the present invention; FIG. 87 is a schematic block diagram of a clock generator of an m-phase FTBPF according to another embodiment of the present invention; FIG. A schematic block diagram of a clock generator of a 3-phase FTBPF according to an embodiment of the present invention; FIG. 89 is a schematic block diagram of a clock generator of a 3-phase FTBPF according to another embodiment of the present invention; FIG. 90 is an embodiment of the present invention. FIG. 91 is a schematic block diagram of a portion of each of a front end module (FEM) and a SOC according to another embodiment of the present invention; FIG. 92 is a schematic block diagram of a portion of each of a front end module (FEM) and a SOC according to another embodiment of the present invention; FIG. 93 is a front end module (FEM) in a 2G TX mode according to an embodiment of the present invention. And a schematic block diagram of a portion of each of the SOCs; FIG. 94 is a schematic block diagram of a portion of each of the Front End Module (FEM) and the SOC in the 2G TX mode, in accordance with one embodiment of the present invention; Small signal level of one embodiment of the present invention A schematic block diagram of a balanced network; Figure 96 is a schematic block diagram of a large signal balancing network in accordance with one embodiment of the present invention; and Figure 97 is a front end module (FEM) and SOC each in accordance with another embodiment of the present invention. FIG. 98 is a schematic block diagram of a portion of each of a front end module (FEM) and a SOC according to another embodiment of the present invention; FIG. 99 is a front end according to another embodiment of the present invention. a schematic block diagram of a portion of each of the modules (FEM) and the SOC; 100 is a schematic block diagram of a portion of each of a front end module (FEM) and an LNA in accordance with another embodiment of the present invention; FIG. 101 is a front end module (FEM) and an LNA in accordance with one embodiment of the present invention. A schematic block diagram of an equivalent circuit of a portion of FIG. 102 is a schematic block diagram of a portion of each of a front end module (FEM) and an LNA in accordance with another embodiment of the present invention; FIG. 103 is a diagram in accordance with the present invention. A schematic block diagram of a transformer balun of an embodiment; FIG. 104 is a schematic diagram of a transformer balun implementation in accordance with one embodiment of the present invention; and FIG. 105 is a transformer balun in accordance with another embodiment of the present invention. Schematic diagram of implementation of (transformer balun); FIG. 106 is a schematic block diagram of a portion of each of a front end module (FEM) and an LNA according to another embodiment of the present invention; FIG. 107 is a front end according to another embodiment of the present invention. A schematic block diagram of a portion of each of a module (FEM) and an LNA; FIG. 108 is a schematic block diagram of impedance in accordance with one embodiment of the present invention; and FIG. 109 is an impedance in accordance with another embodiment of the present invention. Figure 110 is a schematic block diagram of a balanced network in accordance with one embodiment of the present invention; Figure 111 is a schematic block diagram of a balanced network in accordance with another embodiment of the present invention; Figure 112 is an embodiment in accordance with the present invention FIG. 113 is a schematic block diagram of a polarization receiver according to an embodiment of the present invention; FIG. 114 is a schematic block diagram of a register circuit according to an embodiment of the present invention; FIG. A schematic block diagram of a weaved connection of one embodiment of the present invention; and Figure 116 is a schematic block diagram of a receiver in accordance with one embodiment of the present invention.

圖2是包含片上系統(SOC)12和前端模組(FEM)14的可攜式計 算通信裝置10的實施例的示意框圖,其中SOC 12和FEM 14在單獨的積體電路上實施。可攜式計算通信裝置10可以是任意能由個人攜帶的裝置,至少部分由電池供電,包括無線電收發器(例如射頻和/或毫米波(MMW))並執行一個或多個軟體應用。例如,可攜式計算通信裝置10可以是蜂窩、手提電腦、個人數位助手、視頻遊戲操縱杆、視頻遊戲播放器、個人娛樂單元、臺式電腦等。2 is a portable meter including a system on chip (SOC) 12 and a front end module (FEM) 14. A schematic block diagram of an embodiment of a communication device 10 in which the SOC 12 and the FEM 14 are implemented on separate integrated circuits. The portable computing communication device 10 can be any device that can be carried by an individual, at least partially powered by a battery, including a radio transceiver (eg, radio frequency and/or millimeter wave (MMW)) and executing one or more software applications. For example, portable computing communication device 10 can be a cellular, laptop, personal digital assistant, video game joystick, video game player, personal entertainment unit, desktop computer, and the like.

SOC12包括無表面聲波接收器部18、無表面聲波發射器部20、基帶處理單元22、處理模組24和電源管理單元26。無表面聲波接收器18包括接收器(RX)射頻(RF)-中頻(IF)部28和接收器(RX)IF-基帶(BB)部30。RX RF-IF部28還包括一個或多個變頻帶通濾波器(FTBPF)32。The SOC 12 includes a surfaceless acoustic wave receiver portion 18, a surfaceless acoustic wave transmitter portion 20, a baseband processing unit 22, a processing module 24, and a power management unit 26. The surface acoustic wave receiver 18 includes a receiver (RX) radio frequency (RF)-intermediate frequency (IF) portion 28 and a receiver (RX) IF-baseband (BB) portion 30. The RX RF-IF section 28 also includes one or more variable frequency bandpass filters (FTBPF) 32.

處理模組24和基帶處理單元22可以是單個處理設備、分開的處理設備或多個處理設備。該處理設備可以是微處理器、微控制器、數位信號處理器、微電腦、中央處理器單元、現場可編程閘陣列、可編程邏輯設備、狀態機、邏輯電路、類比電路、數位電路和/或任意根據電路的硬代碼和/或操作指令來處理信號(類比和/或數位)的設備。處理模組24和/或基帶處理單元22可以具有相關的記憶體和/或記憶體元件,上述記憶體和/或記憶體元件可以是單個記憶體設備、多個記憶體設備和/或處理模組24的嵌入式電路。該記憶體設備可以是唯讀記憶體、隨機存取記憶體、易失性記憶體、非易失性記憶體、靜態記憶體、動態記憶體、快閃記憶體、高速緩衝記憶體和/或存儲數位資訊的任意設備。注意若處理模組24和/或基帶處理單元22包括多個處瘙設備,這些處理設備可以集中排布(例如,通過有線和/或無線匯流排部直接連接在一起)或分散排布(例如,通過經局域網和/或廣域網的間接連接進行雲計算)。還要注意,當處理模組24和/或基帶處理單元22通過狀態機、類比電路、數位電路和/或邏輯電路執行它的一個或多個功能時,存儲相應操作指令的記憶體和/或記憶體元件可以嵌入或外接於包 含該狀態機、類比電路、數位電路和/或邏輯電路的電路中。還應注意,記憶體元件存儲、且處理模組24和/或基帶處理單元22執行與至少一幅附圖中所示的至少一些步驟和/或功能相關的硬代碼和/或操作指令。Processing module 24 and baseband processing unit 22 may be a single processing device, a separate processing device, or multiple processing devices. The processing device can be a microprocessor, a microcontroller, a digital signal processor, a microcomputer, a central processing unit, a field programmable gate array, a programmable logic device, a state machine, a logic circuit, an analog circuit, a digital circuit, and/or A device that processes signals (analog and/or digits) arbitrarily according to hard code and/or operational instructions of the circuit. The processing module 24 and/or the baseband processing unit 22 may have associated memory and/or memory elements, which may be a single memory device, multiple memory devices, and/or processing modules. Group 24 embedded circuit. The memory device can be a read only memory, a random access memory, a volatile memory, a nonvolatile memory, a static memory, a dynamic memory, a flash memory, a cache memory, and/or Any device that stores digital information. Note that if the processing module 24 and/or the baseband processing unit 22 includes a plurality of processing devices, the processing devices may be centrally arranged (eg, directly connected by wired and/or wireless busbars) or distributed (eg, , through the indirect connection via LAN and / or WAN for cloud computing). It is also noted that when the processing module 24 and/or the baseband processing unit 22 perform one or more of its functions through a state machine, analog circuit, digital circuit, and/or logic circuit, the memory and/or memory of the corresponding operational command is stored. Memory components can be embedded or externally attached to the package In a circuit containing the state machine, analog circuit, digital circuit, and/or logic circuit. It should also be noted that the memory elements are stored, and the processing module 24 and/or the baseband processing unit 22 perform hard code and/or operational instructions associated with at least some of the steps and/or functions illustrated in at least one of the figures.

前端模組(FEM)14包括多個功率放大器(PA)34-36、多個接收器-發射器(RX-TX)分離模組38-40、多個天線調諧單元(ATU)42-44以及頻帶(FB)切換器46。注意,FEM14可以包括不止兩條路徑Pas 34-36(其中RX-TX分離模組38-40以及ATU 42-44與FB切換器46相連)或可以包括單條路徑。例如FEM14可以包括一條用於2G(第二代)蜂窩服務的路徑、一條用於3G(第三代)蜂窩服務的路徑和第三條用於無線局域網(WLAN)服務的路徑。當然,FEM 14中還存在很多其他示例性路徑組合來支援一個或多個無線通信標準(例如IEEE802.11、藍牙、移動通信全球系統(GSM)、碼分多址(CDMA)、射頻標識(RFID)、增強型分組無線通信業務(EDGE)、通用分組無線業務(GPRS)、WCDMA、高速下行分組接入(HSDPA)、高速上行分組接入(HSUPA)、長期演進(LTE)、WiMAX(微波存取全球互通)和/或其變型)。The front end module (FEM) 14 includes a plurality of power amplifiers (PAs) 34-36, a plurality of receiver-transmitter (RX-TX) split modules 38-40, a plurality of antenna tuning units (ATUs) 42-44, and Band (FB) switch 46. Note that the FEM 14 may include more than two paths Pas 34-36 (where the RX-TX split modules 38-40 and ATU 42-44 are connected to the FB switch 46) or may include a single path. For example, FEM 14 may include one path for 2G (second generation) cellular services, one path for 3G (third generation) cellular services, and a third path for wireless local area network (WLAN) services. Of course, there are many other exemplary path combinations in FEM 14 to support one or more wireless communication standards (eg, IEEE 802.11, Bluetooth, Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Radio Frequency Identification (RFID). ) Enhanced Packet Radio Service (EDGE), General Packet Radio Service (GPRS), WCDMA, High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), WiMAX (Microwave Storage) Take global interoperability) and / or its variants).

在一個工作實例中,處理模組24執行需要無線傳輸資料的可攜式計算裝置的一個或多個功能。此時,處理模組24將出站資料(例如語音、文本、音頻、視頻、圖形等)提供給基帶處理單元或模組22,基帶處理單元或模組22根據一個或多個無線通信標準(例如GSM、CDMA、WCDMA、HSUPA、HSDPA、WiMAX、EDGE、GPRS、IEEE802.11、藍牙、紫蜂、通用移動電信系統(UMTS)、長期演進(LTE)、IEEE802.16、資料優化改進(EV-DO)等)將出站資料轉化為一個或多個出站符號流。這種轉化包括以下至少一項:加擾、刪餘(puncturing)、編碼、交錯、星座映射、調製、擴頻、跳頻、波束成形、空時分組編碼、空頻分組編碼、頻域-時域轉換和/或數位基帶-中頻轉換。注意,基帶處理單元22將出站資料轉換 為單個出站符號流,以實現單輸入單輸出(SISO)通信和/或多輸入單輸出(MISO)通信,並將出站資料轉換為多個出站符號流,以實現單輸入多輸出(SIMO)和多輸入多輸出(MIMO)通信。In one working example, processing module 24 performs one or more functions of a portable computing device that requires wireless transmission of data. At this point, the processing module 24 provides outbound data (eg, voice, text, audio, video, graphics, etc.) to the baseband processing unit or module 22, which is based on one or more wireless communication standards ( For example, GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), IEEE 802.16, Data Optimization Improvement (EV- DO), etc.) Convert outbound data into one or more outbound symbol streams. Such conversion includes at least one of: scrambling, puncturing, coding, interleaving, constellation mapping, modulation, spread spectrum, frequency hopping, beamforming, space time block coding, space frequency block coding, frequency domain-time Domain conversion and/or digital baseband-intermediate frequency conversion. Note that the baseband processing unit 22 converts the outbound data. A single outbound symbol stream for single-input single-output (SISO) communication and/or multi-input single-output (MISO) communication, and converting outbound data into multiple outbound symbol streams for single-input multiple-output ( SIMO) and Multiple Input Multiple Output (MIMO) communication.

基帶處理單元22提供所述一個或多個出站符號流給所述無表面聲波發射器部20,無表面聲波發射器部20將所述出站符號流轉換為一個或多個出站RF信號(例如處於一個或多個頻帶800MHz、1800MHz、1900MHz、2000MHz、2.4GHz、5GHz、60GHz等中的信號)。無表面聲波發射器部20包括至少一個上變頻模組、至少一個變頻帶通濾波器(FTBPF)和輸出模組;它可以配置為直接轉換拓撲(例如基帶或近基帶符號流向RF信號的直接轉換)或為超外差拓撲(super heterodyne topology)(例如將基帶或近基帶符號流轉換為IF信號然後再將IF信號轉換為RF信號)。A baseband processing unit 22 provides the one or more outbound symbol streams to the surface acoustic wave transmitter portion 20, and the surface acoustic wave transmitter portion 20 converts the outbound symbol stream into one or more outbound RF signals (eg, signals in one or more of the bands 800 MHz, 1800 MHz, 1900 MHz, 2000 MHz, 2.4 GHz, 5 GHz, 60 GHz, etc.). The surface acoustic wave transmitter portion 20 includes at least one upconversion module, at least one variable frequency bandpass filter (FTBPF), and an output module; it can be configured to directly convert the topology (eg, direct conversion of baseband or near baseband symbolic flow to RF signals) Or a super heterodyne topology (eg converting a baseband or near baseband signed stream to an IF signal and then converting the IF signal to an RF signal).

對於直接轉換,無表面聲波發射器部20可以具有基於笛卡爾的拓撲、基於偏振的拓撲或基於混合偏振-笛卡爾的拓撲。在基於笛卡爾的拓撲中,無表面聲波發射器部20將所述一個或多個出站符號流的同相和正交分量(例如分別為AI (t)cos(ωBB (t)+ΦI (t))和AQ (t)cos(ωBB (t)+ΦQ (t)))與一個或多個發射端本地振盪(TXLO)的同相和正交分量(例如分別為cos(ωRF (t))和sin(ωRF (t)))混合以產生混合的信號。FTBPF濾波該混合的信號,且輸出模組調節(例如共模濾波和/或微分單端轉換(differential to single-ended))它們以產生一個或多個輸出上變頻信號(例如A(t)cos(ωBB (t)+Φ(t)+ωRF (t)))。功率放大器驅動器(PAD)模組放大出站上變頻信號以產生預先功率放大的(pre-PA)出站RF信號。For direct conversion, the surface acoustic wave transmitter portion 20 can have a Cartesian based topology, a polarization based topology, or a hybrid polarization-Cartesian based topology. In a Cartesian-based topology, the surface acoustic wave transmitter portion 20 will in-phase and quadrature components of the one or more outbound symbol streams (eg, A I (t)cos(ω BB (t) + Φ, respectively) I (t)) and A Q (t) cos(ω BB (t) + Φ Q (t))) are in-phase and quadrature components of one or more transmitter local oscillations (TXLO) (eg, cos, respectively) ω RF (t)) and sin (ω RF (t)) are mixed to produce a mixed signal. The FTBPF filters the mixed signals, and the output modules adjust (eg, common mode filtering and/or differential to single-ended) to generate one or more output upconverted signals (eg, A(t)cos (ω BB (t) + Φ(t) + ω RF (t))). A power amplifier driver (PAD) module amplifies the outbound upconverted signal to produce a pre-power amplified (pre-PA) outbound RF signal.

在基於相位偏振的拓撲中,無表面聲波發射器部20包括用於產生出站符號流的振盪(例如根據相位資訊(+/-△Φ[相移]和/或Φ(t)[相位調製]進行調節的cos(ωRF (t)))的振盪器。得到的調節的振盪(例如cos(ωRF (t)+/-△Φ)或cos(ωRF (t)+Φ(t)))可以進一步由出站符號流的幅度資訊(例如A(t)[幅度調製])來調節,以產生一個或 多個上變頻的信號(例如A(t)cos(ωRF (t)+/-△Φ)或A(t)cos(ωRF (t)+Φ(t)))。FTBPF濾波一個或多個上變頻的信號,且輸出模組調節(condition)(例如共模濾波和/或微分單端轉換)它們。功率放大器驅動器(PAD)模組放大出站上變頻信號以產生預先功率放大的出站RF信號。In a phase polarization based topology, the surfaceless acoustic wave transmitter portion 20 includes oscillations for generating an outbound symbol stream (eg, based on phase information (+/- ΔΦ [phase shift] and/or Φ(t) [phase modulation] The oscillator of the adjusted cos(ω RF (t)). The resulting adjusted oscillation (eg cos(ω RF (t)+/-△Φ) or cos(ω RF (t)+Φ(t) )) can be further adjusted by amplitude information of the outbound symbol stream (eg A(t) [amplitude modulation]) to produce one or more upconverted signals (eg A(t)cos(ω RF (t)+ /-△Φ) or A(t)cos(ω RF (t)+Φ(t)). The FTBPF filters one or more upconverted signals and the output module adjusts (eg common mode filtering and / or differential single-ended conversion) They. The Power Amplifier Driver (PAD) module amplifies the outbound upconverted signal to produce an outbound RF signal that is preamplified by power.

在基於頻率偏振的拓撲中,無表面聲波發射器部20包括用於產生出站符號流的振盪(例如根據頻率資訊(例如+/-△f[頻移]和/或f(t)[頻率調製]進行調節的cos(ωRF (t)))的振盪器。得到的調節的振盪(例如cos(ωRF (t)+/-△f)或cos(ωRF (t)+f(t)))可以進一步由出站符號流的幅度資訊(例如A(t)[幅度調製])來調節,以產生一個或多個上變頻的信號(例如A(t)cos(ωRF (t)+/-△f)或A(t)cos(ωRF (t)+f(t)))。FTBPF濾波一個或多個上變頻的信號,且輸出模組調節(condition)(例如共模濾波和/或微分單端轉換)它們。功率放大器驅動器(PAD)模組放大出站上變頻信號以產生預先功率放大的出站RF信號。In a frequency polarization based topology, the surfaceless acoustic wave transmitter portion 20 includes an oscillation for generating an outbound symbol stream (eg, based on frequency information (eg, +/- Δf [frequency shift] and/or f(t) [frequency Modulation] an oscillator that adjusts the cos(ω RF (t)). The resulting adjusted oscillation (eg cos(ω RF (t)+/-Δf) or cos(ω RF (t)+f(t ))) can be further adjusted by the amplitude information of the outbound symbol stream (eg A(t) [amplitude modulation]) to produce one or more upconverted signals (eg A(t)cos(ω RF (t) +/- Δf) or A(t)cos(ω RF (t) + f(t)). The FTBPF filters one or more upconverted signals and the output module adjusts (eg common mode filtering) And/or differential single-ended conversion) them. A power amplifier driver (PAD) module amplifies the outbound upconverted signal to produce an outbound RF signal that is preamplified by power.

在基於混合偏振-笛卡爾的拓撲中,無表面聲波發射器部20將出站符號流的相位資訊(例如cos(ωBB (t)+/-△Φ)或cos(ωBB (t)+Φ(t)))和幅度資訊(例如A(t))分開。無表面聲波發射器部20將所述一個或多個出站符號流的同相和正交分量(例如分別為cos(ωBB (t)+ΦI (t))和cos(ωBB (t)+ΦQ(t)))與一個或多個發射端本地振盪(TX LO)的同相和正交分量(例如分別為cos(ωRF (t))和sin(ωRF (t)))混合以產生混合的信號。FTBPF濾波該混合的信號,且輸出模組調節(condition)(例如共模濾波和/或微分單端轉換)它們以產生一個或多個出站上變頻信號(例如A(t)cos(ωBB (t)+Φ(t)+ωRF (t)))。功率放大器驅動器(PAD)模組放大標準化的出站上變頻信號並將幅度資訊(例如A(t))注入標準化的出站上變頻信號以產生預先功率放大的(pre-PA)出站RF信號(例如A(t)cos(ωRF (t)+Φ(t)))。無表面聲波發射器部20的其他例子將參考圖23和24進行描述。In a hybrid polarization-Cartesian based topology, the surface acoustic wave transmitter portion 20 will phase information of the outbound symbol stream (eg, cos(ω BB (t) +/- ΔΦ) or cos(ω BB (t)+ Φ(t))) and amplitude information (eg A(t)) are separated. The surface acoustic wave transmitter portion 20 combines the in-phase and quadrature components of the one or more outbound symbol streams (eg, cos(ω BB (t) + Φ I (t)) and cos(ω BB (t), respectively). +ΦQ(t))) mixed with the in-phase and quadrature components of one or more transmitter local oscillations (TX LO) (eg, cos(ω RF (t)) and sin(ω RF (t)), respectively) Produces a mixed signal. The FTBPF filters the mixed signals, and the output modules condition (eg, common mode filtering and/or differential single-ended conversion) to generate one or more outbound upconverted signals (eg, A(t)cos(ω BB) (t) + Φ(t) + ω RF (t))). A power amplifier driver (PAD) module amplifies a standardized outbound upconverted signal and injects amplitude information (eg, A(t)) into a standardized outbound upconverted signal to produce a pre-powered (pre-PA) outbound RF signal. (eg A(t)cos(ω RF (t)+Φ(t))). Other examples of the surfaceless acoustic wave transmitter portion 20 will be described with reference to Figs.

對於超外差拓撲,無表面聲波發射器部20包括基帶(BB)-中頻(IF)部和IF-射頻(RF)部。BB-IF部可以是基於偏振的拓撲、基於笛卡爾的拓撲、基於混合偏振-笛卡爾的拓撲或上變頻出站符號流的混合級。在前三個例子中,BB-IF部生成IF信號(例如A(t)cos(ωIF (t)+Φ(t))),IF-RF部包括混合級、濾波級和功率放大器驅動器(PAD),以產生預先功率放大的出站RF信號。For the super-heterodyne topology, the surface acoustic wave transmitter portion 20 includes a baseband (BB)-intermediate frequency (IF) portion and an IF-radio frequency (RF) portion. The BB-IF portion can be a polarization based topology, a Cartesian based topology, a hybrid polarization-Cartesian based topology or a mixed stage of upconverting outbound symbol streams. In the first three examples, the BB-IF section generates an IF signal (eg, A(t)cos(ω IF (t) + Φ(t))), and the IF-RF section includes a mixing stage, a filter stage, and a power amplifier driver ( PAD) to generate an outbound RF signal that is preamplified by power.

當BB-IF部包括混合級時,IF-RF部可以具有基於偏振的拓撲、基於笛卡爾的拓撲或基於混合偏振-笛卡爾的拓撲。在這種情況下,BB-IF部將出站符號流(例如A(t)cos((ωBB (t)+Φ(t)))轉換為中頻符號流(例如A(t)cos(ωIF (t)+Φ(t)))。IF-RF部將IF符號流轉換為預先功率放大的出站RF信號。When the BB-IF section includes a mixing stage, the IF-RF section may have a polarization based topology, a Cartesian based topology, or a hybrid polarization-Cartesian based topology. In this case, the BB-IF section converts the outbound symbol stream (eg A(t)cos((ω BB (t)+Φ(t)))) into an IF symbol stream (eg A(t)cos( ω IF (t) + Φ(t))) The IF-RF section converts the IF symbol stream into an out-of-power amplified outbound RF signal.

無表面聲波發射器部20向前端模組(FEM)14的功率放大器模組(PA)34-36輸出預先功率放大的出站RF信號。PA 34-36包括於放大的預先功率放大的RF信號串聯和/或並聯連接的一個或多個功率放大器,以產生出站RF信號。注意,PA 34-36的參數(例如增益、線性度、帶寬、效率、雜訊、輸出動態範圍、轉換速率、上升速率、置位元時間、超調量、穩定因數等)可以根據從基帶處理單元22和/或處理模組24接收的控制信號進行調節。例如,由於發射條件改變(例如通道相應改變、TX單元和RX單元間的距離改變、天線屬性改變等),SOC 12的處理源(例如BB處理單元22和/或處理模組24)監視發射條件變化並調節PA 34-36的屬性以優化性能。該確定並不是獨立做出的;例如,可以根據前端模組其他能被調節的參數(例如ATU 42-44、RX-TX分離模組38-40)做出,從而優化RF信號的發射和接收。The surface acoustic wave transmitter unit 20 outputs a pre-power amplified outbound RF signal to the power amplifier modules (PA) 34-36 of the front end module (FEM) 14. The PA 34-36 includes one or more power amplifiers connected in series and/or in parallel to the amplified pre-power amplified RF signals to produce an outbound RF signal. Note that PA 34-36 parameters (such as gain, linearity, bandwidth, efficiency, noise, output dynamic range, slew rate, rate of rise, settling time, overshoot, stability factor, etc.) can be processed from baseband The control signals received by unit 22 and/or processing module 24 are adjusted. For example, the processing source of the SOC 12 (eg, BB processing unit 22 and/or processing module 24) monitors the transmission conditions due to changes in transmission conditions (eg, corresponding channel changes, distance changes between TX units and RX units, antenna property changes, etc.) Change and adjust the properties of PA 34-36 to optimize performance. This determination is not made independently; for example, it can be made based on other parameters of the front-end module that can be adjusted (eg ATU 42-44, RX-TX separation module 38-40) to optimize the transmission and reception of RF signals. .

RX-TX分離模組38-40(可以是雙工器、迴圈器(circulator)或變壓器巴侖或其他利用共用天線提供TX信號和RX信號的分離的裝置)衰減出站RF信號。RX-TX分離模組38-40可以根據從SOC 12的基帶處理單元和/或處理模組24接收的控制信號調節它對出站 RF信號的衰減。例如,當發射功率相對很低時,可以調節RX-TX分離模組38-40減小它對TX信號的衰減。The RX-TX separation module 38-40 (which may be a duplexer, a circulator or a transformer balun or other separate means for providing a TX signal and an RX signal using a shared antenna) attenuates the outbound RF signal. The RX-TX separation module 38-40 can adjust its outbound station based on control signals received from the baseband processing unit and/or processing module 24 of the SOC 12 Attenuation of the RF signal. For example, when the transmit power is relatively low, the RX-TX split module 38-40 can be adjusted to reduce its attenuation of the TX signal.

對天線調諧單元(ATU)42-44進行調諧以提供所期望的與天線16大致匹配的阻抗。調諧後,ATU 42-44將來自RX-TX分離模組38-40的衰減的TX信號提供給天線16以便發射。注意,可以持續或定時調節ATU 42-44以便跟蹤天線16的阻抗變化。例如,基帶處理單元22和/或處理模組24可以檢測天線16的阻抗變化,並根據所檢測到的變化向ATU 42-44提供控制信號,使其相應地改變自己的阻抗。The antenna tuning unit (ATU) 42-44 is tuned to provide the desired impedance that is substantially matched to the antenna 16. After tuning, the ATU 42-44 provides the attenuated TX signal from the RX-TX split module 38-40 to the antenna 16 for transmission. Note that the ATU 42-44 can be adjusted continuously or periodically to track the impedance variation of the antenna 16. For example, baseband processing unit 22 and/or processing module 24 can detect changes in impedance of antenna 16 and provide control signals to ATUs 42-44 based on the detected changes to change their impedance accordingly.

在該實例中,無表面聲波發射器部20具有兩個輸出:一個用於第一頻帶,另一個用於第二頻帶。上述討論關注的是出站資料向單個頻帶(例如850MHz、900MHz等)的出站RF信號的轉換過程。該過程與出站資料向其他頻帶(例如1800MHZ、1900MHz、2100MHz、2.4GHz、5GHz等)的RF信號的轉換相似。注意,使用單個天線16時,無表面聲波發射器20生成其他頻帶內後其他頻帶的出站RF信號。FEM14的頻帶(FB)切換器46將天線16與無表面聲波發射器輸出路徑的合適的輸出連接。FB切換器46從基帶處理單元22和/或處理模組24接收控制資訊,用以選擇路徑來連接天線16。In this example, the surface acoustic wave transmitter portion 20 has two outputs: one for the first frequency band and the other for the second frequency band. The above discussion is concerned with the conversion process of outbound data to outbound RF signals in a single frequency band (eg, 850 MHz, 900 MHz, etc.). This process is similar to the conversion of outbound data to RF signals in other frequency bands (eg, 1800 MHz, 1900 MHz, 2100 MHz, 2.4 GHz, 5 GHz, etc.). Note that when a single antenna 16 is used, the surface acoustic wave transmitter 20 generates outbound RF signals in other frequency bands in the other frequency bands. A band (FB) switch 46 of the FEM 14 connects the antenna 16 to a suitable output of the surfaceless acoustic wave transmitter output path. The FB switch 46 receives control information from the baseband processing unit 22 and/or the processing module 24 for selecting a path to connect to the antenna 16.

天線16還接收一個或多個入站RF信號,並通過頻帶(FB)切換器46將它們提供給ATU 42-44其中之一。ATU 22-24將入站RF信號提供給RX-TX分離模組38-40,RX-TX分離模組38-40將該信號路由給SOC12的接收器(RX)RF-IF部。RX RF-IF部28將入站RF信號(例如A(t)cos(ωRF (t)+Φ(t)))轉換為入站IF信號(例如AI (t)cos(ωIF (t)+ΦI (t))和AQ (t)cos(ωIF (t)+ΦQ (t)))。RX RF-IF部28的各種實施例將在圖15-23或其他附圖中說明。Antenna 16 also receives one or more inbound RF signals and provides them to one of ATUs 42-44 via a frequency band (FB) switch 46. The ATU 22-24 provides the inbound RF signal to the RX-TX split module 38-40, which routes the signal to the receiver (RX) RF-IF portion of the SOC 12. The RX RF-IF section 28 converts the inbound RF signal (eg, A(t)cos(ω RF (t) + Φ(t))) into an inbound IF signal (eg, A I (t)cos(ω IF (t) ) +Φ I (t)) and A Q (t)cos(ω IF (t) + Φ Q (t))). Various embodiments of the RX RF-IF portion 28 will be illustrated in Figures 15-23 or other figures.

RX IF-BB部30將入站IF信號轉換為一個或多個入站符號流(例如A(t)cos(ωBB (t)+Φ(t)))。此時,RX IF-BB部30包括混頻部 和組合&濾波部。混頻部將入站IF信號與第二本地振盪(例如LO2=IF-BB,其中BB的範圍可以是零到幾MHz)混合以產生I和Q混頻信號。組合&濾波部進行組合(例如將混頻信號相加到一起包括和數分量和差分分量),然後將組合的信號濾波以大幅衰減和數分量,並通過基本未衰減的差分分量作為入站符號流。The RX IF-BB section 30 converts the inbound IF signal into one or more inbound symbol streams (e.g., A(t)cos(ω BB (t) + Φ(t))). At this time, the RX IF-BB section 30 includes a mixing section and a combining & filtering section. The mixing section mixes the inbound IF signal with a second local oscillation (e.g., LO2 = IF-BB, where BB can range from zero to a few MHz) to produce I and Q mixing signals. The combining & filtering unit combines (for example, adding a mixing signal together to include a sum component and a differential component), and then filtering the combined signal to a large attenuation and a number component, and using the substantially un-attenuated differential component as an inbound symbol flow.

基帶處理單元22根據一個或多個無線通信標準(例如GSM、CDMA、WCDMA、HSUPA、HSDPA、WiMAX、EDGE、GPRS、IEEE802.11、藍牙、紫蜂、通用移動電信系統(UMTS)、長期演進(LTE)、IEEE802.16、資料優化改進(EV-DO)等)將入站符號流轉換為入站資料(例如語音、文本、音頻、視頻、圖形等)。這種轉化可以包括以下至少一項:數位中頻-基帶轉換、時域-頻域轉換、空-時分組解碼、空-頻分組解碼、解調、擴頻解碼、跳頻解碼、波束成形解碼、星座解映射、解交錯、解碼、解刪餘和/或解擾。注意,處理模組24將單個入站符號流轉換為入站資料,以實現單輸入單輸出(SISO)通信和/或多輸入單輸出(MISO)通信,並將多個入站符號流轉換為入站資料,以實現單輸入多輸出(SIMO)和多輸入多輸出(MIMO)通信。Baseband processing unit 22 is based on one or more wireless communication standards (eg, GSM, CDMA, WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE 802.11, Bluetooth, ZigBee, Universal Mobile Telecommunications System (UMTS), Long Term Evolution ( LTE), IEEE 802.16, Data Optimization Improvement (EV-DO), etc.) convert inbound symbol streams into inbound data (eg, voice, text, audio, video, graphics, etc.). The conversion may include at least one of the following: digital intermediate frequency-baseband conversion, time domain-frequency domain conversion, space-time block decoding, space-frequency packet decoding, demodulation, spread spectrum decoding, frequency hopping decoding, beamforming decoding. , constellation de-mapping, de-interlacing, decoding, de-puncturing, and/or descrambling. Note that processing module 24 converts a single inbound symbol stream into inbound data for single-input single-output (SISO) communication and/or multiple-input single-output (MISO) communication, and converts multiple inbound symbol streams into Inbound data for single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) communications.

電源管理單元26集成於SOC 12中以執行各種功能。這些功能包括監視電源連接和電池充電、在必要時給電池充電、控制給SOC 12的其他元件供電、生成供電電壓、關閉不必要的SOC模組、控制SOC模組的睡眠模式和/或提供即時時鐘。為了給電源供電電壓的生成提供便利,電源管理單元26可以包括一個或多個切換模式供電電源和/或一個或多個線性穩壓器。The power management unit 26 is integrated in the SOC 12 to perform various functions. These functions include monitoring power connections and battery charging, charging the battery when necessary, controlling power to other components of the SOC 12, generating supply voltages, turning off unnecessary SOC modules, controlling the sleep mode of the SOC module, and/or providing an instant clock. . To facilitate the generation of the power supply voltage, the power management unit 26 may include one or more switched mode power supplies and/or one or more linear regulators.

使用這種可攜式計算通信設備10,可以淘汰昂貴且分散的片外元件(例如SAW濾波器、雙工器、電感和/或電容),並可以將它們的功能包含於在單個裸片上實現的前端模組(FEM)14中。另外,無SAW接收器部和無SAW發射器部為淘汰分散的片外元件提供了便利。With such a portable computing communication device 10, expensive and discrete off-chip components (such as SAW filters, duplexers, inductors, and/or capacitors) can be eliminated and their functionality can be implemented on a single die. Front End Module (FEM) 14. In addition, the absence of the SAW receiver section and the SAW-free transmitter section facilitate the elimination of discrete off-chip components.

圖3是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括片上系統(SOC)52和另一實施例的前端模組(FEM)50。SOC 52包括電源管理單元26、無SAW接收器部18、無SAW發射器部20、基帶處理單元22,還可以包括處理模組。FEM 50包括多個功率放大器模組(PA)34-36、多個RX-TX分離模組38-40以及至少一個天線調諧單元(ATU)54。3 is a schematic block diagram of a portable computing communication device 10 that includes a system on a chip (SOC) 52 and a front end module (FEM) 50 of another embodiment, in accordance with another embodiment of the present invention. The SOC 52 includes a power management unit 26, a SAW-free receiver unit 18, a SAW-free transmitter unit 20, and a baseband processing unit 22, and may further include a processing module. The FEM 50 includes a plurality of power amplifier modules (PA) 34-36, a plurality of RX-TX split modules 38-40, and at least one antenna tuning unit (ATU) 54.

在本實施例中,SOC 52用於同時支持至少兩種無線通信(例如蜂窩電話呼叫和WLAN通信和/或藍牙通信)。因此,無SAW發射器20按照參考圖2和/或參考以下一幅或多幅附圖所描述的方式生成兩種(或多種)不同頻帶的出站RF信號。可以將這些不同頻率的出站RF信號中的第一種提供給FEM 50的PAs 34-36其中之一,並將其他的出站RF信號提供給其他PA 34-36。TX-RX分離模組38-40中每一個的功能如同參考圖2所描述的以及將要參考以下附圖中至少一幅進行描述的。根據來自SOC 52的控制信號進行調諧的ATU 54為天線16提供用於發射的兩種出站RF信號。In the present embodiment, SOC 52 is used to simultaneously support at least two types of wireless communication (e.g., cellular telephone calls and WLAN communications and/or Bluetooth communications). Thus, the no-SAW transmitter 20 generates two (or more) different frequency bands of outbound RF signals in the manner described with reference to FIG. 2 and/or with reference to one or more of the following figures. The first of these different frequency outbound RF signals can be provided to one of the PAs 34-36 of the FEM 50 and the other outbound RF signals to the other PA 34-36. The function of each of the TX-RX separation modules 38-40 is as described with reference to Figure 2 and will be described with reference to at least one of the following figures. The ATU 54 tuned according to the control signal from the SOC 52 provides the antenna 16 with two outbound RF signals for transmission.

天線16還接收兩種或多種不同頻帶的入站RF信號,並將它們提供給ATU54。ATU 54可以包括用於分離這兩種入站RF信號並分離每種分離信號的阻抗匹配電路(例如一個或多個LC電路)的分流器(splitter);用於分離信號並分離阻抗匹配電路的巴倫變壓器;或這兩種信號的阻抗匹配電路,其中這兩種信號提供給RX-TX分離模組38-40。Antenna 16 also receives inbound RF signals of two or more different frequency bands and provides them to ATU 54. The ATU 54 may include a splitter for separating the two inbound RF signals and separating the impedance matching circuits (eg, one or more LC circuits) of each of the separated signals; for separating the signals and separating the impedance matching circuits A balun transformer; or an impedance matching circuit for both signals, wherein the two signals are provided to the RX-TX separation module 38-40.

RX-TX分離模組38-40分別依賴於各自的頻帶,它們僅僅通過各自頻帶(例如850-900MHz和1800-1900MHz)內的入站和出站RF信號。因此,第一TX-RX分離模組38-40提供第一頻帶入站RF信號給無SAW RX部18的第一輸入端,第二TX-RX分離模組38-40提供第二頻帶入站RF信號給無SAWRX部18的第二輸入端。無SAW RX部18按照已參考圖2描述的和/或將要參考以下至少一幅附圖進行描述的方法處理入站RF信號以產生第一入站 資料和第二入站資料。The RX-TX split modules 38-40 rely on respective frequency bands, respectively, which only pass inbound and outbound RF signals within respective frequency bands (e.g., 850-900 MHz and 1800-1900 MHz). Therefore, the first TX-RX separation module 38-40 provides a first band inbound RF signal to the first input of the no SAW RX portion 18, and the second TX-RX separation module 38-40 provides a second band inbound. The RF signal is applied to the second input of the no SAWRX section 18. The no-SAW RX section 18 processes the inbound RF signal to produce a first inbound in accordance with a method that has been described with reference to FIG. 2 and/or which will be described with reference to at least one of the following figures. Information and second inbound information.

圖4是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接70與前端模組(FEM)網路60相連的片上系統(SOC)12或52。SOC 12或52包括電源管理單元26、無SAW接收器部18、無SAW發射器部20、基帶處理單元22,還可以包括處理模組。RF連接70可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。FEM網路60包括多個FEM 62-68(例如兩個或多個),其中FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。4 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 12 or 52 coupled to a front end module (FEM) network 60 via an RF connection 70, in accordance with another embodiment of the present invention. The SOC 12 or 52 includes a power management unit 26, a SAW-free receiver unit 18, a SAW-free transmitter unit 20, and a baseband processing unit 22, and may further include a processing module. The RF connection 70 can be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable. The FEM network 60 includes a plurality of FEMs 62-68 (eg, two or more), wherein each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX separation modules, and at least An antenna tuning unit (ATU) and a band switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

FEM 62-68中的每一個可以分別支持相同的頻帶、不同的頻帶或其組合。例如,兩個FEM可以支援相同的頻帶(例如850-900MHz和1800-1900MHz),而另外兩個可以支援不同的頻帶(例如2.4GHz、5GHz、60GHz等)。在此例中,SOC 12或52可以根據多個RF通信參數(例如發射功率電平、接收信號強度、帶外阻滯、信噪比、信擾比、工作頻率、與其他無線通信的干擾等)中至少一個來選擇具有相同頻帶的FEM 62-68中的一個。例如,SOC 12或52選擇能夠提供目前最佳性能水準的蜂窩通信的FEM以及能夠提供目前最佳性能水準的WLAN、個人區域網路或其他無線網路通信的另一FEM。Each of the FEMs 62-68 may support the same frequency band, different frequency bands, or a combination thereof, respectively. For example, two FEMs can support the same frequency band (eg, 850-900 MHz and 1800-1900 MHz), while the other two can support different frequency bands (eg, 2.4 GHz, 5 GHz, 60 GHz, etc.). In this example, the SOC 12 or 52 may be based on multiple RF communication parameters (eg, transmit power level, received signal strength, out-of-band block, signal to noise ratio, signal to interference ratio, operating frequency, interference with other wireless communications, etc.) At least one of the selections of one of the FEMs 62-68 having the same frequency band. For example, SOC 12 or 52 selects a FEM that is capable of providing cellular communication at the current best performance level and another FEM capable of providing the current best performance level of WLAN, personal area network or other wireless network communication.

由於FEM 62-68中的每一個都是可編程的,SOC 12或52可以為所選擇的模組編程以減少相互間的干擾。例如,可以將支援蜂窩通信的FEM調諧為在無線區域網路通信頻帶(例如2.4GHz、5GHz、60GHz等)內具有額外衰減。另外,隨著條件(例如干擾、發射-接收距離、天線參數、環境因數等)的變化,SOC 12或52可以調節所選FEM的參數以基本補償該變化。替代地,SOC 12或52可以選擇另一FEM進行兩種通信中的至少一種。Since each of the FEMs 62-68 is programmable, the SOC 12 or 52 can program the selected modules to reduce mutual interference. For example, FEMs that support cellular communications can be tuned to have additional attenuation within the wireless local area network communication band (eg, 2.4 GHz, 5 GHz, 60 GHz, etc.). Additionally, as conditions (e.g., interference, transmit-receive distance, antenna parameters, environmental factors, etc.) change, the SOC 12 or 52 can adjust the parameters of the selected FEM to substantially compensate for the change. Alternatively, the SOC 12 or 52 may select another FEM to perform at least one of the two communications.

SOC 12或52可以選擇多個FEM 62-68來支援MIMO通信、SIMO通信和/或MISO通信。例如,在2*2MIMO通信中,可以選擇一個FEM進行其中一種TX/RX MIMO通信,選擇另一個FEM進行另一種TX/RX MIMO通信。The SOC 12 or 52 may select multiple FEMs 62-68 to support MIMO communication, SIMO communication, and/or MISO communication. For example, in 2*2 MIMO communication, one FEM can be selected for one of the TX/RX MIMO communications, and the other FEM can be selected for another TX/RX MIMO communication.

SOC 12或52還可以選擇一個FEM來支持一個頻帶內的發射,並選擇另一個FEM來支持同一頻帶內的接收。例如,SOC 12或52可以選擇第一FEM來支援1800MHz蜂窩電話發射和第二FEM來支援1800MHz蜂窩電話接收。又例如,SOC 12或52可以選擇第一FEM來支援1800MHz蜂窩電話發射,第二FEM來支援900MHz蜂窩電話發射,第三FEM來支援1800MHz蜂窩電話接收,以及第四FEM來支援900MHz蜂窩電話接收。再例如,SOC 12或52可以選擇第一FEM來支援1800MHz蜂窩電話發射,第二FEM來支援900MHz蜂窩電話發射,且該第二FEM支援1800MHz蜂窩電話接收,該第一FEM支援900MHz蜂窩電話接收。The SOC 12 or 52 may also select one FEM to support transmissions within one frequency band and another FEM to support reception within the same frequency band. For example, the SOC 12 or 52 may select the first FEM to support the 1800 MHz cellular telephone transmission and the second FEM to support the 1800 MHz cellular telephone reception. For another example, SOC 12 or 52 may select the first FEM to support 1800 MHz cellular telephone transmission, the second FEM to support 900 MHz cellular telephone transmission, the third FEM to support 1800 MHz cellular telephone reception, and the fourth FEM to support 900 MHz cellular telephone reception. As another example, SOC 12 or 52 may select a first FEM to support 1800 MHz cellular telephone transmission, a second FEM to support 900 MHz cellular telephone transmission, and a second FEM to support 1800 MHz cellular telephone reception, the first FEM supporting 900 MHz cellular telephone reception.

FEM網路60可以在單個封裝基板上的單個裸片(die)上實現;在單個基板上的多個裸片上實現(例如每個FEM在一個裸片上);每個FEM作為獨立的積體電路(IC)實現。在後一情形中,FEM 62-68中至少一個可以遠離SOC 12或52。例如,可攜式計算通信裝置可以是支援蜂窩電話通信的無線毫微微蜂窩式基站(femtocell)收發器,其中至少一個FEM在物理上距離SOC 12或52一段距離(例如大於1米)。另外,可以使用其中一個FEM與基站通信,同時可以使用一個或多個其他FEM與其他無線通信裝置(例如蜂窩)通信。FEM network 60 can be implemented on a single die on a single package substrate; on multiple dies on a single substrate (eg, each FEM on one die); each FEM acts as a separate integrated circuit (IC) implementation. In the latter case, at least one of the FEMs 62-68 can be remote from the SOC 12 or 52. For example, the portable computing communication device can be a wireless femtocell transceiver supporting cellular telephone communication, wherein at least one FEM is physically at a distance (eg, greater than 1 meter) from the SOC 12 or 52. In addition, one of the FEMs can be used to communicate with the base station while one or more other FEMs can be used to communicate with other wireless communication devices, such as cellular.

例如,裝置10利用傳統蜂窩服務與基站(BS)通信,同時該裝置與其他無線通信裝置之間的鏈路使用另一頻帶。SOC處理模組協調其他設備的網際網路和/或蜂窩接入以及各種鏈路的信號轉換。For example, device 10 communicates with a base station (BS) using conventional cellular services while the link between the device and other wireless communication devices uses another frequency band. The SOC processing module coordinates the internet and/or cellular access of other devices and the signal conversion of various links.

又例如,裝置10作為1-4個蜂窩或其他手持裝置的無線毫微 微蜂窩式基站使用。裝置間的無線局域鏈路可以遵從一種或多種協議。一種協定遵從傳統蜂窩標準(例如無線毫微微蜂窩式基站像BS一樣分配局域無線鏈路)。另一種協議使無線毫微微蜂窩式基站裝置作為網際網路協定(IP)通道上的用戶介面擴展使用。手機(handset)的一條鏈路連接至接入點(AP),或該手機鏈結至其他裝置形成網格,從而通過其他方式邏輯地連接到AP。As another example, device 10 acts as a wireless nanometer of 1-4 cells or other handheld devices Microcell base station use. The wireless local area link between devices can comply with one or more protocols. One protocol complies with traditional cellular standards (eg, a wireless femtocell base station distributes a local area wireless link like a BS). Another protocol enables wireless femtocell base station devices to be extended as user interfaces over Internet Protocol (IP) channels. A link to the handset is connected to the access point (AP), or the handset is linked to other devices to form a grid, thereby being logically connected to the AP by other means.

再例如,裝置10作為無線毫微微蜂窩式基站(例如AP)使用,它使用對呼叫系統的資料呼叫無線接入,從而向AP提供IP通道,該IP通道在邏輯上將AP連接到網際網路上任意位置的應用伺服器。例如,載波不必為語音呼叫提供電話系統介面。IP通道穿過AP以便將例如域內的網際網路電話用戶端與網際網路電話網絡連接。來自AP的載波的資料通道的負載和容量決定了一個AP所支持的有效手機的數量。As another example, device 10 is used as a wireless femtocell (e.g., an AP) that uses a data call to the calling system to wirelessly provide an IP channel to the AP that logically connects the AP to the Internet. Application server anywhere. For example, the carrier does not have to provide a telephone system interface for voice calls. The IP channel traverses the AP to connect, for example, an Internet telephony client within the domain to the Internet telephony network. The load and capacity of the data channel from the carrier of the AP determines the number of active handsets supported by an AP.

在此例中,從AP到所支援的無線裝置的鏈路不在蜂窩帶內,而是使用傳統蜂窩標準(即AP類似BS,且當手機用戶端在被支援的無線裝置上運行時該AP執行轉換器功能)。替代地,裝置10與被支援的無線裝置之間的鏈路使用不屬於蜂窩標準的專有的一系列呼叫步驟。此時,該AP運行裝置用戶端且該裝置僅僅是IP通道上的遠程UI擴展。In this example, the link from the AP to the supported wireless device is not within the cellular band, but instead uses the traditional cellular standard (ie, the AP is similar to the BS, and the AP performs when the mobile client is running on the supported wireless device) Converter function). Alternatively, the link between device 10 and the supported wireless device uses a proprietary series of calling steps that are not part of the cellular standard. At this point, the AP runs the device client and the device is only a remote UI extension on the IP channel.

再例如,裝置10確定自己是否應該成為其他無線裝置的毫微微蜂窩式基站。此時,裝置10確定自己是否滿足品質閾值(例如,能夠給載波好且持續的信號、具有較佳電池壽命、不用於移動呼叫等)。若是,那麼它將用載波註冊為給定地理位置中的毫微微蜂窩式基站。一旦註冊,它將通過點對點無線方式(60GHz、TVWS、2.4GHz等)搜索附近的無線裝置(例如蜂窩)。對於它識別到的裝置,裝置10確定每個無線裝置的載波(例如它們傳遞資訊)的信號強度。對於每個載波(例如載波的BS)信號強度較弱或沒有的無線裝置,裝置10主動成為無線裝置的毫微微蜂窩式基站主機。若無 線裝置希望裝置10成為自己的毫微微蜂窩式基站,該裝置10利用載波註冊自己作為無線裝置的毫微微蜂窩式基站使用。注意,這可以是幾個裝置之間的動態過程,其中一個裝置可以作為其他裝置的毫微微蜂窩式基站AP。若條件改變,上述其他裝置中的一個可以成為這些裝置的毫微微蜂窩式基站AP,且作為毫微微蜂窩式基站AP的裝置成為新的毫微微蜂窩式基站AP的用戶端。再例如,多個裝置可以配合在一起形成毫微微網路(femto-network)。此時,一個裝置作為一個或多個其他裝置的中繼站,用於接入作為無線毫微微蜂窩式基站AP的裝置。替代地,配合可以包括將多個無線毫微微蜂窩式基站裝置作為本地裝置的主機,且它們鏈結至其他AP以提供連接。這種共用可以是其中一個無線毫微微蜂窩式基站裝置提供蜂窩語音連接,另一個提供蜂窩資料連接,且第三個提供WLAN連接。As another example, device 10 determines if it should be a femtocell base station for other wireless devices. At this point, device 10 determines whether it meets a quality threshold (eg, can give a good and sustained signal to the carrier, has better battery life, is not used for mobile calls, etc.). If so, it will register with the carrier as a femtocell in a given geographic location. Once registered, it will search for nearby wireless devices (eg, cellular) in a point-to-point wireless manner (60 GHz, TVWS, 2.4 GHz, etc.). For the devices it identifies, device 10 determines the signal strength of the carrier of each wireless device (e.g., they pass information). For a wireless device with weak or no signal strength per carrier (e.g., BS of a carrier), device 10 actively becomes the femtocell base station of the wireless device. If not The line device expects the device 10 to be its own femtocell base station, which uses the carrier to register itself as a femtocell base station for the wireless device. Note that this can be a dynamic process between several devices, one of which can act as a femtocell base station AP for other devices. If the condition changes, one of the other devices described above can become the femtocell base station AP of these devices, and the device as the femtocell base station AP becomes the UE of the new femtocell base station AP. As another example, multiple devices can be combined to form a femto-network. At this time, one device serves as a relay station of one or more other devices for accessing a device as a wireless femtocell base station AP. Alternatively, the cooperation may include having multiple wireless femtocell base station devices as hosts for the local devices, and they are linked to other APs to provide connectivity. This sharing may be one of the wireless femtocell base station devices providing a cellular voice connection, the other providing a cellular data connection, and the third providing a WLAN connection.

再例如,多個裝置在密閉的地理區域中(例如在轎車中、房間中等),並利用協定確定哪個裝置將作為其他裝置的無線毫微微蜂窩式基站AP以及提供哪些服務。例如,裝置組(其中至少一個能夠作為毫微微蜂窩式基站AP)在相互間建立點對點鏈路(60GHz、TVWS、2.4GHz等),然後通過比較它們以組群跨越時間的移動站點上的節點來確定這些鏈路是否能夠隨著時間的推移而持續,以及它們是否基本上一起移動(例如在同一轎車或火車等中)。若它們確定自己在同一移動機動車中,那麼它們將相互報告自己的特定平均載波品質量值。根據這些量值,它們可以確定哪個手機具有針對載波的最佳整體信號。每個裝置可以在不同載體上,或它們可以全部在同一載體上。每種方式中,一個裝置和另一個裝置的信號差別很大,這種差別可以是很多變數(例如機動車中的位置和距離車體的遠近等)的函數。若最佳信號明顯優於給定裝置能夠通過其直接載波鏈路實現的,它將請求由具有最佳信號的裝置作為主機。一旦完成了註冊,呼叫將被通過AP主機傳遞給其他裝置。As another example, multiple devices are in a confined geographic area (eg, in a car, in a room, etc.) and use agreements to determine which device will act as a wireless femtocell base station AP for other devices and which services are provided. For example, a group of devices (at least one of which can act as a femtocell base station AP) establish a point-to-point link (60 GHz, TVWS, 2.4 GHz, etc.) with each other, and then compare the nodes on the mobile site that span the time in groups. To determine if these links can continue over time and whether they move substantially together (eg in the same car or train, etc.). If they determine that they are in the same mobile vehicle, they will report each other's specific average carrier quality values. Based on these magnitudes, they can determine which handset has the best overall signal for the carrier. Each device can be on a different carrier, or they can all be on the same carrier. In each mode, the signals of one device and the other are very different, and this difference can be a function of many variables, such as the position in the motor vehicle and the distance from the body. If the best signal is significantly better than a given device can be implemented over its direct carrier link, it will request that the device with the best signal be the host. Once registration is complete, the call will be delivered to the other device via the AP host.

若載波信號低於閾值,該過程重複,且可以推選另一裝置作為新的主機。在這種特殊情況下,所有裝置知曉哪些其他裝置進行測試,至少直到它們相互脫離範圍。再例如,對於參與網路會議的裝置,每個裝置一次向一個人(即裝置用戶)提供用戶介面。因此,每個裝置實質上支援相同的利用載波的一對一無線連接。為了減少冗餘流量和降低增加網路容量造成的成本,網路會議的第一裝置主動成為同一地理區域內其他裝置的無線毫微微蜂窩式基站AP。若被接受,該第一裝置用載波註冊,然後作為網路會議的其他裝置的無線毫微微蜂窩式基站AP。這一方案的擴展可以應用於任意類型的音頻和/或視頻會議中,無論給定地理區域內的多個用戶是否將通過可攜式計算通信裝置參與該會議。另一擴展可以包括與其他裝置共用基於伺服器的應用(例如一個裝置是接入網際網路託管的應用(例如資料庫、視頻遊戲等)的無線毫微微蜂窩式基站AP,且其他裝置通過該無線毫微微蜂窩式基站AP接入網際網路託管的應用)。If the carrier signal is below the threshold, the process repeats and another device can be selected as the new host. In this particular case, all devices know which other devices are being tested, at least until they are out of range. As another example, for devices participating in a web conference, each device provides a user interface to one person (ie, a device user) at a time. Thus, each device essentially supports the same one-to-one wireless connection using the carrier. In order to reduce redundant traffic and reduce the cost of increasing network capacity, the first device of the network conference actively becomes a wireless femtocell base station AP of other devices in the same geographical area. If accepted, the first device registers with the carrier and then acts as a wireless femtocell base station AP for other devices of the network conference. An extension of this scheme can be applied to any type of audio and/or video conference, whether or not multiple users within a given geographic area will participate in the conference through the portable computing communication device. Another extension may include sharing a server-based application with other devices (eg, one device is a wireless femtocell base station AP that accesses an Internet-hosted application (eg, a database, video game, etc.), and other devices pass the Wireless femtocell base station AP accesses Internet-hosted applications).

再例如,用作無線毫微微蜂窩式基站AP的裝置根據其環境(例如用於辦公室中、家中、轎車中、公共場所、私人場所、公共用途、私人用途等)進行配置。該配置選項包括頻率使用模式、發射功率、用於支援的單元的數量、集中的毫微微蜂窩式基站控制、分散式毫微微蜂窩式基站控制、分配的容量、編碼水準、符號和/或通道接入。例如,若在公共場所,該裝置將用作公共無線毫微微蜂窩式基站或私人無線毫微微蜂窩式基站。當該裝置用作私人毫微微蜂窩式基站時,它選擇能夠確保它所支持的通信的隱私的配置。As another example, a device used as a wireless femtocell base station AP is configured according to its environment (eg, for use in an office, at home, in a car, in a public place, in a private place, in a public use, in a private use, etc.). The configuration options include frequency usage mode, transmit power, number of units for support, centralized femtocell control, decentralized femtocell control, allocated capacity, coding level, symbol and/or channel connection In. For example, if in a public place, the device will be used as a public wireless femtocell or private wireless femtocell. When the device is used as a private femtocell base station, it selects a configuration that ensures the privacy of the communications it supports.

圖5是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接90與前端模組(FEM)網路80相連的片上系統(SOC)12或52。SOC 12或52包括電源管理單元26、無SAW接收器部18、無SAW發射器部20、基帶處理單元22, 還可以包括處理模組。RF連接90可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。FEM網路80包括多個FEM 62-68(例如兩個或多種)和變頻模組82。該變頻模組82包括一個或多個旁路RF-RF變換模組。FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。5 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 12 or 52 coupled to a front end module (FEM) network 80 via an RF connection 90, in accordance with another embodiment of the present invention. The SOC 12 or 52 includes a power management unit 26, a SAW-free receiver unit 18, a SAW-free transmitter unit 20, and a baseband processing unit 22, A processing module can also be included. The RF connection 90 can be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable. The FEM network 80 includes a plurality of FEMs 62-68 (e.g., two or more) and a frequency conversion module 82. The frequency conversion module 82 includes one or more bypass RF-RF conversion modules. Each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, at least one antenna tuning unit (ATU), and a band switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

SOC 12或52和FEM 62-68的功能與圖4中的SOC 12或52和FEM 62-68相似。在本實施例中,在SOC 12或52和相應的FEM之間進行路由前,可以將來自FEM的入站RF信號和/或來自SOC 12或52的出站RF信號進行變頻。例如,SOC 12或52可以形成用於處理載波頻率為2.4GHz的輸入和出站RF信號,但是具有根據多個標準化無線協定和/或專有協定產生符號流的基帶功能。此時,SOC 12或52根據給定無線協定生成出站符號流,並將符號流上變頻為具有2.4GHz載波頻率的RF信號。The functions of SOC 12 or 52 and FEM 62-68 are similar to SOC 12 or 52 and FEM 62-68 in FIG. In this embodiment, the inbound RF signal from the FEM and/or the outbound RF signal from the SOC 12 or 52 may be frequency converted prior to routing between the SOC 12 or 52 and the corresponding FEM. For example, SOC 12 or 52 may form an input and outbound RF signal for processing a carrier frequency of 2.4 GHz, but with baseband functionality to generate a symbol stream in accordance with a plurality of standardized wireless protocols and/or proprietary protocols. At this point, SOC 12 or 52 generates an outbound symbol stream according to a given radio protocol and upconverts the symbol stream to an RF signal having a 2.4 GHz carrier frequency.

包含本地振盪器、混頻模組和濾波的RF-RF變頻模組86將出站RF信號與本地振盪混合以產生混頻的信號。濾波部濾波混頻的信號以產生所期望載波頻率(例如900MHz、1800MHz、1900MHz、5GHz、60GHz等)的出站RF信號。注意,變頻模組82可以包括多個RF-RF變換模組(一個或多個用於提高載波頻率和/或一個或多個用於降低載波頻率)。就此而言,通用SOC 12或52的實施可以與FEM網路80的各種實施(例如FEM模組62-68的數量、RF-RF變換模組的數量等)耦合,以形成各種可攜式計算通信裝置。An RF-RF frequency conversion module 86 including a local oscillator, mixing module, and filtering mixes the outbound RF signal with local oscillations to produce a mixed signal. The filter section filters the mixed signal to produce an outbound RF signal of a desired carrier frequency (eg, 900 MHz, 1800 MHz, 1900 MHz, 5 GHz, 60 GHz, etc.). Note that the frequency conversion module 82 can include multiple RF-RF conversion modules (one or more for increasing the carrier frequency and/or one or more for reducing the carrier frequency). In this regard, the implementation of the general purpose SOC 12 or 52 can be coupled with various implementations of the FEM network 80 (eg, the number of FEM modules 62-68, the number of RF-RF conversion modules, etc.) to form various portable calculations. Communication device.

圖6是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接78與前端模組(FEM)網路60相連的多個片上系統(SOC)12或52。每個SOC 12或52分別包括電源管理單元26、無SAW接收器部18、無SAW發射器部20、基帶處理單元22,還可以包括處理模組。RF連接78可以是同軸電纜、 彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。FEM網路60包括多個FEM 62-68(例如兩個或多種),其中FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。6 is a schematic block diagram of a portable computing communication device 10 including a plurality of system-on-a-chip (SOC) 12 connected to a front end module (FEM) network 60 via an RF connection 78 or in accordance with another embodiment of the present invention. 52. Each SOC 12 or 52 includes a power management unit 26, a no-SAW receiver unit 18, a no-SAW transmitter unit 20, a baseband processing unit 22, and a processing module. The RF connection 78 can be a coaxial cable, At least one of an elastic fiber optic cable, an elastic waveguide, and/or other high frequency cable. The FEM network 60 includes a plurality of FEMs 62-68 (eg, two or more), wherein each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX separation modules, and at least one Antenna Tuning Unit (ATU) and Band Switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,一個SOC 12或52使用FEM 62-68中至少一個來支持一種或多種無線通信(例如蜂窩、WLAN、WPAN等),另一個SOC 12-52使用一個或多個其他FEM62-68來支持一種或多種其他無線通信。為了減少無線通信之間的干擾和/或為了優化每個無線通信,至少一個SOC 12或52向FEM 62-68提供控制信號以調節其性能。除了每個SOC 12或52使用不同FEM 62-68這一例子,在另一個例子中,兩個或多種SOC 12或52可以按照時分方式通過切換模組(未示出)共用FEM 62-68。在又一個例子中,一個SOC 12或52可以使用FEM 62-68的一條路徑,另一個SOC 12或52可以使用FEM 62-68的其他路徑中至少一條。In this embodiment, one SOC 12 or 52 uses at least one of the FEMs 62-68 to support one or more wireless communications (eg, cellular, WLAN, WPAN, etc.) and the other SOC 12-52 uses one or more other FEMs 62- 68 to support one or more other wireless communications. In order to reduce interference between wireless communications and/or to optimize each wireless communication, at least one SOC 12 or 52 provides control signals to FEMs 62-68 to adjust its performance. In addition to the use of different FEMs 62-68 for each SOC 12 or 52, in another example, two or more SOCs 12 or 52 may share FEM 62-68 by a switching module (not shown) in a time division manner. . In yet another example, one SOC 12 or 52 may use one path of the FEM 62-68, and the other SOC 12 or 52 may use at least one of the other paths of the FEM 62-68.

圖7是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接90與前端模組(FEM)網路80相連的多個片上系統(SOC)12或52。SOC 12或52包括電源管理單元26、無SAW接收器部18、無SAW發射器部20、基帶處理單元22,還可以包括處理模組。RF連接90可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。FEM網路80包括多個FEM 62-68(例如兩個或多種)和變頻模組82。該變頻模組82包括一個或多個旁路RF-RF變換模組。FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。7 is a schematic block diagram of a portable computing communication device 10 including a plurality of system-on-a-chip (SOC) 12 connected to a front end module (FEM) network 80 via an RF connection 90, or in accordance with another embodiment of the present invention. 52. The SOC 12 or 52 includes a power management unit 26, a SAW-free receiver unit 18, a SAW-free transmitter unit 20, and a baseband processing unit 22, and may further include a processing module. The RF connection 90 can be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable. The FEM network 80 includes a plurality of FEMs 62-68 (e.g., two or more) and a frequency conversion module 82. The frequency conversion module 82 includes one or more bypass RF-RF conversion modules. Each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, at least one antenna tuning unit (ATU), and a band switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,一個SOC 12或52使用FEM 62-68中至少一個來支持一種或多種無線通信(例如蜂窩、WLAN、WPAN等),另 一個SOC 12-52使用一個或多個其他FEM62-68來支持一種或多種其他無線通信。為了減少無線通信之間的干擾和/或為了優化每個無線通信,至少一個SOC 12或52向FEM 62-68提供控制信號以調節其性能。此外,可以使至少一個無線通信通過變頻模組82,以便提高或降低該無線通信的載波頻率。In this embodiment, one SOC 12 or 52 uses at least one of the FEMs 62-68 to support one or more wireless communications (eg, cellular, WLAN, WPAN, etc.), One SOC 12-52 uses one or more other FEMs 62-68 to support one or more other wireless communications. In order to reduce interference between wireless communications and/or to optimize each wireless communication, at least one SOC 12 or 52 provides control signals to FEMs 62-68 to adjust its performance. Additionally, at least one wireless communication can be passed through the frequency conversion module 82 to increase or decrease the carrier frequency of the wireless communication.

圖8是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接70與前端模組(FEM)網路60相連的片上系統(SOC)100。SOC 100包括電源管理單元26、多個無SAW接收器部18-1-18-2、多個無SAW發射器部20-1-20-2、一個或多個基帶處理單元22,還可以包括處理模組。RF連接70可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。FEM網路60包括多個FEM 62-68(例如兩個或多種),其中FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。FIG. 8 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 100 coupled to a front end module (FEM) network 60 via an RF connection 70, in accordance with another embodiment of the present invention. The SOC 100 includes a power management unit 26, a plurality of SAWless receiver sections 18-1-18-2, a plurality of SAWless transmitter sections 20-1-20-2, one or more baseband processing units 22, and may also include Processing module. The RF connection 70 can be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable. The FEM network 60 includes a plurality of FEMs 62-68 (eg, two or more), wherein each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX separation modules, and at least one Antenna Tuning Unit (ATU) and Band Switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,SOC 100能夠利用FEM 62-68中至少一個來進行多個併發的無線通信。例如,可以將一對無SAW發射器&接收器用於WLAN通信,將另一對無SAW發射器&接收器用於850或900MHz蜂窩電話通信。又例如,可以將一對無SAW發射器&接收器用於蜂窩語音通信,將另一對無SAW發射器&接收器用於蜂窩資料通信。注意,這些併發的無線通信可以在具有不同載波頻率的同一頻帶中和/或在不同頻帶中。In the present embodiment, SOC 100 is capable of utilizing at least one of FEMs 62-68 for multiple concurrent wireless communications. For example, a pair of SAW-free transmitters & receivers can be used for WLAN communications and another pair of SAW-free transmitters & receivers can be used for 850 or 900 MHz cellular telephone communications. As another example, a pair of SAW-free transmitters & receivers can be used for cellular voice communications, and another pair of SAW-free transmitters & receivers can be used for cellular data communications. Note that these concurrent wireless communications may be in the same frequency band with different carrier frequencies and/or in different frequency bands.

圖9是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接70與前端模組(FEM)網路80相連的片上系統(SOC)100。SOC 100包括電源管理單元26、多個無SAW接收器部18-1-18-2、多個無SAW發射器部20-1-20-2、一個或多個基帶處理單元22,還可以包括處理模組。RF連接70可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。 FEM網路80包括多個FEM 62-68(例如兩個或多個)和變頻模組。該變頻模組82包括一個或多個旁路RF-RF變換模組。FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。9 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 100 coupled to a front end module (FEM) network 80 via an RF connection 70, in accordance with another embodiment of the present invention. The SOC 100 includes a power management unit 26, a plurality of SAWless receiver sections 18-1-18-2, a plurality of SAWless transmitter sections 20-1-20-2, one or more baseband processing units 22, and may also include Processing module. The RF connection 70 can be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable. The FEM network 80 includes a plurality of FEMs 62-68 (e.g., two or more) and a frequency conversion module. The frequency conversion module 82 includes one or more bypass RF-RF conversion modules. Each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, at least one antenna tuning unit (ATU), and a band switcher (SW). Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,SOC 100能夠利用FEM 62-68中至少一個來進行多個併發的無線通信,且至少一個無線通信的載波頻率可以由變頻模組82進行轉換。例如,可以將一對無SAW發射器&接收器用於WLAN通信,將另一對無SAW發射器&接收器用於850或900MHz蜂窩電話通信。又例如,可以將一對無SAW發射器&接收器用於蜂窩語音通信,將另一對無SAW發射器&接收器用於蜂窩資料通信。在上述任意一個例子中,至少一個無線通信的載波頻率可以由變頻模組82提高或降低。In the present embodiment, the SOC 100 can utilize at least one of the FEMs 62-68 for multiple concurrent wireless communications, and the carrier frequency of at least one of the wireless communications can be converted by the frequency conversion module 82. For example, a pair of SAW-free transmitters & receivers can be used for WLAN communications and another pair of SAW-free transmitters & receivers can be used for 850 or 900 MHz cellular telephone communications. As another example, a pair of SAW-free transmitters & receivers can be used for cellular voice communications, and another pair of SAW-free transmitters & receivers can be used for cellular data communications. In any of the above examples, the carrier frequency of at least one of the wireless communications can be increased or decreased by the frequency conversion module 82.

圖10是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接122與前端模組(FEM)網路120相連的片上系統(SOC)110。SOC 110包括電源管理單元26、中頻(IF)-基帶(BB)接收器部112、BB-IF發射器部114、基帶處理單元22,還可以包括處理模組。RF連接122可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。10 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 110 coupled to a front end module (FEM) network 120 via an RF connection 122, in accordance with another embodiment of the present invention. The SOC 110 includes a power management unit 26, an intermediate frequency (IF)-baseband (BB) receiver unit 112, a BB-IF transmitter unit 114, and a baseband processing unit 22, and may further include a processing module. The RF connection 122 can be at least one of a coaxial cable, an elastic fiber optic cable, an elastic waveguide, and/or other high frequency cable.

FEM網路120包括多個FEM 62-68(例如兩個或多個)和多個RF-TF TX與RX部對124-138。FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。TX IF-RF部132-138中每一個分別包括基於偏振的拓撲、基於笛卡爾的拓撲、基於混合偏振-笛卡爾的拓撲或混頻、濾波&混合模組。RX RF-IF部124-130中每一個分別包括低雜訊放大器部和下變頻部。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。FEM network 120 includes a plurality of FEMs 62-68 (e.g., two or more) and a plurality of RF-TF TX and RX pair 124-138. Each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, at least one antenna tuning unit (ATU), and a band switcher (SW). Each of the TX IF-RF sections 132-138 includes a polarization based topology, a Cartesian based topology, a hybrid polarization-Cartesian based topology or a mixing, filtering & mixing module, respectively. Each of the RX RF-IF sections 124-130 includes a low noise amplifier section and a downconversion section, respectively. Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,基帶處理模組22根據一種或多種無線通信協 定將出站資料轉換為一個或多個出站符號流。TX BB-IF部114包括混頻模組,混頻模組將該出站符號流與發射IF本地振盪(例如頻率為幾十MHz到幾十GHz的振盪)混頻以產生一個或多個出站IF信號。In this embodiment, the baseband processing module 22 is based on one or more wireless communication protocols. Convert outbound data to one or more outbound symbol streams. The TX BB-IF unit 114 includes a mixing module that mixes the outbound symbol stream with a transmit IF local oscillation (eg, an oscillation having a frequency of several tens of MHz to several tens of GHz) to generate one or more outputs. Station IF signal.

SOC 110通過RF連接122向FEM網路120提供出站IF信號。另外,SOC 110提供用於表示RX-TX部對124-130中哪一對以及相應的FEM 62-68將支援無線通信的選擇信號。所選的TX IF-RF部132-138將IF信號與第二本地振盪(例如頻率為RF-IF的振盪)混頻以產生一個或多個混頻的信號。組合&濾波部將一個或多個混頻的信號組合,並對它們進行濾波以產生預PA的出站RF信號,預PA的出站RF信號將被提供給相應的FEM 62-68。The SOC 110 provides an outbound IF signal to the FEM network 120 over the RF connection 122. In addition, SOC 110 provides a selection signal indicating which of the pair of RX-TX sections 124-130 and the corresponding FEM 62-68 will support wireless communication. The selected TX IF-RF sections 132-138 mix the IF signal with a second local oscillation (e.g., an RF-IF frequency oscillation) to produce one or more mixed signals. The combining & filtering unit combines the one or more mixed signals and filters them to produce an outbound RF signal for the pre-PA, which will be provided to the corresponding FEM 62-68.

對於入站RF信號,與FEM 62-68相關的天線接收信號並將其提供給頻帶切換器(SW)(若包含)或提供給ATU(若不包含切換器)。FEM 62-68按照上述方式處理入站RF信號並將經處理的入站RF信號提供給相應的RX RF-IF部124-130。RX RF-IF部124-130將入站RF信號與第二RX本地振盪(例如頻率為RF-IF的振盪)混頻以產生一個或多個入站IF混頻信號(例如I和Q混頻信號分量或位於IF的偏振格式信號(例如A(t)cos(ωIF (t)+Φ(t))。For inbound RF signals, the antenna associated with FEM 62-68 receives the signal and provides it to a Band Switcher (SW) (if included) or to the ATU (if no switch is included). The FEM 62-68 processes the inbound RF signals in the manner described above and provides the processed inbound RF signals to the respective RX RF-IF portions 124-130. The RX RF-IF section 124-130 mixes the inbound RF signal with a second RX local oscillation (eg, RF-IF frequency oscillation) to produce one or more inbound IF mixing signals (eg, I and Q mixing) The signal component or a polarization format signal at IF (eg A(t)cos(ω IF (t) + Φ(t)).

SOC 110的RX IF-BB部112接收一個或多個入站IF混頻信號並將它們轉換為一個或多個入站符號流。基帶處理模組22將一個或多個入站符號流轉換為入站資料。注意,SOC 110可以包括多個RX IF-BB和TX BB-IF部來支援多個併發的無線通信。The RX IF-BB portion 112 of the SOC 110 receives one or more inbound IF mixing signals and converts them into one or more inbound symbol streams. The baseband processing module 22 converts one or more inbound symbol streams into inbound data. Note that SOC 110 may include multiple RX IF-BB and TX BB-IF sections to support multiple concurrent wireless communications.

圖11是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接152-154與前端模組(FEM)網路142相連的片上系統(SOC)140。SOC 140包括電源管理單元26、中頻(IF)-基帶(BB)接收器部144、BB-IF發射器部146、基帶處理單元22,還可以包括處理模組。RF連接152-154可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。11 is a schematic block diagram of a portable computing communication device 10 including a system on chip (SOC) 140 coupled to a front end module (FEM) network 142 via RF connections 152-154, in accordance with another embodiment of the present invention. The SOC 140 includes a power management unit 26, an intermediate frequency (IF)-baseband (BB) receiver unit 144, a BB-IF transmitter unit 146, and a baseband processing unit 22, and may further include a processing module. The RF connections 152-154 may be at least one of a coaxial cable, an elastic fiber cable, an elastic waveguide, and/or other high frequency cable.

FEM網路142包括多個FEM 62-68(例如兩個或多個)和一對RF-IF TX與RX部148-150。FEM 62-68中每一個分別包括多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。TX IF-RF部150包括基於偏振的拓撲、基於笛卡爾的拓撲、基於混合偏振-笛卡爾的拓撲或混頻、濾波&混合模組。RX RF-IF部148包括低雜訊放大器部和下變頻部。注意,FEM 62-68中至少一個的結構如同參考圖3所描述的。FEM network 142 includes a plurality of FEMs 62-68 (e.g., two or more) and a pair of RF-IF TX and RX sections 148-150. Each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, at least one antenna tuning unit (ATU), and a band switcher (SW). The TX IF-RF section 150 includes a polarization based topology, a Cartesian based topology, a hybrid polarization-Cartesian based topology or a mixing, filtering & mixing module. The RX RF-IF section 148 includes a low noise amplifier section and a downconversion section. Note that the structure of at least one of the FEMs 62-68 is as described with reference to FIG.

在本實施例中,基帶處理模組22根據一種或多種無線通信協定將出站資料轉換為一個或多個出站符號流。TX BB-IF部146包括混頻模組,混頻模組將該出站符號流與發射IF本地振盪(例如頻率為幾十MHz到幾十GHz的振盪)混頻以產生一個或多個出站IF信號。In the present embodiment, baseband processing module 22 converts outbound data into one or more outbound symbol streams in accordance with one or more wireless communication protocols. The TX BB-IF unit 146 includes a mixing module that mixes the outbound symbol stream with a transmitted IF local oscillation (eg, an oscillation having a frequency of several tens of MHz to several tens of GHz) to generate one or more outputs. Station IF signal.

SOC 140通過RF連接152-154向FEM網路142提供出站IF信號。TX IF-RF部150將IF信號與第二本地振盪(例如頻率為RF-IF的振盪)混頻以產生一個或多個混頻的信號。組合&濾波部將一個或多個混頻的信號組合,並對它們進行濾波以產生預PA的出站RF信號,預PA的出站RF信號將被提供給相應的FEM 62-68。The SOC 140 provides an outbound IF signal to the FEM network 142 over the RF connections 152-154. The TX IF-RF section 150 mixes the IF signal with a second local oscillation (e.g., an RF-IF frequency oscillation) to produce one or more mixed signals. The combining & filtering unit combines the one or more mixed signals and filters them to produce an outbound RF signal for the pre-PA, which will be provided to the corresponding FEM 62-68.

對於入站RF信號,與FEM 62-68相關的天線接收信號並將其提供給頻帶切換器(SW)(若包含)或提供給ATU(若不包含切換器)。FEM 62-68按照上述方式處理入站RF信號並將經處理的入站RF信號提供給RX RF-IF部148。RX RF-IF部148將入站RF信號與第二RX本地振盪(例如頻率為RF-IF的振盪)混頻以產生一個或多個入站IF混頻信號(例如I和Q混頻信號分量或位於IF的偏振格式信號(例如A(t)cos(ωIF (t)+Φ(t))。For inbound RF signals, the antenna associated with FEM 62-68 receives the signal and provides it to a Band Switcher (SW) (if included) or to the ATU (if no switch is included). The FEM 62-68 processes the inbound RF signal and provides the processed inbound RF signal to the RX RF-IF portion 148 in the manner described above. The RX RF-IF section 148 mixes the inbound RF signal with a second RX local oscillation (e.g., RF-IF frequency oscillation) to produce one or more inbound IF mixing signals (e.g., I and Q mixing signal components). Or a polarization format signal at IF (eg A(t)cos(ω IF (t) + Φ(t)).

SOC 140的RX IF-BB部144接收一個或多個入站IF混頻信號並將它們轉換為一個或多個入站符號流。基帶處理模組22將一個或多個入站符號流轉換為入站資料。注意,SOC 140可以包括多個RX IF-BB144和TX BB-IF部146來支援多個併發的無線通 信。The RX IF-BB portion 144 of the SOC 140 receives one or more inbound IF mixing signals and converts them into one or more inbound symbol streams. The baseband processing module 22 converts one or more inbound symbol streams into inbound data. Note that the SOC 140 may include a plurality of RX IF-BB 144 and TX BB-IF sections 146 to support multiple concurrent wireless communications. letter.

圖12是根據本發明另一個實施例的可攜式計算通信裝置10的示意框圖,它包括通過RF連接176與前端模組(FEM)網路162相連的片上系統(SOC)160。SOC 160包括電源管理單元26、無SAW接收器(RX)下變頻部164、無SAW發射器(TX)上變頻部166、基帶處理單元22,還可以包括處理模組。RF連接176可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高頻電纜中至少一種。12 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (SOC) 160 coupled to a front end module (FEM) network 162 via an RF connection 176, in accordance with another embodiment of the present invention. The SOC 160 includes a power management unit 26, a no-SAW receiver (RX) downconversion unit 164, a SAW-free (TX) upconversion unit 166, and a baseband processing unit 22, and may further include a processing module. The RF connection 176 can be at least one of a coaxial cable, an elastic fiber optic cable, an elastic waveguide, and/or other high frequency cable.

FEM網路162包括多個FEM 168-174(例如兩個或多個)和一對RF-IF TX與RX部。FEM 168-174中每一個分別包括多個功率放大器驅動器(PAD)、多個低雜訊放大器(LNA)、多個功率放大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧單元(ATU)以及頻帶切換器(SW)。注意,FEM 168-174中至少一個的結構如同參考圖3所描述的。FEM network 162 includes a plurality of FEMs 168-174 (e.g., two or more) and a pair of RF-IF TX and RX sections. Each of the FEM 168-174 includes a plurality of power amplifier drivers (PADs), a plurality of low noise amplifiers (LNAs), a plurality of power amplifier modules (PAs), a plurality of RX-TX separation modules, and at least one antenna. Tuning unit (ATU) and band switcher (SW). Note that the structure of at least one of the FEMs 168-174 is as described with reference to FIG.

在本實施例中,基帶處理模組22根據一種或多種無線通信協定將出站資料轉換為一個或多個出站符號流。無SAW TX上變頻部166將出站符號流轉換為一個或多個出站上變頻信號,無SAW TX上變頻部166可以類似於缺少功率放大器驅動器的無SAW TX上變頻部166來實現。In the present embodiment, baseband processing module 22 converts outbound data into one or more outbound symbol streams in accordance with one or more wireless communication protocols. The no-SAW TX upconverter 166 converts the outbound symbol stream into one or more outbound upconverted signals, and the no SAW TX upconverter 166 can be implemented similar to the no SAW TX upconverter 166 lacking the power amplifier driver.

SOC 160通過RF連接176向FEM網路162提供出站上變頻信號。SOC 160還可以向FEM網路162提供FEM選擇信號。所選的FEM模組通過功率放大器驅動器(PAD)接收出站上變頻信號。PAD放大出站上變頻信號以產生預PA的出站RF信號,然後由FEM 168-174按照上述方式和/或將要參考以下至少一幅附圖進行描述的方式對其進行處理。The SOC 160 provides an outbound upconverted signal to the FEM network 162 via the RF connection 176. The SOC 160 may also provide an FEM selection signal to the FEM network 162. The selected FEM module receives the out-of-station upconverted signal through a power amplifier driver (PAD). The PAD amplifies the outbound upconverted signal to produce an outbound RF signal of the pre-PA, which is then processed by the FEM 168-174 in the manner described above and/or as will be described with reference to at least one of the following figures.

對於入站RF信號,與FEM 168-174相關的天線接收信號並將其提供給頻帶切換器(SW)(若包含)或提供給ATU(若不包含切換器)。ATU和RX-TX分離模組按照上述方式處理入站RF信號,並將處理後的入站RF信號提供給LNA。LNA放大入站RF信號以 產生放大的入站RF信號。For inbound RF signals, the antenna associated with FEM 168-174 receives the signal and provides it to a Band Switcher (SW) (if included) or to the ATU (if no switch is included). The ATU and RX-TX split modules process the inbound RF signal in the manner described above and provide the processed inbound RF signal to the LNA. The LNA amplifies the inbound RF signal to Generate an amplified inbound RF signal.

無SAW RX部164(類似於缺少LNA的無SAW接收器部實施)接收一個或多個放大的入站IF混頻信號並將它們轉換為一個或多個入站符號流。基帶處理模組22將一個或多個入站符號流轉換為入站資料。注意,基帶處理單元22和/或處理模組可以向每個FEM 168-174的LNA和/或PAD提供控制信號,以調節其性能(例如增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率(slew rate)、上升速率、建立時間、超調量(overshoot)、穩定因數等)。The no SAW RX portion 164 (similar to the SAW receiver portion implementation lacking the LNA) receives one or more amplified inbound IF mixing signals and converts them into one or more inbound symbol streams. The baseband processing module 22 converts one or more inbound symbol streams into inbound data. Note that the baseband processing unit 22 and/or the processing module can provide control signals to the LNAs and/or PADs of each FEM 168-174 to adjust its performance (eg, gain, linearity, bandwidth, efficiency, noise, output dynamics). Range, slew rate, rate of rise, settling time, overshoot, stability factor, etc.).

圖13是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖,它包括與前端模組(FEM)182相連的片上系統(SOC)180。SOC 180包括多個無SAW接收器部(僅僅示出了接收器部的LNA和變頻帶通濾波器(FTBPF))、多個無SAW發射器部(僅僅示出了功率放大器驅動器(PAD))、處理模組、基帶處理模組(未示出或包含在處理模組中)以及電源管理單元(未示出)。13 is a schematic block diagram of a portable computing communication device including a system on a chip (SOC) 180 coupled to a front end module (FEM) 182, in accordance with another embodiment of the present invention. The SOC 180 includes a plurality of SAW-free receiver sections (only the LNA and variable frequency bandpass filters (FTBPF) of the receiver section are shown), and a plurality of SAW-free transmitter sections (only the power amplifier driver (PAD) is shown) , a processing module, a baseband processing module (not shown or included in the processing module), and a power management unit (not shown).

FEM 182包括低頻帶(LB)路徑、高頻帶(HB)路徑以及頻帶切換器(FB SW)。LB路徑包括功率放大器模組(PA)、低帶阻抗級(LB Z)、低帶低通濾波器(LB LPF)、切換器(SW)、發射-接收分離模組(TX-RX ISO)(例如雙工器)、第二切換器(SW)以及天線調諧單元(ATU)。HB路徑包括功率放大器模組(PA)、高帶阻抗級(HBZ)、高帶低通濾波器(HB LPF)、切換器(SW)、發射-接收分離模組(TX-RX ISO)(例如雙工器)、第二切換器(SW)以及天線調諧單元(ATU)。注意,可以利用低帶路徑支援低帶GSM、EDGE和/或WCDMA無線通信,可以利用高帶路徑支援高帶GSM、EDGE和/或WCDMA無線通信。The FEM 182 includes a low band (LB) path, a high band (HB) path, and a band switcher (FB SW). The LB path includes a power amplifier module (PA), a low-band impedance stage (LB Z), a low-band low-pass filter (LB LPF), a switch (SW), and a transmit-receive separation module (TX-RX ISO) ( For example, a duplexer), a second switch (SW), and an antenna tuning unit (ATU). The HB path includes a power amplifier module (PA), a high-band impedance stage (HBZ), a high-band low-pass filter (HB LPF), a switch (SW), and a transmit-receive separation module (TX-RX ISO) (for example) A duplexer), a second switch (SW), and an antenna tuning unit (ATU). Note that low-band paths can be used to support low-band GSM, EDGE, and/or WCDMA wireless communications, and high-band paths can be used to support high-bandwidth GSM, EDGE, and/or WCDMA wireless communications.

如上所述和/或如同將要參考以下至少一幅附圖進行描述的,SOC 180用於輸出預PA的出站RF信號並用於輸入入站RF信號。FEM 182通過LB路徑或HB路徑接收預PA的出站RF信號,並通過相應的PA模組將它們放大。阻抗級(LB Z或HB Z)在PA模 組的輸出上提供期望的負載,並連接到低通濾波器(LB LPF或HB LPF)。LPF濾波出站RF信號,根據切換器(SW)的配置,出站RF信號被提供給TX-RX ISO模組或ATU。若切換器將LPF與TX-RX ISO模組連接,TX-RX模組在將出站RF信號提供給ATU之前先將它們衰減。ATU的功能如上所述和/或將參考以下至少一幅附圖進行描述。As described above and/or as will be described with reference to at least one of the following figures, SOC 180 is used to output an outbound RF signal of a pre-PA and for inputting an inbound RF signal. The FEM 182 receives the outbound RF signals of the pre-PA through the LB path or the HB path and amplifies them through the corresponding PA modules. Impedance level (LB Z or HB Z) in PA mode The desired load is provided on the output of the group and is connected to a low pass filter (LB LPF or HB LPF). The LPF filters the outbound RF signal, and the outbound RF signal is provided to the TX-RX ISO module or ATU according to the configuration of the switch (SW). If the switch connects the LPF to the TX-RX ISO module, the TX-RX module attenuates the outbound RF signals before providing them to the ATU. The functions of the ATU are as described above and/or will be described with reference to at least one of the following figures.

注意,SOC 180和FEM 182之間沒有分立元件。具體地,可攜式計算通信裝置不需要現有蜂窩電話實施例中所必須的分立SAW濾波器。以下至少一項為淘汰SAW濾波器和/或其他傳統外部組件做出了貢獻:無SAW接收器的結構、無SAW發射器的結構和/或FEM 182的各種元件的編程(programmability)。Note that there are no discrete components between SOC 180 and FEM 182. In particular, portable computing communication devices do not require the discrete SAW filters necessary in existing cellular telephone embodiments. At least one of the following contributes to the elimination of SAW filters and/or other conventional external components: the structure without the SAW receiver, the structure without the SAW transmitter, and/or the programmability of the various components of the FEM 182.

圖14是根據本發明另一個實施例的可攜式計算通信裝置的示意框圖,它包括與前端模組(FEM)192相連的片上系統(SOC)190。SOC 190包括多個無SAW接收器部(僅僅示出了接收器部的LNA和變頻帶通濾波器(FTBPF))、多個無SAW發射器部(僅僅示出了功率放大器驅動器(PAD))、處理模組、基帶處理模組(未示出或包含在處理模組中)以及電源管理單元(未示出)。14 is a schematic block diagram of a portable computing communication device including a system on a chip (SOC) 190 coupled to a front end module (FEM) 192, in accordance with another embodiment of the present invention. The SOC 190 includes a plurality of SAW-free receiver sections (only the LNA and variable frequency bandpass filters (FTBPF) of the receiver section are shown), and a plurality of SAW-free transmitter sections (only the power amplifier driver (PAD) is shown) , a processing module, a baseband processing module (not shown or included in the processing module), and a power management unit (not shown).

FEM 192包括低頻帶(LB)路徑、高頻帶(HB)路徑以及頻帶切換器(FB SW)。LB路徑包括功率放大器模組(PA)、低帶阻抗級(LB Z)、切換器(SW)、低帶低通濾波器(LB LPF)、發射-接收分離模組(TX-RX ISO)(例如雙工器)、第二切換器(SW)以及天線調諧單元(ATU)。HB路徑包括功率放大器模組(PA)、高帶阻抗級(HBZ)、切換器(SW)、高帶低通濾波器(HB LPF)、發射-接收分離模組(TX-RX ISO)(例如雙工器)、第二切換器(SW)以及天線調諧單元(ATU)。注意,可以利用低帶路徑支援低帶GSM、EDGE和/或WCDMA無線通信,可以利用高帶路徑支援高帶GSM、EDGE和/或WCDMA無線通信。The FEM 192 includes a low band (LB) path, a high band (HB) path, and a band switcher (FB SW). The LB path includes a power amplifier module (PA), a low-band impedance stage (LB Z), a switch (SW), a low-band low-pass filter (LB LPF), and a transmit-receive separation module (TX-RX ISO) ( For example, a duplexer), a second switch (SW), and an antenna tuning unit (ATU). The HB path includes a power amplifier module (PA), a high-band impedance stage (HBZ), a switch (SW), a high-band low-pass filter (HB LPF), and a transmit-receive separation module (TX-RX ISO) (for example) A duplexer), a second switch (SW), and an antenna tuning unit (ATU). Note that low-band paths can be used to support low-band GSM, EDGE, and/or WCDMA wireless communications, and high-band paths can be used to support high-bandwidth GSM, EDGE, and/or WCDMA wireless communications.

在SOC 190的各種實施例中,SOC 190的接收器部中的變頻 帶通濾波器提供充分地濾波帶外阻滯(far-out blocker)及濾波對期望信號產生不可忽略影響的鏡像信號。這將減小接收器部(基帶處理模組的輸出端或RX BB-IF部的輸入)的模數轉換器(ADC)的動態範圍需求。相比於可比擬直接轉換(comparable direction conversion)接收器部,接收器部的超外差結構有利於減少功耗和死區。In various embodiments of SOC 190, frequency conversion in the receiver portion of SOC 190 The bandpass filter provides an image signal that adequately filters out-out blockers and filters that have a non-negligible effect on the desired signal. This will reduce the dynamic range requirement of the analog-to-digital converter (ADC) of the receiver section (the input of the baseband processing module or the input of the RX BB-IF section). The superheterodyne structure of the receiver section facilitates reduction of power consumption and deadband compared to a comparable direction conversion receiver section.

圖15是根據本發明一個實施例的SOC 200的RF-IF接收器部204的示意框圖,它包括FEM模組(包括變壓器T1、可調電容網路C1和/或低雜訊放大器模組(LNA)206)、混頻模組208、混頻暫存器210-212、變頻帶通濾波器(FTBPF)電路模組(包括FTBPF 222和/或其他暫存器214-220)以及接收器IF-BB部224。SOC 200還包括無SAW發射器部202,並還可以包括基帶處理單元、處理模組和電源管理單元。15 is a schematic block diagram of an RF-IF receiver portion 204 of a SOC 200 including a FEM module (including a transformer T1, a tunable capacitor network C1, and/or a low noise amplifier module, in accordance with an embodiment of the present invention). (LNA) 206), mixing module 208, mixing register 210-212, variable frequency bandpass filter (FTBPF) circuit module (including FTBPF 222 and/or other registers 214-220), and receiver IF-BB section 224. The SOC 200 also includes a SAW-free transmitter portion 202 and may also include a baseband processing unit, a processing module, and a power management unit.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括RF的期望信號分量和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部204的本地振盪(例如fLO ),若信號在rRF -2fIF ,會出現鏡像信號。注意,這裏及全文所使用的RF包括高達3GHz的無線電頻帶內的頻率以及3GHz-300GHz毫米波(或微波)頻帶內的頻率。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below the RF (the component above is shown). Regarding the local oscillation of the RF-IF section 204 (e.g., f LO ), if the signal is at r RF -2f IF , an image signal appears. Note that the RF used here and throughout the text includes frequencies in the radio band up to 3 GHz and frequencies in the 3 GHz-300 GHz millimeter wave (or microwave) band.

天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1(例如多個串聯連接的開關和電容,其中所述多個並聯連接)對差分信號進行濾波。可調電容網路C1從基帶處理單元和/或處理模組(例如SOC處理資源)接收控制信號以使能需要的電容。The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound RF signal and converts it into a differential signal, and a tunable capacitor network C1 (eg, a plurality of series connected switches and capacitors, wherein the plurality of parallel connections) filters the differential signal. The tunable capacitor network C1 receives control signals from the baseband processing unit and/or processing module (eg, SOC processing resources) to enable the required capacitance.

包含串聯和/或並聯連接的一個或多個低雜訊放大器的低雜訊放大器模組(LNA)206放大入站RF信號以產生放大的入站RF信 號。LNA 206可以從SOC處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。A low noise amplifier module (LNA) 206 comprising one or more low noise amplifiers connected in series and/or in parallel amplifies the inbound RF signal to produce an amplified inbound RF signal number. The LNA 206 can receive a control signal from the SOC processing resource, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rise rate, settling time, overshoot Quantity and stability factor.

混頻模組208接收放大的入站RF信號並利用轉換模組(例如π/2相移器或其他類型的相位控制電路)將其轉換為同相(I)信號分量和正交(Q)信號分量。混頻模組208的一混頻器將該I信號分量與本地振盪(例如fLO)的I信號分量混頻以產生I混頻的信號,另一混頻器將該Q信號分量與該本地振盪的Q信號分量混頻以產生Q混頻的信號。注意,混頻模組208的混頻器可以分別是平衡混頻器、雙平衡混頻器、無源切換混頻器、吉伯特混頻器(Gilbert cell mixer)或其他類型將兩個正弦信號相乘並產生“頻率和”信號分量及“頻率差”信號分量的電路。還要注意,I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。The mixing module 208 receives the amplified inbound RF signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal using a conversion module (eg, a π/2 phase shifter or other type of phase control circuit). Component. A mixer of the mixing module 208 mixes the I signal component with an I signal component of a local oscillation (eg, fLO) to produce an I-mixed signal, and another mixer combines the Q signal component with the local oscillation. The Q signal components are mixed to produce a Q-mixed signal. Note that the mixer of the mixing module 208 can be a balanced mixer, a double balanced mixer, a passive switching mixer, a Gilbert cell mixer or other types of two sines, respectively. A circuit that multiplies signals and produces "frequency and" signal components and "frequency difference" signal components. Also note that the I and Q mixed signals can be differential or single-ended signals; differential signals are shown.

混頻暫存器210-212濾波和/或緩存I和Q混頻的信號,這些信號隨後將被提供給FTBPF結構(例如暫存器214-220和變頻帶通濾波器(FTBPF)222)。注意,I和Q混頻的信號分別包括IF形式的期望信號分量,且還可以包括IF形式的鏡像信號分量。還要注意,混頻模組208和/或混頻暫存器210-212可以包括濾波以衰減不期望的信號分量,使其對IF信號分量影響很小。The mixing registers 210-212 filter and/or buffer the I and Q mixed signals, which are then provided to the FTBPF structures (e.g., registers 214-220 and variable frequency bandpass filters (FTBPF) 222). Note that the I and Q mixed signals respectively include desired signal components in the form of IF, and may also include image signal components in the form of IF. It is also noted that the mixing module 208 and/or the mixing registers 210-212 may include filtering to attenuate unwanted signal components such that they have little effect on the IF signal components.

FTBPF 222(各種實施例將參考以下幾幅附圖進行描述)通過衰減鏡像IF信號分量並通過基本上未衰減的期望IF信號分量來濾波IF信號。例如,假設FTBPF將窄帶基帶帶通濾波器回應頻率變換為IF(例如RF-LO)濾波器回應。對於這個例子,還假設RF是2GHz,LO2是1900GHz,且RFimage 是1800GHz。根據這些假設,混頻模組208將產生I混頻的信號和Q混頻的信號,所產生的信號是期望信號和鏡像信號的組合。簡化地說,I混頻的信號(例如cos(RF)*cos(LO2))包括期望信號分量的 1/2cos(2000-1900)+1/2cos(2000+1900)和鏡像信號分量的1/2cos(1800-1900)+1/2cos(1800+1900),Q混頻的信號(例如sin(RF)*sin(LO))包括期望信號分量的1/2cos(2000-1900)-1/2cos(2000+1900)和鏡像信號分量的1/2cos(1800-1900)-1/2cos(1800+1900)。注意,2000+1900的頻率分量由混頻器後的暫存器濾波掉。FTBPF 222 (various embodiments will be described with reference to the following figures) filters the IF signal by attenuating the mirrored IF signal component and by substantially unattenuating the desired IF signal component. For example, suppose the FTBPF transforms the narrowband baseband bandpass filter response frequency into an IF (eg, RF-LO) filter response. For this example, it is also assumed that RF is 2 GHz, LO2 is 1900 GHz, and RF image is 1800 GHz. Based on these assumptions, the mixing module 208 will generate an I-mixed signal and a Q-mixed signal, the resulting signal being a combination of the desired signal and the image signal. In a simplified manner, the I-mixed signal (for example, cos(RF)*cos(LO2)) includes 1/2cos(2000-1900)+1/2cos(2000+1900) of the desired signal component and 1/ of the image signal component. 2cos(1800-1900)+1/2cos(1800+1900), Q-mixed signal (eg sin(RF)*sin(LO)) including 1/2cos(2000-1900)-1/2cos of the desired signal component (2000+1900) and 1/2cos(1800-1900)-1/2cos(1800+1900) of the image signal component. Note that the frequency component of 2000+1900 is filtered by the register after the mixer.

FTBPF的窄帶濾波掉(1800-1900)的鏡像頻率和不期望的信號分量,留下期望信號分量的頻率為(2000-1900)的分量。具體地,留下的是I混頻信號的1/2cos(2000-1900)和來自Q混頻信號的1/2cos(2000-1900)。FTBPF 222利用這兩種輸入實現期望信號分量的項的相加(例如1/2cos(2000-1900)+1/2cos(2000-1900)=cos(2000-1900)),並實現鏡像信號分量的項的相加(例如1/2cos(1800-1900)-1/2cos(1800-1900)=0(理想地))。因此,鏡像信號分量衰減,同時期望信號分量基本上未衰減地被通過。The narrow band of the FTBPF filters out the image frequency (1800-1900) and the undesired signal component, leaving the component of the desired signal component at a frequency of (2000-1900). Specifically, 1/2 cos (2000-1900) of the I-mixed signal and 1/2 cos (2000-1900) from the Q-mixed signal are left. The FTBPF 222 uses these two inputs to achieve addition of the terms of the desired signal component (eg, 1/2cos(2000-1900) + 1/2cos(2000-1900)=cos(2000-1900)), and implements the image signal component. Addition of terms (eg 1/2cos(1800-1900)-1/2cos(1800-1900)=0 (ideally)). Therefore, the image signal component is attenuated while the signal component is expected to pass substantially without attenuation.

為了加強FTBPF 222的濾波,它可以從SOC處理資源接收一個或多個控制信號。該控制信號可以使FTBPF 222調節基帶濾波器回應的中心頻率(改變高Q IF濾波器的中心頻率),以改變該濾波器的品質因數,以改變增益,以改變帶寬等。To enhance the filtering of the FTBPF 222, it can receive one or more control signals from the SOC processing resources. The control signal can cause the FTBPF 222 to adjust the center frequency of the baseband filter response (changing the center frequency of the high Q IF filter) to change the quality factor of the filter to change the gain to change the bandwidth and the like.

接收器IF-BB部224包括混頻部和組合&濾波部。混頻部將入站IF信號與第二本地振盪混頻以產生I和Q混頻的信號。組合&濾波部將I和Q混頻的信號組合以產生組合的信號,然後將該混合信號濾波以產生一個或多個入站符號流。The receiver IF-BB section 224 includes a mixing section and a combining & filtering section. The mixing section mixes the inbound IF signal with the second local oscillation to produce a combined I and Q signal. The combining & filtering section combines the I and Q mixed signals to produce a combined signal, which is then filtered to produce one or more inbound symbol streams.

儘管當前示出的RF-IF部204與用於SISO(單輸入單輸出)通信的單個天線連接,但是該方案還可以適用於MISO(多輸入單輸出)通信和MIMO(多輸入多輸出)通信。在這些情況下,多個天線(例如2或多個)與相應數量的FEM(或根據FEM中的接收路徑較少數量的FEM)連接。FEM與多個接收器RF-IF部連接(例如,與天線數量相同),這些接收器RF-IF部又與相應數量的接收器IF-BB部 224連接。基帶處理單元處理上述多個符號流以產生入站資料。Although the currently shown RF-IF section 204 is connected to a single antenna for SISO (Single Input Single Output) communication, the scheme can also be applied to MISO (Multiple Input Single Output) communication and MIMO (Multiple Input Multiple Output) communication. . In these cases, multiple antennas (eg, 2 or more) are connected to a corresponding number of FEMs (or a smaller number of FEMs according to the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (for example, the same number of antennas), and these receiver RF-IF sections are associated with a corresponding number of receivers IF-BB sections. 224 connections. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data.

RX RF-IF部204下列至少一個優點和/或包括下列至少一個特徵:超外差接收器結構在死區和功耗方面優於相應的直接轉換接收器;在FTBPF 222中使用複基帶阻抗實現帶通濾波器中心頻率的頻移,從而使能片上高Q鏡像帶阻濾波器的中心頻率被調諧為期望頻率;且僅需要信號本地振盪器,它可以用於下變頻混頻器和FTBPF 222。The RX RF-IF section 204 has at least one of the following advantages and/or includes at least one of the following features: the superheterodyne receiver structure is superior to the corresponding direct conversion receiver in terms of deadband and power consumption; using complex baseband impedance in the FTBPF 222 Bandpass filter center frequency frequency shift, thereby enabling the center frequency of the on-chip high Q image band rejection filter to be tuned to the desired frequency; and only the signal local oscillator is required, which can be used for downconverting mixers and FTBPF 222 .

圖16是根據本發明另一個實施例的SOC 230的RF-IF接收器部232的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、變頻帶通濾波器(FTBPF)234、低雜訊放大器模組(LNA)206、混頻部(包括混頻模組208和/或混頻暫存器210-212)。SOC 230還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和/或電源管理單元。16 is a schematic block diagram of an RF-IF receiver portion 232 of a SOC 230 including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), a variable frequency bandpass, in accordance with another embodiment of the present invention. Filter (FTBPF) 234, low noise amplifier module (LNA) 206, mixing section (including mixing module 208 and/or mixing buffer 210-212). The SOC 230 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and/or a power management unit.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括RF的期望信號分量和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部232的本地振盪(例如fLO ),若信號在rRF -2fIF ,會出現鏡像信號。天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1根據來自SOC處理資源的控制信號對差分信號進行濾波。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below the RF (the component above is shown). Regarding the local oscillation of the RF-IF section 232 (for example, f LO ), if the signal is at r RF -2f IF , an image signal appears. The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. The transformer T1 receives the FEM-processed inbound RF signal and converts it into a differential signal, and the tunable capacitor network C1 filters the differential signal based on a control signal from the SOC processing resource.

FTBPF 234(各種實施例將參考以下幾幅附圖進行描述)通過衰減鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望RF信號分量來濾波入站RF信號。例如,假設FTBPF將窄帶基帶帶通濾波器回應變頻為RF(例如期望信號分量的載波頻率)以產生高Q RF濾波器響應。窄帶高Q RF濾波器濾波掉鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望信號分量。The FTBPF 234 (various embodiments will be described with reference to the following figures) filters the inbound RF signal by attenuating the image signal component and the undesired signal component and by the substantially un-attenuated desired RF signal component. For example, assume that the FTBPF converts the narrowband baseband bandpass filter response to RF (eg, the carrier frequency of the desired signal component) to produce a high Q RF filter response. The narrowband high Q RF filter filters out the image signal component and the undesired signal component and passes through the substantially un-attenuated desired signal component.

低雜訊放大器模組(LNA)206放大期望的入站RF信號分量以產生放大的期望入站RF信號。LNA 206可以從SOC 230處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。A low noise amplifier module (LNA) 206 amplifies the desired inbound RF signal component to produce an amplified desired inbound RF signal. The LNA 206 can receive a control signal from the SOC 230 processing resource, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rise rate, settling time, super Adjustment and stability factor.

混頻模組208接收放大的入站RF信號並利用π/2相移器或其他類型的相位控制電路將其轉換為同相(I)信號分量和正交(Q)信號分量。混頻模組208的一個混頻器將該I信號分量與本地振盪(例如fLO)的I信號分量混頻以產生I混頻的信號,另一混頻器將該Q信號分量與該本地振盪的Q信號分量混頻以產生Q混頻的信號。注意,I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。Mixing module 208 receives the amplified inbound RF signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal component using a π/2 phase shifter or other type of phase control circuit. A mixer of the mixing module 208 mixes the I signal component with an I signal component of a local oscillation (eg, fLO) to produce an I-mixed signal, and another mixer combines the Q signal component with the local oscillation. The Q signal components are mixed to produce a Q-mixed signal. Note that the I and Q mixed signals can be differential or single-ended signals; differential signals are shown.

混頻暫存器緩存I和Q混頻的信號,這些信號隨後將被提供給濾波器(例如帶通濾波器)。濾波器236和238分別濾波I和Q混頻的信號,這些信號隨後被提供給RX IF-BB部224。The mixing buffer buffers the I and Q mixed signals, which are then provided to a filter (eg, a bandpass filter). Filters 236 and 238 filter the I and Q mixed signals, respectively, which are then provided to RX IF-BB section 224.

接收器IF-BB部224包括混頻部和組合&濾波部。混頻部將入站IF信號與第二本地振盪混頻以產生I和Q混頻的信號。組合&濾波部將I和Q混頻的信號組合以產生組合的信號,然後將該混合信號濾波以產生一個或多個入站符號流。The receiver IF-BB section 224 includes a mixing section and a combining & filtering section. The mixing section mixes the inbound IF signal with the second local oscillation to produce a combined I and Q signal. The combining & filtering section combines the I and Q mixed signals to produce a combined signal, which is then filtered to produce one or more inbound symbol streams.

儘管當前示出的RF-IF部232與用於SISO(單輸入單輸出)通信的單個天線連接,但是該方案還可以適用於MISO(多輸入單輸出)通信和MIMO(多輸入多輸出)通信。在這些情況下,多個天線(例如2或多個)與相應數量的FEM(或根據FEM中的接收路徑較少數量的FEM)連接。FEM與多個接收器RF-IF部連接(例如,與天線數量相同),這些接收器RF-IF部又與相應數量的接收器IF-BB部224連接。基帶處理單元處理上述多個符號流以產生入站資料。Although the currently shown RF-IF section 232 is connected to a single antenna for SISO (Single Input Single Output) communication, the scheme can also be applied to MISO (Multiple Input Single Output) communication and MIMO (Multiple Input Multiple Output) communication. . In these cases, multiple antennas (eg, 2 or more) are connected to a corresponding number of FEMs (or a smaller number of FEMs according to the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (e.g., the same number of antennas), which in turn are coupled to a corresponding number of receiver IF-BB sections 224. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data.

圖17是根據本發明另一個實施例的SOC 240的RF-IF接收器部242的示意框圖,它包括前端模組介面(包括變壓器T1和/或可 調電容網路C1)、一對基於反相器的低雜訊放大器模組(LNA)244-246、混頻模組248以及一對互阻(transimpedance)放大器模組(分別包括互阻放大器(TIA)250-252、阻抗(Z)254-256和/或暫存器258-260)。SOC 240還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和電源管理單元。17 is a schematic block diagram of an RF-IF receiver portion 242 of a SOC 240 including a front end module interface (including a transformer T1 and/or may be included in accordance with another embodiment of the present invention). Capacitor Network C1), a pair of inverter-based low noise amplifier modules (LNA) 244-246, mixing module 248, and a pair of transimpedance amplifier modules (including transimpedance amplifiers, respectively) TIA) 250-252, impedance (Z) 254-256 and/or register 258-260). The SOC 240 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and a power management unit.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括RF的期望信號分量和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部204的本地振盪(例如fLO ),若信號在rRF -2fIF ,會出現鏡像信號。天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1根據來自SOC 240處理資源的控制信號對差分信號進行濾波。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below the RF (the component above is shown). Regarding the local oscillation of the RF-IF section 204 (e.g., f LO ), if the signal is at r RF -2f IF , an image signal appears. The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound RF signal and converts it into a differential signal, and tunable capacitor network C1 filters the differential signal based on control signals from SOC 240 processing resources.

第一LNA 244放大入站RF信號的正項(positive leg)以產生正項電流(positive leg current)RF信號,第二LNA 246放大入站RF信號的負項以產生負項電流RF信號。LNA 244-246分別可以從SOC 240處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。The first LNA 244 amplifies the positive leg of the inbound RF signal to produce a positive leg current RF signal, and the second LNA 246 amplifies the negative term of the inbound RF signal to produce a negative term RF signal. The LNAs 244-246 can receive control signals from the SOC 240 processing resources, respectively, wherein the control signals indicate settings for at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rate of rise, establishment Time, overshoot and stability factor.

混頻模組248接收正項電流RF信號和負項電流RF信號並利用轉π/2相移器或其他類型的相位控制電路將它們轉換為同相(I)電流信號和正交(Q)電流信號。混頻模組248的混頻器將該I電流信號與本地振盪(例如fLO)的I電流信號混頻以產生I混頻的電流信號(例如iBB-1 ),並將該Q電流與該本地振盪的Q電流信號混頻以產生Q混頻的電流信號(例如iBB-Q )。注意,I和Q混頻的電流信號可以是差分信號或單端信號;示出了差分信號。還要注意,I和Q混頻的電流信號分別包括鏡像分量和期望分量。The mixing module 248 receives the positive current RF signal and the negative current RF signal and converts them into an in-phase (I) current signal and a quadrature (Q) current using a π/2 phase shifter or other type of phase control circuit. signal. The mixer of the mixing module 248 mixes the I current signal with a local current (eg, fLO) I current signal to generate an I-mixed current signal (eg, i BB-1 ), and the Q current is The locally oscillating Q current signal is mixed to produce a Q mixed current signal (eg, i BB-Q ). Note that the current signals mixed by I and Q can be differential signals or single-ended signals; differential signals are shown. It is also noted that the current signals of the I and Q mixing include an image component and a desired component, respectively.

TIA 250-252(它的一個或多個實施例將參考以下至少一幅附圖進行描述)接收I和Q混頻的電流信號並通過阻抗(z)將它們轉換為電壓,使得得到的I和Q電壓混頻的信號具有衰減的鏡像分量和基本未衰減的期望分量。TIA 250-252與阻抗(z)相結合的結構,為低於IF的頻率提供了它們的輸入與參考電位(例如Vdd或地)之間的低阻抗路徑,並為高於IF的頻率提供了它們各自的輸入之間的低阻抗路徑。對於接近IF的頻率,TIA 250-252將它們放大並將它們轉換為電壓信號。暫存器向RX IF-BB部224提供I和Q電壓信號分量,後者將它們轉換為入站符號流。TIA 250-252 (one or more of its embodiments will be described with reference to at least one of the following figures) receives I and Q mixed current signals and converts them to voltages by impedance (z) such that the resulting I and The Q voltage mixed signal has an attenuated image component and a substantially un-attenuated desired component. The combination of TIA 250-252 and impedance (z) provides a low impedance path between their input and reference potential (eg, Vdd or ground) for frequencies below IF and provides a higher frequency than IF. A low impedance path between their respective inputs. For frequencies close to IF, TIA 250-252 amplifies them and converts them into voltage signals. The register provides the I and Q voltage signal components to the RX IF-BB section 224, which converts them into an inbound symbol stream.

RX RF-IF部224提供下列至少一個優點和/或包括下列至少一個特徵:超外差接收器結構在死區和功耗方面優於相應的直接轉換接收器;以及基本上消除了超外差接收器存在的偏移和閃變雜訊問題。The RX RF-IF portion 224 provides at least one of the following advantages and/or includes at least one of the following features: a superheterodyne receiver structure that is superior to a corresponding direct conversion receiver in terms of deadband and power consumption; and substantially eliminates superheterodyne The offset and flicker noise problems that exist in the receiver.

圖18是根據本發明另一個實施例的SOC 270的RF-IF接收器部271的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、RF變頻帶通濾波器(FTBPF)272、一對基於反相器的低雜訊放大器模組(LNA)274-276、混頻模組278、一對互阻(transimpedance)放大器模組(分別包括互阻放大器(TIA)280-282、阻抗(Z)284-286和/或暫存器280-286)以及IF FTBPF 288。SOC 270還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和電源管理單元。18 is a schematic block diagram of an RF-IF receiver portion 271 of a SOC 270 including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), an RF frequency conversion band, in accordance with another embodiment of the present invention. Pass filter (FTBPF) 272, a pair of inverter-based low noise amplifier module (LNA) 274-276, mixing module 278, and a pair of transimpedance amplifier modules (including transimpedance amplifiers, respectively) (TIA) 280-282, impedance (Z) 284-286 and/or scratchpad 280-286) and IF FTBPF 288. The SOC 270 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and a power management unit.

在本實施例中,RF FTBPF 272的功能如同參考圖16所描述的,TIA 280-282的功能如同參考圖17所描述的。IF FTBPF 288與RF時鐘同步且其中心頻率在RF。IF FTBPF 288的帶寬使得鏡像信號基本上衰減而期望信號分量基本上未衰減地通過。因此,濾波鏡像信號三次:由RF FTBPF 272、由TIA 280-282以及然後由IF FTBPF 288。In the present embodiment, the function of the RF FTBPF 272 is as described with reference to FIG. 16, and the functions of the TIA 280-282 are as described with reference to FIG. The IF FTBPF 288 is synchronized to the RF clock and its center frequency is RF. The bandwidth of the IF FTBPF 288 is such that the image signal is substantially attenuated and the desired signal component is passed substantially un-attenuated. Therefore, the image signal is filtered three times: by RF FTBPF 272, by TIA 280-282 and then by IF FTBPF 288.

RX RF-IF部271提供下列至少一個優點和/或包括下列至少一 個特徵:使用兩個時鐘(例如RF和LO2);超外差接收器結構在死區和功耗方面優於相應的直接轉換接收器;閃變(flicker)雜訊不重要,因此基帶電路可以是小型的;可以使用無電感LNA 274-276(例如,LNA可以作為反相器實施);沒有DC偏移發生,因此淘汰了占地大的偏移消除電路;接收器結構具有比得上直接轉換接收器的頻率規劃靈活性;包括跨越RX鏈的先進的帶通濾波級;以及可以輕易地集成於SOC 270中。The RX RF-IF section 271 provides at least one of the following advantages and/or includes at least one of the following Features: Two clocks (such as RF and LO2) are used; the superheterodyne receiver structure outperforms the corresponding direct conversion receiver in terms of deadband and power consumption; flicker noise is not important, so the baseband circuit can It is small; non-inductive LNA 274-276 can be used (for example, LNA can be implemented as an inverter); no DC offset occurs, thus eliminating the large offset cancellation circuit; the receiver structure is comparable Conversion receiver frequency planning flexibility; includes advanced bandpass filtering stages across the RX chain; and can be easily integrated into the SOC 270.

圖19是根據本發明另一個實施例的SOC 290的RF-IF接收器部292的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、RF變頻帶通濾波器(FTBPF)272、一對基於反相器的低雜訊放大器模組(LNA)274-276、混頻模組278、一對互阻(transimpedance)放大器模組(分別包括互阻放大器(TIA)280-282、阻抗(Z)284-286和/或暫存器280-286)以及IF FTBPF 294。SOC 290還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和電源管理單元。19 is a schematic block diagram of an RF-IF receiver portion 292 of a SOC 290 including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), an RF variable frequency band, in accordance with another embodiment of the present invention. Pass filter (FTBPF) 272, a pair of inverter-based low noise amplifier module (LNA) 274-276, mixing module 278, and a pair of transimpedance amplifier modules (including transimpedance amplifiers, respectively) (TIA) 280-282, impedance (Z) 284-286 and/or scratchpad 280-286) and IF FTBPF 294. The SOC 290 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and a power management unit.

在本實施例中,IF FTBPF 294的功能如同參考圖15所描述的,TIA的功能如同參考圖17所描述的。RF FTBPF 272與LO時鐘同步且其中心頻率在IF。RF FTBPF 272的帶寬使得鏡像信號基本上衰減而期望信號分量基本上未衰減地通過。因此,濾波鏡像信號三次:由RF FTBPF 272、由TIA 280-282以及然後由IF FTBPF 294。In the present embodiment, the function of the IF FTBPF 294 is as described with reference to FIG. 15, and the function of the TIA is as described with reference to FIG. The RF FTBPF 272 is synchronized to the LO clock and its center frequency is at IF. The bandwidth of the RF FTBPF 272 is such that the image signal is substantially attenuated and the desired signal component is passed substantially un-attenuated. Therefore, the image signal is filtered three times: by RF FTBPF 272, by TIA 280-282 and then by IF FTBPF 294.

RX RF-IF部292提供下列至少一個優點和/或包括下列至少一個特徵:使用一個時鐘(例如LO2);超外差接收器結構在死區和功耗方面優於相應的直接轉換接收器;閃變雜訊不重要,因此基帶電路可以是小型的;可以使用無電感LNA 274-276(例如,LNA可以作為反相器實施);沒有DC偏移發生,因此淘汰了占地大的偏移消除電路;接收器結構具有比得上直接轉換接收器的頻率規劃靈活性;包括跨越RX鏈的先進的帶通濾波級;以及可以輕易地集 成於SOC 290中。The RX RF-IF portion 292 provides at least one of the following advantages and/or includes at least one of the following features: using one clock (e.g., LO2); the superheterodyne receiver structure is superior to the corresponding direct conversion receiver in terms of deadband and power consumption; Flicker noise is not important, so the baseband circuitry can be small; non-inductive LNA 274-276 can be used (for example, LNA can be implemented as an inverter); no DC offset occurs, thus eliminating large footprint offsets Elimination of circuitry; receiver architecture with frequency planning flexibility comparable to direct conversion receivers; includes advanced bandpass filtering stages across RX chains; and can be easily integrated Into SOC 290.

圖20是根據本發明另一個實施例的SOC 300的雙頻帶RF-IF接收器部302的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、變頻帶通濾波器(FTBPF)304、一對低雜訊放大器模組(LNA)306-308以及混頻部(包括一對混頻模組310-312、混頻暫存器314-320和/或濾波器322-328)。SOC 300還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和/或電源管理單元。20 is a schematic block diagram of a dual band RF-IF receiver section 302 of a SOC 300 including a FEM interface module (including transformer T1 and/or tunable capacitor network C1), frequency conversion, in accordance with another embodiment of the present invention. Bandpass filter (FTBPF) 304, a pair of low noise amplifier modules (LNA) 306-308, and a mixing section (including a pair of mixing modules 310-312, mixing registers 314-320, and/or Filters 322-328). The SOC 300 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and/or a power management unit.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括一個或多個期望信號分量(例如一個在fRF1 ,另一個在fRF2 )和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部的本地振盪(一個用於第一期望RF信號,另一個用於第二期望RF信號-fLO1 和fLO2 ),若信號在rRF1 -2fIF1 和/或在rRF2 -2fIF2 ,會出現一個或多個鏡像信號分量。天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1根據來自SOC處理資源的控制信號對差分信號進行濾波。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes one or more desired signal components (eg, one at f RF1 and the other at f RF2 ) and an undesired component at a frequency above or below RF (showing a higher component). Regarding the local oscillation of the RF-IF section (one for the first desired RF signal and the other for the second desired RF signal -f LO1 and f LO2 ), if the signal is at r RF1 -2f IF1 and / or at r RF2 - 2f IF2 , one or more image signal components will appear. The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. The transformer T1 receives the FEM-processed inbound RF signal and converts it into a differential signal, and the tunable capacitor network C1 filters the differential signal based on a control signal from the SOC processing resource.

FTBPF 304(各種實施例將參考以下幾幅附圖進行描述)通過衰減鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望RF信號分量來濾波入站RF信號。例如,假設FTBPF將窄帶基帶帶通濾波器變頻為RF1和RF2(例如期望信號分量的載波頻率)以產生兩個高Q RF濾波器。窄帶高Q RF濾波器分別濾波掉鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望信號分量。FTBPF 304 (various embodiments will be described with reference to the following figures) filters the inbound RF signal by attenuating the image signal component and the undesired signal component and by the substantially un-attenuated desired RF signal component. For example, assume that the FTBPF converts the narrowband baseband bandpass filter to RF1 and RF2 (eg, the carrier frequency of the desired signal component) to produce two high Q RF filters. The narrowband high Q RF filter filters out the image signal component and the undesired signal component, respectively, and passes through the substantially un-attenuated desired signal component.

第一低雜訊放大器模組(LNA)放大期望的入站RF1信號分量(當入站RF信號中包含時)以產生放大的期望入站RF1信號,第二低雜訊放大器模組(LNA)放大期望的入站RF2信號分量(當入站RF 信號中包含時)以產生放大的期望入站RF2信號。每一個LNA分別可以從SOC處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。The first low noise amplifier module (LNA) amplifies the desired inbound RF1 signal component (when included in the inbound RF signal) to produce an amplified desired inbound RF1 signal, the second low noise amplifier module (LNA) Amplify the desired inbound RF2 signal component (when inbound RF The signal is included in the signal to produce an amplified desired inbound RF2 signal. Each LNA can receive a control signal from the SOC processing resource, wherein the control signal indicates setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rising rate, setup time, Overshoot and stability factor.

混頻部的第一混頻模組接收放大的期望入站RF1信號並利用π/2相移器或其他類型的相位控制電路將其轉換為同相(I)信號分量和正交(Q)信號分量。第一混頻模組的混頻器將該I信號分量與本地振盪(例如fLO1 )的I信號分量混頻以產生第一I混頻的信號,並將該Q信號分量與該本地振盪的Q信號分量混頻以產生第一Q混頻的信號。注意,第一I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。The first mixing module of the mixing section receives the amplified desired inbound RF1 signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal using a π/2 phase shifter or other type of phase control circuit. Component. The mixer of the first mixing module mixes the I signal component with the I signal component of the local oscillation (eg, f LO1 ) to generate a first I-mixed signal, and the Q signal component and the local oscillator The Q signal components are mixed to produce a first Q mixed signal. Note that the first I and Q mixed signals can be differential signals or single-ended signals; differential signals are shown.

混頻部的第二混頻模組接收放大的期望入站RF2信號並利用π/2相移器或其他類型的相位控制電路將其轉換為同相(I)信號分量和正交(Q)信號分量。第二混頻模組的混頻器將該I信號分量與本地振盪(例如fLO2 )的I信號分量混頻以產生第二I混頻的信號,並將該Q信號分量與該本地振盪的Q信號分量混頻以產生第二Q混頻的信號。注意,第二I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。每個混頻器緩存它們各自的I和Q混頻的信號,這些信號隨後將被提供給濾波器(例如帶通濾波器)。濾波器濾波I和Q混頻的信號,這些信號隨後被提供給RX IF-BB部224。The second mixing module of the mixing section receives the amplified desired inbound RF2 signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal using a π/2 phase shifter or other type of phase control circuit. Component. The mixer of the second mixing module mixes the I signal component with the I signal component of the local oscillation (eg, f LO2 ) to generate a second I-mixed signal, and the Q signal component and the local oscillator The Q signal components are mixed to produce a second Q mixed signal. Note that the second I and Q mixed signals can be differential signals or single-ended signals; differential signals are shown. Each mixer buffers their respective I and Q mixed signals, which are then provided to a filter (eg, a bandpass filter). The filter filters the I and Q mixed signals, which are then provided to the RX IF-BB section 224.

儘管當前示出的RF-IF部302與用於SISO(單輸入單輸出)通信的單個天線連接,但是該方案還可以適用於MISO(多輸入單輸出)通信和MIMO(多輸入多輸出)通信。在這些情況下,多個天線(例如2或多種)與相應數量的FEM(或根據FEM中的接收路徑較少數量的FEM)連接。FEM與多個接收器RF-IF部連接(例如,與天線數量相同),這些接收器RF-IF部又與相應數量的接收器IF-BB部連接。基帶處理單元處理上述多個符號流以產生入站資料。Although the currently shown RF-IF section 302 is connected to a single antenna for SISO (Single Input Single Output) communication, the scheme can also be applied to MISO (Multiple Input Single Output) communication and MIMO (Multiple Input Multiple Output) communication. . In these cases, multiple antennas (eg, 2 or more) are connected to a corresponding number of FEMs (or a smaller number of FEMs according to the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (e.g., the same number of antennas), which in turn are coupled to a corresponding number of receiver IF-BB sections. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data.

RX RF-IF部302提供下列至少一個優點和/或包括下列至少一個特徵:使用一個時鐘(例如LO2);能夠利用單個RF輸入部接收兩個入站RF信號;不再需要兩個外部的SAW濾波器,一個FTBPF 304有效地濾波兩個通道(例如RF1和RF2信號);兩個高QRF濾波器的中心頻率由本地振盪時鐘控制;以及可以輕易地集成於SOC 300中。The RX RF-IF section 302 provides at least one of the following advantages and/or includes at least one of the following features: using one clock (e.g., LO2); being able to receive two inbound RF signals with a single RF input; no need for two external SAWs A filter, an FTBPF 304 effectively filters two channels (eg, RF1 and RF2 signals); the center frequencies of the two high QRF filters are controlled by the local oscillator clock; and can be easily integrated into the SOC 300.

圖21是根據本發明另一個實施例的SOC 330的RF-IF接收器部332的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、帶有變頻帶通濾波器(FTBPF)338的低雜訊放大器模組(LNA)336、具有負阻的RF變頻帶通濾波器(FTBPF)334以及混頻部(包括混頻模組340、混頻暫存器342-344和/或濾波器346-348)。SOC 330還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和/或電源管理單元。21 is a schematic block diagram of an RF-IF receiver portion 332 of a SOC 330 including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1) with frequency conversion, in accordance with another embodiment of the present invention. Low noise amplifier module (LNA) 336 of bandpass filter (FTBPF) 338, RF variable frequency bandpass filter (FTBPF) 334 with negative resistance, and mixing section (including mixing module 340, mixing temporary storage) 342-344 and/or filters 346-348). The SOC 330 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and/or a power management unit.

在本實施例中,示出的寄生電阻(Rp)與FEM介面模組相關以代表開關損耗(例如FTBPF的)和/或電感損耗。電感損耗主要是由於變壓器線圈的歐姆電阻(例如基板上的金屬線)和/或變壓器下的基板損耗,由於電容C1的調諧,電感損耗是RF段阻抗的主要分量。較低的寄生電阻將減小濾波的品質因數,並減小RF以外頻率的帶外衰減。FTBPF 334中的負阻有效地增加了寄生電阻,從而增加了品質因數和帶外衰減。In the present embodiment, the parasitic resistance (Rp) shown is associated with the FEM interface module to represent switching losses (eg, FTBPF) and/or inductance losses. The inductance loss is mainly due to the ohmic resistance of the transformer coil (such as the metal wire on the substrate) and/or the substrate loss under the transformer. Due to the tuning of the capacitor C1, the inductance loss is the main component of the RF segment impedance. A lower parasitic resistance will reduce the quality factor of the filter and reduce the out-of-band attenuation of frequencies other than RF. The negative resistance in FTBPF 334 effectively increases the parasitic resistance, which increases the quality factor and out-of-band attenuation.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括RF的期望信號分量和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部332的本地振盪(例如fLO ),若信號在rRF -2fIF ,會出現鏡像信號分量。天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1根據來自SOC 330處理資源的控制信號對差分信號進行濾波。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below the RF (the component above is shown). Regarding the local oscillation of the RF-IF section 332 (e.g., f LO ), if the signal is at r RF -2f IF , an image signal component appears. The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound RF signal and converts it into a differential signal, and tunable capacitor network C1 filters the differential signal based on control signals from SOC 330 processing resources.

FTBPF 334(各種實施例將參考以下幾幅附圖進行描述)通過衰減鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望RF信號分量來濾波入站RF信號。例如,假設FTBPF 334將窄帶基帶帶通濾波器變頻為RF(例如期望信號分量的載波頻率)以產生高QRF濾波器。窄帶高QRF濾波器分別濾波掉鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望信號分量。此外,FTBPF 334包括負阻,該負阻類似於寄生電阻(Rp)並補償了寄生電阻代表的損耗(例如有效地增加了濾波的品質因數並增加了帶外衰減)。可以通過來自SOC 330處理資源的控制信號根據寄生電阻的變化動態地調節負阻。FTBPF 334 (various embodiments will be described with reference to the following figures) filters the inbound RF signal by attenuating the image signal component and the undesired signal component and by the substantially un-attenuated desired RF signal component. For example, assume that FTBPF 334 converts a narrowband baseband bandpass filter to RF (eg, the carrier frequency of a desired signal component) to produce a high QRF filter. The narrowband high QRF filter filters out the image signal component and the undesired signal component, respectively, and passes through the substantially un-attenuated desired signal component. In addition, FTBPF 334 includes a negative resistance that is similar to parasitic resistance (Rp) and compensates for losses represented by parasitic resistance (eg, effectively increasing the quality factor of the filter and increasing the out-of-band attenuation). The negative resistance can be dynamically adjusted based on the change in parasitic resistance by a control signal from the SOC 330 processing resource.

低雜訊放大器模組(LNA)336放大期望的入站RF信號分量以產生放大的期望入站RF信號。LNA336可以從SOC 330處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。此外,LNA 336可以包括RF FTBPF 338,RF TFBPF 338的功能類似於上述RF FTBPF 334以進一步衰減鏡像信號分量。混頻模組340接收放大的期望入站RF信號並利用π/2相移器或其他類型的相位控制電路將其轉換為同相(I)信號分量和正交(Q)信號分量。A low noise amplifier module (LNA) 336 amplifies the desired inbound RF signal component to produce an amplified desired inbound RF signal. The LNA 336 can receive a control signal from the SOC 330 processing resource, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rise rate, settling time, overshoot Quantity and stability factor. Additionally, the LNA 336 can include an RF FTBPF 338 that functions similarly to the RF FTBPF 334 described above to further attenuate the image signal component. Mixing module 340 receives the amplified desired inbound RF signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal component using a π/2 phase shifter or other type of phase control circuit.

混頻模組340的混頻器將該I信號分量與本地振盪(例如fLO )的I信號分量混頻以產生I混頻的信號,並將該Q信號分量與該本地振盪的Q信號分量混頻以產生Q混頻的信號。注意,I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。The mixer of the mixing module 340 mixes the I signal component with the I signal component of the local oscillation (eg, f LO ) to generate an I-mixed signal, and combines the Q signal component with the Q-signal component of the local oscillation. Mixing to produce a Q-mixed signal. Note that the I and Q mixed signals can be differential or single-ended signals; differential signals are shown.

混頻暫存器緩存I和Q混頻的信號,這些信號隨後將被提供給濾波器(例如帶通濾波器)。濾波器濾波I和Q混頻的信號,這些信號隨後被提供給RX IF-BB部224。The mixing buffer buffers the I and Q mixed signals, which are then provided to a filter (eg, a bandpass filter). The filter filters the I and Q mixed signals, which are then provided to the RX IF-BB section 224.

儘管當前示出的RF-IF部332與用於SISO(單輸入單輸出)通 信的單個天線連接,但是該方案還可以適用於MISO(多輸入單輸出)通信和MIMO(多輸入多輸出)通信。在這些情況下,多個天線(例如2或多個)與相應數量的FEM(或根據FEM中的接收路徑較少數量的FEM)連接。FEM與多個接收器RF-IF部連接(例如,與天線數量相同),這些接收器RF-IF部又與相應數量的接收器IF-BB部連接。基帶處理單元處理上述多個符號流以產生入站資料。Although the currently shown RF-IF section 332 is used for SISO (single input single output) The single antenna connection of the letter, but the scheme can also be applied to MISO (Multiple Input Single Output) communication and MIMO (Multiple Input Multiple Output) communication. In these cases, multiple antennas (eg, 2 or more) are connected to a corresponding number of FEMs (or a smaller number of FEMs according to the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (e.g., the same number of antennas), which in turn are coupled to a corresponding number of receiver IF-BB sections. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data.

RX RF-IF部332提供下列至少一個優點和/或包括下列至少一個特徵:不再需要片外SAW濾波器和匹配元件;負阻增加了FTBPF 334的品質因數;可以補償電感損耗,因此電感具有較低公差;減少了對厚金屬層數量的需求,從而降低了裸片製造成本;兩個高Q RF濾波器的中心頻率由本地振盪時鐘控制;以及可以輕易地集成於SOC 330中。The RX RF-IF portion 332 provides at least one of the following advantages and/or includes at least one of the following features: an off-chip SAW filter and matching elements are no longer needed; a negative resistance increases the quality factor of the FTBPF 334; the inductance loss can be compensated, so the inductance has Lower tolerances; reduced need for a thick metal layer, thereby reducing die manufacturing costs; the center frequencies of the two high Q RF filters are controlled by the local oscillator clock; and can be easily integrated into the SOC 330.

圖22是根據本發明另一個實施例的SOC 350的RF-IF接收器部352的示意框圖,它包括FEM介面模組(包括變壓器T1和/或可調電容網路C1)、具有複基帶(BB)阻抗的變頻帶通濾波器(FTBPF)354、低雜訊放大器模組(LNA)356以及混頻部(包括混頻模組340和/或混頻暫存器342-344)。SOC 350還包括接收器IF-BB部224、無SAW發射器部202,並還可以包括基帶處理單元、處理模組和/或電源管理單元。22 is a schematic block diagram of an RF-IF receiver portion 352 of a SOC 350 including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1) having a complex baseband in accordance with another embodiment of the present invention. (BB) Impedance variable frequency bandpass filter (FTBPF) 354, low noise amplifier module (LNA) 356, and mixing section (including mixing module 340 and/or mixing buffer 342-344). The SOC 350 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may also include a baseband processing unit, a processing module, and/or a power management unit.

在一個運行的例子中,通過天線接收入站RF信號。入站RF信號包括RF的期望信號分量和頻率高於或低於RF的非期望分量(示出了高於的分量)。關於RF-IF部332的本地振盪(例如fLO ),若信號在RRF -2fIF ,會出現鏡像信號分量。天線向FEM提供入站RF信號,該FEM按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號。變壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信號,可調電容網路C1根據來自SOC 350處理資源的控制信號對差分信號進行濾波。In an operational example, an inbound RF signal is received through an antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below the RF (the component above is shown). Regarding the local oscillation of the RF-IF section 332 (e.g., f LO ), if the signal is at R RF -2f IF , an image signal component appears. The antenna provides an inbound RF signal to the FEM that processes the RF signal in the manner described above and/or as will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound RF signal and converts it into a differential signal, and tunable capacitor network C1 filters the differential signal based on control signals from SOC 350 processing resources.

FTBPF 354(各種實施例將參考以下幾幅附圖進行描述)通過 衰減鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望RF信號分量來濾波入站RF信號。例如,假設FTBPF 354將窄帶基帶帶通濾波器變頻為RF(例如期望信號分量的載波頻率)以產生高QRF濾波器。窄帶高QRF濾波器分別濾波掉鏡像信號分量和不期望的信號分量並通過基本上未衰減的期望信號分量。通過複基帶阻抗354的使用,可以調節窄帶基帶BPF的中心頻率。例如根據對複BB阻抗354的調節,可以使帶通區域在頻率上變得更高或更低。FTBPF 354 (various embodiments will be described with reference to the following figures) The image signal component and the undesired signal component are attenuated and the inbound RF signal is filtered by the substantially un-attenuated desired RF signal component. For example, assume that FTBPF 354 converts a narrowband baseband bandpass filter to RF (eg, the carrier frequency of a desired signal component) to produce a high QRF filter. The narrowband high QRF filter filters out the image signal component and the undesired signal component, respectively, and passes through the substantially un-attenuated desired signal component. The center frequency of the narrowband baseband BPF can be adjusted by the use of the complex baseband impedance 354. For example, depending on the adjustment of the complex BB impedance 354, the band pass region can be made higher or lower in frequency.

低雜訊放大器模組(LNA)356放大期望的入站RF信號分量以產生放大的期望入站RF信號。LNA 356可以從SOC 350處理資源接收控制信號,其中該控制信號指示以下至少一項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量和穩定因數。A low noise amplifier module (LNA) 356 amplifies the desired inbound RF signal component to produce an amplified desired inbound RF signal. The LNA 356 can receive a control signal from the SOC 350 processing resource, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rise rate, settling time, super Adjustment and stability factor.

混頻部的混頻模組340接收放大的期望入站RF信號並利用π/2相移器或其他類型的相位控制電路將其轉換為同相(I)信號分量和正交(Q)信號分量。混頻模組340的混頻器將該I信號分量與本地振盪(例如fLO )的I信號分量混頻以產生I混頻的信號,並將該Q信號分量與該本地振盪的Q信號分量混頻以產生Q混頻的信號。注意,I和Q混頻的信號可以是差分信號或單端信號;示出了差分信號。The mixing module 340 of the mixing section receives the amplified desired inbound RF signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal component using a π/2 phase shifter or other type of phase control circuit. . The mixer of the mixing module 340 mixes the I signal component with the I signal component of the local oscillation (eg, f LO ) to generate an I-mixed signal, and combines the Q signal component with the Q-signal component of the local oscillation. Mixing to produce a Q-mixed signal. Note that the I and Q mixed signals can be differential or single-ended signals; differential signals are shown.

混頻暫存器342-344緩存I和Q混頻的信號,這些信號隨後將被提供給濾波器(例如帶通濾波器)。濾波器346-348濾波I和Q混頻的信號,這些信號隨後被提供給RX IF-BB部224。Mixing registers 342-344 buffer the I and Q mixed signals, which are then provided to a filter (e.g., a bandpass filter). Filters 346-348 filter the I and Q mixed signals, which are then provided to RX IF-BB section 224.

儘管當前示出的RF-IF部352與用於SISO(單輸入單輸出)通信的單個天線連接,但是該方案還可以適用於MISO(多輸入單輸出)通信和MIMO(多輸入多輸出)通信。在這些情況下,多個天線(例如2或多種)與相應數量的FEM(或根據FEM中的接收路徑較少數量的FEM)連接。FEM與多個接收器RF-IF部連接(例如,與天線 數量相同),這些接收器RF-IF部又與相應數量的接收器IF-BB部連接。基帶處理單元處理上述多個符號流以產生入站資料。Although the currently shown RF-IF section 352 is connected to a single antenna for SISO (Single Input Single Output) communication, the scheme can also be applied to MISO (Multiple Input Single Output) communication and MIMO (Multiple Input Multiple Output) communication. . In these cases, multiple antennas (eg, 2 or more) are connected to a corresponding number of FEMs (or a smaller number of FEMs according to the receive path in the FEM). FEM is connected to multiple receiver RF-IF sections (for example, with an antenna The same number of receivers, these receiver RF-IF sections are in turn connected to a corresponding number of receiver IF-BB sections. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data.

RX RF-IF部352提供下列至少一個優點和/或包括下列至少一個特徵:超外差接收器相比類似直接轉換接收器的優點在於最小區域和功率;FTBPF 354中複基帶阻抗的使用使得帶通濾波器的中心頻率改變;複基帶阻抗354可以利用開關和電容實現,且它的中心由LO時鐘控制;利用下變頻混頻器所使用的同一LO時鐘將片上高Q鏡像帶阻濾波器(例如FTBPF)調諧為期望頻率;RF-IF部352使用信號鎖相環(PLL);以及可以輕易地集成於SOC 350中。The RX RF-IF portion 352 provides at least one of the following advantages and/or includes at least one of the following features: a superheterodyne receiver has advantages over a similar direct conversion receiver in minimum area and power; the use of complex baseband impedance in the FTBPF 354 enables the band The center frequency of the pass filter changes; the complex baseband impedance 354 can be implemented with switches and capacitors, and its center is controlled by the LO clock; the on-chip high Q mirror band rejection filter is used with the same LO clock used by the downconverting mixer ( For example, FTBPF) is tuned to the desired frequency; RF-IF section 352 uses a signal phase locked loop (PLL); and can be easily integrated into SOC 350.

圖23是根據本發明一個實施例的SOC 360的發射器部的示意框圖,它包括上變頻混頻模組362、發射器本地振盪模組(LO)364、變頻帶通濾波器(FTBPF)366、輸出模組(包括電容陣列368-370和/或變壓器T1)以及功率放大器驅動器(PAD)372。PAD 372包括如圖連接的電晶體Q1-Q2、電阻R1和電容C1。注意,電容C1和/或電阻R1可以利用一個或多個電晶體Q1-Q2實現。SOC 360還包括無SAW接收器部364,並還可以包括基帶處理單元、處理模組和/或電源管理單元。23 is a schematic block diagram of a transmitter portion of SOC 360 including an upconversion mixing module 362, a transmitter local oscillator module (LO) 364, and a variable frequency bandpass filter (FTBPF), in accordance with an embodiment of the present invention. 366, an output module (including capacitor arrays 368-370 and/or transformer T1) and a power amplifier driver (PAD) 372. The PAD 372 includes transistors Q1-Q2, a resistor R1, and a capacitor C1 as shown. Note that capacitor C1 and/or resistor R1 can be implemented using one or more transistors Q1-Q2. The SOC 360 also includes a SAWless receiver portion 364 and may also include a baseband processing unit, a processing module, and/or a power management unit.

在一個運行的例子中,上變頻混頻模組362接收基帶(BB)I和Q信號(例如出站符號流的類比和正交表示)。上變頻混頻模組362可以採用直接轉換拓撲或超外差拓撲將BBI和Q信號轉換為上變頻信號,後者的載波頻率在所期望的RF。In one operational example, upconversion mixing module 362 receives baseband (BB) I and Q signals (e.g., analog and orthogonal representations of outbound symbol streams). The upconversion mixing module 362 can convert the BBI and Q signals to an upconverted signal using a direct conversion topology or a superheterodyne topology, the carrier frequency of which is at the desired RF.

FTBPF 366(各種實施例將參考以下幾幅附圖進行描述)通過衰減帶外信號分量並通過基本上未衰減的上變頻信號來濾波上變頻信號。例如,假設FTBPF 366將窄帶基帶帶通濾波器變頻為RF(例如上變頻信號的載波頻率)以產生高Q RF濾波器。窄帶高Q RF濾波器濾波掉帶外信號並通過基本上未衰減的上變頻信號。FTBPF 366 (various embodiments will be described with reference to the following figures) filters the upconverted signal by attenuating out-of-band signal components and by substantially un-attenuating up-converted signals. For example, assume that FTBPF 366 converts a narrowband baseband bandpass filter to RF (eg, the carrier frequency of the upconverted signal) to produce a high Q RF filter. The narrowband high Q RF filter filters out the out-of-band signal and passes the substantially un-attenuated up-converted signal.

電容陣列368-370提供可調低通濾波器,該濾波器濾波共模雜訊和/或線性雜訊。變壓器T1將差分上變頻信號轉換為單端信 號,後者隨後被PAD 372放大。PAD 372向FEM提供放大的上變頻信號,FEM進一步將其放大,從而將它從入站RF信號中分離,並提供將它提供給天線以便發射。Capacitor arrays 368-370 provide an adjustable low pass filter that filters common mode noise and/or linear noise. Transformer T1 converts the differential upconverted signal into a single-ended signal The latter is then amplified by PAD 372. The PAD 372 provides an amplified upconverted signal to the FEM, which is further amplified by the FEM to separate it from the inbound RF signal and provide it to the antenna for transmission.

TX部提供下列至少一個優點和/或包括下列至少一個特徵:超外差接收器相比類似直接轉換接收器的優點在於最小區域和功率;使用與發射器上變頻混頻器LC負載的TXLO 364同步的FTBPF 366減少了發射器雜訊和RX頻率的其他帶外雜訊,但對期望的TX信號的影響很小;高Q FTBPF 366的基帶阻抗可以利用電容來實現,且它的中心頻率由TX LO 364控制;淘汰了TX SAW濾波器;以及易於集成到SOC 360中。The TX portion provides at least one of the following advantages and/or includes at least one of the following features: a superheterodyne receiver has advantages over a similar direct conversion receiver in minimum area and power; uses a TXLO 364 with a transmitter upconverting mixer LC load The synchronous FTBPF 366 reduces transmitter noise and other out-of-band noise at the RX frequency, but has little effect on the desired TX signal; the baseband impedance of the high Q FTBPF 366 can be achieved with a capacitor, and its center frequency is TX LO 364 control; eliminated TX SAW filter; and easy integration into SOC 360.

圖24是根據本發明另一個實施例的SOC 380的發射器部382的示意框圖,它包括上變頻混頻模組362、發射器本地振盪模組(LO)、變頻帶通濾波器(FTBPF)、輸出模組(包括電容陣列368-370和/或變壓器T1)以及功率放大器驅動器(PAD)372。PAD 372包括如圖連接的電晶體、電阻和電容。注意,電容和/或電阻可以利用一個或多個電晶體實現。SOC 380還包括無SAW接收器部364,並還可以包括基帶處理單元、處理模組和/或電源管理單元。24 is a schematic block diagram of a transmitter portion 382 of a SOC 380 that includes an upconversion mixing module 362, a transmitter local oscillator module (LO), and a variable frequency bandpass filter (FTBPF) in accordance with another embodiment of the present invention. ), an output module (including capacitor arrays 368-370 and/or transformer T1) and a power amplifier driver (PAD) 372. The PAD 372 includes transistors, resistors, and capacitors as shown in the figure. Note that the capacitance and/or resistance can be achieved with one or more transistors. The SOC 380 also includes a SAWless receiver portion 364 and may also include a baseband processing unit, a processing module, and/or a power management unit.

在本實施例中,上變頻混頻模組包括如圖所示的無源混頻結構,該無源混頻結構可以採用50%占空比LO時鐘。在一個運行的例子中,通過圖左邊的電路將LOI和Q信號分量混合,通過圖右邊的電路將BBI和Q信號分量混合。然後,將混合的LO信號分量與混合的BB信號分量混合以產生上變頻信號。例如,LO_I+將能量注入它對應的電容中且LO_I-從該電容中提取能量(反之亦然),從而在該電容兩端以對應於LO的速率產生變化的電壓。LO_Q+和LO_Q-對它們的電容做類似處理,僅僅相移90度。通過加法節點將電容兩端變化的電壓疊加在一起以產生混合的LO信號分量。類似過程發生在混頻器的基帶側。In this embodiment, the upconversion mixing module includes a passive mixing structure as shown, and the passive mixing structure can employ a 50% duty cycle LO clock. In a running example, the LOI and Q signal components are mixed by the circuit on the left side of the figure, and the BBI and Q signal components are mixed by the circuit on the right side of the figure. The mixed LO signal component is then mixed with the mixed BB signal component to produce an upconverted signal. For example, LO_I+ injects energy into its corresponding capacitance and LO_I- extracts energy from the capacitance (and vice versa), thereby producing a varying voltage across the capacitor at a rate corresponding to LO. LO_Q+ and LO_Q- do similar processing on their capacitance, only phase shifting by 90 degrees. The varying voltage across the capacitor is superimposed by the summing node to produce a mixed LO signal component. A similar process occurs on the baseband side of the mixer.

TX部382提供下列至少一個優點和/或包括下列至少一個特 徵:Vb1和Vb2驅動的電晶體是高電壓電晶體(例如,Vds電壓>2.5V);以及該TX結構提供低功率高效率區域設計並使用由50%占空比LO時鐘驅動的無源混頻器,相比由25%占空比時鐘驅動的混頻器來說降低了功耗。TX portion 382 provides at least one of the following advantages and/or includes at least one of the following The Vb1 and Vb2 driven transistors are high voltage transistors (eg, Vds voltage > 2.5V); and the TX structure provides a low power, high efficiency region design and uses a passive mix driven by a 50% duty cycle LO clock. The frequency converter reduces power consumption compared to a mixer driven by a 25% duty cycle clock.

圖25是根據本發明一個實施例的RF-IF接收器部的一部分的示意框圖,包括單端FTBPF(變頻帶通濾波器)394。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1和LNA 392。FTBPF 394包括多個電晶體(例如開關網路)和多個基帶阻抗(ZBB(s) )396-402。25 is a schematic block diagram of a portion of an RF-IF receiver portion including a single-ended FTBPF (Frequency Bandpass Filter) 394, in accordance with one embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, and an LNA 392. The FTBPF 394 includes a plurality of transistors (e.g., a switching network) and a plurality of baseband impedances (Z BB(s) ) 396-402.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1升高或降低入站RF信號的電壓電平,隨後由可變電容網路C1對其進行濾波。注意,若不需要對入站RF信號的電壓電平進行調節和/或不需要變壓器T1提供的分離,那麼可以省略變壓器T1。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 raises or lowers the voltage level of the inbound RF signal, which is then filtered by variable capacitance network C1. Note that transformer T1 may be omitted if there is no need to adjust the voltage level of the inbound RF signal and/or the separation provided by transformer T1 is not required.

FTBPF 394提供高Q(品質因數)RF濾波器,該濾波器濾波入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 392且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBBz(s) )396-402共同提供具有相應濾波器回應的低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 394 provides a high Q (quality factor) RF filter that filters the inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 392 and undesired signal components (eg, block, mirror) Etc.) attenuation. To implement the filter, the baseband impedance (Z BBz(s) ) 396-402 provides a low Q baseband filter with corresponding filter response, where each baseband impedance can be a capacitor, a switched capacitor filter, or a switched capacitor resistor. And / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器404提供的時鐘信號將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF濾波器。圖27示出了低Q基帶濾波器回應向高Q RF濾波器回應的變頻,圖26示出了時鐘生成器404的一個實施例。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by clock generator 404 to produce a high Q RF filter. FIG. 27 shows a frequency conversion of a low Q baseband filter in response to a high Q RF filter, and FIG. 26 shows an embodiment of a clock generator 404.

如圖26所示,時鐘生成器(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器404還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。As shown in Figure 26, a clock generator (various embodiments of which will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 404 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal.

回到對圖25的討論,FTBPF 394接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到RF,從而實現高QRF帶通濾波器。Returning to the discussion of Figure 25, the FTBPF 394 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the baseband impedance response (the low Q bandpass filter is commonly) is transferred to the RF, thereby implementing a high QRF bandpass filter.

圖28是根據本發明一個實施例的包含4個電晶體和4個電容的單端FTBPF 410的示意框圖,其中電晶體和電容提供基帶阻抗。4個電容提供集中的基帶阻抗,後者提供如圖29所示的低Q基帶帶通濾波器。具體地,一個電容(或並聯的4個)的阻抗是1/sC,其中s是2 π f。因此,隨著頻率(f)接近零,電容的阻抗接近無窮,且隨著頻率(f)增加,電容的阻抗下降。另外,零頻率時電容的相位從90°變到-90°。28 is a schematic block diagram of a single-ended FTBPF 410 comprising four transistors and four capacitors, wherein the transistors and capacitors provide baseband impedance, in accordance with one embodiment of the present invention. Four capacitors provide concentrated baseband impedance, which provides a low Q baseband bandpass filter as shown in FIG. Specifically, the impedance of one capacitor (or four in parallel) is 1/sC, where s is 2 π f. Therefore, as the frequency (f) approaches zero, the impedance of the capacitor approaches infinity, and as the frequency (f) increases, the impedance of the capacitor decreases. In addition, the phase of the capacitor changes from 90° to -90° at zero frequency.

回到對圖28的討論,由於將時鐘信號施加於電晶體,電容連接到FTBPF 410的公共節點(例如FTBPF的輸入)。通過這種方式,電容的性能可以被頻移到如圖30所示的時鐘信號的速率(例如fLO )。具體地,電容(以及並聯的4個電容)的阻抗被移動到時鐘的頻率。由於LO接近無窮的阻抗,FTBPF 410在LO具有高阻抗,因此對載波頻率與LO相當的信號分量的影響較小。隨著頻率偏離LO,FTBPF 410的阻抗減小,因此FTBPF 410有效地“衰減(short)”載波頻率與LO不相當的信號分量。Returning to the discussion of Figure 28, since a clock signal is applied to the transistor, the capacitor is connected to a common node of the FTBPF 410 (e.g., the input of the FTBPF). In this way, the performance of the capacitor can be frequency shifted to the rate of the clock signal as shown in Figure 30 (e.g., fLO ). Specifically, the impedance of the capacitor (and the four capacitors in parallel) is moved to the frequency of the clock. Since the LO is close to infinite impedance, the FTBPF 410 has a high impedance at the LO and therefore has less effect on the signal component of the carrier frequency and the LO. As the frequency deviates from LO, the impedance of the FTBPF 410 decreases, so the FTBPF 410 effectively "short" the signal component of the carrier frequency that is not equivalent to the LO.

圖31是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括差分FTBPF 412(變頻帶通濾波器)。RX RF-IF 部的該部分包括變壓器T1、可變電容網路C1和LNA 393。FTBPF 412包括多個電晶體和多個基帶阻抗(ZBB(s) )414-420。31 is a schematic block diagram of a portion of an RF-IF receiver portion including a differential FTBPF 412 (frequency band pass filter) in accordance with another embodiment of the present invention. This part of the RX RF-IF section includes transformer T1, variable capacitor network C1 and LNA 393. The FTBPF 412 includes a plurality of transistors and a plurality of baseband impedances (Z BB(s) ) 414-420.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1將單端入站RF信號轉換為差分入站RF信號。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal.

FTBPF 412提供差分高Q(品質因數)RF濾波器,該濾波器濾波差分入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBBz(s) )414-420共同提供具有相應濾波器回應的低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 412 provides a differential high Q (quality factor) RF filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) attenuation. To implement the filter, the baseband impedance (Z BBz(s) ) 414-420 together provide a low Q baseband filter with a corresponding filter response, where each baseband impedance can be a capacitor, a switched capacitor filter, or a switched capacitor resistor, respectively. And / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器422提供的時鐘信號將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF濾波器。圖33示出了低Q基帶濾波器回應向高Q RF濾波器回應的變頻,圖32示出了時鐘生成器422的一個實施例。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by clock generator 422 to produce a high Q RF filter. FIG. 33 shows a frequency conversion of a low Q baseband filter in response to a high Q RF filter, and FIG. 32 shows an embodiment of a clock generator 422.

如圖32所示,時鐘生成器422(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器422還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。As shown in Figure 32, clock generator 422 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 422 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal.

回到對圖31的討論,FTBPF 412接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站RF信 號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到RF,從而實現高QRF帶通濾波器。Returning to the discussion of Figure 31, the FTBPF 412 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound RF signals. number. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the baseband impedance response (the low Q bandpass filter is commonly) is transferred to the RF, thereby implementing a high QRF bandpass filter.

圖34是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括單端FTBPF 430(變頻帶通濾波器)。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1和LNA 392。FTBPF 430包括多個電晶體和複基帶濾波器432。Figure 34 is a schematic block diagram of a portion of an RF-IF receiver portion including a single-ended FTBPF 430 (frequency conversion bandpass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, and an LNA 392. The FTBPF 430 includes a plurality of transistors and a complex baseband filter 432.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1升高或降低入站RF信號的電壓電平,隨後由可變電容網路C1對其進行濾波。注意,若不需要對入站RF信號的電壓電平進行調節和/或不需要變壓器T1提供的分離,那麼可以省略變壓器T1。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 raises or lowers the voltage level of the inbound RF signal, which is then filtered by variable capacitance network C1. Note that transformer T1 may be omitted if there is no need to adjust the voltage level of the inbound RF signal and/or the separation provided by transformer T1 is not required.

FTBPF 430提供高Q(品質因數)RF濾波器,該濾波器濾波入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 392且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,複基帶濾波器432提供低Q基帶濾波器,後者的帶通區域可以偏移零頻率。注意,可以通過來自SOC處理資源的控制信號調節複基帶濾波器432的性能(例如帶寬、衰減速率、品質因數、頻率偏移等)。The FTBPF 430 provides a high Q (quality factor) RF filter that filters the inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 392 and undesired signal components (eg, block, mirror) Etc.) attenuation. To implement the filter, complex baseband filter 432 provides a low Q baseband filter whose bandpass region can be offset by zero frequency. Note that the performance of the complex baseband filter 432 (eg, bandwidth, attenuation rate, quality factor, frequency offset, etc.) can be adjusted by control signals from the SOC processing resources.

通過時鐘生成器434提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高Q RF濾波器。圖36示出了頻率偏移的低Q基帶濾波器向頻率偏移的高Q RF濾波器的變頻,圖35示出了時鐘生成器434的一個實施例。The frequency offset low Q baseband filter is frequency converted to a desired RF frequency by a clock signal provided by clock generator 434 to produce a frequency offset high Q RF filter. 36 illustrates frequency conversion of a frequency shifted low Q baseband filter to a frequency shifted high Q RF filter, and FIG. 35 illustrates one embodiment of a clock generator 434.

如圖35所示,時鐘生成器434(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載 波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器434還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。替代地,FTBPF 430的至少一個時鐘信號可以用作LO時鐘信號。As shown in Figure 35, clock generator 434 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the load of the inbound RF signal The wave frequency can be adjusted to better track the carrier frequency. The clock generator 434 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FTBPF 430 can be used as the LO clock signal.

回到對圖34的討論,FTBPF 430接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),複基帶濾波器432的回應轉移到RF(和/或LO),從而實現高Q RF帶通濾波器。Returning to the discussion of Figure 34, the FTBPF 430 receives clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters to the inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the response of complex baseband filter 432 is transferred to RF (and/or LO), thereby implementing a high Q RF bandpass filter.

圖37是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括差分FTBPF 440(變頻帶通濾波器)。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1和LNA 393。差分FTBPF 440包括多個電晶體和複基帶濾波器442。37 is a schematic block diagram of a portion of an RF-IF receiver portion including a differential FTBPF 440 (frequency band pass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, and an LNA 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1將單端入站RF信號轉換為差分入站RF信號。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal.

差分FTBPF 440提供高Q(品質因數)RF濾波器,該濾波器濾波差分入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,複基帶濾波器442提供低Q基帶濾波器,後者的帶通區域可以偏移零頻率。注意,可以通過來自SOC處理資源的控制信號調節複基帶濾波器442的性能(例如帶寬、衰減速率、品質因數、頻率偏移等)。The differential FTBPF 440 provides a high Q (quality factor) RF filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) attenuation. To implement the filter, complex baseband filter 442 provides a low Q baseband filter whose bandpass region can be offset by zero frequency. Note that the performance of the complex baseband filter 442 (eg, bandwidth, attenuation rate, quality factor, frequency offset, etc.) can be adjusted by control signals from the SOC processing resources.

通過時鐘生成器444提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高QRF濾波器。圖39示出了頻率偏移的低Q基帶濾波器向頻率偏移的高QRF濾波器的變頻,圖38示出了時鐘生成器444的一個實施例。The frequency offset low Q baseband filter is frequency converted to a desired RF frequency by a clock signal provided by clock generator 444 to produce a frequency offset high QRF filter. FIG. 39 illustrates frequency conversion of a frequency shifted low Q baseband filter to a frequency offset high QRF filter, and FIG. 38 illustrates one embodiment of a clock generator 444.

如圖38所示,時鐘生成器444(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器444還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。替代地,FTBPF 440的至少一個時鐘信號可以用作LO時鐘信號。As shown in Figure 38, clock generator 444 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 444 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FTBPF 440 can be used as the LO clock signal.

回到對圖37的討論,FTBPF 440接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),複基帶濾波器442的回應轉移到RF(和/或LO),從而實現高QRF帶通濾波器。Returning to the discussion of Figure 37, the FTBPF 440 receives clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters to the inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the response of the complex baseband filter 442 is shifted to RF (and/or LO), thereby implementing a high QRF bandpass filter.

圖40是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括FTBPF 440(變頻帶通濾波器)。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1和LNA 393。差分FTBPF 440包括多個電晶體和複基帶濾波器442。複基帶濾波器442包括多個基帶阻抗(例如ZBB(s) )450-456、正增益級(Gm)458和負增益級(-GM)460。40 is a schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF 440 (frequency band pass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, and an LNA 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442. The complex baseband filter 442 includes a plurality of baseband impedances (e.g., Z BB(s) ) 450-456, a positive gain stage (Gm) 458, and a negative gain stage (-GM) 460.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1將單端入站RF信號轉換為差分入站RF信號。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal.

差分FTBPF 440提供高Q(品質因數)RF濾波器,該濾波器濾波差分入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,複基帶濾波器442提供低Q基帶濾波器,後者的帶通區域可以偏移零頻率,該偏移基於增益級與基帶阻抗間的比率。注意,每個基帶阻抗分別可以是電容、開關電容濾波器、 開關電容電阻和/或複阻抗。還要注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗和/或至少一個增益級的增益可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The differential FTBPF 440 provides a high Q (quality factor) RF filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) attenuation. To implement the filter, complex baseband filter 442 provides a low Q baseband filter whose bandpass region can be offset by a zero frequency based on the ratio between the gain level and the baseband impedance. Note that each baseband impedance can be a capacitor, a switched capacitor filter, or Switched capacitor resistance and / or complex impedance. Also note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance and/or the gain of at least one gain stage can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.) ).

通過時鐘生成器444提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高Q RF濾波器。圖42示出了頻率偏移的高Q RF濾波器,圖41示出了時鐘生成器444的一個實施例。The frequency offset low Q baseband filter is frequency converted to a desired RF frequency by a clock signal provided by clock generator 444 to produce a frequency offset high Q RF filter. Figure 42 shows a high frequency RF filter with frequency offset and Figure 41 shows an embodiment of a clock generator 444.

如圖41所示,時鐘生成器444(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器444還可以生成本地振盪時鐘信號(未示出),用於下變頻入站RF信號為入站IF信號。替代地,FTBPF 440的至少一個時鐘信號可以用作LO時鐘信號。As shown in FIG. 41, clock generator 444 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 444 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FTBPF 440 can be used as the LO clock signal.

回到對圖40的討論,FTBPF 440接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器442與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),複基帶濾波器442的回應轉移到RF(和/或LO),從而實現高Q RF帶通濾波器。Returning to the discussion of FIG. 40, FTBPF 440 receives clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters 442 and inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the response of complex baseband filter 442 is shifted to RF (and/or LO), thereby implementing a high Q RF bandpass filter.

圖43是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括FTBPF 440(變頻帶通濾波器)。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1和LNA 393。差分FTBPF 440包括多個電晶體和複基帶濾波器442。複基帶濾波器442包括多個電容、正增益級(Gm)458和負增益級(-GM)460。Figure 43 is a schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF 440 (frequency band pass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, and an LNA 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442. The complex baseband filter 442 includes a plurality of capacitors, a positive gain stage (Gm) 458, and a negative gain stage (-GM) 460.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方 式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1將單端入站RF信號轉換為差分入站RF信號。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, as described above and/or with reference to at least one of the following figures. The RF signal is processed and the inbound RF signal processed by the FEM 390 is supplied to the transformer T1. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal.

差分FTBPF 440提供高Q(品質因數)RF濾波器,該濾波器濾波差分入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,複基帶濾波器442提供低Q基帶濾波器,後者的帶通區域可以偏移零頻率,該偏移基於增益級與電容之間的比率。注意,每個電容的容值可以是相同的、不同的或其組合。還要注意,每個電容的容值和/或至少一個增益級的增益可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The differential FTBPF 440 provides a high Q (quality factor) RF filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) attenuation. To implement the filter, complex baseband filter 442 provides a low Q baseband filter whose bandpass region can be offset by a zero frequency based on the ratio between the gain stage and the capacitance. Note that the capacitance of each capacitor can be the same, different, or a combination thereof. It is also noted that the capacitance of each capacitor and/or the gain of at least one gain stage can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.) ).

通過時鐘生成器444提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高Q RF濾波器。如圖44所示的時鐘生成器444(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器444還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。替代地,FTBPF 440的至少一個時鐘信號可以用作LO時鐘信號。The frequency offset low Q baseband filter is frequency converted to a desired RF frequency by a clock signal provided by clock generator 444 to produce a frequency offset high Q RF filter. A clock generator 444, as shown in FIG. 44 (which various embodiments will be described with reference to at least one of the following figures), generates four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 444 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FTBPF 440 can be used as the LO clock signal.

回到對圖43的討論,FTBPF 440接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器442與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),複基帶濾波器442的回應轉移到RF(和/或LO),從而實現高QRF帶通濾波器。Returning to the discussion of Figure 43, FTBPF 440 receives clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters 442 and inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the response of the complex baseband filter 442 is shifted to RF (and/or LO), thereby implementing a high QRF bandpass filter.

圖45是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括FTBPF 440(變頻帶通濾波器)。RX RF-IF部的該部分包括變壓器T1、可變電容網路C1、控制模組470和LNA 393。差分FTBPF 440包括多個電晶體和複基帶濾波器442。複基帶濾波器442包括多個基帶阻抗(例如ZBB (s ))450-456、正增益級(Gm)458和負增益級(-GM)460。Figure 45 is a schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF 440 (frequency band pass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes a transformer T1, a variable capacitor network C1, a control module 470, and an LNA 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442. The complex baseband filter 442 includes a plurality of baseband impedances (e.g., Z BB ( s )) 450-456, a positive gain stage (Gm) 458, and a negative gain stage (-GM) 460.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器T1。變壓器T1將單端入站RF信號轉換為差分入站RF信號。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to transformer T1. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal.

差分FTBPF 440提供高Q(品質因數)RF濾波器,該濾波器濾波差分入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,複基帶濾波器442提供低Q基帶濾波器,後者的帶通區域可以偏移零頻率,該偏移基於增益級與基帶阻抗間的比率,該比率由控制模組470提供的控制信號進行設置。The differential FTBPF 440 provides a high Q (quality factor) RF filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) attenuation. To implement the filter, complex baseband filter 442 provides a low Q baseband filter whose bandpass region can be offset by a zero frequency based on the ratio between gain stage and baseband impedance, which ratio is provided by control module 470 The control signal is set.

控制模組470是SOC處理資源的一部分,它根據以下至少一項確定所期望的低Q帶通濾波器回應(例如增益、帶寬、品質因數、頻率偏移等):入站RF信號的信噪比(SNR)、入站RF信號的信擾比(SIR)、所接收的信號的強度、誤碼率等。根據所期望的回應,控制模組470確定基帶阻抗和/或增益模組的設置。注意,控制模組470可以根據它所監視的各種因數的變化對所期望的回應進行持續更新、定期更新和/或在滿足性能特點標準時(例如發射功率電平改變、SNR低於閾值、SIR低於閾值、所接收的信號的強度低於閾值等)更新。Control module 470 is part of the SOC processing resource that determines the desired low Q bandpass filter response (eg, gain, bandwidth, quality factor, frequency offset, etc.) based on at least one of the following: signal to noise of the inbound RF signal Ratio (SNR), signal to interference ratio (SIR) of the inbound RF signal, strength of the received signal, bit error rate, and the like. Based on the desired response, control module 470 determines the settings of the baseband impedance and/or gain module. Note that the control module 470 can continuously update, periodically update, and/or meet performance criteria criteria (eg, transmit power level changes, SNR below threshold, low SIR) based on changes in various factors it monitors. Updated at a threshold, the strength of the received signal is below a threshold, etc.).

一旦確定(或更新)了低Q基帶濾波器的頻率回應,將通過時鐘生成器476提供的時鐘信號把該低Q基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高QRF濾波器。如圖46所示的時鐘生成器476(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更 好地跟蹤載波頻率。時鐘生成器476還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。替代地,FTBPF 440的至少一個時鐘信號可以用作LO時鐘信號。Once the frequency response of the low Q baseband filter is determined (or updated), the low Q baseband filter is converted to the desired RF frequency by the clock signal provided by clock generator 476 to produce a frequency offset high QRF filter. A clock generator 476, as shown in FIG. 46 (which various embodiments will be described with reference to at least one of the following figures), generates four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to Good tracking of the carrier frequency. The clock generator 476 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FTBPF 440 can be used as the LO clock signal.

回到對圖45的討論,FTBPF 440接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器442與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),複基帶濾波器442的回應轉移到RF(和/或LO),從而實現高Q RF帶通濾波器。Returning to the discussion of Figure 45, the FTBPF 440 receives clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters 442 and inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the response of complex baseband filter 442 is shifted to RF (and/or LO), thereby implementing a high Q RF bandpass filter.

圖47是根據本發明一個實施例的複基帶(BB)濾波器442的示意框圖,它包括多個可調基帶阻抗480-486、可調正增益級488和可調負增益級490。每個可調基帶阻抗可以包括以下至少一項:可選電容網路492(例如可調電容)、可編程的開關電容網路494、可編程的開關電容濾波器496(1階到n階)以及能夠提供期望基帶頻率回應的元件(例如電感、電容、電阻)的任意組合。47 is a schematic block diagram of a complex baseband (BB) filter 442 that includes a plurality of adjustable baseband impedances 480-486, an adjustable positive gain stage 488, and an adjustable negative gain stage 490, in accordance with one embodiment of the present invention. Each of the adjustable baseband impedances can include at least one of: an optional capacitor network 492 (eg, a tunable capacitor), a programmable switched capacitor network 494, and a programmable switched capacitor filter 496 (1st to nth order) And any combination of components (eg, inductors, capacitors, resistors) that provide the desired baseband frequency response.

可調增益級(+Gm和-Gm)488-490可以分別包括連接有增益網路的放大器。增益網路可以包括以下至少一項:電阻、電容、可變電阻、可變電容等。就此而言,可以調節每個增益級的增益以改變複基帶濾波器442的性能。具體地,通過可調阻抗的阻抗值改變增益,可以改變低Q帶通濾波器的頻率偏移。此外或替代地,通過控制模組470提供的控制信號可以改變複基帶濾波器442的帶寬、增益、擺動速率、品質因數和/或其他性能。The adjustable gain stages (+Gm and -Gm) 488-490 may each include an amplifier connected to a gain network. The gain network may include at least one of the following: a resistor, a capacitor, a variable resistor, a variable capacitor, and the like. In this regard, the gain of each gain stage can be adjusted to vary the performance of the complex baseband filter 442. Specifically, the frequency offset of the low Q band pass filter can be changed by changing the gain by the impedance value of the adjustable impedance. Additionally or alternatively, the bandwidth, gain, swing rate, quality factor, and/or other performance of complex baseband filter 442 may be varied by control signals provided by control module 470.

圖48是根據本發明一個實施例的為RX RF-IF部將複BB濾波器442的頻率回應轉換為高Q RF濾波器的頻率回應的示意圖,其包括具有圖47所示可調複基帶濾波器442的FTBPF 440。在該示意圖中,可以對複基帶濾波器442提供的低Q基帶濾波器的帶寬、擺動速率、增益、頻率偏移和/或其他性能進行調節。低Q帶通濾波器的可調及調節後的特徵可以被轉換為RF(或LO)。就此而言,通過調節低Q基帶濾波器的性能,可以類似地調節相應高Q 基帶濾波器的性能。48 is a diagram showing the frequency response of converting the frequency response of the complex BB filter 442 to a high Q RF filter for the RX RF-IF section, including the tunable complex baseband filtering shown in FIG. 47, in accordance with an embodiment of the present invention. The FTBPF 440 of the 442. In this diagram, the bandwidth, slew rate, gain, frequency offset, and/or other performance of the low Q baseband filter provided by the complex baseband filter 442 can be adjusted. The adjustable and adjusted features of the low Q bandpass filter can be converted to RF (or LO). In this regard, by adjusting the performance of the low-Q baseband filter, the corresponding high Q can be similarly adjusted. Baseband filter performance.

圖49是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,包括FTBPF 412(變頻帶通濾波器)。RX RF-IF部的該部分包括I 504和Q RF-IF混頻器500以及混頻暫存器502。FTBPF模組包括FTBPF和其他暫存器。FTBPF包括多個電晶體和多個基帶阻抗(例如ZBB(s) )414、416、418和420。Figure 49 is a schematic block diagram of a portion of an RF-IF receiver portion including an FTBPF 412 (frequency band pass filter) in accordance with another embodiment of the present invention. This portion of the RX RF-IF section includes an I 504 and Q RF-IF mixer 500 and a mixing buffer 502. The FTBPF module includes the FTBPF and other registers. The FTBPF includes a plurality of transistors and a plurality of baseband impedances (e.g., Z BB(s) ) 414, 416, 418, and 420.

在一個運行的例子中,I混頻器504將入站RF信號的I分量與本地振盪(例如,fLO2 =fRF -fIF 500)的I分量混頻以產生I混頻的信號。I混頻暫存器緩存I混頻的信號並將緩存的I混頻信號提供給FTBPF模組412。類似地,Q混頻器將入站RF信號的Q分量與本地振盪(例如,fLO2 =fRF -fIF )的Q分量混頻以產生Q混頻的信號。Q混頻暫存器緩存Q混頻的信號並將緩存的Q混頻信號提供給FTBPF模組412。FTBPF 412提供高Q(品質因數)IF濾波器,該濾波器濾波入站IF信號(例如I和Q混頻的信號)使得入站IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBBz(s) )414、416、418和420共同提供具有基帶濾波器回應的低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。In one example of operation, I mixer 504 mixes the I component of the inbound RF signal with the I component of the local oscillation (e.g., f LO2 = f RF - f IF 500) to produce an I-mixed signal. The I mix register buffers the I-mixed signal and provides the buffered I-mixed signal to the FTBPF module 412. Similarly, the Q mixer mixes the Q component of the inbound RF signal with the Q component of the local oscillation (eg, f LO2 =f RF -f IF ) to produce a Q-mixed signal. The Q mixing register buffers the Q-mixed signal and provides the buffered Q-mixed signal to the FTBPF module 412. The FTBPF 412 provides a high Q (quality factor) IF filter that filters the inbound IF signal (eg, the I and Q mixed signals) such that the desired signal component of the inbound IF signal is transmitted substantially un-attenuated and the undesired signal Components (such as block, mirror, etc.) are attenuated. To implement the filter, the baseband impedances (Z BBz(s) ) 414, 416, 418, and 420 together provide a low Q baseband filter with a baseband filter response, where each baseband impedance can be a capacitive, switched capacitor filter, respectively. , switched capacitor resistance and / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器510提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的IF頻率以產生頻率偏移的高QIF濾波器。圖51示出了頻率偏移的低Q基帶濾波器向頻率偏移的高QIF濾波器的變頻,圖50示出了時鐘生成器510的一個實施例。The frequency offset low Q baseband filter is frequency converted to a desired IF frequency by a clock signal provided by clock generator 510 to produce a frequency shifted high QIF filter. Figure 51 illustrates frequency conversion of a frequency shifted low Q baseband filter to a frequency shifted high QIF filter. Figure 50 illustrates one embodiment of a clock generator 510.

如圖50所示,時鐘生成器510(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25% 占空比且依次相移90°。時鐘信號的頻率對應於入站IF信號的載波頻率,並可以調節以更好地跟蹤載波頻率。時鐘生成器510還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號(例如LO2)。替代地,FTBPF 412的至少一個時鐘信號可以用作LO時鐘信號。As shown in FIG. 50, clock generator 510 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having 25% of the clock signal. The duty cycle is sequentially shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound IF signal and can be adjusted to better track the carrier frequency. The clock generator 510 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal (e.g., LO2). Alternatively, at least one clock signal of the FTBPF 412 can be used as the LO clock signal.

回到對圖49的討論,FTBPF 412接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站IF信號。由於時鐘速率在IF(例如入站IF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到IF(和/或LO2),從而實現高QIF帶通濾波器。Returning to the discussion of Figure 49, the FTBPF 412 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound IF signals. Since the clock rate is at the IF (eg, the carrier frequency of the desired component of the inbound IF signal), the baseband impedance response (low Q bandpass filter) is transferred to IF (and/or LO2) to achieve a high QIF bandpass filter .

圖52是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括IF FTBPF(變頻帶通濾波器)模組530。RX RF-IF部的該部分包括I和QRF-IF混頻器以及混頻暫存器。IF FTBPF 530模組包括差分IF FTBPF 530和其他暫存器。差分IF FTBPF 530包括多個電晶體和多個基帶阻抗(例如ZBB(s) )。Figure 52 is a schematic block diagram of a portion of an RF-IF receiver portion including an IF FTBPF (Frequency Variable Bandpass Filter) module 530, in accordance with another embodiment of the present invention. This part of the RX RF-IF section includes the I and QRF-IF mixers as well as the mixing registers. The IF FTBPF 530 module includes a differential IF FTBPF 530 and other registers. The differential IF FTBPF 530 includes a plurality of transistors and a plurality of baseband impedances (e.g., Z BB(s) ).

在一個運行的例子中,I混頻器522將入站RF信號的I分量與本地振盪(例如,fLO2 =fRF -fIF 520)的I分量混頻以產生I混頻的信號。I混頻暫存器522緩存I混頻的信號並將緩存的I混頻信號提供給FTBPF 530模組。類似地,Q混頻器523將入站RF信號的Q分量與本地振盪(例如,fLO2 =fRF -fIF 521)的Q分量混頻以產生Q混頻的信號。Q混頻暫存器523緩存Q混頻的信號並將緩存的Q混頻信號提供給FTBPF 530模組。In one operational example, I mixer 522 mixes the I component of the inbound RF signal with the I component of the local oscillation (eg, f LO2 =f RF -f IF 520) to produce an I-mixed signal. The I mix register 522 buffers the I-mixed signal and provides the buffered I-mixed signal to the FTBPF 530 module. Similarly, Q mixer 523 mixes the Q component of the inbound RF signal with the Q component of the local oscillation (e.g., f LO2 = f RF - f IF 521) to produce a Q-mixed signal. The Q mix register 523 buffers the Q-mixed signal and provides the buffered Q-mixed signal to the FTBPF 530 module.

FTBPF 530提供高Q(品質因數)IF濾波器,該濾波器濾波入站IF信號(例如I和Q混頻的信號)使得入站IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBBz(s) )532、534、536、538、540、542、544和546共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注 意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 530 provides a high Q (quality factor) IF filter that filters the inbound IF signal (eg, the I and Q mixed signals) such that the desired signal component of the inbound IF signal is transmitted substantially undecreased and the desired signal Components (such as block, mirror, etc.) are attenuated. To implement the filter, the baseband impedances (Z BBz(s) ) 532, 534, 536, 538, 540, 542, 544, and 546 together provide a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor, respectively. Filter, switched capacitor resistance and / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號將頻率偏移的低Q基帶濾波器變頻為期望的IF頻率以產生頻率偏移的高Q IF濾波器。如圖53所示的時鐘生成器550(它的各種實施例將參考以下至少一幅附圖進行描述)產生8個時鐘信號,每個時鐘信號具有12.5%占空比且依次相移45°。時鐘信號的頻率對應於入站IF信號的載波頻率,並可以調節以更好地跟蹤載波頻率。時鐘生成器550還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號(例如LO2)。替代地,FTBPF的至少一個時鐘信號可以用作LO時鐘信號。The frequency offset low Q baseband filter is frequency converted to a desired IF frequency by a clock signal provided by the clock generator to produce a frequency shifted high Q IF filter. A clock generator 550, as shown in FIG. 53, which will be described with reference to at least one of the following figures, produces eight clock signals, each having a duty cycle of 12.5% and sequentially phase shifted by 45[deg.]. The frequency of the clock signal corresponds to the carrier frequency of the inbound IF signal and can be adjusted to better track the carrier frequency. The clock generator 550 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal (e.g., LO2). Alternatively, at least one clock signal of the FTBPF can be used as the LO clock signal.

回到對圖52的討論,FTBPF 530接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站IF信號。由於時鐘速率在IF(例如入站IF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到IF(和/或LO2),從而實現高Q IF帶通濾波器。Returning to the discussion of Figure 52, the FTBPF 530 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound IF signals. Since the clock rate is at the IF (eg, the carrier frequency of the desired component of the inbound IF signal), the baseband impedance response (low Q bandpass filter is commonly) is transferred to IF (and / or LO2) to achieve high Q IF bandpass filtering Device.

圖54是根據本發明一個實施例的RF-IF接收器部的一部分的示意框圖,它包括單端FTBPF 560(變頻帶通濾波器),且單端FTBPF 560包含負阻。RXRF-IF部的該部分包括變壓器、可變電容網路和LNA。FTBPF 560包括多個電晶體和多個基帶阻抗(ZBB(s) )562、564、566和568。Figure 54 is a schematic block diagram of a portion of an RF-IF receiver portion including a single-ended FTBPF 560 (frequency bandpass filter) and a single-ended FTBPF 560 including a negative resistance, in accordance with one embodiment of the present invention. This part of the RXRF-IF section includes transformers, variable capacitor networks, and LNAs. The FTBPF 560 includes a plurality of transistors and a plurality of baseband impedances (Z BB(s) ) 562, 564, 566, and 568.

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器。變壓器升高或降低入站RF信號的電壓電平,隨後由可變電容網路對其進行濾波。注意,若不需要對入站RF信號的電壓電平 進行調節和/或不需要變壓器提供的分離,那麼可以省略變壓器。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to the transformer. The transformer raises or lowers the voltage level of the inbound RF signal, which is then filtered by a variable capacitance network. Note that if the voltage level of the inbound RF signal is not required The transformer can be omitted by making adjustments and/or without the separation provided by the transformer.

FTBPF 560提供高Q(品質因數)RF濾波器,該濾波器濾波入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 392且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBB (s))562、564、566和568共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 560 provides a high Q (quality factor) RF filter that filters the inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 392 and undesired signal components (eg, block, mirror) Etc.) attenuation. To implement the filter, the baseband impedances (Z BB (s)) 562, 564, 566, and 568 together provide a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or Or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

另外,FTBPF 560包括負阻(例如-2R)以補償電感損耗、補償開關損耗和/或提高低Q帶通濾波器的選擇性和/或品質因數。負阻可以按如圖56所示的實施,即包括多個電晶體。通過時鐘生成器提供的時鐘信號將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF濾波器。如圖55所示的時鐘生成器(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以調節以更好地跟蹤載波頻率。時鐘生成器572還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。In addition, FTBPF 560 includes a negative resistance (eg, -2R) to compensate for inductance losses, compensate for switching losses, and/or improve the selectivity and/or quality factor of the low Q bandpass filter. The negative resistance can be implemented as shown in Figure 56, i.e., includes a plurality of transistors. The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by the clock generator to produce a high Q RF filter. The clock generator shown in Figure 55 (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 572 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal.

回到對圖54的討論,FTBPF 560接收時鐘信號,這些時鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到RF,從而實現高Q RF帶通濾波器。Returning to the discussion of Figure 54, the FTBPF 560 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound RF signals. Since the clock rate is at the RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the baseband impedance response (the low Q bandpass filter is commonly) is transferred to the RF, thereby implementing a high Q RF bandpass filter.

圖57是根據本發明一個實施例的RF-IF接收器部的一部分的示意框圖,它包括差分FTBPF 580(變頻帶通濾波器),且差分FTBPF 580包含負阻。RXRF-IF部的該部分包括變壓器、可變電 容網路和LNA 393。差分FTBPF 580包括多個電晶體和多個基帶阻抗(ZBB (s))。Figure 57 is a schematic block diagram of a portion of an RF-IF receiver portion that includes a differential FTBPF 580 (frequency bandpass filter) and a differential FTBPF 580 that includes a negative resistance, in accordance with one embodiment of the present invention. This part of the RXRF-IF section includes the transformer, variable capacitance network, and LNA 393. The differential FTBPF 580 includes a plurality of transistors and a plurality of baseband impedances (Z BB (s)).

在一個運行的例子中,前端模組(FEM)390通過天線接收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM 390處理後的入站RF信號提供給變壓器。變壓器升高或降低入站RF信號的電壓電平,隨後由可變電容網路對其進行濾波。注意,若不需要對入站RF信號的電壓電平進行調節和/或不需要變壓器提供的分離,那麼可以省略變壓器。In an operational example, a front end module (FEM) 390 receives an inbound RF signal through an antenna, and processes the RF signal as described above and/or as described with reference to at least one of the following figures, and processes the FEM 390 The inbound RF signal is provided to the transformer. The transformer raises or lowers the voltage level of the inbound RF signal, which is then filtered by a variable capacitance network. Note that the transformer can be omitted if the voltage level of the inbound RF signal does not need to be adjusted and/or the separation provided by the transformer is not required.

FTBPF 580提供高Q(品質因數)RF濾波器,該濾波器濾波入站RF信號使得入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 580 provides a high Q (quality factor) RF filter that filters the inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block, mirror) Etc.) attenuation. To implement the filter, the baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

另外,FTBPF 580包括負阻(例如-2R)以補償電感損耗、補償開關損耗和/或提高低Q帶通濾波器的選擇性和/或品質因數。負阻可以按如圖56所示的實施。In addition, FTBPF 580 includes a negative resistance (eg, -2R) to compensate for inductance losses, compensate for switching losses, and/or improve the selectivity and/or quality factor of the low Q bandpass filter. The negative resistance can be implemented as shown in FIG.

通過時鐘生成器582提供的時鐘信號將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF濾波器。如圖58所示的時鐘生成器582(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器582還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入站RF信號為入站IF信號。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by clock generator 582 to produce a high QRF filter. A clock generator 582, as shown in Figure 58 (which various embodiments will be described with reference to at least one of the following figures), generates four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better track the carrier frequency. The clock generator 582 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal.

回到對圖57的討論,FTBPF 580接收時鐘信號,這些時鐘信 號與電晶體相連以依次連接它們各自的基帶阻抗與入站RF信號。由於時鐘速率在RF(例如入站RF信號的期望分量的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移到RF,從而實現高QRF帶通濾波器。Returning to the discussion of Figure 57, the FTBPF 580 receives clock signals that are clocked. The numbers are connected to the transistors to sequentially connect their respective baseband impedances to the inbound RF signal. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the inbound RF signal), the baseband impedance response (the low Q bandpass filter is commonly) is transferred to the RF, thereby implementing a high QRF bandpass filter.

圖59是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括雙頻帶FTBPF(變頻帶通濾波器)590。RX RF-IF部的該部分包括變壓器、可變電容網路和LNA 392-1及392-2。FTBPF 590包括多個電晶體和多個基帶阻抗(ZBB (s))592、594、596和598。Figure 59 is a schematic block diagram of a portion of an RF-IF receiver portion including a dual band FTBPF (Frequency Bandpass Filter) 590, in accordance with another embodiment of the present invention. This part of the RX RF-IF section includes transformers, variable capacitor networks, and LNAs 392-1 and 392-2. The FTBPF 590 includes a plurality of transistors and a plurality of baseband impedances (Z BB (s)) 592, 594, 596, and 598.

在一個運行的例子中,前端模組(FEM)390通過天線接收雙頻帶入站RF信號(例如fRF1 和fRF2 ),按照上述和/或將要參考以下至少一幅附圖進行描述的方式處理該RF信號,並將FEM處理後的入站RF信號提供給變壓器。變壓器升高或降低入站RF信號的電壓電平,隨後由可變電容網路C1對其進行濾波。注意,若不需要對入站RF信號的電壓電平進行調節和/或不需要變壓器提供的分離,那麼可以省略變壓器。In one operational example, front end module (FEM) 390 receives dual band inbound RF signals (e.g., fRF1 and fRF2 ) through an antenna, as described above and/or as described with reference to at least one of the following figures. The RF signal is supplied to the transformer by the FEM processed inbound RF signal. The transformer raises or lowers the voltage level of the inbound RF signal, which is then filtered by the variable capacitance network C1. Note that the transformer can be omitted if the voltage level of the inbound RF signal does not need to be adjusted and/or the separation provided by the transformer is not required.

FTBPF 590提供兩個高Q(品質因數)RF濾波器(一個以fRF1 為中心頻率,另一個以fRF2 為中心頻率),這些濾波器濾波入站RF信號使得雙頻帶入站RF信號的期望信號分量基本未衰減地傳遞給LNA 392-1和392-2且不期望的信號分量(例如阻滯、鏡像等)衰減。這兩個高QRF濾波器由多個基帶阻抗(ZBB (s)592、594、596和598)和多個電晶體形成,其中每個基帶阻抗包括另外多個基帶阻抗(例如ZBB ’(s)592、594、596和598)和另外多個電晶體。另外多個基帶阻抗(ZBB ’(s)592、594、596和598)提供低Q基帶濾波器,其中另外多個基帶阻抗中每一個分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節 低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 590 provides two high-Q (quality factor) RF filters (one centered at f RF1 and the other centered on f RF2 ). These filters filter the inbound RF signal to make the expectations of the dual-band inbound RF signal. The signal components are transmitted to the LNAs 392-1 and 392-2 substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. The two high QRF filters are formed by a plurality of baseband impedances (Z BB (s) 592, 594, 596, and 598) and a plurality of transistors, wherein each baseband impedance includes a further plurality of baseband impedances (eg, Z BB '( s) 592, 594, 596 and 598) and a further plurality of transistors. A plurality of other baseband impedances (Z BB '(s) 592, 594, 596, and 598) provide a low Q baseband filter, wherein each of the other plurality of baseband impedances may be a capacitor, a switched capacitor filter, a switched capacitor resistor, and / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器600提供的時鐘信號(頻率為fD )將低Q基帶濾波器變頻為期望的RF頻率(例如fD =(fLO1 -fLO2 )/2)以產生高QRF濾波器。如圖60所示的時鐘生成器600(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號(例如LO’1 到LO’4 ),每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的第一頻帶的載波頻率(例如fRF1 或fLO1 )減去入站RF信號的第二頻帶的載波頻率(例如fRF2 或fLO2 )的差值的1/2,並可以被調節以更好地跟蹤至少一個載波頻率。Clock signal provided by clock generator 600 (the frequency f D) of the low Q baseband filter frequency of the desired RF frequency (e.g., f D = (f LO1 -f LO2 ) / 2) to produce a high QRF filter. The clock generator shown in FIG. 60 600 (its various embodiments the at least one reference to the following figures) generates four clock signals (e.g., LO '1 to LO' 4), each clock signal having a 25% The duty cycle is sequentially shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the first frequency band of the inbound RF signal (eg, f RF1 or f LO1 ) minus the difference of the carrier frequency of the second frequency band of the inbound RF signal (eg, f RF2 or f LO2 ) 1/2, and can be adjusted to better track at least one carrier frequency.

由於第一多個電晶體與速率為fC 的LO1 -LO4 (由如圖60所示的時鐘生成器600產生)同步,由第一多個基帶阻抗形成的高QRF濾波器被變頻為更高的期望Rf頻率,其中fC=(fLO1 +fLO2 )/2。例如,參考圖61,由另外多個基帶阻抗形成的低Q基帶濾波器被變頻為+/-fD 。因此,第一高Q帶通濾波器的回應以+/-fD 為中心頻率,還示出了三階諧波。參考圖62,第一高Q帶通濾波器被變頻為fC -fD 和fC +fD 以產生兩個高Q帶通濾波器。因為fC =(fLO1 +fLO2 )/2,fD =(fLO1 -fLO2 )/2,所以fC -fD =LO2,fC +fD =LO1。因此,其中一個高Q帶通濾波器以LO2(或fRF2 )為中心,另一個高Q帶通濾波器以LO1(或fRF1 )為中心。因此,第一高Q帶通濾波器通過入站RF信號的頻率為LO2(或fRF2 )的期望信號分量,第二高Q帶通濾波器通過入站RF信號的頻率為LO1(或fRF1 )的期望信號分量。Since the first plurality of transistors are synchronized with LO 1 -LO 4 (generated by clock generator 600 as shown in FIG. 60) at a rate f C , the high QRF filter formed by the first plurality of baseband impedances is converted to Higher expected Rf frequency, where fC = (f LO1 + f LO2 )/2. For example, with reference to FIG. 61, the low-Q baseband filter formed by a plurality of additional impedance is frequency-converted to baseband +/- f D. Therefore, the response of the first high Q bandpass filter is centered at +/-f D and also shows the third harmonic. Referring to Figure 62, the first high Q band pass filter is frequency converted to f C -f D and f C +f D to produce two high Q band pass filters. Since f C =(f LO1 +f LO2 )/2, f D =(f LO1 -f LO2 )/2, f C -f D =LO2,f C +f D =LO1. Therefore, one of the high Q bandpass filters is centered on LO2 (or fRF2 ) and the other high Q bandpass filter is centered on LO1 (or fRF1 ). Thus, the first high Q bandpass filter passes the desired signal component of the inbound RF signal at LO2 (or fRF2 ), and the second high Q bandpass filter passes the inbound RF signal at a frequency of LO1 (or fRF1) The expected signal component.

圖63是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括雙頻帶差分FTBPF(變頻帶通濾波器)610。RX RF-IF部的該部分包括變壓器、可變電容網路和LNA 393-1及393-2。FTBPF 610包括多個電晶體和多個基帶阻抗(ZBB (s))612、614、616和618。Figure 63 is a schematic block diagram of a portion of an RF-IF receiver portion including a dual band differential FTBPF (Frequency Bandpass Filter) 610, in accordance with another embodiment of the present invention. This part of the RX RF-IF section includes transformers, variable capacitor networks, and LNAs 393-1 and 393-2. The FTBPF 610 includes a plurality of transistors and a plurality of baseband impedances (Z BB (s)) 612, 614, 616, and 618.

在一個運行的例子中,前端模組(FEM)390通過天線接收雙頻帶入站RF信號(例如fRF1 和fRF2 ),按照上述和/或將要參考以下至 少一幅附圖進行描述的方式處理該RF信號,並將FEM處理後的入站RF信號提供給變壓器T1。該變壓器將入站RF信號轉換為差分入站RF信號。In one operational example, front end module (FEM) 390 receives dual band inbound RF signals (e.g., fRF1 and fRF2 ) through an antenna, as described above and/or as described with reference to at least one of the following figures. The RF signal is supplied to the transformer T1 after the FEM processed inbound RF signal. The transformer converts the inbound RF signal into a differential inbound RF signal.

FTBPF 610提供兩個高Q(品質因數)RF濾波器(一個以fRF1 為中心頻率,另一個以fRF2 為中心頻率),這些濾波器濾波入站RF信號使得雙頻帶入站RF信號的期望信號分量基本未衰減地傳遞給LNA 393-1和393-2且不期望的信號分量(例如阻滯、鏡像等)衰減。這兩個高QRF濾波器由多個基帶阻抗(ZBB (s)612、614、616和618)和多個電晶體形成,其中每個基帶阻抗包括另外多個基帶阻抗(例如ZBB ’(s)612、614、616和618)和另外多個電晶體。另外多個基帶阻抗(ZBB ’(s)612、614、616和618)提供低Q基帶濾波器,其中另外多個基帶阻抗中每一個分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。The FTBPF 610 provides two high-Q (quality factor) RF filters (one centered on f RF1 and the other centered on f RF2 ). These filters filter the inbound RF signal to make the expectations of the dual-band inbound RF signal. The signal components are transmitted to the LNAs 393-1 and 393-2 substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. The two high QRF filters are formed by a plurality of baseband impedances (Z BB (s) 612, 614, 616, and 618) and a plurality of transistors, wherein each baseband impedance includes a further plurality of baseband impedances (eg, Z BB '( s) 612, 614, 616 and 618) and a further plurality of transistors. A plurality of other baseband impedances (Z BB '(s) 612, 614, 616, and 618) provide a low Q baseband filter, wherein each of the other plurality of baseband impedances may be a capacitor, a switched capacitor filter, a switched capacitor resistor, and / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器600提供的時鐘信號(頻率為fD )將低Q基帶濾波器變頻為期望的RF頻率(例如fD =(fLO1 -fLO2 )/2)以產生高QRF濾波器。如圖60所示的時鐘生成器600(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號(例如LO’1 到LO’4 ),每個時鐘信號具有25%占空比且依次相移90°。時鐘信號的頻率對應於入站RF信號的第一頻帶的載波頻率(例如fRF1 或fLO1 )減去入站RF信號的第二頻帶的載波頻率(例如fRF2 或fLO2 )的差值的1/2,並可以被調節以更好地跟蹤至少一個載波頻率。Clock signal provided by clock generator 600 (the frequency f D) of the low Q baseband filter frequency of the desired RF frequency (e.g., f D = (f LO1 -f LO2 ) / 2) to produce a high QRF filter. The clock generator shown in FIG. 60 600 (its various embodiments the at least one reference to the following figures) generates four clock signals (e.g., LO '1 to LO' 4), each clock signal having a 25% The duty cycle is sequentially shifted by 90°. The frequency of the clock signal corresponds to the carrier frequency of the first frequency band of the inbound RF signal (eg, f RF1 or f LO1 ) minus the difference of the carrier frequency of the second frequency band of the inbound RF signal (eg, f RF2 or f LO2 ) 1/2, and can be adjusted to better track at least one carrier frequency.

由於第一多個電晶體與速率為fC 的LO1 -LO4 (由如圖60所示的時鐘生成器產生)同步,由第一多個基帶阻抗形成的高QRF濾波器被變頻為更高的期望Rf頻率,其中fC =(fLO1 +fLO2 )/2。因此,其中一個高Q帶通濾波器以LO2(或fRF2 )為中心,另一個高Q帶 通濾波器以LO1(或fRF1 )為中心。因此,第一高Q帶通濾波器通過入站RF信號的頻率為LO2(或fRF2 )的期望信號分量,第二高Q帶通濾波器通過入站RF信號的頻率為LO1(或fRF1 )的期望信號分量。圖64是根據本發明另一個實施例的RF-IF接收器部的一部分的示意框圖,它包括變壓器、可變電容網路、一對基於反相器的LNA 395、混頻器和輸出暫存器(或單位增益驅動器)。混頻器包括多個電晶體、一對互阻放大器(TIA)622及624和伴隨的阻抗(Z)626及628。Since the first plurality of transistors are synchronized with LO 1 -LO 4 (generated by the clock generator as shown in FIG. 60) at a rate f C , the high QRF filter formed by the first plurality of baseband impedances is converted to be more High expected Rf frequency, where f C = (fLO 1 + fLO 2 )/2. Therefore, one of the high Q bandpass filters is centered on LO2 (or fRF2 ) and the other high Q bandpass filter is centered on LO1 (or fRF1 ). Thus, the first high Q bandpass filter passes the desired signal component of the inbound RF signal at LO2 (or fRF2 ), and the second high Q bandpass filter passes the inbound RF signal at a frequency of LO1 (or fRF1) The expected signal component. 64 is a schematic block diagram of a portion of an RF-IF receiver portion including a transformer, a variable capacitance network, a pair of inverter-based LNAs 395, a mixer, and an output temporary, in accordance with another embodiment of the present invention. Memory (or unity gain driver). The mixer includes a plurality of transistors, a pair of transimpedance amplifiers (TIAs) 622 and 624, and associated impedances (Z) 626 and 628.

在一個運行的例子中,LNA 395向混頻器提供差分電流(iRF 和-iRF )。在電流域(current domain)中,混頻器將差分電流與本地振盪的差分I 630分量(LOIP 和LOIN )混頻以產生I混頻的電流信號。混頻器還將差分電流與本地振盪的差分Q632分量(LOQP 和LOQN )混頻以產生Q混頻的電流信號。In one running example, the LNA 395 provides differential currents (i RF and -i RF ) to the mixer. In the current domain, the mixer mixes the differential current with the differential I 630 component of the local oscillation (LO IP and LO IN ) to produce an I-mixed current signal. The mixer also Q632 differential current differential component (LO QP and LO QN) mixing a local oscillation signal to generate a current Q mixed.

第一TIA 622及624通過相關阻抗(Z)626及628放大I混頻的電流信號,並產生電壓域I混頻的信號。同樣地,第二TIA通過相關阻抗(Z)626及628放大Q混頻的電流信號,並產生電壓域Q混頻的信號。The first TIAs 622 and 624 amplify the I-mixed current signals through the associated impedances (Z) 626 and 628 and produce a voltage domain I mixed signal. Similarly, the second TIA amplifies the Q-mixed current signal through the associated impedances (Z) 626 and 628 and produces a voltage domain Q-mixed signal.

圖65是根據本發明另一個實施例的用於RF-IF接收器部的時鐘生成器634的示意框圖。該時鐘生成器(它的各種實施例將參考以下至少一幅附圖進行描述)產生4個時鐘信號(例如LOIP 、LOIN 、LOQP 和LOQN ),每個時鐘信號具有25%占空比且依次相移90°。Figure 65 is a schematic block diagram of a clock generator 634 for an RF-IF receiver section in accordance with another embodiment of the present invention. The clock generator (its various embodiments will be described with reference to at least one of the following figures) produces four clock signals (e.g., LO IP , LO IN , LO QP , and LO QN ), each having a 25% duty cycle Ratio and phase shift by 90°.

圖66是根據本發明一個實施例的互阻放大器(TIA)和相應阻抗(Z)640及642的示意框圖。該TIA包括電流源、頻率相關(frequency dependent)放大器(-A(s))、IF電晶體(TIF )和低頻電晶體(TLF )。TIA的每個輸出腳中的相應阻抗包括電阻、電容和電晶體。Figure 66 is a schematic block diagram of a transimpedance amplifier (TIA) and corresponding impedances (Z) 640 and 642, in accordance with one embodiment of the present invention. The TIA includes a current source, a frequency dependent amplifier (-A(s), an IF transistor (T IF ), and a low frequency transistor (T LF ). The corresponding impedance in each output pin of the TIA includes resistors, capacitors, and transistors.

在一個運行的例子中,在in-和in+接收差分輸入電流。負輸入節點的電流節點分析(例如KCL-基爾霍夫(Kirchoff)電流法則)顯示,電流源電流(ib)等於輸入電流(iIN )+穿過電容的電流(iC)+穿過 TIF 的電流(iOUT )+穿過TLF 的電流。正輸入(out+)的KVL(基爾霍夫電壓法則)顯示,輸出電壓(Vout+)等於Vdd-Z*IOUT (即穿過TIF 的電流)。In a running example, the differential input current is received at in- and in+. Current node analysis of the negative input node (eg KCL-Kirchoff current law) shows that the current source current (ib) is equal to the input current (iI N ) + the current through the capacitor (iC) + through the T IF Current (i OUT ) + current through T LF . The positive input (out+) KVL (Kirchhoff voltage law) shows that the output voltage (Vout+) is equal to Vdd-Z*I OUT (ie, the current through T IF ).

在高頻(例如高於入站RF信號的rRF ),電容的阻抗變為主要,輸入基本上都減少;因此,輸出電流(iOUT )基本上不包含高頻分量。在低頻(例如,低於入站RF信號的rRF ),針對TIF 配置放大器和低頻電晶體,對於低頻電流TIF 基本上是開路。這可以通過改變電晶體的大小及偏置放大器來實現,使得TLF 在低頻的阻抗遠小於Z+TIFAt high frequencies (e.g., r RF above the inbound RF signal), the impedance of the capacitor becomes dominant and the input is substantially reduced; therefore, the output current (i OUT ) contains substantially no high frequency components. At low frequencies (e.g., below the R & lt inbound RF signal RF), for T IF amplifier configuration and a low-frequency transistor, T IF for the low frequency current is substantially open. This can be achieved by changing the size of the transistor and biasing the amplifier so that the impedance of the T LF at low frequencies is much smaller than Z+T IF .

對於期望頻率範圍內的頻率(例如fRF ),相比TIF 的阻抗以及相應阻抗Z640、642,電容和TLF 具有較高阻抗。因此,iOUT =ib -iIN 且vOUT =Z*iOUT 。相應地,TIA和相應阻抗Z640、642可以調諧用於提供高Q RF帶通濾波器。注意,TIA的至少一個分量可以通過SOC處理資源提供的控制信號進行調節,從而調節高Q帶通濾波器的性能。For the desired frequency (e.g., f RF) within a frequency range, compared to the impedance of the impedance and the corresponding T IF Z640,642, the capacitor having a higher impedance and T LF. Therefore, iO UT = i b -i IN and v OUT = Z*i OUT . Accordingly, the TIA and corresponding impedances Z640, 642 can be tuned to provide a high Q RF bandpass filter. Note that at least one component of the TIA can be adjusted by a control signal provided by the SOC processing resource to adjust the performance of the high Q bandpass filter.

圖67是根據本發明一個實施例的低雜訊放大器(LNA)670的示意框圖,它包括FTBPF 650、672、674和678。LNA 670包括電流源、一對輸入電晶體(T3和T4)、一對偏置電晶體(T1和T2)以及輸出阻抗(示出了電阻,但還可以是電感、電晶體、電容和/或其組合。注意,電流源可以被無源裝置(例如電阻、電感、電容和/或其組合)代替或可以被省略。FTBPF 650、672、674和678可以位於LNA 670中如圖所示的任意位置。Figure 67 is a schematic block diagram of a low noise amplifier (LNA) 670 that includes FTBPFs 650, 672, 674, and 678, in accordance with one embodiment of the present invention. The LNA 670 includes a current source, a pair of input transistors (T3 and T4), a pair of bias transistors (T1 and T2), and an output impedance (showing the resistance, but can also be an inductor, a transistor, a capacitor, and/or Combinations. Note that the current source can be replaced by passive devices (such as resistors, inductors, capacitors, and/or combinations thereof) or can be omitted. FTBPFs 650, 672, 674, and 678 can be located in LNA 670 as shown in the figure. position.

圖68是根據本發明一個實施例的差分4相FTBPF(變頻帶通濾波器)680的示意框圖,它包括多個電晶體和4個基帶阻抗(例如ZBB (s))682、684、686和688。基帶阻抗(ZBB (s))682、684、686和688共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個 基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。68 is a schematic block diagram of a differential 4-phase FTBPF (frequency conversion bandpass filter) 680 that includes a plurality of transistors and four baseband impedances (eg, Z BB (s)) 682, 684, in accordance with an embodiment of the present invention. 686 and 688. The baseband impedances (Z BB (s)) 682, 684, 686, and 688 together provide a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖69是根據本發明一個實施例的4相FTBPF 680的頻率響應的示意圖,它示出了信號饋通諧波與疊加信號諧波。信號饋通諧波692在+/-3、+/-5、+/-7和+/-9,疊加信號諧波690在-3、-5、-7和-9。Figure 69 is a schematic illustration of the frequency response of a 4-phase FTBPF 680 showing signal feedthrough harmonics and superimposed signal harmonics, in accordance with one embodiment of the present invention. The signal feedthrough harmonics 692 are at +/-3, +/-5, +/-7, and +/-9, and the superimposed signal harmonics 690 are at -3, -5, -7, and -9.

圖70是根據本發明另一個實施例的3相FTBPF(變頻帶通濾波器)700的示意框圖,它包括多個電晶體和3個基帶阻抗(例如ZBB (s))702、704和706。基帶阻抗(ZBB (s))702、704和706共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。70 is a schematic block diagram of a 3-phase FTBPF (frequency conversion band pass filter) 700 including a plurality of transistors and three baseband impedances (eg, Z BB (s)) 702, 704, and in accordance with another embodiment of the present invention. 706. The baseband impedances (Z BB (s)) 702, 704, and 706 together provide a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過如圖71所示的由時鐘生成器提供的時鐘信號(例如LO1 -LO^ )將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF或IF濾波器。差分高Q RF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。A clock signal (e.g., LO 1 -LO ^) when provided by the clock generator shown in FIG. 71 by the low-Q baseband filter frequency of the desired RF frequency to produce a high Q RF or IF filter. The differential high Q RF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖72是根據本發明一個實施例的3相FTBPF 700的頻率響應的示意圖,它示出了信號饋通諧波與疊加信號諧波。信號饋通諧波708在+/-5和+/-7,疊加信號諧波710在5和7。Figure 72 is a schematic illustration of the frequency response of a 3-phase FTBPF 700 showing signal feedthrough harmonics and superimposed signal harmonics, in accordance with one embodiment of the present invention. The signal feedthrough harmonics 708 are at +/- 5 and +/- 7, and the superimposed signal harmonics 710 are at 5 and 7.

圖73是根據本發明另一個實施例的4相FTBPF(變頻帶通濾波器)712的示意框圖,它包括多個電晶體和4個電容。這些電容共同提供低Q基帶濾波器。注意,每個電容的容值可以是相同的、不同的或其組合。還要注意,每個電容的容值可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。Figure 73 is a schematic block diagram of a 4-phase FTBPF (frequency conversion bandpass filter) 712 comprising a plurality of transistors and 4 capacitors in accordance with another embodiment of the present invention. These capacitors together provide a low Q baseband filter. Note that the capacitance of each capacitor can be the same, different, or a combination thereof. It is also noted that the capacitance of each capacitor can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF或IF濾波器。差分高Q RF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high Q RF or IF filter. The differential high Q RF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖74是根據本發明另一個實施例的4相FTBPF(變頻帶通濾波器)714的示意框圖,它包括多個電晶體和如圖所示與電晶體相連的2個基帶阻抗(例如ZBB (s))。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。74 is a schematic block diagram of a 4-phase FTBPF (frequency conversion bandpass filter) 714 including a plurality of transistors and two baseband impedances connected to the transistors as shown (eg, Z, in accordance with another embodiment of the present invention). BB (s)). The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF或IF濾波器。差分高Q RF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high Q RF or IF filter. The differential high Q RF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖75是根據本發明另一個實施例的4相FTBPF(變頻帶通濾波器)716的示意框圖,它包括多個電晶體和4個基帶阻抗(例如ZBB (s))。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複 阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。Figure 75 is a schematic block diagram of a 4-phase FTBPF (frequency conversion bandpass filter) 716 comprising a plurality of transistors and 4 baseband impedances (e.g., Z BB (s)), in accordance with another embodiment of the present invention. The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖76是根據本發明另一個實施例的4相FTBPF(變頻帶通濾波器)720的示意框圖,它包括多個電晶體和1個複基帶阻抗(例如ZBB,C (ω))722。複基帶阻抗提供低Q基帶濾波器,後者相對0偏移wOC。注意,複基帶阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數、頻率偏移等)。76 is a schematic block diagram of a 4-phase FTBPF (frequency conversion band pass filter) 720 including a plurality of transistors and a complex baseband impedance (eg, Z BB, C (ω)) 722 , in accordance with another embodiment of the present invention. . The complex baseband impedance provides a low Q baseband filter that is offset from 0 by wOC. Note that the complex baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, frequency offset, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖77是根據本發明一個實施例的用於FTBPF(變頻帶通濾波器)的複基帶阻抗的示意框圖。複基帶阻抗726包括第一基帶阻抗(例如ZBB (ω))、負增益級(例如-jGm(ω)VIM (ω))、第二基帶阻抗(例如ZBB (ω))和正增益級(例如jGm(ω)VRE (ω))。因此,複基帶阻抗包括實數分量(RE)和虛數分量(IM)。複基帶阻抗提供具有如圖所示頻率回應的低Q帶通濾波器,其中實數分量由w>0的曲線表示,虛數分量由w<0的曲線表示。Figure 77 is a schematic block diagram of complex baseband impedance for an FTBPF (Frequency Bandpass Filter), in accordance with one embodiment of the present invention. The complex baseband impedance 726 includes a first baseband impedance (eg, Z BB (ω)), a negative gain stage (eg, -jGm(ω)V IM (ω)), a second baseband impedance (eg, Z BB (ω)), and a positive gain stage. (eg jGm(ω)V RE (ω)). Therefore, the complex baseband impedance includes a real component (RE) and an imaginary component (IM). The complex baseband impedance provides a low Q bandpass filter with a frequency response as shown, where the real component is represented by a curve with w > 0 and the imaginary component is represented by a curve with w <

圖78是根據本發明一個實施例的4相FTBPF(變頻帶通濾波 器)的示意框圖,它包括複基帶阻抗,該基帶阻抗通過電容實現。複基帶阻抗提供低Q基帶濾波器730,後者相對0偏移wOC,該偏移量取決於增益(Gm)與電容阻抗(CBB )之間的比率。注意,複基帶阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數、頻率偏移等)。例如,可以調節電容和/或增益模組。Figure 78 is a schematic block diagram of a 4-phase FTBPF (frequency conversion bandpass filter) including a complex baseband impedance that is implemented by a capacitor, in accordance with one embodiment of the present invention. The complex baseband impedance provides a low Q baseband filter 730 that is offset from 0 by wOC, which is dependent on the ratio between the gain (Gm) and the capacitive impedance (C BB ). Note that the complex baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, frequency offset, etc.). For example, the capacitance and/or gain modules can be adjusted.

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將頻率偏移的低Q基帶濾波器變頻為期望的RF頻率以產生高Q RF或IF濾波器。差分高Q RF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The clock signal supplied by the clock generator (e.g., LO 1 -LO 4) low-Q baseband filter frequency offset converted to a desired RF frequency to produce a high Q RF or IF filter. The differential high Q RF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖79是根據本發明一個實施例的m相FTBPF(變頻帶通濾波器)732的示意框圖,它包括多個電晶體和m個電容,其中m=>2。這些電容共同提供低Q基帶濾波器。注意,每個電容的容值可以是相同的、不同的或其組合。還要注意,每個電容的容值可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。Figure 79 is a schematic block diagram of an m-phase FTBPF (frequency conversion bandpass filter) 732 comprising a plurality of transistors and m capacitors, where m = > 2, in accordance with one embodiment of the present invention. These capacitors together provide a low Q baseband filter. Note that the capacitance of each capacitor can be the same, different, or a combination thereof. It is also noted that the capacitance of each capacitor can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖80是根據本發明一個實施例的m相FTBPF(變頻帶通濾波器)734的示意框圖,它包括多個電晶體和m個基帶阻抗(例如ZBB (s)),其中m是4的整數倍且大於4。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的 阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。Figure 80 is a schematic block diagram of an m-phase FTBPF (frequency conversion bandpass filter) 734 comprising a plurality of transistors and m baseband impedances (e.g., Z BB (s)), where m is 4, in accordance with one embodiment of the present invention. Integer multiple and greater than 4. The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LOM )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波IF信號的差分I信號分量和差分Q信號分量使得IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO M ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential I signal component and the differential Q signal component of the IF signal such that the desired signal component of the IF signal is transmitted substantially un-attenuated and the undesired signal component (eg, block, mirror, etc.) is attenuated.

圖81是根據本發明一個實施例的m相FTBPF(變頻帶通濾波器)736的示意框圖,它包括多個電晶體和m/2個基帶阻抗(例如ZBB (s)),其中m大於等於4。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。Figure 81 is a schematic block diagram of an m-phase FTBPF (frequency conversion bandpass filter) 736 including a plurality of transistors and m/2 baseband impedances (e.g., Z BB (s)), where m is included, in accordance with one embodiment of the present invention. Greater than or equal to 4. The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖82是根據本發明一個實施例的m相FTBPF(變頻帶通濾波器)738的示意框圖,它包括多個電晶體和m個基帶阻抗(例如ZBB (s)),其中m大於等於2。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。82 is a schematic block diagram of an m-phase FTBPF (frequency conversion bandpass filter) 738 including a plurality of transistors and m baseband impedances (eg, Z BB (s)), where m is greater than or equal to, in accordance with an embodiment of the present invention. 2. The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖83是根據本發明一個實施例的單端m相FTBPF(變頻帶通濾波器)740的示意框圖,它包括多個電晶體和m個基帶阻抗(例如ZBB (s)),其中m大於等於2。基帶阻抗(ZBB (s))共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減率、品質因數等)。Figure 83 is a schematic block diagram of a single-ended m-phase FTBPF (frequency conversion bandpass filter) 740 comprising a plurality of transistors and m baseband impedances (e.g., Z BB (s)), where m is included, in accordance with one embodiment of the present invention. Greater than or equal to 2. The baseband impedance (Z BB (s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如LO1 -LO4 )將低Q基帶濾波器變頻為期望的RF頻率以產生高QRF或IF濾波器。差分高QRF濾波器濾波差分RF或IF信號使得RF或IF信號的期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻滯、鏡像等)衰減。The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal (eg, LO 1 -LO 4 ) provided by the clock generator to produce a high QRF or IF filter. The differential high QRF filter filters the differential RF or IF signal such that the desired signal component of the RF or IF signal is transmitted substantially un-attenuated and the unwanted signal components (eg, block, mirror, etc.) are attenuated.

圖84是根據本發明一個實施例的m相FTBPF 740的頻率響應的示意圖,它示出了低Q帶通濾波器被變頻為更高頻(例如fLO )。fLO 對應於RF頻率、IF頻率、本地振盪或其組合。FIG 84 is a schematic diagram of the phase frequency response 740 m FTBPF according to an embodiment of the present invention, showing low Q bandpass filter is converted to a higher frequency (e.g., f LO). f LO corresponds to RF frequency, IF frequency, local oscillation, or a combination thereof.

圖85是根據本發明一個實施例的用於m相FTBPF的時鐘生成器750的示意框圖。該時鐘生成器包括多個觸發器(DFF)752、754和756以及多個脈衝收窄器(pulse narrower)758、760和762。觸發器752、754和756與速率為m*fRF 的時鐘信號(clk)及時鐘柵信號(clkb)同步。從每個觸發器752、754和756得到的時鐘脈衝由相應的脈衝收窄器進行脈衝收窄。Figure 85 is a schematic block diagram of a clock generator 750 for an m-phase FTBPF, in accordance with one embodiment of the present invention. The clock generator includes a plurality of flip flops (DFF) 752, 754, and 756 and a plurality of pulse narrowers 758, 760, and 762. Flip-flops 752, 754, and 756 are synchronized with a clock signal (clk) and a clock gate signal (clkb) at a rate of m*f RF . The clock pulses obtained from each of the flip flops 752, 754 and 756 are pulse narrowed by the respective pulse constrictors.

脈衝收窄器758、760和762包括兩對如圖連接的電晶體。左 邊下面的電晶體小於其他電晶體,使上升沿時間慢於下降沿時間,從而收窄脈衝。Pulse narrowers 758, 760 and 762 comprise two pairs of transistors connected as shown. left The transistor below the side is smaller than the other transistors, making the rising edge time slower than the falling edge time, thereby narrowing the pulse.

圖86是根據本發明另一個實施例的用於m相FTBPF的時鐘生成器770的示意框圖。該時鐘生成器包括多個觸發器(DFF)772、774和776以及多個及閘。觸發器772、774和776與速率為(1/2)*m*fRF 的時鐘信號(clk)及時鐘柵信號(clkb)同步。及閘從第一觸發器772接收非反相輸出並從下一觸發器774接收反相輸出以確保連續的時鐘脈衝不重疊。Figure 86 is a schematic block diagram of a clock generator 770 for an m-phase FTBPF, in accordance with another embodiment of the present invention. The clock generator includes a plurality of flip flops (DFF) 772, 774, and 776 and a plurality of AND gates. Flip-flops 772, 774, and 776 are synchronized with a clock signal (clk) and a clock gate signal (clkb) at a rate of (1/2)*m*f RF . The AND gate receives the non-inverted output from the first flip-flop 772 and the inverted output from the next flip-flop 774 to ensure that successive clock pulses do not overlap.

圖87是根據本發明另一個實施例的用於m相FTBPF的時鐘生成器790的示意框圖。該時鐘生成器包括環振盪器792以及多個邏輯電路。每個邏輯電路包括及閘和反相器或暫存器。環振盪器792的柵值為時鐘速率m*fRF (m是奇數,它等於或大於3)。每個邏輯電路從環振盪器792接收連續脈衝,使得連續的時鐘脈衝不重疊。Figure 87 is a schematic block diagram of a clock generator 790 for an m-phase FTBPF, in accordance with another embodiment of the present invention. The clock generator includes a ring oscillator 792 and a plurality of logic circuits. Each logic circuit includes a gate and an inverter or a register. The gate value of the ring oscillator 792 is the clock rate m*f RF (m is an odd number which is equal to or greater than 3). Each logic circuit receives successive pulses from ring oscillator 792 such that successive clock pulses do not overlap.

圖88是根據本發明一個實施例的用於3相FTBPF的時鐘生成器800的示意框圖,該時鐘生成器包括環振盪器792以及多個邏輯電路。每個邏輯電路包括及閘及暫存器和/或反相器的組合。例如,每個邏輯電路包括及閘、反相器和暫存器。環振盪器792的柵值(gated)為時鐘速率3*fRF 。通過邏輯電路,及閘被偏置以產生1/3占空比的非重疊時鐘(例如clk 1 802、clk 2 806和clk 3 804)。Figure 88 is a schematic block diagram of a clock generator 800 for a 3-phase FTBPF that includes a ring oscillator 792 and a plurality of logic circuits, in accordance with one embodiment of the present invention. Each logic circuit includes a combination of a gate and a register and/or an inverter. For example, each logic circuit includes a gate, an inverter, and a register. The gate of the ring oscillator 792 is gated at a clock rate of 3*f RF . Through the logic circuit, the AND gate is biased to produce a 1/3 duty cycle non-overlapping clock (eg, clk 1 802, clk 2 806, and clk 3 804).

圖89是根據本發明另一個實施例的用於3相FTBPF的時鐘生成器810的示意框圖,該時鐘生成器包括兩個環振盪器792以及多個邏輯門。每個邏輯電路包括及閘及暫存器和/或反相器的組合。例如,每個邏輯電路包括及閘、反相器和暫存器。第一環振盪器792的柵值為時鐘速率3*fRF ,第二環振盪器792的柵值為3*fRF 的反相(inversion)(例如-3*fRF )。在這種配置下,時鐘信號1-3812、814和816如圖88所示,時鐘信號4-6818、820和822分別是時鐘信號1-3的反相。Figure 89 is a schematic block diagram of a clock generator 810 for a 3-phase FTBPF that includes two ring oscillators 792 and a plurality of logic gates in accordance with another embodiment of the present invention. Each logic circuit includes a combination of a gate and a register and/or an inverter. For example, each logic circuit includes a gate, an inverter, and a register. A first ring oscillator clock rate of the gate 792 is 3 * f RF, the second ring oscillator gate 792 is inverted 3 * f RF (Inversion) (e.g. -3 * f RF). In this configuration, clock signals 1-3812, 814, and 816 are as shown in FIG. 88, and clock signals 4-6818, 820, and 822 are the inverse of clock signals 1-3, respectively.

圖90是根據本發明一個實施例的部分前端模組(FEM)810及部分SOC 812的示意框圖。FEM 810的該部分包括功率放大器模組(PA)814、雙工器、平衡網路818和共模感應電路。雙工器包括變壓器(或其他結構,例如頻率可選雙工器和/或電子平衡雙工器),平衡網路818包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 812的該部分包括峰值檢測器820、調諧引擎822和低雜訊放大器模組(LNA)。替代地,峰值檢測器820和/或調諧引擎822可以位於FEM 810中。Figure 90 is a schematic block diagram of a portion of a front end module (FEM) 810 and a portion of a SOC 812, in accordance with one embodiment of the present invention. This portion of the FEM 810 includes a power amplifier module (PA) 814, a duplexer, a balanced network 818, and a common mode sensing circuit. The duplexer includes a transformer (or other structure, such as a frequency selectable duplexer and/or an electronically balanced duplexer), and the balanced network 818 includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 812 includes peak detector 820, tuning engine 822, and low noise amplifier module (LNA). Alternatively, peak detector 820 and/or tuning engine 822 may be located in FEM 810.

在一個運行的例子中,PA 814將出站RF信號提供給變壓器初級雙線圈的中央抽頭。根據天線與平衡網路818之間的阻抗差,出站RF信號的電流在兩個線圈間分流。若平衡網路818的阻抗與天線阻抗基本匹配,電流基本上平均分流向兩個線圈。In one operating example, the PA 814 provides an outbound RF signal to the center tap of the primary double coil of the transformer. Depending on the impedance difference between the antenna and the balanced network 818, the current of the outbound RF signal is split between the two coils. If the impedance of the balanced network 818 substantially matches the antenna impedance, the current is substantially evenly split to the two coils.

利用如圖所示的線圈配置,若初級線圈的電流基本相等,那麼它們在次級線圈的磁場基本上相互抵消。因此,次級的出站RF信號基本上是衰減的。對於入站RF信號,初級的兩個線圈根據入站RF信號的電流產生磁場。此時,增加了磁場,因而在次級產生了相對於初級中兩倍的電流(假設每個線圈具有相同匝數)。因此,變壓器放大了入站RF信號。With the coil configuration as shown, if the currents of the primary coils are substantially equal, then their magnetic fields in the secondary coils substantially cancel each other out. Therefore, the secondary outbound RF signal is substantially attenuated. For an inbound RF signal, the primary two coils generate a magnetic field based on the current of the inbound RF signal. At this point, the magnetic field is increased, thus producing twice the current in the secondary relative to the primary (assuming each coil has the same number of turns). Therefore, the transformer amplifies the inbound RF signal.

若天線阻抗與平衡網路818的阻抗不匹配,次級中將出現出站RF信號電流分量(例如TX洩漏量)。例如,假設從線圈流向電感的電流是iP1 ,從線圈流向平衡網路818的電流是iP2 ,那麼TX洩漏量可以表示為iP1 -iP2 。共模感應電流的電阻感應TX洩漏量。例如,電阻的中心節點的電壓等於VS-(R1 *2iR +R1 *iP2 -R2 *iP1 ),其中VS是次級的電壓,2iR 是所接收的入站RF信號的電流。假設R1 =R2 且iP1 =iP2 ,那麼中心節點的電壓等於VS的1/2。但是,若iP1 不等於iP2 ,電阻的中心節點的電壓將偏離1/2VS,偏離量與差值成比例。If the antenna impedance does not match the impedance of the balanced network 818, an outbound RF signal current component (e.g., TX leakage) will appear in the secondary. For example, assuming that the current flowing from the coil to the inductor is i P1 and the current flowing from the coil to the balanced network 818 is i P2 , the amount of TX leakage can be expressed as i P1 -i P2 . The resistance of the common mode induced current senses the amount of TX leakage. For example, the voltage at the center node of the resistor is equal to VS-(R 1 *2i R +R 1 *i P2 -R 2 *i P1 ), where VS is the secondary voltage and 2i R is the received inbound RF signal Current. Assuming R 1 =R 2 and i P1 =i P2 , the voltage at the center node is equal to 1/2 of VS. However, if i P1 is not equal to i P2 , the voltage at the center node of the resistor will deviate from 1/2 VS, and the amount of deviation is proportional to the difference.

檢測器820檢測電阻的中心節點的電壓偏離1/2VS的差值,並將該差值的運算式提供給調諧引擎822。調諧引擎822解析該差值,並生成控制信號以調節平衡網路的阻抗。例如,若iP1 >iP2 ,那麼共模感應電路(例如電阻的中心節點)的電壓將大於1/2VS,這表示平衡網路818的阻抗過大。因此,調諧引擎822生成控制信號以減小平衡網路818的阻抗。又例如,若iP1 <iP2 ,那麼共模感應電路的電壓將小於1/2VS,這表示平衡網路的阻抗過小。因此,調諧引擎822生成控制信號以增加平衡網路818的阻抗。Detector 820 detects that the voltage at the center node of the resistor deviates from the difference of 1/2 VS and provides an arithmetic expression of the difference to tuning engine 822. Tuning engine 822 parses the difference and generates a control signal to adjust the impedance of the balanced network. For example, if i P1 >i P2 , the voltage of the common mode sensing circuit (eg, the center node of the resistor) will be greater than 1/2 VS, which indicates that the impedance of the balanced network 818 is too large. Thus, tuning engine 822 generates control signals to reduce the impedance of balanced network 818. For another example, if i P1 <i P2 , the voltage of the common mode sensing circuit will be less than 1/2 VS, which means that the impedance of the balanced network is too small. Thus, tuning engine 822 generates control signals to increase the impedance of balanced network 818.

調諧引擎822可以解析共模電壓偏差,確定平衡網路818的期望阻抗,並相應地生成控制信號。替代地,調諧引擎822可以反復地生成控制信號以逐步地調節平衡網路818的阻抗,直到獲得期望的阻抗。利用任意方法,調諧引擎822的功能都是保持平衡網路818的阻抗與天線的阻抗基本上相匹配(隨著時間、使用和/或環境條件的變化)以最小化TX洩漏量。Tuning engine 822 can resolve the common mode voltage deviation, determine the desired impedance of balanced network 818, and generate control signals accordingly. Alternatively, tuning engine 822 can iteratively generate control signals to gradually adjust the impedance of balanced network 818 until the desired impedance is obtained. Using any method, the function of the tuning engine 822 is to maintain the impedance of the balanced network 818 substantially matched to the impedance of the antenna (changes over time, usage, and/or environmental conditions) to minimize the amount of TX leakage.

圖91是根據本發明另一個實施例的部分前端模組(FEM)830及部分SOC 832的示意框圖。FEM 830的該部分包括功率放大器模組(PA)836、雙工器838、平衡網路842、天線調諧單元(ATU)840和共模感應電路。雙工器838包括變壓器(或其他結構,例如頻率可選雙工器838和/或電子平衡雙工器838),平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 832的該部分包括峰值檢測器848、調諧引擎850、查找表(LUT)844、處理模組846和低雜訊放大器模組(LNA)852。替代地,峰值檢測器848和/或調諧引擎850可以位於FEM 830中。91 is a schematic block diagram of a partial front end module (FEM) 830 and a portion of SOC 832, in accordance with another embodiment of the present invention. This portion of the FEM 830 includes a power amplifier module (PA) 836, a duplexer 838, a balanced network 842, an antenna tuning unit (ATU) 840, and a common mode sensing circuit. Duplexer 838 includes a transformer (or other structure, such as frequency selectable duplexer 838 and/or electronically balanced duplexer 838) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 832 includes peak detector 848, tuning engine 850, lookup table (LUT) 844, processing module 846, and low noise amplifier module (LNA) 852. Alternatively, peak detector 848 and/or tuning engine 850 can be located in FEM 830.

除了共模感應電路(即電阻)、檢測器848、調諧引擎850和平衡網路842提供的用於平衡平衡網路842的阻抗與天線阻抗這一功能(如參考圖90所描述的)外,FEM 830還包括ATU 840。ATU 840包括一個或多個固定的無源元件和/或一個或多個可變的無源元 件。例如,ATU 840可以包括可變電容-電感電路、可變電容、可變電感等。In addition to the functionality provided by the common mode sensing circuit (i.e., resistor), detector 848, tuning engine 850, and balance network 842 for balancing the impedance of the balanced network 842 with the antenna impedance (as described with reference to Figure 90), The FEM 830 also includes the ATU 840. ATU 840 includes one or more fixed passive components and/or one or more variable passive elements Pieces. For example, the ATU 840 can include a variable capacitance-inductor circuit, a variable capacitance, a variable inductance, and the like.

在一個運行的例子中,PA 836將放大的出站RF信號提供給雙工器838,後者包括功能如參考圖90所描述的變壓器。雙工器838輸出放大的出站RF信號給ATU 840,通過存儲在LUT 844中的設置來調諧ATU 840,從而提供期望的天線匹配電路(例如,阻抗匹配、品質因數、帶寬等)。ATU 840將出站RF信號輸出給天線以便發射。In one operational example, the PA 836 provides an amplified outbound RF signal to a duplexer 838 that includes a transformer as described with reference to FIG. The duplexer 838 outputs the amplified outbound RF signal to the ATU 840, tuning the ATU 840 through settings stored in the LUT 844 to provide the desired antenna matching circuitry (e.g., impedance matching, quality factor, bandwidth, etc.). The ATU 840 outputs the outbound RF signal to the antenna for transmission.

對於入站RF信號,天線接收該信號並將其提供給ATU 840,後者再將其提供給雙工器838。雙工器838將入站RF信號輸出給LNA 852和共模感應電路。共模感應電路、檢測器848、調諧引擎850和平衡網路842的功能如上面參考圖90所描述的。For an inbound RF signal, the antenna receives the signal and provides it to the ATU 840, which in turn provides it to the duplexer 838. The duplexer 838 outputs the inbound RF signal to the LNA 852 and the common mode sensing circuit. The functions of the common mode sensing circuit, detector 848, tuning engine 850, and balancing network 842 are as described above with reference to FIG.

處理模組846用於監視FEM 830的各種參數。例如,處理模組846可以監視天線阻抗、發射功率、PA 836的性能(例如增益、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、超調量、穩定因數等)、接收的信號強度、SNR、SIR、調諧引擎850所做的調節等。處理模組846解析這些參數以確定FEM 830的性能可否進一步優化。例如,處理模組846可以確定對ATU 840進行調節可以提高PA 836的性能。此時,處理模組846定址LUT 844以提供對ATU 840的期望設置。若ATU 840中的這種改變影響了ATU 840與平衡網路842之間的阻抗平衡,調諧引擎850將做出適當的調節。Processing module 846 is used to monitor various parameters of FEM 830. For example, the processing module 846 can monitor antenna impedance, transmit power, performance of the PA 836 (eg, gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rise rate, settling time, overshoot, stability) Factor, etc.), received signal strength, SNR, SIR, adjustments made by the tuning engine 850, and the like. Processing module 846 parses these parameters to determine if the performance of FEM 830 can be further optimized. For example, the processing module 846 can determine that adjusting the ATU 840 can improve the performance of the PA 836. At this point, processing module 846 addresses LUT 844 to provide the desired settings for ATU 840. If such a change in ATU 840 affects the impedance balance between ATU 840 and balanced network 842, tuning engine 850 will make the appropriate adjustments.

在另一個實施例中,處理模組846提供調諧引擎850的功能並對ATU 840和平衡網路842的平衡進行調節,以獲得期望的FEM 830的性能。在又另一個實施例中,平衡網路842是固定的,ATU 840在FEM 830中提供期望的調節以獲得阻抗平衡並獲得所期望的FEM 830的性能。In another embodiment, the processing module 846 provides the functionality of the tuning engine 850 and adjusts the balance of the ATU 840 and the balancing network 842 to achieve the desired performance of the FEM 830. In yet another embodiment, the balancing network 842 is fixed and the ATU 840 provides the desired adjustments in the FEM 830 to achieve impedance balancing and achieve the desired performance of the FEM 830.

圖92是根據本發明另一個實施例的用於2G和3G蜂窩運行 的部分前端模組(FEM)860及部分SOC 862的示意框圖。FEM 860的該部分包括功率放大器模組(PA)866、雙工器、平衡網路和共模感應電路。雙工器包括變壓器(或其他結構,例如頻率可選雙工器和/或電子平衡雙工器),平衡網路包括開關、至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 862的該部分包括峰值檢測器872、調諧引擎874、開關和低雜訊放大器模組(LNA)876。替代地,峰值檢測器872和/或調諧引擎874可以位於FEM 860中。Figure 92 is a diagram for 2G and 3G cellular operation in accordance with another embodiment of the present invention. A schematic block diagram of a portion of the front end module (FEM) 860 and a portion of the SOC 862. This part of the FEM 860 includes a power amplifier module (PA) 866, a duplexer, a balanced network, and a common mode sensing circuit. The duplexer includes a transformer (or other structure, such as a frequency selectable duplexer and/or an electronically balanced duplexer), and the balanced network includes a switch, at least one variable resistor, and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 862 includes peak detector 872, tuning engine 874, switches, and low noise amplifier module (LNA) 876. Alternatively, peak detector 872 and/or tuning engine 874 may be located in FEM 860.

在該實施例中,雙工器最適用於頻分雙工(FDD),FDD用於3G蜂窩電話應用中且平衡網路開關和LNA 876開關是打開的。在用於2G蜂窩應用的時分雙工(TDD)中,通過開關將平衡網路短路。這樣基本上消除了3-dB理論插入損耗極限並僅留下實現損耗(implementation loss)。注意,對於2G發射,LNA 876開關是關閉的,對於2G接收,LNA 876開關時打開的。還要注意,對於3G模式,FEM和SOC 862的功能如同參考圖90和/或91所描述的。In this embodiment, the duplexer is best suited for Frequency Division Duplex (FDD), which is used in 3G cellular telephone applications and where the balanced network switch and LNA 876 switch are open. In Time Division Duplex (TDD) for 2G cellular applications, the balanced network is shorted by a switch. This substantially eliminates the 3-dB theoretical insertion loss limit and leaves only implementation loss. Note that for 2G transmissions, the LNA 876 switch is off, and for 2G reception, the LNA 876 switch is turned on. Note also that for the 3G mode, the functions of the FEM and SOC 862 are as described with reference to Figures 90 and/or 91.

圖93是根據本發明一個實施例的2G TX模式下圖92所示的部分前端模組(FEM)860及部分SOC 862的示意框圖。在該模式中,LNA 876開關將LNA 876短路,平衡網路開關將平衡網路短路。由於次級線圈兩端的短路,初級線圈基本上也被短路。因此,PA 866高效地直接連接到天線。Figure 93 is a schematic block diagram of a portion of a front end module (FEM) 860 and a portion of a SOC 862 shown in Figure 92 in a 2G TX mode, in accordance with one embodiment of the present invention. In this mode, the LNA 876 switch shorts the LNA 876 and the balanced network switch shorts the balanced network. Due to the short circuit across the secondary coil, the primary coil is also substantially shorted. Therefore, the PA 866 is efficiently connected directly to the antenna.

圖94是根據本發明一個實施例的2G RX模式下圖92所示的部分前端模組(FEM)860及部分SOC 862的示意框圖。在該模式中,LNA開關打開,平衡網路開關關閉,因此將平衡網路短路。在這種配置下,變壓器的功能如同用於接收器部的巴倫變壓器。Figure 94 is a schematic block diagram of a portion of a front end module (FEM) 860 and a portion of a SOC 862 shown in Figure 92 in a 2G RX mode, in accordance with one embodiment of the present invention. In this mode, the LNA switch is turned on and the balanced network switch is turned off, thus shorting the balanced network. In this configuration, the transformer functions as a balun transformer for the receiver section.

圖95是根據本發明一個實施例的小信號平衡網路880的示意框圖,它包括多個電晶體、多個電阻和多個電容。平衡網路中包含的電阻的選擇可以由多比特信號(例如10比特)進行控制,平衡網路中包含的電容的選擇可以由另一個多比特信號(例如5比特) 進行控制。Figure 95 is a schematic block diagram of a small signal balancing network 880 that includes a plurality of transistors, a plurality of resistors, and a plurality of capacitors, in accordance with one embodiment of the present invention. The selection of the resistors included in the balanced network can be controlled by a multi-bit signal (eg 10 bits), and the selection of the capacitance contained in the balanced network can be made by another multi-bit signal (eg 5 bits) Take control.

例如,若平衡網路的電阻側包括4個電阻-電晶體電路,其中一個電阻-電晶體電路的公共節點(common node)與下一電阻-電晶體電路的門極連接。在該例子中,每個門極還連接用於接收4比特的比特控制信號。例如,最左端電阻-電晶體電路的門極接收最有效比特,下一最左電阻-電晶體電路接收第二最有效比特,依此類推。另外,最左端電阻-電晶體電路的電阻是R4,下一最左電阻-電晶體電路的電阻是R3,依此類推。因此,例如,當4比特控制信號是0001時,僅僅最右端電阻-電晶體電路是開啟的,且它的電阻R1提供最終的電阻。當4比特控制信號是0011時,最右端的兩個電阻-電晶體電路是開啟的,且最終的電阻為R1//R2。當4比特控制信號是0111時,最右端的三個電阻-電晶體電路是開啟的,且最終的電阻為R1//R2//R3。當4比特控制信號是1111時,所有四個電阻-電晶體電路都是開啟的,且最終的電阻為R1//R2//R3//R4。平衡網路的電容側功能類似。For example, if the resistive side of the balanced network includes four resistor-transistor circuits, the common node of one of the resistor-transistor circuits is coupled to the gate of the next resistor-transistor circuit. In this example, each gate is also connected to receive a 4-bit bit control signal. For example, the gate of the leftmost resistor-transistor circuit receives the most significant bit, the next leftmost resistor-transistor circuit receives the second most significant bit, and so on. In addition, the resistance of the leftmost resistor-transistor circuit is R4, the resistance of the next leftmost resistor-transistor circuit is R3, and so on. Thus, for example, when the 4-bit control signal is 0001, only the rightmost resistor-transistor circuit is turned on, and its resistor R1 provides the final resistance. When the 4-bit control signal is 0011, the two rightmost resistance-transistor circuits are turned on, and the final resistance is R1//R2. When the 4-bit control signal is 0111, the three rightmost resistance-transistor circuits are turned on, and the final resistance is R1//R2//R3. When the 4-bit control signal is 1111, all four resistor-transistor circuits are turned on and the final resistance is R1//R2//R3//R4. The capacitive side function of the balanced network is similar.

在另一個實施例中,每個電阻-電晶體電路和每個電容-電晶體電路可以獨立地由相應控制信號的比特位元進行控制。對於上述附圖中描述的並在這裏修改後的四電阻-電晶體電路配置,控制信號1000產生電阻R4;控制信號0100產生電阻R3;控制信號1010產生電阻R4//R2;依此類推。In another embodiment, each of the resistive-transistor circuitry and each of the capacitor-transistor circuitry can be independently controlled by the bits of the respective control signal. For the four-resistor-transistor circuit configuration described in the above figures and modified herein, control signal 1000 produces resistor R4; control signal 0100 produces resistor R3; control signal 1010 produces resistor R4//R2; and so on.

圖96是根據本發明一個實施例的大信號平衡網路882的示意框圖,它包括RLC(電阻-電感-電容)網路和多個電晶體。電晶體被門控開和關以提供RLC網路不同的電阻、電感和/或電容組合,從而所期望的平衡網路阻抗。此時,電晶體具有相對很小的電壓擺幅,因此可以使用較低電壓電晶體。Figure 96 is a schematic block diagram of a large signal balancing network 882 that includes an RLC (resistor-inductor-capacitor) network and a plurality of transistors, in accordance with one embodiment of the present invention. The transistor is gated on and off to provide a different combination of resistance, inductance and/or capacitance of the RLC network to achieve the desired balanced network impedance. At this point, the transistor has a relatively small voltage swing, so a lower voltage transistor can be used.

圖97是根據本發明另一個實施例的部分前端模組(FEM)890及部分SOC 892的示意框圖。FEM 890的該部分包括功率放大器模組(PA)896、雙工器898、平衡網路900和共模感應電路。雙工 器898包括變壓器(或其他結構,例如頻率可選雙工器898和/或電子平衡雙工器898),平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC的該部分包括峰值檢測器902、調諧引擎904、洩漏量檢測906模組和低雜訊放大器模組(LNA)908。替代地,峰值檢測器902、洩漏量檢測906模組和/或調諧引擎904可以位於FEM 890中。Figure 97 is a schematic block diagram of a portion of a front end module (FEM) 890 and a portion of a SOC 892, in accordance with another embodiment of the present invention. This portion of the FEM 890 includes a power amplifier module (PA) 896, a duplexer 898, a balanced network 900, and a common mode sensing circuit. Duplex The 898 includes a transformer (or other structure, such as a frequency selectable duplexer 898 and/or an electronically balanced duplexer 898) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the SOC includes a peak detector 902, a tuning engine 904, a leak detection 906 module, and a low noise amplifier module (LNA) 908. Alternatively, peak detector 902, leakage amount detection 906 module, and/or tuning engine 904 may be located in FEM 890.

除了洩漏量檢測906模組,本實施例的功能類似於圖90所示實施例。洩漏量模組用於根據PA 896輸出檢測平衡網路900中電路的電晶體導通電阻的變化。例如,若PA 896輸出增加,它將使平衡網路900中電晶體導通電阻改變。該改變影響平衡網路900的整體阻抗。相應地,洩漏量檢測906模組檢測導通電阻改變並將代表性信號提供給調諧引擎904和/或處理模組(如圖91中所示)。The function of this embodiment is similar to the embodiment shown in Fig. 90 except for the leak amount detecting 906 module. The leakage module is used to detect changes in the transistor on-resistance of the circuit in the balanced network 900 based on the PA 896 output. For example, if the PA 896 output is increased, it will cause the transistor on-resistance in the balanced network 900 to change. This change affects the overall impedance of the balancing network 900. Accordingly, the leak detection 906 module detects an on-resistance change and provides a representative signal to the tuning engine 904 and/or processing module (as shown in FIG. 91).

根據洩漏量檢測906模組的輸入,調諧引擎904調節平衡網路900的阻抗。替代地或此外,處理模組使用來自洩漏量檢測906模組的輸入來調節ATU的設置。不論採用哪種特定方法,都補償了平衡網路900中電晶體的和/或功率放大器中電晶體的導通阻抗的變化。Tuning engine 904 adjusts the impedance of balancing network 900 based on the amount of leakage detection 906 module input. Alternatively or in addition, the processing module uses the input from the leak detection 906 module to adjust the ATU settings. Regardless of which particular method is employed, the variation in the on-resistance of the transistors in the transistor and/or the power amplifier in the balanced network 900 is compensated.

圖98是根據本發明另一個實施例的部分前端模組(FEM)910及部分SOC 912的示意框圖。FEM 910的該部分包括功率放大器模組(PA)916、雙工器918、平衡網路920和共模感應電路。雙工器918包括變壓器(或其他結構,例如頻率可選雙工器918和/或電子平衡雙工器918),平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 912的該部分包括峰值檢測器922、處理模組926(包含調諧引擎的功能)和低雜訊放大器模組(LNA)924。替代地,峰值檢測器922和/或調諧引擎可以位於FEM 910中。Figure 98 is a schematic block diagram of a portion of a front end module (FEM) 910 and a portion of a SOC 912, in accordance with another embodiment of the present invention. This portion of the FEM 910 includes a power amplifier module (PA) 916, a duplexer 918, a balanced network 920, and a common mode sensing circuit. The duplexer 918 includes a transformer (or other structure, such as a frequency selectable duplexer 918 and/or an electronically balanced duplexer 918) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 912 includes peak detector 922, processing module 926 (which includes the functionality of the tuning engine), and low noise amplifier module (LNA) 924. Alternatively, peak detector 922 and/or tuning engine may be located in FEM 910.

對於調節雙工器918的TX衰減和/或RX增益的能力,本實施例的功能類似於圖90所示實施例。例如,當發射功率相對較低時(例如入站RF信號的阻滯較小和/或入站RF信號的信號強度相對較高),處理模組926向雙工器918提供信號,使雙工器918減小TX衰減,從而減小插入損耗。For the ability to adjust the TX attenuation and/or RX gain of duplexer 918, the functionality of this embodiment is similar to the embodiment shown in FIG. For example, when the transmit power is relatively low (eg, the blockage of the inbound RF signal is small and/or the signal strength of the inbound RF signal is relatively high), the processing module 926 provides a signal to the duplexer 918 to enable duplexing. The 918 reduces TX attenuation, thereby reducing insertion loss.

例如,若雙工器918包括如圖90所示的變壓器和/或其他類型的頻率可選雙工器918,可以將部分濾波器短路以便在減少分離的代價下增加損耗。又例如,若雙工器918包括電子平衡雙工器,該分離可以與平衡網路的分離相平衡。For example, if the duplexer 918 includes a transformer and/or other type of frequency selective duplexer 918 as shown in FIG. 90, a partial filter can be shorted to increase losses at the expense of reduced separation. As another example, if the duplexer 918 includes an electronically balanced duplexer, the separation can be balanced with the separation of the balanced network.

圖99是根據本發明另一個實施例的部分前端模組(FEM)930及部分SOC 932的示意框圖。FEM 930的該部分包括功率放大器模組(PA)936、雙工器938和平衡網路940。雙工器938包括變壓器(或其他結構,例如頻率可選雙工器938和/或電子平衡雙工器938)、寄生電容和補償電容,平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 932的該部分包括峰值檢測器、處理模組(包含調諧引擎的功能)和低雜訊放大器模組(LNA)940。僅僅示出了LNA 940。Figure 99 is a schematic block diagram of a portion of a front end module (FEM) 930 and a portion of a SOC 932, in accordance with another embodiment of the present invention. This portion of the FEM 930 includes a power amplifier module (PA) 936, a duplexer 938, and a balancing network 940. The duplexer 938 includes a transformer (or other structure, such as frequency selectable duplexer 938 and/or electronically balanced duplexer 938), parasitic capacitance and compensation capacitance, and the balanced network includes at least one variable resistor and at least one variable capacitance. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the SOC 932 includes a peak detector, a processing module (including the functionality of the tuning engine), and a low noise amplifier module (LNA) 940. Only the LNA 940 is shown.

在該實施例中,增加補償電容以補償寄生電容(例如Cp1和Cp2)的失匹,該失匹是由於初級線圈(例如L1和L2)之間的失匹導致的。因此,選擇補償電容(Cc1和Cc2),使Cp1+Cc1=Cp2+Cc2。增加補償電容後,雙工器938的分離帶寬大於沒有補償電容時的分離帶寬。In this embodiment, the compensation capacitance is increased to compensate for the mismatch of parasitic capacitances (e.g., Cp1 and Cp2) due to the mismatch between the primary coils (e.g., L1 and L2). Therefore, the compensation capacitors (Cc1 and Cc2) are selected such that Cp1+Cc1=Cp2+Cc2. After the compensation capacitor is increased, the separation bandwidth of the duplexer 938 is greater than the separation bandwidth when there is no compensation capacitor.

圖100是根據本發明另一個實施例的部分前端模組(FEM)950及部分LNA 952的示意框圖。FEM 950的該部分包括功率放大器模組(PA)954、雙工器956和平衡網路958。雙工器956包括變壓器(或其他結構,例如頻率可選雙工器和/或電子平衡雙工器956),該變壓器具有寄生電容(Cp3和Cp4)。LNA 952包括輸入電晶體、 偏置電晶體、電感(L3)和負載阻抗(Z),其中輸入電晶體具有寄生電容(Cp)。由於在LNA 952中包含了L3,雙工器956和LNA 952的共模間隔相比傳統LNA 952輸入配置得到了提高。100 is a schematic block diagram of a portion of a front end module (FEM) 950 and a portion of an LNA 952, in accordance with another embodiment of the present invention. This portion of the FEM 950 includes a power amplifier module (PA) 954, a duplexer 956, and a balanced network 958. The duplexer 956 includes a transformer (or other structure, such as a frequency selectable duplexer and/or an electronically balanced duplexer 956) having parasitic capacitances (Cp3 and Cp4). LNA 952 includes an input transistor, Bias transistor, inductor (L3) and load impedance (Z), where the input transistor has a parasitic capacitance (Cp). Since L3 is included in the LNA 952, the common mode spacing of the duplexer 956 and the LNA 952 is improved compared to the conventional LNA 952 input configuration.

圖101是根據本發明一個實施例的圖100所示部分前端模組(FEM)和部分LNA的等效電路的示意框圖。該示意圖示出了共模間隔是如何提高的。通過變壓器的寄生電容(Cp3和Cp4)連接到次級線圈(L)的非平衡電流與不同的諧振電路連接,這些諧振電路由電感(L3)和輸入電晶體的寄生電容形成。諧振電路提供高差分阻抗和低共模阻抗。Figure 101 is a schematic block diagram of an equivalent circuit of a portion of the front end module (FEM) and a portion of the LNA shown in Figure 100, in accordance with one embodiment of the present invention. This schematic shows how the common mode spacing is improved. The unbalanced current connected to the secondary winding (L) through the parasitic capacitances (Cp3 and Cp4) of the transformer is connected to different resonant circuits formed by the inductance (L3) and the parasitic capacitance of the input transistor. The resonant circuit provides high differential impedance and low common mode impedance.

圖102是根據本發明另一個實施例的部分前端模組(FEM)960及部分SOC 962的示意框圖。FEM 960的該部分包括功率放大器模組(PA)、雙工器、平衡網路970和共模感應電路。雙工器包括變壓器(或其他結構,例如頻率可選雙工器和/或電子平衡雙工器),平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 962的該部分包括峰值檢測器974、處理模組976(包含調諧引擎的功能)和單端低雜訊放大器模組(LNA)972。替代地,峰值檢測器974和/或調諧引擎可以位於FEM 960中。Figure 102 is a schematic block diagram of a portion of a front end module (FEM) 960 and a portion of a SOC 962, in accordance with another embodiment of the present invention. This part of the FEM 960 includes a power amplifier module (PA), a duplexer, a balanced network 970, and a common mode sensing circuit. The duplexer includes a transformer (or other structure, such as a frequency selectable duplexer and/or an electronically balanced duplexer), and the balanced network includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 962 includes peak detector 974, processing module 976 (which includes the functionality of the tuning engine), and single-ended low noise amplifier module (LNA) 972. Alternatively, peak detector 974 and/or tuning engine may be located in FEM 960.

在該實施例中,通過使用單端LNA 972基本上消除了共模間隔。圖中所示FEM 960和SOC 962的其他部的功能如上所述。In this embodiment, the common mode spacing is substantially eliminated by using a single-ended LNA 972. The functions of the FEM 960 and other parts of the SOC 962 shown in the figure are as described above.

圖103是根據本發明一個實施例的雙工器的變壓器的示意框圖。該變壓器包括初級線圈(L1&L2)和次級線圈(L2)。初級線圈分別具有相同的匝數;次級線圈可以與初級線圈具有相同匝數或不同匝數。線圈的繞向如圖所示。Figure 103 is a schematic block diagram of a transformer of a duplexer in accordance with one embodiment of the present invention. The transformer includes a primary coil (L1 & L2) and a secondary coil (L2). The primary coils each have the same number of turns; the secondary coils can have the same number of turns or different turns as the primary coil. The winding of the coil is as shown.

圖104是根據本發明一個實施例的IC封裝基板和/或印刷電路板上積體電路的4個厚金屬層上實施的變壓器的實現的示意圖。初級線圈位於上兩層上,次級線圈位於下兩層上。位於一層上的次級的第一線圈可用與其他層上的其他線圈串聯或並聯連接。Figure 104 is a schematic illustration of an implementation of a transformer implemented on four thick metal layers of an IC package substrate and/or integrated circuit on a printed circuit board, in accordance with one embodiment of the present invention. The primary coil is on the upper two layers and the secondary coil is on the lower two layers. The first coil of the secondary on one layer can be connected in series or in parallel with other coils on the other layers.

圖105是根據本發明一個實施例的IC封裝基板和/或印刷電路板上IC的3個厚金屬層上的變壓器的實現的示意圖。初級線圈位於頂層上並使用下一層用於互連。至少一個初級線圈可以旋轉90°。次級線圈位於下面的第三層上。Figure 105 is a schematic illustration of an implementation of a transformer on three thick metal layers of an IC package substrate and/or an IC on a printed circuit board, in accordance with one embodiment of the present invention. The primary coil is on the top layer and the next layer is used for interconnection. At least one primary coil can be rotated by 90°. The secondary coil is located on the third layer below.

圖106是根據本發明另一個實施例的部分前端模組(FEM)990及部分SOC 992的示意框圖。FEM 990的該部分包括功率放大器模組(PA)994、雙工器996、平衡網路1000、音注(tone injection)模組998和共模感應電路。雙工器996包括變壓器(或其他結構,例如頻率可選雙工器996和/或電子平衡雙工器996),平衡網路包括至少一個可變電阻和至少一個可變電容。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 962的該部分包括峰值檢測器1002、處理模組1004(包含調諧引擎的功能)、基帶處理單元和低雜訊放大器模組(LNA)1006。替代地,峰值檢測器1002和/或調諧引擎可以位於FEM 990中。Figure 106 is a schematic block diagram of a portion of a front end module (FEM) 990 and a portion of a SOC 992, in accordance with another embodiment of the present invention. This portion of the FEM 990 includes a power amplifier module (PA) 994, a duplexer 996, a balanced network 1000, a tone injection module 998, and a common mode sensing circuit. The duplexer 996 includes a transformer (or other structure, such as a frequency selectable duplexer 996 and/or an electronically balanced duplexer 996) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 962 includes peak detector 1002, processing module 1004 (which includes the functionality of the tuning engine), a baseband processing unit, and a low noise amplifier module (LNA) 1006. Alternatively, peak detector 1002 and/or tuning engine may be located in FEM 990.

在一個運行的例子中,共模感應電路、調諧引擎、檢測器1002和平衡網路1000的功能如上所述。在很多情況下,當接收器頻帶低於或等於LNA 1006的雜訊平臺時,這些組件會減小發射器(TX)和/或接收器(RX)雜訊。當TX和/或RX雜訊處於或低於雜訊平臺時,很難跟蹤,從而很難跟蹤天線的阻抗。In one example of operation, the functions of the common mode sensing circuit, tuning engine, detector 1002, and balancing network 1000 are as described above. In many cases, these components reduce transmitter (TX) and/or receiver (RX) noise when the receiver band is below or equal to the LNA 1006 noise platform. When the TX and / or RX noise is at or below the noise platform, it is difficult to track, making it difficult to track the impedance of the antenna.

為了增強對天線阻抗的跟蹤,音注模組998在接收器頻帶中注入音調(tone)(例如Acos(ωRX_RF (t)))。雙工器996不同於TX信號地衰減RX音調,因為它位於RX頻帶中,且雙工器996和平衡網路1000可調諧用於TX頻帶。因此,在雙工器996的RX側上(例如變壓器的次級上)產生容易檢測的洩漏信號。To enhance tracking of the antenna impedance, the tone module 998 injects a tone (eg, Acos(ω RX_RF (t))) into the receiver band. The duplexer 996 attenuates the RX tone differently than the TX signal because it is located in the RX band and the duplexer 996 and the balanced network 1000 can be tuned for the TX band. Therefore, an easily detectable leakage signal is generated on the RX side of the duplexer 996 (e.g., on the secondary of the transformer).

基於RX音調的洩漏信號通過接收器部傳播直至它被轉換為基帶信號。在基帶,該音調幅度是RX頻帶間隔的測量值。根據RX頻帶間隔的測量值,可以確定天線的阻抗。隨著天線阻抗的改變,可以調節天線調諧單元和/或平衡網路1000以跟蹤天線的阻 抗。注意,在基帶可以輕易地除去該音調。The leakage signal based on the RX tone propagates through the receiver section until it is converted to a baseband signal. At baseband, the pitch amplitude is a measure of the RX band spacing. Based on the measured values of the RX band spacing, the impedance of the antenna can be determined. As the impedance of the antenna changes, the antenna tuning unit and/or the balance network 1000 can be adjusted to track the resistance of the antenna. anti. Note that the tone can be easily removed at the baseband.

圖107是根據本發明另一個實施例的部分前端模組(FEM)1010及部分SOC 1012的示意框圖。FEM 1010的該部分包括功率放大器模組(PA)1014、雙工器1016、平衡網路1018和共模感應電路(未示出)。雙工器1016包括變壓器(或其他結構,例如頻率可選雙工器1016和/或電子平衡雙工器1016)。共模感應電路包括一對連接在變壓器次級之間的電阻。SOC 1012的該部分包括峰值檢測器1002(未示出)、處理模組1020(執行調諧引擎的功能)和低雜訊放大器模組(LNA)1022。替代地,峰值檢測器1002和/或調諧引擎可以位於FEM 1010中。Figure 107 is a schematic block diagram of a portion of a front end module (FEM) 1010 and a portion of a SOC 1012, in accordance with another embodiment of the present invention. This portion of the FEM 1010 includes a power amplifier module (PA) 1014, a duplexer 1016, a balanced network 1018, and a common mode sensing circuit (not shown). The duplexer 1016 includes a transformer (or other structure, such as a frequency selectable duplexer 1016 and/or an electronically balanced duplexer 1016). The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 1012 includes peak detector 1002 (not shown), processing module 1020 (which performs the functions of the tuning engine), and low noise amplifier module (LNA) 1022. Alternatively, peak detector 1002 and/or tuning engine may be located in FEM 1010.

平衡網路1018包括RLC網路,該RLC網路具有多個可變電阻、多個可變電容和至少一個電感。在該實施例中,可以調諧平衡網路1018以提供可大幅變化的阻抗,從而更好地與天線阻抗匹配。The balanced network 1018 includes an RLC network having a plurality of variable resistors, a plurality of variable capacitors, and at least one inductor. In this embodiment, the balanced network 1018 can be tuned to provide a substantially variable impedance to better match the antenna impedance.

圖108是根據本發明一個實施例的平衡網路的電阻-電晶體(R-T)電路的阻抗的示意框圖。電容相當於電晶體的寄生電容。由於R-T電路包括真實的無源電阻,它可以為插入損耗上的3dB理論極限做貢獻。Figure 108 is a schematic block diagram of the impedance of a resistive-transistor (R-T) circuit of a balanced network, in accordance with one embodiment of the present invention. The capacitance is equivalent to the parasitic capacitance of the transistor. Since the R-T circuit includes a true passive resistor, it can contribute to the 3dB theoretical limit on insertion loss.

圖109是根據本發明另一個實施例的平衡網路的電阻-電晶體(R-T)電路的阻抗的示意框圖。在該實施例中,R-T電路包括電感弱化的共源電晶體。因此,它是一個活躍的電阻,並不為插入損耗上的3dB理論極限做貢獻。因此,平衡網路僅有的損耗是實施損耗。Figure 109 is a schematic block diagram of the impedance of a resistive-transistor (R-T) circuit of a balanced network in accordance with another embodiment of the present invention. In this embodiment, the R-T circuit includes an inductively weakened common source transistor. Therefore, it is an active resistor that does not contribute to the 3dB theoretical limit on insertion loss. Therefore, the only loss in the balanced network is the implementation loss.

圖110是根據本發明一個實施例的平衡網路1030的示意框圖,它包括阻抗上變頻器1032和一個或多個基帶阻抗(Zbb 1034)。阻抗上變頻器與期望頻率(例如fLO 或fRF )同步。阻抗上變頻器1032與基帶阻抗的組合可以按照類似於上述m相變頻帶通濾波器的方式實施。Figure 110 is a schematic block diagram of a balanced network 1030 that includes an impedance upconverter 1032 and one or more baseband impedances (Zbb 1034), in accordance with one embodiment of the present invention. The impedance upconverter is synchronized to the desired frequency (eg f LO or f RF ). The combination of impedance upconverter 1032 and baseband impedance can be implemented in a manner similar to the m-phase variable frequency bandpass filter described above.

圖111是根據本發明另一個實施例的平衡網路的示意框圖,它包括兩個阻抗上變頻器1042、1044和相應的基帶阻抗(Zbb 1046、1048)。每個阻抗上變頻器與期望頻率(例如fRF_TX 或fRF_RX )同步。阻抗上變頻器1042、1044與一個或多個基帶阻抗的每種組合可以按照類似於上述m相變頻帶通濾波器的方式實施。Figure 111 is a schematic block diagram of a balanced network including two impedance upconverters 1042, 1044 and corresponding baseband impedances (Zbb 1046, 1048) in accordance with another embodiment of the present invention. Each impedance upconverter is synchronized to a desired frequency (eg, f RF_TX or f RF_RX ). Each combination of impedance upconverters 1042, 1044 and one or more baseband impedances can be implemented in a manner similar to the m-phase variable frequency bandpass filter described above.

圖112是根據本發明一個實施例的用於平衡網路中的負阻抗1050的示意框圖。該電路包括基帶負阻抗1050電路,例如如圖56所示的,抗上變頻器1052可以按照類似於上述m相變頻帶通濾波器的方式實施。Figure 112 is a schematic block diagram of a negative impedance 1050 for balancing a network, in accordance with one embodiment of the present invention. The circuit includes a baseband negative impedance 1050 circuit, such as shown in Figure 56, and the upconverter 1052 can be implemented in a manner similar to the m-phase variable frequency bandpass filter described above.

圖113是根據本發明一個實施例的偏振接收器1060的示意框圖,它包括鎖相環(PLL)1068、模數轉換器(ADC 1064、1066)、相位處理模組1062、峰值檢測器1070和幅度處理模組1062。PLL 1068包括相位和頻率檢測器(PFD)、電荷泵、環路濾波器、壓控振盪器(VCO)、分頻器(可以是1:1分頻器)、求和模組以及調製器(sigma-delta)模組。113 is a schematic block diagram of a polarization receiver 1060 that includes a phase locked loop (PLL) 1068, an analog to digital converter (ADC 1064, 1066), a phase processing module 1062, and a peak detector 1070, in accordance with an embodiment of the present invention. And amplitude processing module 1062. The PLL 1068 includes a phase and frequency detector (PFD), a charge pump, a loop filter, a voltage controlled oscillator (VCO), a frequency divider (which can be a 1:1 divider), a summing module, and a modulator ( Sigma-delta) module.

在一個運行的例子中,天線接收入站RF信號(例如A(t)cos(wRF (t)+θ(t)))並將其通過FEM(未示出)提供給接收器部的PLL 1068和峰值檢測器1070。峰值檢測器1070(可能是包絡檢測器)分離幅度項(例如A(t))。然後,通過ADC 1064、1066將幅度項轉換數位信號。PLL 1068處理入站RF信號的cos(ωRF (t)+θ(t))以提取相位信號(例如θ(t))。處理模組1062解析幅度信號和相位信號以恢復發射的資料。In an operational example, the antenna receives an inbound RF signal (eg, A(t)cos(w RF (t) + θ(t))) and provides it to the PLL of the receiver via FEM (not shown). 1068 and peak detector 1070. Peak detector 1070 (possibly an envelope detector) separates the amplitude term (eg, A(t)). The amplitude term is then converted to a digital signal by ADCs 1064, 1066. The PLL 1068 processes cos(ω RF (t) + θ(t)) of the inbound RF signal to extract a phase signal (eg, θ(t)). The processing module 1062 parses the amplitude signal and the phase signal to recover the transmitted data.

圖114是根據本發明一個實施例的暫存器電路的示意框圖,該電路可以用於連接本地振盪器的PLL 1082與下變頻混頻模組的混頻器和/或上變頻混頻模組。暫存器電路包括差分暫存器和編織連接1086。編織連接1086產生了增加的電感(相對于並聯線路),從而衰減了給混頻器的不期望的高頻分量。另外,可以選擇編織連接1086的大小和性質以得到所期望的線路間電容,從而產生調 諧的且分佈的L-C電路。Figure 114 is a schematic block diagram of a scratchpad circuit that can be used to connect a local oscillator PLL 1082 to a mixer of a downconversion mixing module and/or an upconversion mixing mode, in accordance with one embodiment of the present invention. group. The scratchpad circuit includes a differential register and a braided connection 1086. The braided connection 1086 produces an increased inductance (relative to the parallel line), thereby attenuating undesirable high frequency components to the mixer. In addition, the size and nature of the braided connection 1086 can be selected to achieve the desired inter-line capacitance, thereby producing a tone Harmonic and distributed L-C circuit.

圖115是根據本發明一個實施例的交織連接1100的示意框圖,它包括位於基板(例如裸片、封裝基板等)一層上的第一線路和位於基板另一層上的另一線路。這些線路在兩層上交織以提高相互間的磁耦合。另外,至少一條線路可以包括電感環路以增加其電感。Figure 115 is a schematic block diagram of an interleaved connection 1100 that includes a first line on one layer of a substrate (e.g., a die, a package substrate, etc.) and another line on another layer of the substrate, in accordance with one embodiment of the present invention. These lines are interleaved on two layers to increase magnetic coupling with each other. Additionally, at least one of the lines may include an inductive loop to increase its inductance.

圖116是根據本發明一個實施例的接收器的示意框圖,它包括輸入部、下變頻混頻部和互阻放大器(TIA 1126、1128)。輸入部包括MN 1112、增益模組、電感和電容。下變頻混頻部包括混頻器和本地振盪器。TIA 1126、1128分別包括如圖連接的電晶體和電阻。注意,正極輸入還可以連接到電阻與正極輸出端上的電晶體之間的公共節點,負極輸入還可以連接到電阻與負極輸出端上的電晶體之間的公共節點。Figure 116 is a schematic block diagram of a receiver including an input, a downconversion mixing section, and a transimpedance amplifier (TIA 1126, 1128), in accordance with one embodiment of the present invention. The input unit includes a MN 1112, a gain module, an inductor, and a capacitor. The downconversion mixing section includes a mixer and a local oscillator. The TIAs 1126 and 1128 respectively include a transistor and a resistor connected as shown. Note that the positive input can also be connected to the common node between the resistor and the transistor on the positive output, and the negative input can also be connected to the common node between the resistor and the transistor on the negative output.

本文可能用到的,術語“基本上”或“大約”,對相應的術語和/或元件間的關係提供一種業內可接受的公差。這種業內可接受的公差從小於1%到50%,並對應於,但不限於,元件值、積體電路處理波動、溫度波動、上升和下降時間和/或熱雜訊。組件間的關係從小百分比的差分到大的差分。本文還可能用到的,術語“可操作地連接”、“連接”和/或“耦合”,包括通過中間元件(例如,該元件包括,但不限於,元件、元件、電路和/或模組)直接連接和/或間接連接,其中對於間接連接,中間插入元件並不改變信號的資訊,但可以調整其電流電平、電壓電平和/或功率電平。本文還可能用到,推斷連接(亦即,一個元件根據推論連接到另一個元件)包括兩個元件之間用相同於“可操作地連接”的方法直接和間接連接。本文還可能用到,術語“可操作地連接”,表明元件包括以下一個或多個:功率連接、輸入、輸出等,用於在啟動時執行一個或多個相應功能並可以進一步包括與一個或多個其他元件的推斷連接。本文還可能用到,術語“相關的”,正如這 裏可能用的,包括單獨元件和/或嵌入另一個元件的某個元件的直接和/或間接連接。本文還可能用到,術語“比較結果有利”,正如這裏可能用的,指兩個或多個元件、信號等之間的比較提供一個想要的關係。例如,當想要的關係是信號1具有大於信號2的幅度時,當信號1的幅度大於信號2的幅度或信號2的幅度小於信號1幅度時,可以得到有利的比較結果。As used herein, the term "substantially" or "approximately" provides an industry-accepted tolerance for the relationship between the respective terms and/or components. Such industry accepted tolerances range from less than 1% to 50% and correspond to, but are not limited to, component values, integrated circuit processing fluctuations, temperature fluctuations, rise and fall times, and/or thermal noise. The relationship between components varies from a small percentage difference to a large difference. Also, as used herein, the terms "operably connected," "connected," and/or "coupled" are meant to include an intermediate element (eg, including, but not limited to, elements, elements, circuits, and/or modules) A direct connection and/or an indirect connection, wherein for an indirect connection, the intermediate insertion element does not change the information of the signal, but its current level, voltage level and/or power level can be adjusted. It is also possible herein to infer that a connection (i.e., one element is connected to another element by inference) includes direct and indirect connection between two elements by the same method as "operably connected." As may also be used herein, the term "operably connected" indicates that the element includes one or more of the following: a power connection, an input, an output, etc., for performing one or more corresponding functions at startup and may further include one or Inferred connections for multiple other components. This article may also be used, the term "related", as this It is possible to use a single element and/or a direct and/or indirect connection of an element embedded in another element. As may also be used herein, the term "comparative results are advantageous", as may be used herein, to mean that a comparison between two or more elements, signals, etc. provides a desired relationship. For example, when the desired relationship is that signal 1 has a magnitude greater than signal 2, an advantageous comparison can be obtained when the magnitude of signal 1 is greater than the amplitude of signal 2 or the amplitude of signal 2 is less than the amplitude of signal 1.

儘管上述附圖中示出的電晶體是場效應電晶體(FET),但本領域技術人員應該明白,上述電晶體可以使用任意類型的電晶體結構,包括但不限於,雙極、金屬氧化物半導體場效應電晶體(MOSFET)、N阱電晶體、P阱電晶體、增強型、耗盡型以及零電壓閾值(VT)電晶體。Although the transistor shown in the above figures is a field effect transistor (FET), it will be understood by those skilled in the art that the above transistor may use any type of transistor structure including, but not limited to, bipolar, metal oxide. Semiconductor field effect transistor (MOSFET), N-well transistor, P-well transistor, enhanced, depletion mode, and zero voltage threshold (VT) transistor.

以上借助於說明指定的功能和關係的方法步驟對本發明進行了描述。為了描述的方便,這些功能組成模組和方法步驟的界限和順序在此處被專門定義。然而,只要給定的功能和關係能夠適當地實現,界限和順序的變化是允許的。任何上述變化的界限或順序應被視為在權利要求保護的範圍內。The invention has been described above by means of method steps illustrating the specified functions and relationships. For the convenience of description, the boundaries and order of these functional component modules and method steps are specifically defined herein. However, as long as a given function and relationship can be properly implemented, changes in boundaries and order are allowed. The boundaries or order of any such variations are considered to be within the scope of the appended claims.

本發明至少部分借助於一個或多個實施例進行了描述。本文所使用的本發明的實施例適用干說明本發明的方面、特徵、概念和/或實例。構成本發明的裝置、製造方法、機器和/或步驟的物理實施例可以包括參考本文所述至少一個實施例進行描述的方面、特徵、概念、實例等中至少一項。The invention has been described at least in part by means of one or more embodiments. The embodiments of the invention used herein are illustrative of the aspects, features, concepts and/or examples of the invention. Physical embodiments constituting the apparatus, manufacturing method, machine, and/or step of the present invention may include at least one of the aspects, features, concepts, examples, and the like described with reference to at least one embodiment described herein.

以上還借助於說明某些重要功能的功能模組對本發明進行了描述。為了描述的方便,這些功能組成模組的界限在此處被專門定義。當這些重要的功能被適當地實現時,變化其界限是允許的。類似地,流程圖模組也在此處被專門定義來說明某些重要的功能,為廣泛應用,流程圖模組的界限和順序可以被另外定義,只要仍能實現這些重要功能。上述功能模組、流程圖功能模組的界限及順序的變化仍應被視為在權利要求保護範圍內。本領域技術 人員也知悉此處所述的功能模組,和其他的說明性模組、模組和元件,可以如示例或由分立組件、特殊功能的積體電路、帶有適當軟體的處理器及類似的裝置組合而成。The invention has also been described above with the aid of functional modules that illustrate certain important functions. For the convenience of description, the boundaries of these functional component modules are specifically defined herein. When these important functions are properly implemented, it is permissible to change their boundaries. Similarly, flowchart modules are also specifically defined herein to illustrate certain important functions. For a wide range of applications, the boundaries and order of the flowchart modules can be additionally defined as long as these important functions are still implemented. Variations in the boundaries and sequence of the above-described functional modules and flow-through functional modules are still considered to be within the scope of the claims. Technical in the field Personnel are also aware of the functional modules described herein, as well as other illustrative modules, modules, and components, which may be, for example, or by discrete components, integrated circuits of special functions, processors with appropriate software, and the like. The device is combined.

10‧‧‧可攜式計算通信裝置10‧‧‧Portable computing communication device

12‧‧‧片上系統(SOC)12‧‧‧System on a Chip (SOC)

14‧‧‧前端模組(FEM)14‧‧‧ Front End Module (FEM)

16‧‧‧天線16‧‧‧Antenna

18‧‧‧無表面聲波接收器部18‧‧‧No surface acoustic wave receiver

20‧‧‧無表面聲波發射器部20‧‧‧No surface acoustic wave transmitter

22‧‧‧基帶處理單元22‧‧‧Baseband processing unit

24‧‧‧處理模組24‧‧‧Processing module

26‧‧‧電源管理單元26‧‧‧Power Management Unit

28‧‧‧接收器(RX)射頻(RF)-中頻(IF)部28‧‧‧ Receiver (RX) Radio Frequency (RF) - Intermediate Frequency (IF) Department

30‧‧‧接收器(RX)IF-基帶(BB)部30‧‧‧Receiver (RX) IF-Baseband (BB)

32‧‧‧變頻帶通濾波器(FTBPF)32‧‧‧Variable Bandpass Filter (FTBPF)

34-36‧‧‧功率放大器(PA)34-36‧‧‧Power Amplifier (PA)

38-40‧‧‧接收器-發射器(RX-TX)分離模組38-40‧‧‧Receiver-transmitter (RX-TX) separation module

42-44‧‧‧天線調諧單元(ATU)42-44‧‧‧Antenna Tuning Unit (ATU)

46‧‧‧頻帶(FB)切換器46‧‧‧Band (FB) switcher

Claims (10)

一種可攜式計算裝置,包括:前端模組,與天線部連接並用於從一個或多個入站射頻信號中分離出一個或多個出站射頻信號;無表面聲波接收器,用於:通過以下步驟將所述一個或多個入站射頻信號轉換為一個或多個入站中頻信號:將基帶濾波器回應變頻為中頻濾波器回應或射頻濾波器回應,其中基帶濾波器回應之頻率變換係用以充分地濾波帶外阻滯及濾波對所述一個或多個入站中頻信號之期望信號產生不可忽略影響的鏡像信號;當所述基帶濾波器回應變頻為所述射頻濾波器回應時根據所述射頻濾波器響應濾波所述一個或多個入站射頻信號;以及當所述基帶濾波器回應被變頻為所述中頻濾波器回應時根據所述中頻濾波器響應濾波所述一個或多個入站中頻信號;以及將所述一個或多個入站射頻信號轉換為一個或多個入站符號流;無表面聲波發射器,用於將一個或多個出站符號流轉換為所述一個或多個出站射頻信號;以及基帶處理單元,用於:將出站資料轉換為所述一個或多個出站符號流;以及將所述一個或多個入站符號流轉換為入站資料。 A portable computing device comprising: a front end module coupled to the antenna portion and configured to separate one or more outbound radio frequency signals from one or more inbound radio frequency signals; a surface acoustic wave receiver for: passing The following steps convert the one or more inbound RF signals into one or more inbound IF signals: frequency conversion of the baseband filter response to an IF filter response or an RF filter response, wherein the frequency of the baseband filter response Transforming is used to adequately filter out-of-band blocking and filtering image signals that have a non-negligible effect on the desired signal of the one or more inbound IF signals; when the baseband filter is responsive to the RF filter Filtering the one or more inbound radio frequency signals in response to the RF filter response; and filtering the filter according to the intermediate frequency filter response when the baseband filter response is converted to the intermediate frequency filter response Decoding one or more inbound IF signals; and converting the one or more inbound radio frequency signals into one or more inbound symbol streams; no surface acoustic wave transmitter, Converting one or more outbound symbol streams into the one or more outbound radio frequency signals; and a baseband processing unit for: converting outbound data to the one or more outbound symbol streams; The one or more inbound symbol streams are converted to inbound data. 如申請專利範圍第1項所述的可攜式計算裝置,其中,還包括:所述前端模組還用於從一個或多個第二入站射頻信號 中分離出一個或多個第二出站射頻信號,其中所述一個或多個入站和出站射頻信號位於第一頻帶中,所述一個或多個第二入站射頻信號位於第二頻帶中;無表面聲波接收器還用於:通過以下步驟將所述一個或多個第二入站射頻信號轉換為一個或多個第二入站中頻信號,其中:將第二基帶濾波器回應變頻為第二中頻濾波器回應和第二射頻濾波器回應中至少一種;當所述第二基帶濾波器回應變頻為所述第二射頻濾波器回應時根據所述第二射頻濾波器響應濾波所述一個或多個第二入站射頻信號;以及當所述第二基帶濾波器回應變頻為所述第二中頻濾波器回應時根據所述第二中頻濾波器響應濾波所述一個或多個第二入站中頻信號;以及將所述一個或多個第二入站中頻信號轉換為一個或多個第二入站符號流;所述無表面聲波發射器還用於將一個或多個第二出站符號流轉換為所述一個或多個第二出站射頻信號;以及所述基帶處理單元還用於:將第二出站資料轉換為所述一個或多個第二出站符號流;以及將所述一個或多個第二入站符號流轉換為第二入站資料。 The portable computing device of claim 1, further comprising: the front end module is further configured to use one or more second inbound radio frequency signals Separating one or more second outbound radio frequency signals, wherein the one or more inbound and outbound radio frequency signals are in a first frequency band, and the one or more second inbound radio frequency signals are in a second frequency band The surfaceless acoustic wave receiver is further configured to: convert the one or more second inbound radio frequency signals into one or more second inbound intermediate frequency signals by: step of: responding to the second baseband filter Converting to at least one of a second intermediate frequency filter response and a second RF filter response; filtering the second RF filter response when the second baseband filter responds to the second RF filter response The one or more second inbound radio frequency signals; and filtering the one or more according to the second intermediate frequency filter response when the second baseband filter is responsive to the second intermediate frequency filter response a plurality of second inbound intermediate frequency signals; and converting the one or more second inbound intermediate frequency signals into one or more second inbound symbol streams; the surfaceless acoustic wave transmitter is further configured to Or multiple second out Converting the symbol stream to the one or more second outbound radio frequency signals; and the baseband processing unit is further configured to: convert the second outbound data to the one or more second outbound symbol streams; The one or more second inbound symbol streams are converted to a second inbound material. 如申請專利範圍第1項所述的可攜式計算裝置,其中,所述前端模組包括:天線調諧單元,與所述天線部連接並調諧以用於提供與所述天線部的阻抗相匹配的阻抗;一個或多個功率放大器,用於放大所述一個或多個出站 射頻信號以產生一個或多個放大的出站射頻信號;分離模組,與所述無表面波接收器、所述天線調諧單元以及所述一個或多個功率放大器相連,所述分離模組用於:向所述天線調諧單元輸出所述一個或多個放大的出站射頻信號;以及在所述分離模組與所述無表面波接收器的連接中衰減所述一個或多個放大的出站射頻信號從而將所述一個或多個入站射頻信號從所述一個或多個出站射頻信號中分離。 The portable computing device of claim 1, wherein the front end module comprises: an antenna tuning unit coupled to the antenna portion and tuned for providing impedance matching with the antenna portion Impedance; one or more power amplifiers for amplifying the one or more outbounds Radio frequency signals to generate one or more amplified outbound radio frequency signals; a separation module coupled to the surfaceless wave receiver, the antenna tuning unit, and the one or more power amplifiers, the separation module Outputting the one or more amplified outbound radio frequency signals to the antenna tuning unit; and attenuating the one or more amplified outputs in a connection of the separation module to the surfaceless wave receiver The station RF signal thereby separating the one or more inbound radio frequency signals from the one or more outbound radio frequency signals. 如申請專利範圍第3項所述的可攜式計算裝置,其中,所述基帶處理單元還用於生成以下至少一項:天線調諧單元控制信號,用於根據所述天線部的阻抗變化調節所述天線調諧單元的阻抗;分離控制信號,用於調節所述一個或多個輸出射頻信號的衰減;以及功率放大器控制信號,用於調節所述一個或多個功率放大器的一個或多個參數。 The portable computing device of claim 3, wherein the baseband processing unit is further configured to generate at least one of: an antenna tuning unit control signal, configured to adjust an impedance change according to the antenna portion An impedance of the antenna tuning unit; a separation control signal for adjusting attenuation of the one or more output RF signals; and a power amplifier control signal for adjusting one or more parameters of the one or more power amplifiers. 如申請專利範圍第1項所述的可攜式計算裝置,其中,所述無表面波發射器包括:上變頻混頻模組,用於將所述一個或多個出站符號流轉換為一個或多個上變頻信號;發射變頻帶通濾波器,用於:將第二基帶濾波器回應變頻為第二射頻帶通濾波器回應;以及根據所述第二射頻帶通濾波器響應濾波所述一個或多個上變頻信號以產生一個或多個濾波的上變頻信號;以及輸出模組,用於調節所述一個或多個濾波的上變頻信號 以產生一個或多個調節的上變頻信號;以及功率放大器驅動器,用於放大所述一個或多個調節的上變頻信號以產生所述一個或多個出站射頻信號。 The portable computing device of claim 1, wherein the surface-free wave transmitter comprises: an up-conversion mixing module, configured to convert the one or more outbound symbol streams into one Or a plurality of upconverted signals; a variable frequency bandpass filter for: converting the second baseband filter response to a second RF bandpass filter response; and filtering according to the second RF bandpass filter response One or more upconverted signals to produce one or more filtered upconverted signals; and an output module for adjusting the one or more filtered upconverted signals To generate one or more adjusted upconverted signals; and a power amplifier driver for amplifying the one or more adjusted upconverted signals to generate the one or more outbound radio frequency signals. 如申請專利範圍第5項所述的可攜式計算裝置,其中,所述基帶處理單元還用於:生成發射器控制信號,所述發射器控制信號用於調節以下至少一項:所述第二基帶濾波器回應、所述第二射頻帶通濾波器回應以及所述功率放大器驅動器的參數。 The portable computing device of claim 5, wherein the baseband processing unit is further configured to: generate a transmitter control signal, the transmitter control signal to adjust at least one of the following: A two baseband filter response, the second RF bandpass filter response, and parameters of the power amplifier driver. 如申請專利範圍第1項所述的可攜式計算裝置,其中,所述無表面波接收器包括:射頻-中頻接收器部,包括:低雜訊放大器,用於放大所述一個或多個入站射頻信號以產生一個或多個放大的入站射頻信號;中頻下變頻模組,用於將所述一個或多個放大的入站射頻信號轉換為所述一個或多個入站中頻信號;以及具有所述射頻帶通濾波器響應的變頻帶通濾波器,用於濾波所述一個或多個入站射頻信號或濾波所述一個或多個入站中頻信號;以及中頻-基帶接收器部,用於將所述一個或多個入站中頻信號轉換為一個或多個入站符號流。 The portable computing device of claim 1, wherein the surface-free wave receiver comprises: a radio frequency-intermediate frequency receiver unit, comprising: a low noise amplifier for amplifying the one or more Inbound radio frequency signals to generate one or more amplified inbound radio frequency signals; an intermediate frequency down conversion module for converting the one or more amplified inbound radio frequency signals into the one or more inbound stations An intermediate frequency signal; and a variable frequency band pass filter having the RF band pass filter response for filtering the one or more inbound radio frequency signals or filtering the one or more inbound intermediate frequency signals; a frequency-baseband receiver section for converting the one or more inbound IF signals into one or more inbound symbol streams. 如申請專利範圍第1項所述的可攜式計算裝置,其中,還包括:第一積體電路,用於支援所述第一基帶處理單元、所述無表面波接收器和所述無表面波發射器;以及第二積體電路,用於支援所述前端模組。 The portable computing device of claim 1, further comprising: a first integrated circuit for supporting the first baseband processing unit, the surfaceless wave receiver, and the surfaceless a wave transmitter; and a second integrated circuit for supporting the front end module. 如申請專利範圍第1項述的可攜式計算裝置,其中,還包括以下至少一項:處理模組,用於: 執行一個或多個可攜式計算裝置功能生成所述出站資料;以及執行所述一個或多個可攜式計算裝置功能處理所述輸入;以及電源管理單元,用於執行所述可攜式計算裝置的一個或多個電源管理功能。 The portable computing device of claim 1, further comprising at least one of the following: a processing module, configured to: Performing one or more portable computing device functions to generate the outbound data; and executing the one or more portable computing device functions to process the input; and a power management unit for performing the portable One or more power management functions of the computing device. 一種可攜式計算裝置,包括:前端模組,所述前端模組包括:多個功率放大器,其中所述多個功率放大器中的功率放大器放大多個出站射頻信號中的第一出站射頻信號;多個分離模組,其中所述多個分離模組中的分離模組從所述第一出站射頻信號中分離多個入站射頻信號中的第一入站射頻信號;以及至少一個天線調諧單元,用於根據控制信號提供與天線部的阻抗相匹配的阻抗,其中所述天線調諧單元從所述天線部接收所述第一入站射頻信號,並向所述天線部輸出所述第一出站射頻信號;無表面聲波接收器,用於將多個入站射頻信號轉換為多個入站符號流,其中所述無表面聲波接收器將基帶濾波器回應變頻為中頻濾波器回應或射頻濾波器回應,其中基帶濾波器回應之頻率變換係用以充分地濾波帶外阻滯及濾波對所述一個或多個入站射頻信號之期望信號產生不可忽略影響的鏡像信號;無表面聲波發射器,用於將多個出站符號流轉換為所述多個出站射頻信號;以及基帶處理單元,用於:根據所述天線部的阻抗變化生成所述控制信號; 將多個出站資料轉換為所述多個出站符號流;以及將所述多個入站符號流轉換為多個入站資料。 A portable computing device includes: a front end module, the front end module comprising: a plurality of power amplifiers, wherein a power amplifier of the plurality of power amplifiers amplifies a first outbound radio frequency of the plurality of outbound radio frequency signals a signal; a plurality of separation modules, wherein the separation module of the plurality of separation modules separates the first inbound radio frequency signal of the plurality of inbound radio frequency signals from the first outbound radio frequency signal; and at least one An antenna tuning unit for providing an impedance matching the impedance of the antenna portion according to the control signal, wherein the antenna tuning unit receives the first inbound radio frequency signal from the antenna portion, and outputs the to the antenna portion a first outbound radio frequency signal; a surface acoustic wave receiver for converting a plurality of inbound radio frequency signals into a plurality of inbound symbol streams, wherein the surfaceless acoustic wave receiver converts the baseband filter response to an intermediate frequency filter Response or RF filter response, wherein the frequency transform of the baseband filter response is used to adequately filter the out-of-band block and filter the desired signal for the one or more inbound RF signals Generating a non-negligible image signal; a surface acoustic wave transmitter for converting a plurality of outbound symbol streams into the plurality of outbound radio frequency signals; and a baseband processing unit for: varying impedance of the antenna portion Generating the control signal; Converting a plurality of outbound data to the plurality of outbound symbol streams; and converting the plurality of inbound symbol streams into a plurality of inbound materials.
TW100119490A 2010-06-03 2011-06-03 Portable computing device with a saw-less transceiver TWI485995B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35128410P 2010-06-03 2010-06-03
US13/070,980 US8483642B2 (en) 2010-06-03 2011-03-24 Saw-less receiver with offset RF frequency translated BPF
US13/076,116 US8761710B2 (en) 2010-06-03 2011-03-30 Portable computing device with a saw-less transceiver

Publications (2)

Publication Number Publication Date
TW201212553A TW201212553A (en) 2012-03-16
TWI485995B true TWI485995B (en) 2015-05-21

Family

ID=46764607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119490A TWI485995B (en) 2010-06-03 2011-06-03 Portable computing device with a saw-less transceiver

Country Status (2)

Country Link
HK (1) HK1165116A1 (en)
TW (1) TWI485995B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052407B (en) * 2014-05-22 2018-06-22 晨星半导体股份有限公司 A kind of method and device for inhibiting harmonic signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227631A1 (en) * 2004-04-13 2005-10-13 Robinett Robert L Multi-antenna transceiver system
CN101212231A (en) * 2006-12-30 2008-07-02 美国博通公司 Communication method within single device, communication device and communication method within device
TW200843368A (en) * 2007-01-24 2008-11-01 Marvell World Trade Ltd Frequency and Q-factor tunable filters using frequency translatable impedance structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227631A1 (en) * 2004-04-13 2005-10-13 Robinett Robert L Multi-antenna transceiver system
CN101212231A (en) * 2006-12-30 2008-07-02 美国博通公司 Communication method within single device, communication device and communication method within device
TW200843368A (en) * 2007-01-24 2008-11-01 Marvell World Trade Ltd Frequency and Q-factor tunable filters using frequency translatable impedance structures

Also Published As

Publication number Publication date
HK1165116A1 (en) 2012-09-28
TW201212553A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
TWI474629B (en) Saw-less receiver with rf frequency translated bpf
US8483642B2 (en) Saw-less receiver with offset RF frequency translated BPF
US8725085B2 (en) RF front-end module
US9154166B2 (en) Front-end module network
US8761710B2 (en) Portable computing device with a saw-less transceiver
US8369807B2 (en) Polar-based RF receiver
US9031515B2 (en) Transceiver including a weaved connection
US8483628B2 (en) Multiple-phase frequency translated filter
TWI478510B (en) Front end module with compensating duplexer
TWI474630B (en) Front end module with an antenna tuning unit
US9002295B2 (en) SAW-less receiver including an if frequency translated BPF
US8666351B2 (en) Multiple band saw-less receiver including a frequency translated BPF
US9001740B2 (en) Front-end module network for femtocell applications
US8565710B2 (en) Wireless transmitter having frequency translated bandpass filter
US20110299634A1 (en) Saw-less receiver with a frequency translated bpf having a negative resistance
US8724747B2 (en) Saw-less receiver including transimpedance amplifiers
EP2613451A1 (en) Saw-less receiver with RF Frequency translated BPF
TWI485995B (en) Portable computing device with a saw-less transceiver

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees