TW201212553A - Portable computing device with a SAW-less transceiver - Google Patents

Portable computing device with a SAW-less transceiver Download PDF

Info

Publication number
TW201212553A
TW201212553A TW100119490A TW100119490A TW201212553A TW 201212553 A TW201212553 A TW 201212553A TW 100119490 A TW100119490 A TW 100119490A TW 100119490 A TW100119490 A TW 100119490A TW 201212553 A TW201212553 A TW 201212553A
Authority
TW
Taiwan
Prior art keywords
signal
inbound
baseband
frequency
signals
Prior art date
Application number
TW100119490A
Other languages
Chinese (zh)
Other versions
TWI485995B (en
Inventor
Ahmadreza Rofougaran
Hooman Darabi
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/070,980 external-priority patent/US8483642B2/en
Priority claimed from US13/076,116 external-priority patent/US8761710B2/en
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW201212553A publication Critical patent/TW201212553A/en
Application granted granted Critical
Publication of TWI485995B publication Critical patent/TWI485995B/en

Links

Landscapes

  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

A portable computing device includes an FEM, a SAW-less receiver, a SAW-less transmitter, and a baseband processing unit. The FEM isolates one or more outbound RF signals from one or more inbound RF signals. The SAW-less receiver converts the one or more inbound RF signals into one or more inbound intermediate frequency (IF) signals by frequency translating a baseband filter response to an IF filter response and/or an RF filter response. The SAW-less receiver filters the inbound RF signal(s) in accordance with the RF filter response and/or filters the inbound IF signal(s) in accordance with the IF filter response. The SAW-less transceiver then converts the inbound IF signals(s) into inbound symbol stream(s). The SAW-less transmitter converts outbound symbol streams(s) into the outbound RF signal(s). The baseband processing unit converts outbound data into the outbound symbol stream(s) and convert the inbound symbol stream(s) into inbound data.

Description

201212553 六、發明說明: 【發明所屬之技術領域】 本發明涉及無線通信領域,更具體地說,本發明涉及無、線 電收發器。 【先前技術】 已知通信系統支援無線和/或有線連接的通信裝置間的無 線和有線通信。這些通信系統的範圍從國家和/或國際蜂离電 話系統到網際網路甚至到點對點家用無線網路。各種類型的通 信系統可分別創建’並根據一種或多種通信標準運行。例如, 無線通信系統可以根據一種或多種標準運行,這些標準包括作 不限於IEEE802.11、藍牙、高級移動電話服務(人Mps)、數 位AMPS、移動通信全球系統(GSm)、碼分多址(CDMa)、 本地多點分散式系統(LMDS)、多通道多點分散式系統 (MMDS)、射頻標識(RFE))、增強型分組無線通信業務 (EDGE)、通用分組無線業務(GPRS)、WCDMA、長期演進 (LTE)、微波存取全球互通(WiMAX)和/或其變型。 根據無線通信系統的類型,無線通信裝置(例如蜂窩電 話、雙向無線電、個人數位助手(PDA)、個人電腦、 手提電腦、家庭娛樂設備、RpID讀卡器、即1〇標籤等)與其 他無線通信裝置直接或間接通信。對於直接通信(又稱為點對 點通信),參與的錄通錄置將它們的接收^和發射器調今 到相同的頻道(例如無線通信系、統的多個射頻觀令的—個= 一些系統特定的射頻頻率)並通過這些頻道通信。對於間接= 線通信’每個無線通信裝置與相關基站(例如用於蜂离服務、; 4 201212553 接通信 和/或通過分_鑛與侧接人點(例如躲家朗或建築 物内的無_路)直麵信。為了完成無麵雜置間的通信 鏈結’相關基站和/或相關接入點通過系統控制器、通過公共 交換電話網、通過網際網路和/或通過—些其他廣域網相互直 對於每個參與無線通信的無線通信裝置,它包括内置無線 電收發器(即接收器和發射器)或與相關無線電收發器相連(例 如用於家庭和/或建絲内無線通信網⑽基站、处數據機 等)。已知接收器與天線相連並包括低雜訊放大器、一個或多 個中頻級(stage)、濾波級和資料恢復級。低雜訊放大器通過 天線接收人站RF彳5號然後將其放大。—個或多個巾頻級將放 大的RF信號與一個或多個本地振盪混合,從而將放大的虾 信號轉換絲帶錢或巾_號。舰域波基帶信號或中頻 信號以衰減不需要的帶外錢,從而生減波的錢。資料恢 復級根據特定的無線通信標準恢復濾波的信號中的資料。 已知發射器包括資料調製級、一個或多個中頻級以及功率 放大器。f料調製級根據蚊的無料信鮮將體轉換為基 帶信號。一個或多個中頻級將基帶信號與一個或多個本地振盪 混合以產生RF信號。功率放大器放大处信號,然後通過天 線將其發射。 為了實施無線電收發器,無線通信裝置包括多個積體電路 和多個分立組件。圖1示出了支持2G和3G蜂窩電話協定的 無線通信裝置的一個例子。如圖所示,無線通信裝置包括基帶 處理1C、電源管理1C、無線電收發器IC、發射/接收(T/R) 201212553 ^矣器、天線以及多個分立树。分立元件包括表面聲波 鹰)缝器、功率放大器、雙I器、電感和電容。這些分 立耕增加了鱗驗裝㈣材料成本,但是它顺不是實現 2G和3G協定的精確性能需求所必須的。 心著積體電路工藝技躺發展,無線通信裝置製造商希望 無線收發器1C製造商根據IC製紅藝的進步更新它們的1C。 例如纟於製造工藝過程的改變(例如使用更小的電晶體型 號)’針對更_製虹藝過㈣新設計無狀發器IC。由於 大夕數數位電輯著1C製造1藝触祕小,IC數位部分的 重新4疋-個相對簡單的過程。但是,由於大多數類比電路 (例如電感、電料)不隨Ic過程而縮小,類比部分的重新 設計不是-個簡單的任務。因此,無線收發器IC製造商投入 了巨大努力來生產使用更新Ic製造工藝過程的IC。 【發明内容】 本發明提供一種裝置和操作方法,並在以下附圖說明和具 體實施方式部分以及權利要求中給出進一步的描述。 根據本發明的一個方面,提出一種可攜式計算裝置 (computing device ),包括: 前端模組’用於與天線部連接並用於從一個或多個入站射 頻信號中分離出一個或多個出站射頻信號; 無表面聲波(less-SAW)接收器,用於: 通過下列步驟將所述一個或多個入站射頻信號轉換 為一個或多個入站中頻信號,其中: 將基帶濾波器回應變頻為中頻濾波器回應和射 201212553 頻濾波器回應中至少一種; 當所述基料波n回應_為所述射頻濾波器 回應時根據所述射頻·器響應·所述-個或多 個入站射頻信號;以及 當所述基帶濾波器回應變頻為所述中頻濾波器 回應時根據所述中頻濾波器響應濾波所述一個或多 個入站中頻信號;以及 將所述一個或多個入站中頻信號轉換為一個或多個 入站符號流; 無表面聲波發射器,用於將一個或多個出站符號流轉換為 所述一個或多個出站射頻信號;以及 基帶處理單元,用於: 將出站負料轉換為所述一個或多個出站符號流;以及 將所述一個或多個入站符號流轉換為入站資料。 優選地,所述可攜式計算裝置還包括: 所述前端模組還用於從一個或多個第二入站射頻信號中 分離出一個或多個第二出站射頻信號,其中所述一個或多個入 站和出站射頻信號位於第一頻帶中,所述一個或多個第二入站 射頻信號位於第二頻帶中; 所述無表面聲波接收器還用於: 將所述一個或多個第二入站射頻信號轉換為一個或 多個第二入站中頻信號,其中: 將第二基帶濾波器回應變頻為第二中頻濾波器 回應和第二射頻濾波器回應中至少一種; 201212553 當所述第二基帶紐II回應變頻為所述第二射 頻濾波器應時根據所述第二射頻濾波 所述-個或多個第二人站射頻信號;以及― 备所述第二基帶濾波器回應變頻為所述第二中 頻滤波器回應時根據所述第二中親波器響應· 所述-個或多個第二人站中頻信號;以及 將所述-個或多個第二人站中頻信號轉換為一個或 夕個第二入站符號流; 無表面聲波發射器還用於將—個或多㈣二出站符號流 轉換為所述一個或多個第二出站射頻信號;以及 所述基帶處理單元還用於: 將第二出站資料轉換為所述一個或多個第二出站符 號流;以及 將所述一個或多個第二入站符號流轉換為第二入站 資料。 優選地,所述前端模組包括: 天線調諧單元,與所述天線部連接並被調諧以用於提供與 所述天線部的阻抗相匹配的阻抗; 一個或多個功率放大器,用於放大所述一個或多個出站射 頻信號以產生一個或多個放大的出站射頻信號; 分離模組,與所述無表面波接收器、所述天線調諧單元以 及所述一個或多個功率放大器相連,所述分離模組用於: 向所述天線調諧單元輸出所述一個或多個放大的出 站射頻信號;以及 8 201212553 在所述分離模組與所述無表面波接收器的連接中衰 減所述一個或多個放大的出站射頻信號從而將所述一個 或多個入站射頻信號從所述一個或多個出站射頻信號中 分離。 優選地’所述基帶處理單元還用於生成以下至少一項: 天線調諧單元控制信號,用於根據所述天線部的阻抗變化 詞節所述天線調諧單元的阻抗; 分離控制信號,用於調節所述一個或多個出站Rp信號的 衰減;以及 功率放大器控制信號’用於調節所述一個或多個功率放大 器的一個或多個參數。 優選地,所述無表面波發射器包括: 、上變頻混頻模組,用於將所述一個或多個出站符號流轉換 為〜個或多個上變頻信號; 發射變頻帶通濾波器,用於: 將第二基帶濾波器回應變頻為第二射頻帶通濾波器 回應;以及 根據所述第二射頻帶通濾波器響應濾波所述一個或 多個上變頻信號以產生一個或多個濾波的上變頻信號;以 及 輸出模組’用於調節(conditi〇n)所述一個或多個濾波的 上變頻信號以產生一個或多個調節的上變頻信號;以及 功率放大器驅動器,用於放大所述一個或多個調節的上變 頰旬號以產生所述一個或多個出站射頻信號。 201212553 優選地,所述基帶處理單元還用於: 生成發射器控制信號,所述發射器控制信號用於調節以下 至少一項:所述第二基帶濾波器回應、所述第二射頻帶通濾波 器回應以及所述功率放大器驅動器的參數。 優選地’所述無表面波接收器包括: 射頻-中頻接收器部,包括: 低雜訊放大器,用於放大所述一個或多個入站射頻信 號以產生一個或多個放大的入站射頻信號; 中頻下變頻模組,用於將所述一個或多個放大的入站 射頻號轉換為所述一個或多個入站中頻信號;以及 具有所述射頻帶通濾波器響應的變頻帶通濾波器,用 於濾波所述一個或多個入站射頻信號或濾波所述一個或 多個入站中頻信號;以及 中頻-基帶接收器部,用於將所述一個或多個入站中頻信 號轉換為一個或多個入站符號流。 優選地,所述基帶處理單元還用於: 生成接收器控制信號,所述接收器控制信號用於調節以下 至少一項.所述基帶濾波器回應、所述射頻帶通濾波器回應以 及所述低雜訊放大器的參數。 優選地’所述可攜式計算裝置還包括: 第一積體電路,用於支援所述基帶處理單元、所述無表面 波接收器和所述無表面波發射器;以及 第二積體電路,用於支援所述前端模組。 優選地’所述可攜式計算裝置還包括以下至少一項: 10 201212553 處理模組,用於: 執行一個或多個可攜式計算裝 資料;以及 置功此生成所述出 站 置功能處理所述 執行所述一個或多個可攜式計算裝 輸入資料;以及 置的一個或多 電源管理單元’用於執行所述可攜式計算裝 個電源管理功能。 根據另-方面,提出―種可攜式計算裝置,包括: 前端模組,所述前端模組包括: 夕個功率放大器,其中所述多個功率放大器中的功率 放大器放大多個出站射頻信號巾的第—出站射頻信號; 多個分離模級’其中所述多個分離模組中的分離模組 從所述第一出站射頻信號中分離多個入站射頻信號中的 第一入站射頻信號;以及 至少一個天線調諧單元,用於根據控制信號提供與天 線部的阻抗相匹配的阻抗,其中所述天線調諧單元從所述 天線部接收所述第一入站射頻信號,並向所述天線部輸出 所述第一出站射頻信號; 無表面聲波接收器,用於將所述多個入站射頻信號轉換為 多個入站符號流; 無表面聲波發射器,用於將多個出站符號流轉換為所述多 個出站射頻信號;以及 基帶處理單元,用於: 根據所述天線部的阻抗變化生成所述控制信號; 201212553 將多個出站㈣轉換摘料個出站符號流;以及 將所述多個入站符號流轉換為多個入站資料。 優選地’所述可攜式計算裝置還包括: 所述多個功率放大器中的第二功率放大器放大多個出站 射頻信號中的第二出站射頻信號,其中所述第一出站 位於第—頻帶中,所述第二出站射·號位於第二頻帶中°.』 所述多個分離池中的第二分離模_所述第二出站射 頻信號中分離多個人站射頻信號中的第二人站射頻信號. 頻帶切換器,與所述天線部和所述至少一個天線調譜 相連;以及 所述至少-個天線調諧單財的第二天線觸單元用於 根據第二控制信號提供與天線部的阻抗 甘 中所述第二天線_元通過所述頻帶切換器 接收所述第—人站射頻信號,並通過所述鮮切換器向所述 線部輸出所述第二出站射頻信號。 優選地,所述分離模組還用於: 向所述至少-個天_料元輸出所述第—出站 號;以及 l 、在所述分雜組麵述絲面波接收器的連射 述第-出站射娜號從而將所述第—人站射頻 述 一出站射頻信號中分離。 1逆第 優選地,所述可攜式計算裝置還包括: 所述基帶處理模組生成分離控制信號;以及 所述分雜組調節所述出站射頻信號的所述衰減。 201212553 優選地,所述無表面波發射器包括: 上變頻混頻模組,用於將所述一個或多個出站符號流轉換 為一個或多個上變頻信號; 發射變頻帶通濾波器,用於: 將第二基帶濾波器回應變頻為第二射頻帶通濾波器 回應;以及 根據所述第二射頻帶通濾波器響應濾波所述一個或 多個上變頻信號以產生一個或多個濾波的上變頻信號;以 及 輸出模組,用於調節(condition)所述一個或多個濾波的 上變頻信號以產生一個或多個調節的上變頻信號;以及 功率放大器驅動器,用於放大所述一個或多個調節的上變 頻#號以產生所述一個或多個出站射頻信號。 優選地’所述基帶處理單元還用於: 生成發射器控制信號’所述發射器控制信號用於調節以下 至少一項:所述第二基;f滤波器回應、所述第二射頻帶通濾波 器回應以及所述功率放大器驅動器的參數。 優選地’所述無表面波接收器包括:. 射頻-中頻接收器部,包括: 低雜訊放大器部’用於放大所述多個入站射頻信號以 產生多個放大的入站射頻信號; 中頻下變頻模組’用於將所述多個放大的入站射頻信 號轉換為多個入站中頻信號;以及 具有所述射頻帶通濾波器回應的變頻帶通濾波器,用 13 201212553 於濾波所述多個入站射頻信號或濾波所述多個入站中頻 信號;以及 中頻-基帶接收器部’用於將所述多個入站中頻信號轉換 為多個入站符號流。 優選地,所述基帶處理單元還用於: 生成接收器控制信號,所述接收器控制信號用於調節以下 至少-項:所述基帶遽波器回應、所述射頻帶通遽波器回應以 及所述低雜訊放大器的參數。 優選地,所述可攜式計算裝置還包括: =-積體電路’用於支援所述第一基帶處理單元、所述無 表面波接收器和所述無表面波發射器;以及 第二積體電路,用於支援所述前端模組。 ,選地’所述可攜式計算裝置還包括以下至少一項: 處理模組,用於: 資料執Γ及個或多個可攜式計算裒置功能生成所述出站 輸入執ΓΓ述一個或多個可攜式計算裝置功能處理所述 電源管理單元,用於 個電源管理功能。;執订所述可攜式計算褒置的-個或多 本發明的各種優點 的細節,將在以下㈣日日舍固方面和創新特徵以及具體實施例 【實施方式】 5 書和_中進行詳細介紹。 圖2疋包含片上系統(soc)12和前端模組(職) 201212553 的可攜式4算通雜置1G的實關的示意框圖,其巾s〇cl2 ^ΡΈΜ 14在單獨的積體電路上實施。可攜式計算通信裝置1〇 可以疋任意能由個人攜帶的裝置,至少部分由電池供電,包括 無線電收發H (例如射頻和/絲米波(應抑並執行一個 或^個軟體細。例如’可攜式計算通信裝置1G可以是蜂窩、 手提!: &、個人數_手、視頻遊麟縱杆、視頻遊戲播放器、 個人娛樂單元、臺式電腦等。 SOC12包括無表面聲波接㈣部18、絲面聲波發射器 部2〇、基帶處理單元22、處理模組24和電源管理單元26。 無表面聲波接收器18包括接收器(RX)射頻(RF)-中頻(IF) «Ρ 28和接收器⑽)IF_基帶⑽)部3〇。狀处_正部% 還包括一個或多個變頻帶通濾波器(FTBpF) 32。 處理模組24和絲處料元a可岐單鑛理設備、分 的處理設備或多個處理設備。該處理設備可以是微處理器、 微控制器、數位信號處理器、微電腦、中央處理器單元、現場 可編程閘陣列、可雜邏輯設備、狀態機、邏輯電路、類比電 路、數位f路和/雜意輯電路的硬代碼和/絲作指令來處 理信號(類比和/或數位)的設備。處理模址24和/或基帶處理 單το 22可以具有相關的記憶體和/或記憶體元件,上述記憶體 和/或記細耕可以是單個記賴設備、乡個記紐設備和/ 或處理模組24義人式電路。該纖體雜可岐唯讀記憶 體、隨機存取記顏、易失性記憶體、非易失性記憶體、靜^ 記憶體、動態記憶體、快閃記憶體、高速緩衝記憶體和/或^ 儲數位資訊的任意設備4主意若處理馳24何或基帶處理單 15 201212553 多:處理設備,這些處理設備可以集中排布(例如, 線匯流排部直接連接在一起)或分散排布(例 、立二左局域網和/或廣域網的間接連接進行雲計算)。還要 t二,模組24和/或基帶處理單元22通過狀態機、類 、位t麵/或邏輯電路執行它的—個或多個功能 時’子儲相應操作指令的記憶體和/或記憶體元件可以嵌入或 外接於包含該狀態機、類比電路、數位電路和/或邏輯電路的 電路中^應注意’記憶航件存儲、且處理模組24何或基 帶處理單7L 22執仃與至少—幅賴巾所示的至少—些步驟和/ 或功能相關的硬代碼和/或操作指令。 前端模組(FEM) 14包括多個功率放大器(PA) 34-36、 多個接收器-發射器(κχ·τχ)分離模組3請、多個天線調譜 單兀(ATU) 42-44以及頻帶_切換器#。注意,f職* 可以包料止兩條路徑Pas 34_36(射狀瓜分雜組38_4〇 以及ATU 42·44與FB切換器46相連)或可以包括單條路經。 例如FEMM可以包括一條用於2G(第二代)蜂窩服務的路徑、 -條用於3G (第三代)蜂窩服務的路徑和第三條用於無線局 域網(WLAN)服務的路徑。當然,FEM 14中還存在很多其 他示例性路徑組合來支援-個❹個無線通信標準(例如 IEEE802.il、藍牙、移動通信全球系統(GSM)、碼分多址 (CDMA)、射頻標識(RFID)、增強型分組無線通信業務 (EDGE)、通用分組無線業務(GPRS)、WCDMA、高速下行 分組接入(HSDPA)、高速上行分組接入(HsupA)、長期演 進(LTE)、WiMAX (微波存取全球互通)和/或其變型)。决 201212553 -敏作實例中’處理模組24執行需要無線傳輸資料 Ϊ式計算裝置的—個衫個舰。此時,處理模組24將 =#料(例如語音、文本、音頻、視頻、_等)提供給基 帶處理單it或模組22,基帶處理單元或模組22根據—個或多 個無線通信標準(例如GSM、CDMA、wcdma、_A、 hsdpa、WiMAX、EDGE、GPRS,職 u、藍牙紫蜂、 通用移動電信系、統(UMTS)、長期演進(LTE)、臟8〇2.16、 資2優化改進(EV_D0)等)將出站㈣轉化為—個或多個出 站符號流。這種轉化包括以下至少—項:加擾、刪餘 (puncturing)、編碼、交錯、星座映射、調製、擴頻、跳頻、 波束成形、空時分組編碼、空頻分組編碼、頻域·時域轉換和/ 或數位基帶·中頻轉換。注意,基帶處理單以2將出站資料轉 換為單個出簡號流,以實現單輸人單輸^⑽⑴通信和/ 或多輸入單輸出(MSO)通信,並將出站資料轉換為多個出 站符號流’以實現單輸人多輸出(SIM〇)和多輸入多輸出 (ΜΙΜΟ)通信。 基帶處理單το 22提供所述—個或知出站符號流給所述 無表面聲波發部2G,絲面聲波發射器部2()將所述出站 符號流轉換為-個或多個出站RF信號(例如處於一個或多個 頻帶 800MHz、1800MHz、19〇〇MHz、2〇〇〇MHz、2 4Gfc、 5GHz、60GHz等中的信號)。無表面聲波發射器部2〇包括至 >、個上變模組、至少-個變頻帶通遽波器(FTBpF)和輸 出模組;它可以配置為直接轉換拓撲(例如基帶或近基帶符號 流向RF信號的直接轉換)或為超外差拓撲(superheter〇dyne 17 201212553 topology)(例如將基帶或近基帶符號流轉換為正信號然後再 將IF信號轉換為RF信號)。 對於直接轉換,無表面聲波發射器部2〇可以具有基於笛 卡爾的拓撲、基於偏振的拓撲或基於混合偏振_笛卡爾的拓 撲。在基於笛卡爾的拓撲中,無表面聲波發射器部2〇將所述 個或夕個出站符號流的同相和正交分量(例如分別為 A^cos^bb⑴+Φ丨⑼和 AQ(t)cos((〇BB(t)+~t)))與一個或多個 lx射^本地振盪(TX L0)的同相和正交分量(例如分別為 c〇S(〇)RF(t))和也(〇)好(〇))混合以產生混合的信號。FTBPF遽 波該混合的信號,且輸出模組調節(例如共模濾波和/或微分 單端轉換(differentialto single-ended))它們以產生一個或多 個輸出上變頻信號(例如A⑴cos((〇BB⑴+〇(t)+ 〇)RF(t)))。功率 放大器驅動器(PAD)模組放大出站上變頻信號以產生預先功 率放大的(pre-PA)出站RF信號。 在基於相位偏振的拓撲中,無表面聲波發射器部2〇包括 用於產生出站符號流的振盪(例如根據相位資訊(+/_Δφ[相 移]和/或Φ(ΐ)[相位調製]進行調節的⑺如奸⑴))的振盪器。得 到的調節的振盪(例如⑽加好⑴+/_ΛΦ)或c〇s((〇RF(t)十巾⑼) 可以進一步由出站符號流的幅度資訊(例如Α(〇[幅度調製]) 來調節,以產生一個或多個上變頻的信號(例如AWc〇s(c〇RF(t) +/-ΔΦ)或A⑴咖⑼叮⑴+Φ⑼)。FTBPF濾波一個或多個上變 頻的信號’且輸出模組調節(condition)(例如共模滤波和/或 微分單端轉換)它們。功率放大器驅動器(PAD)模組放大出 站上變頻信號以產生預先功率放大的出站RJ7信號。 201212553 在基於頻率偏振的拓撲中,無表面聲波發射器部20包括 用於產生出站符號流的振盪(例如根據頻率資訊(例如+/_△ 聰移]和/或f(t)[頻率調製]進行調節的c〇s(_(t)))的振盪器。 得到的調節的振盪(例如c〇s(c〇RF(t:) +/_從或+f_ 可以進一步由出站符號流的幅度資訊(例如A⑴[幅度調製]) 來調節,.以產生-個或多虹變頻的信號(例如冲細⑽⑴ +/-Δί)或Α〇〇3(ωκΡω +f⑴))。FTBPF濾波一個或多個上變頻 的信號,且輸出模組調節(c〇nditi〇n)(例如共模驗和/或微 分單端轉換)它們。功率放大器驅動器(pAD)模組放大出站 上變頻信號以產生預先功率放大的出站处信號。 在基於混合偏振-笛卡爾的拓撲中,無表面聲波發射器部 20將出站付號流的相位資訊(例如ε〇3(ωΒΒ⑴△ φ)或 C〇S((DBB(t)+(I>(t)))和幅度資訊(例如八⑴)分開。無表面聲波 發射器部20將所述-個或多個出站符號流的同相和正交分量 (例如分別為cos(a)BB(t)+〇^t))和⑺啦邱⑴+〇Q(t)))與一個或 多個發射端本地振盪(TXL0)的同相和正交分量(例如分別 為cos^aKt))和如如好⑴))混合以產生混合的信號qFtbpf 濾波該混合的信號,且輸出模組調節(c〇nditi〇n)(例如共模 滤波和/或微分單端轉換)它們以產生一個或多個出站上變頻 #號(例如Α(〇α>5(ωΒΒ(ί)+Φ〇ωκρ(ΐ)))。功率放大器驅動器 (PAD)模組放大標準化的出站上變頻信號並將幅度資訊(例 如A(t))注入標準化的出站上變頻信號以產生預先功率放大的 (pre-PA )出站RF信號(例如a⑴咖加虹⑴询⑼)。無表面 聲波發射器部20的其他例子將參考圖23和24進行描述。 201212553 對於超外差拓撲’無表面聲波發射器部20包括基帶(BB) 中頻(IF)部和IF-射頻(RF)部。BB_IF部可岐基於偏振 的拓撲、基於笛卡爾的拓撲、基於混合偏振-笛卡爾的拓撲或 上變頻出站符號流的混合級。在前三個例子中,bb_if部生成 IF域(例如A(t)c〇s((〇IF(t)+a>⑼),:[F-rf部包括混合級、濾 波級和功率放大器驅動器(pad),以產生預先功率放大 站RF信號。 當BB-IF部包括混合級時,正-处部可以具有基於偏振的 拓撲、基於笛卡_拓撲或基於混合偏振_笛卡爾的拓撲。在 這種情況下,BB_IF部將出站符號流(例如 A〇S«a>BB(t)+a>(t)))轉換為中頻符號流(例如 A_S(〇)IF_>⑼)。IF_Rp娜IF符驗觀為預先功率放 大的出站RF信號。 無表面聲波發射H部2G向前端模組(FEM) 14的功率放 大器模組(PA)34·36輸出預先功率放大的出站RF信號。PA 34-36包括於放大的預先功率放大的虾信號串聯和/或並聯連 接的-個或多個功率放大器,以產生出站处信號。注意,pA 34-36的參數(例如增益、線性度、帶寬、效率、雜訊、輸出 動態範圍、轉換速率、上升逮率、置位元時間、超調量、穩定 因數等)可以根據從基帶處理單元Μ和/或處理模組%接收 的控制㈣進行調節。例如’由於發射條件改變(例如通道相 應改變、TX單元和RX單元間的距離改變、天線屬性改變等), SOC 12的處理源(例如理單元22和/或處理模組24) 監視發射條件變化並調節PA 34_36的屬性以優化性能。該確 20 201212553 疋並不是獨立做出的;例如,可以根據前端模組其他能被調節 的參數(例如ATU42-44、Rx-τχ分離模組38_4〇)做出,從 而優化RF信號的發射和接收。 TX刀離模組38-40(可以是雙工器、迴圈器(ckcuiator ) 或變壓器巴侖或其他利用共用天線提供TX信號和RX信號的 分離的裝置)衰減出站RP信號。狀-TX分離模組38_4〇可以 根據從SOC 12的基帶處理單元和/或處理模、组24接收的控制 么號調節匕對出站处信號的衰減。例如,當發射功率相對很 低時,可以調節RX_TX分離模組38_4〇減小它對τχ信號的 衰減。 對天線調諧單元(ATU) 42_44進行調諧以提供所期望的 與天線16大致匹配的阻抗。調諧後,ATU42_44將來自狀-τχ 分=模組38-40的衰減的τχ信號提供給天、線16賤發射。 /主思,可以持續或定時調節ATU 42-44以便跟蹤天線16的阻 抗I化。例如,基帶處理單元22和/或處理模'组%可以檢測 天線16的阻抗變化,並根據所檢測到的變化向ATU 42-44提 供控制信號,使其相應地改變自己的阻抗。 在3亥實例中’無表面聲波發射器部2〇具有兩個輸出:一 個^於第—_’另—細於第二鮮。上述討論關注的是出 站資料向單個頻帶(例如850ΜΗζ、900ΜΗΖ等)的出站卯 ‘號的轉換過程。該過程與出站資料向其他頻帶(例如 1800MHz ^ 1900MHz ^ 2100MHz > 2.4GHz ' 5GHz # ) Rp 信號的轉換她n使科個天線16時,無表面聲波發 射器2〇生成其他頻帶内後其他頻帶的出站RJF信號。FEM14 201212553 的頻帶(FB)切換n %將天線μ與絲面聲紐射器輪出 路徑的合適的輸出連接。FB切換器46從基帶處理單元22和/ 或處理模組24接收控制資訊,用以選擇路徑來連接天線16。 天線16還接收一個或多個入站即信號,並通過頻帶(FB) 切換器46將它們提供給ATU 42-44其中之一。ATU 22-24將 入站即信號提供給RX-TX分離模組38-40,RX-TX分離模 組38-40將該信號路由給SOC12的接收器(rx) Rp_IF部。 RX RF-IF 部 28 將入站 RF 信號(例如 A(t)cos(aDRF(t)+a)⑼)轉 換為入站IF信號(例如八仂⑽㈣⑻+少办))和 AQ(t)COS((〇IF⑴+φρ⑼)。rx rf_if部28的各種實施例將在圖 15-23或其他附圖中說明。 RX IF_BB部30將入站IF信號轉換為一個或多個入站符 號流(例如 A(t)cos(G)BB(t)+0>⑼)。此時 ’ rxif-bb 部 30 包括 混頻部和組合&濾波部。混頻部將入站IF信號與第二本地振 盪(例如L02=IF-BB ’其中BB的範圍可以是零到幾mhz) 混合以產生I和Q混頻信號。組合&濾波部進行組合(例如將 混頻信號相加到一起-包括和數分量和差分分量),然後將 組合的信號濾波以大幅衰減和數分量,並通過基本未衰減的差 分分量作為入站符號流。 基帶處理單元22根據一個或多個無線通信標準(例如 GSM、CDMA、WCDMA、HSUPA、HSDPA、WiMAX、EDGE、 GPRS、IEEE802.11、藍牙、紫蜂、通用移動電信系統()、 長期演進(LTE)、IEEE802.16、資料優化改進(ev_d〇)等) 將入站符號流轉換為入站資料(例如語音、文本、音頻、視頻、 22 201212553 圖形等)。這種轉化可以包括以下至少—項:數位中頻_基帶轉 換、時域-頻域轉換、空-時分組解碼、空_頻分組解碼、解調、 擴頻解碼、跳頻解碼、波束成形解碼、星座解映射、解交錯、 解碼、解刪餘和/或解擾。注意,處理模組24將單個入站符號 流轉換為人站㈣,財現單輸人單獅(s恥)通信和/或 多輸入單柳(MISQ)職,乡個人简麵轉換為入 站資料,以實現單輸人多輸出(8細)和多輸入多輸出 (ΜΙΜΟ)通信。 電源管理單元%城於SGC U巾吨行各種功能。這 些功能包括監視電源連接和電池充電、在必要時給電池充電、 控制給SOC 12的其他元件供電、生成供電龍、觸不必要 的SOC模組、控制S0C模組的睡眠模式和/或提供即時時鐘。 為了給電源供電電壓的生成提供便利’電源管理單元%可以 包括-個或多個切換模式供電電源和/或—個或多個線性穩壓 器。 使用這種可攜式計算通信設備1〇,可以淘汰昂貴且分散 的片外元件(例如瞻驗ϋ、雙工器、域和/或電容), 並可以將它們的魏包含於在單個裸片上實賴前端模& (_) 14中。另外,無SAW接收器部^ 為淘汰分散的片外元件提供了便利。 圖3是根據本發明另一個實施例的可攜式計算通传事置 10的示意框圖,它包括片上系統(soc) 52和另—魏例 則端模組(FEM) 50。SOC 52包括電_理單元26、叙⑽ 接收器部I8、無_發射ϋ部2〇、基帶處理單元Μ, 23 201212553 以包括處理模組。FEM 50包括多個功率放大賴組(pA) %36、多個κχ_τχ分離模組38_4〇以及至少一個天線調譜單 元(ATU) 54。 在本實施例中’ SOC 52用於同時支持至少兩種無線通信 (例如蜂料話呼叫和WLAN通信和/祕牙通信)。因此,° 無SAW發射器2〇按照參考圖2和/或參考以下一幅或多幅附 圖所描述的方式生成兩種(或多種)不同頻帶的出站卯信號。 可以將這些不同頻率的出站RP信號中的第一種提供給ρΕΜ 5〇的PAs 34-36其中之-,並將其他的出站即信號提供給其 他PA 34-36。TX-RX分離模組38_4〇中每一個的功能如同參考 圖2所描述的以及將要參考以下附圖中至少一幅進行描述 的。根據來自SOC 52的控制信號進行調諧的ATU 54為天線 16提供用於發射的兩種出站好信號。 天線16還接收兩種或多種不同頻帶的入站RF信號,並 將匕們提供給ATU 54。ATU 54可以包括用於分離這兩種入站 RF信號並分離每種分離信號的阻抗匹配電路(例如一個或多 個LC電路)的分流器(splitter);用於分離信號並分離阻抗匹 配電路的巴倫變壓器;或這兩種信號的阻抗匹配電路,其中這 兩種信號提供給RX-TX分離模組38-40。201212553 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to the field of wireless communications, and more particularly to a wireless transceiver. [Prior Art] Communication systems are known to support wireless and wired communication between wireless and/or wired connected communication devices. These communication systems range from national and/or international beephone systems to the Internet and even to point-to-point home wireless networks. Various types of communication systems can be created separately' and operate in accordance with one or more communication standards. For example, a wireless communication system can operate in accordance with one or more standards including, but not limited to, IEEE 802. 11. Bluetooth, advanced mobile phone service (personal Mps), digital AMPS, Global System for Mobile Communications (GSm), Code Division Multiple Access (CDMa), Local Multipoint Distributed System (LMDS), Multi-channel Multi-point Decentralized System ( MMDS), Radio Frequency Identification (RFE), Enhanced Packet Radio Communications (EDGE), General Packet Radio Service (GPRS), WCDMA, Long Term Evolution (LTE), Worldwide Interoperability for Microwave Access (WiMAX), and/or variations thereof. Depending on the type of wireless communication system, wireless communication devices (such as cellular phones, two-way radios, personal digital assistants (PDAs), personal computers, laptops, home entertainment devices, RpID card readers, ie, 1-inch tags, etc.) communicate with other wireless devices. The device communicates directly or indirectly. For direct communication (also known as peer-to-peer communication), the participating recordings will transfer their receivers and transmitters to the same channel (for example, wireless communication systems, multiple RF commands) = some systems Specific RF frequencies) and communicate through these channels. For indirect = line communication 'Every wireless communication device and associated base station (for example, for bee-off service, 4 201212553 to communicate and/or pass points to mines and side-point points (such as hiding in the home or in the building) _路) Straight letter. In order to complete the communication link of the no-faceted miscellaneous room, 'the relevant base station and/or related access point through the system controller, through the public switched telephone network, through the Internet and/or through - others The wide area network is mutually independent for each wireless communication device participating in wireless communication, including a built-in radio transceiver (ie, receiver and transmitter) or connected to an associated radio transceiver (eg, for home and/or intra-building wireless communication networks (10) Base station, data modem, etc.) The receiver is known to be connected to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives the human station RF through the antenna.彳5 then zoom in. One or more towel frequency levels mix the amplified RF signal with one or more local oscillations to convert the amplified shrimp signal to ribbon or towel _ number. A signal or intermediate frequency signal is used to attenuate unwanted out-of-band money, thereby generating money for the wave reduction. The data recovery stage recovers the data in the filtered signal according to a particular wireless communication standard. The known transmitter includes a data modulation level, one or A plurality of intermediate frequency stages and a power amplifier. The f-modulation stage converts the body into a baseband signal according to the mosquito-free signal. One or more intermediate frequency stages mix the baseband signal with one or more local oscillations to generate an RF signal. The amplifier amplifies the signal and then transmits it through the antenna. To implement the radio transceiver, the wireless communication device includes a plurality of integrated circuits and a plurality of discrete components. Figure 1 illustrates a wireless communication device supporting 2G and 3G cellular telephone protocols. As an example, as shown, the wireless communication device includes a baseband processing 1C, a power management 1C, a radio transceiver IC, a transmit/receive (T/R) 201212553, an antenna, and a plurality of discrete trees. The discrete components include surface acoustic waves. Eagle), power amplifier, dual I, inductor and capacitor. These separate tillages increase the cost of material inspection (4), but it is not necessary to achieve the precise performance requirements of the 2G and 3G agreements. With the development of integrated circuit technology, wireless communication device manufacturers hope that wireless transceiver 1C manufacturers will update their 1C according to the progress of IC system. For example, changes in the manufacturing process (such as the use of smaller transistor models) are aimed at the new design of the four-chip IC. Because of the large-scale digital digital series, the 1C manufacturing 1 art touches the secret, and the IC digital part is re-four-one relatively simple process. However, since most analog circuits (such as inductors, materials) do not shrink with the Ic process, the redesign of the analog part is not a simple task. As a result, wireless transceiver IC manufacturers have put a lot of effort into producing ICs that use the updated Ic manufacturing process. SUMMARY OF THE INVENTION The present invention is provided with a device and a method of operation, and further description is provided in the following description of the drawings and the specific embodiments and claims. According to an aspect of the present invention, a portable computing device is provided, comprising: a front end module 'for connecting to an antenna portion and for separating one or more out from one or more inbound radio frequency signals Station RF signal; a surfaceless acoustic wave (less-SAW) receiver for: converting the one or more inbound RF signals into one or more inbound IF signals by: Responding to at least one of an intermediate frequency filter response and a 201212553 frequency filter response; when the base wave n is responsive to the RF filter response, according to the RF device response, the one or more An inbound radio frequency signal; and filtering the one or more inbound intermediate frequency signals according to the intermediate frequency filter response when the baseband filter responds to the intermediate frequency filter response; and Or converting multiple inbound IF signals into one or more inbound symbol streams; no surface acoustic wave transmitter for converting one or more outbound symbol streams into the one or more outbound RFs Number; and a baseband processing unit, configured to: convert outbound negative material of the one or more outbound symbol stream; and the one or more inbound symbol stream into inbound data. Preferably, the portable computing device further includes: the front end module further configured to separate one or more second outbound radio frequency signals from the one or more second inbound radio frequency signals, wherein the one Or a plurality of inbound and outbound radio frequency signals are located in a first frequency band, and the one or more second inbound radio frequency signals are located in a second frequency band; the surface acoustic wave receiver is further configured to: Converting the plurality of second inbound radio frequency signals into one or more second inbound intermediate frequency signals, wherein: converting the second baseband filter response to at least one of a second intermediate frequency filter response and a second RF filter response 201212553 when the second baseband II is responsive to the second radio frequency filter, the second radio frequency signal is filtered according to the second radio frequency; and the second Baseband filter response frequency conversion for said second intermediate frequency filter response according to said second middle waver response, said one or more second person station intermediate frequency signals; and said one or more The second person station IF signal is converted into one Or a second inbound symbol stream; the surfaceless acoustic wave transmitter is further configured to convert the one or more (four) two outbound symbol streams into the one or more second outbound radio frequency signals; and the baseband processing unit Also for: converting the second outbound data to the one or more second outbound symbol streams; and converting the one or more second inbound symbol streams to the second inbound material. Preferably, the front end module comprises: an antenna tuning unit coupled to the antenna portion and tuned for providing an impedance matching the impedance of the antenna portion; one or more power amplifiers for amplifying the Decoding one or more outbound radio frequency signals to generate one or more amplified outbound radio frequency signals; a separation module coupled to the surfaceless wave receiver, the antenna tuning unit, and the one or more power amplifiers The separation module is configured to: output the one or more amplified outbound radio frequency signals to the antenna tuning unit; and 8 201212553 attenuate in the connection between the separation module and the surfaceless wave receiver The one or more amplified outbound radio frequency signals thereby separating the one or more inbound radio frequency signals from the one or more outbound radio frequency signals. Preferably, the baseband processing unit is further configured to generate at least one of: an antenna tuning unit control signal for impedance of the antenna tuning unit according to an impedance variation of the antenna portion; separating a control signal for adjusting Attenuation of the one or more outbound Rp signals; and power amplifier control signal 'for adjusting one or more parameters of the one or more power amplifiers. Preferably, the surface-free wave transmitter comprises: an up-conversion mixing module, configured to convert the one or more outbound symbol streams into one or more up-converted signals; and transmit a variable-frequency band-pass filter And for: converting the second baseband filter response to a second RF bandpass filter response; and filtering the one or more upconverted signals according to the second RF bandpass filter response to generate one or more a filtered upconverted signal; and an output module 'for adjusting the one or more filtered upconverted signals to produce one or more adjusted upconverted signals; and a power amplifier driver for amplifying The one or more adjusted upset cheeks to generate the one or more outbound radio frequency signals. 201212553 Preferably, the baseband processing unit is further configured to: generate a transmitter control signal, where the transmitter control signal is used to adjust at least one of: the second baseband filter response, the second radio frequency bandpass filtering The device responds with parameters of the power amplifier driver. Preferably the 'surfaceless wave receiver' comprises: a radio frequency-intermediate frequency receiver section comprising: a low noise amplifier for amplifying the one or more inbound radio frequency signals to generate one or more amplified inbound stations a radio frequency signal; an intermediate frequency down conversion module for converting the one or more amplified inbound radio frequency numbers into the one or more inbound intermediate frequency signals; and having the radio frequency band pass filter response a variable frequency band pass filter for filtering the one or more inbound radio frequency signals or filtering the one or more inbound intermediate frequency signals; and an intermediate frequency-baseband receiver portion for using the one or more The inbound IF signals are converted to one or more inbound symbol streams. Preferably, the baseband processing unit is further configured to: generate a receiver control signal, where the receiver control signal is used to adjust at least one of the following. The baseband filter responds, the RF bandpass filter responds to, and the parameters of the low noise amplifier. Preferably, the portable computing device further includes: a first integrated circuit for supporting the baseband processing unit, the surfaceless wave receiver and the surfaceless wave transmitter; and a second integrated circuit For supporting the front end module. Preferably, the portable computing device further includes at least one of the following: 10 201212553 processing module, configured to: execute one or more portable computing materials; and work to generate the outbound function processing Performing the one or more portable computing input data; and setting one or more power management units 'for performing the portable computing to install a power management function. According to another aspect, a portable computing device is provided, including: a front end module, wherein the front end module includes: a power amplifier, wherein a power amplifier of the plurality of power amplifiers amplifies a plurality of outbound RF signals a first-outlet RF signal of the towel; a plurality of separate modules, wherein the separation module of the plurality of separation modules separates the first of the plurality of inbound RF signals from the first outbound RF signal a station radio frequency signal; and at least one antenna tuning unit for providing an impedance matching the impedance of the antenna portion according to the control signal, wherein the antenna tuning unit receives the first inbound radio frequency signal from the antenna portion, and The antenna portion outputs the first outbound radio frequency signal; a surface acoustic wave receiver for converting the plurality of inbound radio frequency signals into a plurality of inbound symbol streams; no surface acoustic wave transmitter for more Converting the outbound symbol stream into the plurality of outbound radio frequency signals; and baseband processing unit, configured to: generate the control signal according to the impedance change of the antenna portion; 201212553 a plurality of outbound (four) converting the extracted outbound symbol streams; and converting the plurality of inbound symbol streams into a plurality of inbound data. Preferably, the portable computing device further comprises: a second power amplifier of the plurality of power amplifiers amplifying a second outbound radio frequency signal of the plurality of outbound radio frequency signals, wherein the first outbound station is located at In the frequency band, the second outbound station number is located in the second frequency band. The second split mode of the plurality of split cells - the second outbound radio frequency signal separates the second person station radio frequency signal of the plurality of human station radio frequency signals.  a band switcher connected to the antenna portion and the at least one antenna tone spectrum; and the second antenna antenna unit of the at least one antenna tuning unit for providing impedance to the antenna portion according to the second control signal The second antenna element receives the first-person station radio frequency signal through the band switch, and outputs the second out-end radio frequency signal to the line unit through the fresh switch. Preferably, the separation module is further configured to: output the first-outbound number to the at least one day-of-the-cell; and, in the face-to-face group, describe a continuous wave of the surface wave receiver The first-out station shoots the number so as to separate the first-person station radio frequency from the outbound radio frequency signal. Preferably, the portable computing device further comprises: the baseband processing module generating a separation control signal; and the sub-group adjusting the attenuation of the outbound radio frequency signal. 201212553 Preferably, the surfaceless wave transmitter comprises: an upconversion mixing module for converting the one or more outbound symbol streams into one or more upconverted signals; transmitting a variable frequency bandpass filter, For: converting a second baseband filter response to a second RF bandpass filter response; and filtering the one or more upconverted signals according to the second RF bandpass filter response to generate one or more filters And an output module for conditioning the one or more filtered upconverted signals to generate one or more adjusted upconverted signals; and a power amplifier driver for amplifying the one Or a plurality of adjusted upconverting # numbers to generate the one or more outbound radio frequency signals. Preferably, the baseband processing unit is further configured to: generate a transmitter control signal, the transmitter control signal for adjusting at least one of: the second base; f filter response, the second radio frequency bandpass The filter responds with the parameters of the power amplifier driver. Preferably, the surface waveless receiver comprises:  The RF-IF receiver section includes: a low noise amplifier section 'for amplifying the plurality of inbound radio frequency signals to generate a plurality of amplified inbound radio frequency signals; an intermediate frequency down conversion module 'for Converting a plurality of amplified inbound radio frequency signals into a plurality of inbound intermediate frequency signals; and a variable frequency band pass filter having the RF band pass filter response, filtering the plurality of inbound radio frequency signals or filtering with 13 201212553 The plurality of inbound intermediate frequency signals; and the intermediate frequency-baseband receiver portion 'for converting the plurality of inbound intermediate frequency signals into a plurality of inbound symbol streams. Preferably, the baseband processing unit is further configured to: generate a receiver control signal, where the receiver control signal is used to adjust at least the following: the baseband chopper response, the radio frequency bandpass chopper response, and The parameters of the low noise amplifier. Preferably, the portable computing device further comprises: =-integrated circuit 'for supporting the first baseband processing unit, the surfaceless wave receiver and the surfaceless wave transmitter; and a second product a body circuit for supporting the front end module. The portable computing device further includes at least one of the following: a processing module, configured to: data execution and one or more portable computing device functions to generate the outbound input The plurality of portable computing device functions process the power management unit for a power management function. Details of the various advantages of one or more of the present inventions for binding the portable computing device will be made in the following (d) daily rectification aspects and innovative features, as well as specific embodiments [embodiments] 5 and _ Detailed introduction. Figure 2疋 is a schematic block diagram of the real-time connection of the portable 4 arithmetic and miscellaneous 1G of the system-on-chip (soc) 12 and the front-end module (job) 201212553, the towel s〇cl2 ^ΡΈΜ 14 in a separate integrated circuit Implemented on. The portable computing communication device 1 can carry any device that can be carried by an individual, at least partially powered by a battery, including a radio transceiver H (eg, radio frequency and/or meter wave (should perform one or two soft details. For example) The portable computing communication device 1G can be a cellular, portable!: &, personal number_hand, video gamer, video game player, personal entertainment unit, desktop computer, etc. SOC12 includes no surface acoustic wave (four) 18. A surface acoustic wave transmitter unit 2, a baseband processing unit 22, a processing module 24 and a power management unit 26. The surface acoustic wave receiver 18 includes a receiver (RX) radio frequency (RF)-intermediate frequency (IF) «Ρ 28 and receiver (10)) IF_baseband (10)) section 3〇. The shape _ positive % also includes one or more variable frequency band pass filters (FTBpF) 32. The processing module 24 and the wire material a can be a single mineral processing device, a sub-processing device or a plurality of processing devices. The processing device can be a microprocessor, a microcontroller, a digital signal processor, a microcomputer, a central processing unit, a field programmable gate array, a heterogeneous logic device, a state machine, a logic circuit, an analog circuit, a digital bit path, and/or A device that processes hard signals and/or wires to process signals (analog and/or digits). The processing template address 24 and/or the baseband processing unit το 22 may have associated memory and/or memory elements, which may be a single recording device, a home device, and/or a processing device. Module 24 is a human-like circuit. The slimming memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory and / Or ^ Any device that stores digital information 4 If you want to process the data or baseband processing single 15 201212553 More: processing equipment, these processing equipment can be arranged centrally (for example, the line bus is directly connected together) or distributed arrangement ( For example, an indirect connection between a left-hand local area network and/or a wide area network (for cloud computing). Further, when the module 24 and/or the baseband processing unit 22 perform its function or functions through a state machine, a class, a bit t-plane, or a logic circuit, the memory and/or memory of the corresponding operation instruction is stored. The memory component can be embedded or externally connected to the circuit including the state machine, the analog circuit, the digital circuit and/or the logic circuit. 2. It should be noted that the memory storage is stored, and the processing module 24 or the baseband processing unit 7L 22 is executed. At least - at least some steps and/or functionally related hard code and/or operational instructions as indicated by the towel. Front End Module (FEM) 14 includes multiple power amplifiers (PA) 34-36, multiple receiver-transmitter (κχ·τχ) separation modules 3, multiple antenna modulation units (ATU) 42-44 And Band_Switch#. Note that the f job* can enclose two paths Pas 34_36 (the camera group 38_4 〇 and the ATU 42·44 are connected to the FB switch 46) or can include a single path. For example, the FEMM may include one path for 2G (second generation) cellular services, - a path for 3G (third generation) cellular services, and a third path for wireless local area network (WLAN) services. Of course, there are many other exemplary path combinations in FEM 14 to support one wireless communication standard (such as IEEE 802. Il, Bluetooth, Global System for Mobile Communications (GSM), Code Division Multiple Access (CDMA), Radio Frequency Identification (RFID), Enhanced Packet Radio Communications (EDGE), General Packet Radio Service (GPRS), WCDMA, High Speed Downlink Packet Incoming (HSDPA), High Speed Uplink Packet Access (HsupA), Long Term Evolution (LTE), WiMAX (Worldwide Interoperability for Microwave Access) and/or variants thereof. 201212553 - In the example of the application, the processing module 24 executes a shirt that requires wireless transmission of data. At this time, the processing module 24 provides the source material (such as voice, text, audio, video, _, etc.) to the baseband processing unit or module 22, and the baseband processing unit or module 22 according to one or more wireless communications. Standards (eg GSM, CDMA, wcdma, _A, hsdpa, WiMAX, EDGE, GPRS, U, Bluetooth Zombie, Universal Mobile Telecommunications, UMTS, Long Term Evolution (LTE), Dirty 8〇2. 16. Capital 2 optimization improvement (EV_D0), etc.) converts outbound (4) into one or more outbound symbol streams. This transformation includes at least the following items: scrambling, puncturing, coding, interleaving, constellation mapping, modulation, spreading, frequency hopping, beamforming, space-time block coding, space-frequency block coding, frequency domain·time Domain conversion and / or digital baseband · IF conversion. Note that the baseband processing unit converts the outbound data into a single stream of simple numbers to achieve single-input single-output (10) (1) communication and/or multiple-input single-output (MSO) communication, and converts outbound data into multiple Outbound symbol stream 'to achieve single-input multiple-output (SIM〇) and multiple-input multiple-output (ΜΙΜΟ) communication. The baseband processing unit το 22 provides the one or known outbound symbol stream to the surfaceless acoustic wave generating portion 2G, and the surface acoustic wave transmitter portion 2() converts the outbound symbol stream into one or more Station RF signals (eg, signals in one or more frequency bands 800 MHz, 1800 MHz, 19 〇〇 MHz, 2 〇〇〇 MHz, 2 4 Gfc, 5 GHz, 60 GHz, etc.). The surface acoustic wave transmitter section 2 includes a >, an up-conversion module, at least one variable frequency bandpass chopper (FTBpF), and an output module; it can be configured as a direct conversion topology (eg, baseband or near baseband symbols) The direct conversion to the RF signal is either a superheteron dyne (201212553 topology) (eg converting a baseband or near baseband symbol stream to a positive signal and then converting the IF signal to an RF signal). For direct conversion, the surface acoustic wave transmitter section 2 can have a Cartesian-based topology, a polarization-based topology, or a hybrid polarization-Cartesian-based topology. In a Cartesian-based topology, the surface acoustic wave transmitter portion 2 同 combines the in-phase and quadrature components of the or each outbound symbol stream (eg, A^cos^bb(1)+Φ丨(9) and AQ(t, respectively) )cos((〇BB(t)+~t)))) is in-phase and quadrature components of one or more lx-radio local oscillations (TX L0) (eg c〇S(〇)RF(t), respectively) And (yes) good (〇) mix to produce a mixed signal. The FTBPF chops the mixed signal, and the output module adjusts (eg, common mode filtering and/or differential to single-ended) to produce one or more output upconverted signals (eg, A(1)cos((〇BB(1)) +〇(t)+ 〇)RF(t))). A power amplifier driver (PAD) module amplifies the outbound upconverted signal to produce a pre-power amplified (pre-PA) outbound RF signal. In a phase polarization based topology, the surfaceless acoustic wave transmitter section 2 includes an oscillation for generating an outbound symbol stream (eg, based on phase information (+/_Δφ[phase shift] and/or Φ(ΐ) [phase modulation] The oscillator that performs the adjustment (7) as the rape (1))). The resulting adjusted oscillations (eg, (10) plus (1) + / _ Λ Φ) or c 〇 s (( 〇 RF (t) ten (9)) can be further derived from the amplitude information of the outbound symbol stream (eg Α (〇 [amplitude modulation]) To adjust to produce one or more upconverted signals (eg AWc〇s(c〇RF(t) +/- ΔΦ) or A(1) coffee(9)叮(1)+Φ(9)). FTBPF filters one or more upconverted signals And the output module conditions (such as common mode filtering and / or differential single-ended conversion). The power amplifier driver (PAD) module amplifies the outbound upconverted signal to generate the pre-power amplified outbound RJ7 signal. 201212553 In a frequency polarization based topology, the surface acoustic wave transmitter portion 20 includes an oscillation for generating an outbound symbol stream (eg, based on frequency information (eg, +/_Δcognition) and/or f(t) [frequency modulation] Perform an adjusted c〇s(_(t))) oscillator. Obtain the adjusted oscillations (eg c〇s(c〇RF(t:) +/_ from or +f_ can be further flowed by the outbound symbol) Amplitude information (such as A (1) [amplitude modulation]) to adjust, To generate a signal that is converted to one or more rainbows (eg, (10) (1) +/- Δί) or Α〇〇 3 (ω κ Ρ ω + f (1)). The FTBPF filters one or more upconverted signals, and the output modules adjust (c〇nditi〇n) (e.g., common mode and/or differential single-ended conversion). The power amplifier driver (pAD) module amplifies the outbound upconverted signal to produce an outbound signal that is preamplified by power. In a hybrid polarization-Cartesian based topology, the surface acoustic wave transmitter portion 20 will phase information of the outbound pay stream (e.g., ε 〇 3 (ω ΒΒ (1) Δ φ) or C 〇 S ((DBB(t) + (I&gt) (t))) and amplitude information (e.g., eight (1)) are separated. The surface acoustic wave transmitter portion 20 combines the in-phase and quadrature components of the one or more outbound symbol streams (e.g., cos(a) BB, respectively). (t) + 〇 ^ t)) and (7) Laqiu (1) + 〇 Q (t))) and one or more transmitter local oscillations (TXL0) in-phase and quadrature components (for example, cos^aKt) As good as (1))) mixing to generate a mixed signal qFtbpf to filter the mixed signal, and the output module adjusts (c〇nditi〇n) (such as common mode filtering and/or differential single-ended conversion) to generate one or more An outbound upconverter # (eg Α(〇α>5(ωΒΒ(ί)+Φ〇ωκρ(ΐ))). The power amplifier driver (PAD) module amplifies the standardized outbound upconverted signal and amplitude information (eg, A(t)) injects a normalized outbound upconverted signal to produce a pre-power amplified (pre-PA) outbound RF signal (eg, a(1) Cagahong (1) Query (9). No Surface Acoustic Wave Transmitter Other examples of section 20 will be described with reference to Figures 23 and 24. 201212553 For superheterodyne topology, the surface acoustic wave transmitter section 20 includes a baseband (BB) intermediate frequency (IF) section and an IF-radio frequency (RF) section. BB_IF section偏振 Polarization-based topology, Cartesian-based topology, hybrid polarization-Cartesian-based topology, or hybrid stage of upconverting outbound symbol streams. In the first three examples, the bb_if section generates an IF domain (eg A(t) C〇s((〇IF(t)+a>(9)),: [F-rf part includes mixing stage, filter stage and power amplifier driver (pad) to generate pre-power amplification station RF signal. When BB-IF part Including the mixing stage, the positive-segment can have a polarization-based topology, a Cartesian-based topology or a hybrid polarization-Cartesian-based topology. In this case, the BB_IF section will have an outbound symbol stream (eg A〇S«) a > BB(t) + a > (t))) is converted into an IF symbol stream (for example, A_S(〇)IF_>(9)). The IF_Rp IF IF is a pre-power amplified outbound RF signal. The H-port 2G is transmitted to the power amplifier module (PA) 34·36 of the front-end module (FEM) 14 to output the pre-power amplified outbound RF. No. PA 34-36 includes one or more power amplifiers connected in series and/or in parallel with amplified pre-power amplified shrimp signals to generate an outbound signal. Note that parameters of pA 34-36 (eg gain, Linearity, bandwidth, efficiency, noise, output dynamic range, slew rate, rise rate, settling time, overshoot, stability factor, etc. can be received from baseband processing unit / and/or processing module % Control (4) to adjust. For example, the processing source of the SOC 12 (eg, the processing unit 22 and/or the processing module 24) monitors changes in transmission conditions due to changes in transmission conditions (eg, corresponding channel changes, distance changes between TX units and RX units, changes in antenna properties, etc.). And adjust the properties of PA 34_36 to optimize performance. It is true that 201212553 is not made independently; for example, it can be made according to other parameters of the front-end module that can be adjusted (such as ATU42-44, Rx-τχ separation module 38_4〇) to optimize the emission of RF signals and receive. The TX knife attenuates the outbound RP signal from the module 38-40 (which may be a duplexer, a CKcuiator or a transformer balun or other separate means for providing a TX signal and an RX signal using a shared antenna). The TX-TX separation module 38_4 can adjust the attenuation of the signal at the outbound according to the control received from the baseband processing unit and/or processing mode, group 24 of the SOC 12. For example, when the transmit power is relatively low, the RX_TX split module 38_4 can be adjusted to reduce its attenuation of the τχ signal. The antenna tuning unit (ATU) 42_44 is tuned to provide the desired impedance that is substantially matched to the antenna 16. After tuning, the ATU 42_44 provides the attenuated τχ signal from the sigma-τ χ = module 38-40 to the day and line 16 贱 emissions. /Thinking, the ATU 42-44 can be adjusted continuously or periodically to track the impedance of the antenna 16. For example, baseband processing unit 22 and/or processing mode 'group % can detect changes in impedance of antenna 16 and provide control signals to ATUs 42-44 based on the detected changes, causing them to change their impedance accordingly. In the 3H example, the 'surfaceless acoustic wave transmitter section 2' has two outputs: one is the first - the other is the second. The above discussion is concerned with the conversion process of outbound data from the outbound data to a single frequency band (eg 850ΜΗζ, 900ΜΗΖ, etc.). The process and outbound data to other frequency bands (eg 1800MHz ^ 1900MHz ^ 2100MHz > 2. 4GHz '5GHz#) Rp signal conversion When she makes an antenna 16th, no surface acoustic wave transmitter 2〇 generates an outbound RJF signal in other frequency bands after other bands. The frequency band (FB) of the FEM14 201212553 switches n % to connect the antenna μ to the appropriate output of the wire-to-sound ejector wheeling path. The FB switch 46 receives control information from the baseband processing unit 22 and/or the processing module 24 for selecting a path to connect to the antenna 16. Antenna 16 also receives one or more inbound signals, and provides them to one of ATUs 42-44 via a frequency band (FB) switch 46. The ATU 22-24 provides the inbound signal to the RX-TX split module 38-40, which routes the signal to the receiver (rx) Rp_IF portion of the SOC 12. The RX RF-IF section 28 converts the inbound RF signal (eg A(t)cos(aDRF(t)+a)(9)) into an inbound IF signal (eg gossip (10) (4) (8) + less) and AQ(t)COS ((〇IF(1)+φρ(9)). Various embodiments of the rx rf_if portion 28 will be illustrated in Figures 15-23 or other figures. The RX IF_BB portion 30 converts the inbound IF signal into one or more inbound symbol streams (e.g. A(t)cos(G)BB(t)+0>(9)). At this time, the 'rxif-bb unit 30 includes a mixing unit and a combination & filter unit. The mixing unit will inbound IF signal and second local oscillation. (For example, L02=IF-BB 'where BB can range from zero to several mhz) to mix to generate I and Q mixing signals. Combining & filtering is combined (for example, adding mixed signals together - including sum The component and the differential component are then filtered to substantially attenuate the sum component and pass the substantially un-attenuated differential component as an inbound symbol stream. The baseband processing unit 22 is based on one or more wireless communication standards (eg, GSM, CDMA) , WCDMA, HSUPA, HSDPA, WiMAX, EDGE, GPRS, IEEE802. 11, Bluetooth, ZigBee, Universal Mobile Telecommunications System (), Long Term Evolution (LTE), IEEE 802. 16. Data optimization improvement (ev_d〇), etc.) Convert inbound symbol streams into inbound data (eg voice, text, audio, video, 22 201212553 graphics, etc.). Such conversion may include at least the following items: digital intermediate frequency _ baseband conversion, time domain-frequency domain conversion, space-time packet decoding, space-frequency packet decoding, demodulation, spread spectrum decoding, frequency hopping decoding, beamforming decoding. , constellation de-mapping, de-interlacing, decoding, de-puncturing, and/or descrambling. Note that the processing module 24 converts a single inbound symbol stream into a human station (4), a single-investment single-lion (s shame) communication and/or a multi-input single-willow (MISQ) job, and the township personal facet is converted into an inbound station. Data to achieve single input multiple output (8 fine) and multiple input multiple output (ΜΙΜΟ) communication. Power Management Unit% City in the SGC U towel tons of various functions. These features include monitoring power connections and battery charging, charging the battery when necessary, controlling power to other components of the SOC 12, generating power supplies, touching unnecessary SOC modules, controlling the sleep mode of the SOC module, and/or providing an instant clock. . In order to facilitate the generation of the power supply voltage, the power management unit % may include one or more switching mode power supplies and/or one or more linear regulators. With this portable computing communication device, expensive and discrete off-chip components (such as ϋ, duplexers, domains, and/or capacitors) can be eliminated and their Wei can be included on a single die. Really depends on the front-end mode & (_) 14 in. In addition, the SAW-free receiver unit facilitates the elimination of discrete off-chip components. 3 is a schematic block diagram of a portable computing communication device 10 including a system on a chip (soc) 52 and a further example (FEM) 50 in accordance with another embodiment of the present invention. The SOC 52 includes an electrical unit 26, a (10) receiver unit I8, a no-transmitting unit 2, a baseband processing unit, 23 201212553 to include a processing module. The FEM 50 includes a plurality of power amplification sets (pA) % 36, a plurality of κ χ τ χ separation modules 38_4 〇, and at least one antenna tone modulation unit (ATU) 54. In the present embodiment, the SOC 52 is used to simultaneously support at least two types of wireless communication (e.g., bee call and WLAN communication and/or babble communication). Thus, the no SAW transmitter 2 generates two (or more) outbound chirp signals of different frequency bands in the manner described with reference to Figure 2 and/or with reference to one or more of the following figures. The first of these different frequency outbound RP signals can be provided to the PAs 34-36 of the ρΕΜ5〇, and the other outbound signals are provided to the other PA 34-36. The function of each of the TX-RX separation modules 38_4 is as described with reference to Figure 2 and will be described with reference to at least one of the following figures. The ATU 54 tuned according to the control signal from the SOC 52 provides the antenna 16 with two outbound signals for transmission. Antenna 16 also receives inbound RF signals of two or more different frequency bands and provides them to ATU 54. The ATU 54 may include a splitter for separating the two inbound RF signals and separating the impedance matching circuits (eg, one or more LC circuits) of each of the separated signals; for separating the signals and separating the impedance matching circuits A balun transformer; or an impedance matching circuit for both signals, wherein the two signals are provided to the RX-TX separation module 38-40.

RX-TX分離模組38-40分別依賴於各自的頻帶,它們僅僅 通過各自頻帶(例如850-900_2和1800-1900MHZ)内的入 站和出站RF信號。因此’第一 TX_RX分離模組38_4〇提供第 一頻帶入站RF信號給無SAW RX部18的第一輸入端,第二 TX_RX分離模組38_4〇提供第二頻帶入站处信號給無SAW 24 201212553 :18的第二輸人端。無瞻狀部18按照 料參扣下至少—幅關妨料咐法處理入 站RFb虎以產生第一入站資料和第二人站資料。The RX-TX split modules 38-40 rely on respective frequency bands, respectively, which only pass inbound and outbound RF signals within respective frequency bands (e.g., 850-900_2 and 1800-1900 MHz). Therefore, the 'first TX_RX separation module 38_4〇 provides the first frequency band inbound RF signal to the first input of the no SAW RX unit 18, and the second TX_RX separation module 38_4 provides the second frequency band inbound signal to the no SAW 24 201212553: The second loser of 18. The non-oriented section 18 processes the inbound RFb tiger according to the material at least the data to generate the first inbound data and the second station data.

圖=根據本發明另一個實施例的可攜式計算通信裝置 、〜框圖’它包括通過RF連接70與前端模组㈣ 網路6〇相連的片上祕⑼C) 12或52。S〇c 12或 電源管理單元26、無SAW接收||部18、無SAW 基帶處理單元22,還可以包括處理模組。即連接1=〇是 :軸電規、彈性先纖電纜、彈性波導和/或其他高頻電繞中至 少-種。FEM網路6G包括多個FEM 62_68 (例如兩個或多 個)’其中FEM 62-68中每-個分別包括多個功率放大器模組 (PA)、多個rx_tx分離模組、至少_個天線調譜單元(Απ) 以及頻帶切換器(SW)。技,FEM62_68中至少—個的結構 如同參考圖3所描述的。 FEM 62-68 +的每-個可以分別支持相同的頻帶、不同的 頻帶或其組合。例如,兩個FEM可以支援相同喃帶(例如 850-900臟2和180(M900MHz),而另外兩個可以支援不同的 頻帶(例如2.4GHz、5GHz、60GHz等)。在此例中,s〇c 12 或52可以根據多個RF通信參數(例如發射功率電平、接收 信號強度、帶外阻滯、信噪比、信擾比、工作頻率、與其他無 線通信的干擾等)中至少一個來選擇具有相同頻帶的FEM 62-68中的一個。例如,SOC 12或52選擇能夠提供目前最佳 性能水準的蜂窩通信的FEM以及能夠提供目前最佳性能水準 的WLAN、個人區域網路或其他無線網路通信的另一 FEM。 25 201212553 由於FEM 62-68中的每-個都是可編程的,s〇c 12或& 可以為所選擇的模組編程以減少相互間的干擾。例如,可以將 支援蜂窩通信的FEM織為在無賴酬路通信_(例如 2.4GHz、5GHz、6GGHz等)内具有額外衰減。另外,隨著條 件(例如干擾、發射-接收距離、天線參數、環境因數等)的 變化,SOC 12或52可以調節所選FEM的參數以基本補償該 變化。替代地’ SOC 12或52可以選擇另一 FEM進行兩種通 信中的至少一種。 SOC 12或52可以選擇多個FEM 62-68來支援ΜΙΜΟ通 信、SIMO通信和/或MS0通信。例如,在2*2ΜΙΜ〇通信中, 可以選擇一個FEM進行其中一種τχ/κχ ΜΙΜ〇通信,選擇另 一個FEM進行另一種tx/rx ΜΜ〇通信。 SOC 12或52還可以選擇一個FEM來支持一個頻帶内的 發射,並選擇另一個FEM來支持同一頻帶内的接收。例如, SOC 12或52可以選擇第一 FEM來支援1800MHz蜂窩電話發 射和第一 FEM來支援1800MHz蜂窩電話接收。又例如,s〇c 12或52可以選擇第一 FEM來支援1800MHz蜂窩電話發射, 第二FEM來支援900MHz蜂窩電話發射,第三FEM來支援 1800MHz蜂窩電話接收,以及第四FEM來支援900MHz蜂寓 電話接收。再例如,SOC 12或52可以選擇第一 FEM來支援 1800MHz蜂窩電話發射,第二FEM來支援900MHz蜂窩電話 發射,且該第二FEM支援1800MHz蜂窩電話接收,該第一 FEM支援900MHZ蜂窩電話接收。 FEM網路60可以在單個封裝基板上的單個裸片(die)上 26 201212553 實現;在單個基板上的多個裸片上實現(例如每個腦在一 裸片上)’ 作為獨立的積體電路㈤)實現。在後 清开v中FEM 62-68中至少一個可以遠離s〇c 12或%。例 如’可攜辆算通錄置可叹支援蜂料話雜的無線毫微 微蜂窩絲站(f_eell)收奸,財至少—個歷在物 理上距離SOC 12或52 -段距離(例如大於i米)。另外,可 以使用其中-個FEM與基站通信,同時可以使用一個或多個 其他FEM與其他無線通信健(例如蜂寫)通信。 例如,裝置ίο利用傳統蜂窩服務與基站(BS)通信,同 時該裝置與其他鱗通信裝置之咖鏈路使用另—頻帶。狀 處理模組協調其他設備_際網路和/或蜂窩接人以及各種鍵 路的信號轉換。 又例如’裝置10作為M個蜂寓或其他手持裝置的無線 毫微微蜂g式基讀用。裝制的無線局域鏈路可以遵從一種 或多麵議。-娜定雜傳稱_準(例如無線毫麵蜂 窩式基站像BS -樣分配局域無線鏈路)。另一種協議使無線 毫微微蜂窩絲站裝置作為網際網路協定(Ip)通道上的用戶 介面擴展使用。手機(handset)的-條鏈路連接至接入點 (AP),_手舰結至其絲置形細格,從㈣過其他方 式邏輯地連接到AP。 ' 再例如’裝置10作為無線毫微微蜂窩式基站(例如則 使用,它使用對啤叫系統的資料呼叫無線接人,從而向处提 供IP通道,該IP通道在邏輯上將AP連接到網際網路上任意 位置的應用词服器。例如,載波不必為語音呼叫提供電爷系統 27 201212553 ”面IP通道穿過Ap以便將例如域内的網際網路電話用戶端 與網際網路電話網絡連接。來自AP的載波的資料通道的負載 和谷1決定了—個AP所支持的有效手機的數量。 在此例中,從AP到所支援的無線裝置的鏈路不在蜂窩帶 ^ ’而是使用傳統蜂寫標準(即AP類似BS,且當手機用戶 端在被支援的無線裝置上運行時該AP執行轉換器功能)。替 穿置10與被支援的無線裝置之間的鏈路使用不屬於 寫標準的專有的—系列呼叫步驟。此時,該AP運行裝置用戶 端且該裝置健是1p通道上的雜υι擴展。 毫微+裝置1G叙自己是魏該成為其他無線裝置的 站。此時,裝置10確定自己是否滿足品質間 不用於移給載波好騎續的信號、具有較佳電池壽命、 位㈣呼叫等)。若是,那麼它制載波註冊為給定地理 位置中的毫微微蜂窩式基站。一 巧口疋地理 方式(60GHz、TVW9 t 冊將通過點對點無線 如蜂寫)。對於它朗到的裝置’裝置職裝置(例 載波(例如它們傳遞資訊)的強二了 一線裝置的 載波的BS)精強卿”金度對於母個载波(例如 為°錢度較弱或沒有的無線裝置,裝置K)主動成 為…、線裝置的毫微微蜂窩式基站 動成 10成為自己的毫微微蜂t …線裝置希望震置 己作為無線裝置的:微蜂微高蜂 =:用置, 個裝置之間的動態過程基;^用。注思’這可以是幾 微微蜂窩式基站AP。若_^ 作為其他裴置的毫 ,.,„ 條件改變,上述其他F罟由从 成為這些裝置的毫微微蜂、的-個可 蜂高式基站AP,且作為毫微微蜂寫 28 201212553 式基站AP的裝置成為新的毫微微蜂离式基站处的用 再例如’多個裝置可以配合在一起形成毫 (femto-netw她)。此時,—姆置作為—個或多歡 的中繼站,用於接入作為無線毫微微蜂寓式基站A/的裝置 包娜慨幅_絲站裝置作為 f也裝置的主機’且它們鏈結至其歸以提供連接。這鮮 =以是其中一個無線毫微微蜂离式基站裝置提供蜂高語; 連接’另-個提供蜂窩資料連接,且第三個提供肌觸連接。 再例如,多健置在密_地额域中(例如在橋車中、 定確定哪個裝置將作為其_的無線 ,微微蜂窩式基站AP以及提供哪些服務。例如,健 則她間建立點 對點鏈路(60GHz、TVWS、9 dru 处、 1 V 、2.4GHZ等),然後通過比較 ,的移動站點上的節點來確定這些鍵路= 者時間的推移而持續,以及它們是否基本上一起移動⑼ 2同-轎車或火車等中)。若它們確定自 軸綱最佳整體 體上。每或它們可时部在同一載 職置和另—個裝置的信號差別很大, =z是很多變數(例如機動車中的位置和距離車體的 接#ϋ 最佳信號明顯優於給定裝置能夠通過其直 機。二曰4實現1,它將請求由具有最佳信號的裝置作為主 —疋成了㈣,呼叫將被通過ΑΡ主機傳遞給其他裝置。 29 201212553 若載波信號低於·,該過程重複,且可雜選另—裝置 新=機。在這種特殊情況了,所有裝置知曉哪些其他裝置進 行測3式,至少直到它們相互脫離範圍。 再例如,對於參與網路會議的褒置,每個裝置一次向 人(即裝置用戶)提供用戶介面。因此,每個裝置實質上 相同的利用載波的-對一無線連接。為了減少冗餘流量和降低 f加網路容量造成的縣,網路會議的第—裝置絲成為同一 地理區域内其他裝置的無線毫微微蜂窩式基站AP。若被接 受,該第一襄置用載波註冊,然後作為網路會議的其 無線亳微微蜂窩式基站处。這一方案的擴展可以應用於任^ 類型的音頻和/或視頻會射,無論給定地麵_的多個 通過可攜式計算通信裝置參與該會議。另一擴展可以 匕括〜、他裝置共用基於値H的朗(例如—個裝置是接入 網際網路託管的顧(例如㈣庫、視賴 微蜂离式基站ΑΡ,且其他裝置通過該無線毫微微蜂寫^= ΑΡ接入網際網路託管的應用)。 再例如,用作無線毫微微蜂窩式基站Αρ触置根據其環 =例如用於辦公室中、家中、輪車中、公共場所、私人場所、 二用途、私人用途等)進行配置。該配置選項包括頻率使用 二、發射功率、祕支援的單元的㈣、針的毫微微蜂寫 式基站控制、分散式毫微微蜂窩式基站控制、分配的容量、編 竭水準、符號和/道接人。例如,若在公共場所,職置 將用作公共無線毫讎蜂寓式基站雜人無線毫微微蜂寫式 基站。當财Ή作私人毫織蜂窩絲科,它選擇能夠確 201212553 保它所支持的通信的隱私的配置。 圖5是根據本發明另-個實施例的可攜式計算通信裝置 10的示意框圖,它包括通過RF連接9〇與前端模組(/em) 網路80相連的片上系統(S0C) 12或52。s〇c 12或%包括 電源管理單το 26、無SAW接收器部18、無saw發射器部20、 基帶處理單元22,還可以包括處理模組。处連接9〇可以是 同轴電纜、彈性絲電纜、彈性波導和/或其他高頻魏中至 少一種。FEM網路80包括多個FEM 62_68 (例如兩個或多種) 和變頻模組82。該變頻模組82包括一個或多個旁路變 換模組。FEM 62·68中每-個分別包括多個功率放大器模組 (ΡΑ)、多個RX-TX分離模組、至少一個天線調諧單元() 以及頻帶切換器(SW)。注意,FEM62_68中至少一個的結構 如同參考圖3所描述的。 SOC 12或52和FEM 62-68的功能與圖4中的s〇c 12或 52和FEM 62-68相似。在本實施例中,在s〇c 12或52和相 應的FEM之間進行路由前,可以將來自FEM的入站即信號 和/或來自SOC 12或52的出站RP信號進行變頻。例如,s〇c 12或52可以形成用於處理載波頻率為2 4GHz的輸入和出站 RF信號,但是具有根據多個標準化無線協定和/或專有協定產 生符號流的基帶功能。此時,SOC 12或52根據給定無線協定 生成出站符號流,並將符號流上變頻為具有2.4GHz載波頻率 的RF信號。 包含本地振盪器、混頻模組和濾波的RF—RF變頻模組% 將出站RF信號與本地振盪混合以產生混頻的信號。濾波部濾 31 201212553 波混頻的信號以產生所期望載波頻率(例如900MHz、 1800MHz、19〇〇MHz、5GHz、60GHz 等)的出站 Rp 信號。 注意,變頻模組82可以包括多個RF-RF變換模組(一個或多 個用於k南載波頻率和/或一個或多個用於降低載波頻率)。就 此而言,通用SOC 12或52的實施可以與FEM網路80的各 種實施(例如FEM模組62-68的數量、RF-RF變換模組的數 量等)耦合,以形成各種可攜式計算通信裝置。 圖6是根據本發明另一個實施例的可攜式計算通信裝置 1〇的示意框圖’它包括通過RF連接78與前端模組(FEM;) 網路60相連的多個片上系統(s〇C) 12或52。每個SOC 12 或52分別包括電源管理單元26、無SAW接收器部18、無SAW 發射器部20、基帶處理單元22,還可以包括處理模組。Rjp連 接78可以是同軸電纜、彈性光纖電纜、彈性波導和/或其他高 頻電纜中至少一種。FEM網路60包括多個FEM 62-68 (例如 兩個或多種)’其中FEM62-68中每一個分別包括多個功率放 大器模組(PA)、多個RX-TX分離模組、至少一個天線調諧 單元(ATU)以及頻帶切換器(SW)。注意,FEM62-68中至 少一個的結構如同參考圖3所描述的。 在本實施例中’一個SOC 12或52使用feM 62-68中至 少一個來支持一種或多種無線通信(例如蜂窩、Wlan、WPAN 等)’另一個SOC 12-52使用一個或多個其他FEM62-68來支 持一種或多種其他無線通信。為了減少無線通信之間的干擾和 /或為了優化每個無線通信’至少一個S〇c 12或52向FEM 62_68提供控制信號以調節其性能。除了每個s〇c 12或52使 32 201212553 用不同FEM 62-68這-例子,在另一個例子中,兩個或多種 SOC 12《2可以按照時分方式通過切換模組(未示出)共用 FEM 62-68。在又一個例子中,一個s〇c丨2或52可以使用FEM 62-68的一條路徑’另一個s〇c 12或52可以使用ρΕΜ 62_68 的其他路徑中至少一條。 圖7是根據本發明另一個實施例的可攜式計算通信裝置 10的示思框圖,匕包括通過RJP連接90與前端模組(FEM) 網路80相連的多個片上系統(s〇c) 12或52。3〇(:12或52 包括電源官理單元26、無SAW接收H部18、無SAW發射器 4 2〇、基帶處理單元22 ’還可以包括處理模組。处連接9〇 可以是同軸魏、雜光纖電纜、雜波導和/或其他高頻電 纜中至少-種。FEM網路8G包括乡個FEM 62_68 (例如兩個 或多種)和變麵組82。該變頻模組82包括一個或多個旁路 RF RF變換模組。FEM 62-68中每-個分別包括多個功率放大 器模組(PA)、乡個rx_TX分賴、至少一個天線調譜單 元(ATU)以及頻帶切換器(sw)。注意,FEM62 68中至少 —個的結構如同參考圖3所描述的。 I在本實施例中,一個SOC 12或52使用FEM 62_68中至 少—個來支持一種或多種無線通信(例如蜂窩、WLAN、WPAN 等),另一個SOC 12-52使用一個或多個其他FEM62_68來支 持種或多種其他無線通信。為了減少無線通信之間的干擾和 /或為了優化每個無線通信,至少一個S0C 12或52向FEM 62-68提供控制信號_節其性能。此外’可贿至少一個無 線通信通過魏餘82,以錢料降低絲線通信的載波 33 201212553 頻率。 圖8是根據本發明另一個實施例的可攜式計算通信裝置 10的示意框圖,它包括通過RF連接7〇與前端模組(FEM) 網路60相連的片上系統(s〇c) 1〇〇。s〇c 1〇〇包括電源管理 單元26、多個無SAW接收器部18_丨_18_2、多個無saw發射 器部20-1-20-2、一個或多個基帶處理單元22,還可以包括處 理模組。RF連接7〇可以是同轴電繅、彈性光纖電缓、彈性波 導和/或其他高頻電繞中至少一種。FEM網路6〇包括多個fem 62-68 (例如兩個或多種),其中FEM 62 68中每一個分別包括 多個功率放大器模組(PA)、多個RX4X分離模組、至少一 個天線調諧單元(ATU)以及頻帶切換器(sw)。注意,fem 62_68中至少一個的結構如同參考圖3所描述的。 在本實施例中’soc 1〇〇能夠利用FEM62_68中至少一個 來進行多個併發的無線通信。例如,可以將一對無SAW發射 器&接收器用於WLAN通信,將另一對無SAW發射器&接收 器用於850或900MHz蜂窩電話通信。又例如,可以將一對無 SAW發射器&接收器用於蜂窩語音通信,將另一對無SAw發 射紐接收器用於蜂窩資料通信。注意,這些併發的無線触 可以在具有不同載波頻率的同一頻帶中和/或在不同頻帶中。 圖9是根據本發明另一個實施例的可攜式計算通信裝置 10的示意框圖,它包括通過RF連接7〇與前端模組(FEM) 網路80相連的片上系統(S〇C) 100。s〇c 1〇〇包括電源管理 單元26、多個無SAW接收器部18_Μ8·2、多個無SAW發射 器部20-1-20-2、一個或多個基帶處理單元22,還可以包括處 34 201212553 理模組。RF連接70可以是同軸電纜、彈性光纖電纜、彈性波 導和/或其他尚頻電纜中至少一種。FEM網路80包括多個FEM 62-68 (例如兩個或多個)和變頻模組。該變頻模組82包括一 個或多個旁路RF-RF變換模組。FEM 62_68中每一個分別包 括多個功率放大器模組(PA)、多個rx-tx分離模組、至少 一個天線調諧單元(ATU)以及頻帶切換器(sw)。注意,fem 62-68中至少一個的結構如同參考圖3所描述的。 在本實施例中’SOC 100能夠利用FEM62_68中至少一個 來進行多個併發的無線通信’且至少—個無線通信的載波頻率 可以由變頻模組82進行轉換。例如,可以將一對無SAW發射 器&接收器用於WLAN通信,將另一對無SAW發射器&接收 器用於850或900廳蜂窩電話通信。又例如,可以將一對無 SAW發射器&接收器用於蜂窩語音通信,將另一對無SAw發 射器&接收器用於蜂窩資料通信。在上述任意一個例子中,至 > 一個無線通#的載波頻率可以由變頻模組82提高或降低。 圖10疋根據本發明另一個實施例的可攜式計算通信裝置 10的不意框圖,它包括通過RP連接122與前端模組(FEM) 網路120相連的片上系統(s〇c) 11〇〇s〇c 11〇包括電源管 理單元26、中頻(正)·基帶(BB)接收器部112、BB-IF發 射器部II4、基帶處理單元22,還可以包括處理模組。处連 接122可以是同軸魏、彈性光纖魏、彈性波導和/或其他 高頻電纜中至少一種。 FEM網路120包括多個FEM 62-68 (例如兩個或多個) 和多個RF-IF TX與rx部對124_138。FEM 62·68中每一個分 35 201212553 別包括多個功率放大賭組(PA)、—狀·τχ分離模組、 至少-個天線麟單元(ATU)以及鮮切換器(sw)(jTx IF RF132-138中每-個分別包括基於偏振的拓撲、基於笛 卡爾的拓撲、基於混合偏振卡爾的城或混頻、濾波&混合 模組。RX RF-IF和4-130中每一個分別包括低雜訊放大器 和下變頻部。注意,FEM62_68巾至少—個的結構如同參考 圖3所描述的。 在本實施例中,基帶處理模組22根據一種或多種無線通 信協定將出站資料轉換為一個或多個出站符號流。τχ ΒΒ_ιρ 部114包括混頻模組,混頻模組將該出站符號流與發射正本 地振堡(例如頻率為幾十MHz職十GHz的振盪)混頻以產 生一個或多個出站IF信號。 SOC 110通過RF連接122向FEM網路120提供出站IF 4吕號。另外,SOC 110提供用於表示rx_tx部對124-130中 哪一對以及相應的FEM62-68將支援無線通信的選擇信號。所 選的TXIF-RF部132-138將IF信號與第二本地振盪(例如頻 率為RF-IF的振盪)混頻以產生一個或多個混頻的信號。組合 &滤波部將一個或多個混頻的信號組合,並對它們進行滤波以 產生預PA的出站RF信號’預PA的出站RF信號將被提供給 相應的FEM 62-68。 對於入站RF信號,與FEM 62-68相關的天線接收信號並 將其提供給頻帶切換器(SW)(若包含)或提供給ATU (若 不包含切換器>FEM 62-68按照上述方式處理入站RF信號並 將經處理的入站RF信號提供給相應的RXRF-IF部124-130。 36 201212553 RXRF-IF部124-130將入站RF信號與第二RX本地振盪(例 如頻率為RJF-IF的振盪)混頻以產生一個或多個入站IF混頻 信號(例如I和Q混頻信號分量或位於IF的偏振格式信號(例 如 AOcos^Wt) +Φ(ΐ))。 S0C 110的RXIF-BB部112接收一個或多個入站IF混頻 信號並將它們轉換為一個或多個入站符號流。基帶處理模組 22將一個或多個入站符號流轉換為入站資料。注意,S〇c 110 可以包括多個RX IF-BB和TX BB-IF部來支援多個併發的無 線通信。 圖11是根據本發明另一個實施例的可攜式計算通信裝置 10的示思框圖’它包括通過連接152-154與前端模組 (FEM)網路142相連的片上系統(s〇C) 140。S0C 140包 括電源管理單元26、中頻(IF)-基帶(BB)接收器部H4、 BB-IF發射器部146、基帶處理單元22,還可以包括處理模組。 RF連接152-154可以是同轴電、纜、彈性光纖電缦、彈性波導 和/或其他高頻電纜中至少一種。 FEM網路142包括多個FEM 62_68 (例如兩個或多個) 和一對RF-IF TX與RX部148_150。FEM 62_68中每一個分別 包括多個功率放大器模組(pA)、多個狀取分離模組、至 f 一個天線調諧單元(ATU)以及頻帶切換器(sw)qTxif^ »M々50包括基於偏振的拓撲、基於笛卡爾的拓撲、基於混合偏 振畜卡爾的拓撲或混頻、滤波&混合模組。RX RF-IF部 包括低雜訊放大H部和下變綱。注意,距则鳩中至少— 個的結構如同參相3所描述的。 37 201212553 在本實施例中,基帶處理模組22根據一種或多種無線通 佗協定將出站資料轉換為一個或多個出站符號流Figure 2 is a portable computing communication device, in accordance with another embodiment of the present invention, which includes an on-chip secret (9) C) 12 or 52 connected to a front-end module (4) network 6 through an RF connection 70. The S〇c 12 or power management unit 26, the no SAW reception||part 18, and the no SAW baseband processing unit 22 may further include a processing module. That is, the connection 1 = 〇 is: a shaft gauge, an elastic fiber cable, an elastic waveguide, and/or other high frequency electric windings. The FEM network 6G includes a plurality of FEMs 62_68 (eg, two or more) 'where each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of rx_tx split modules, and at least _ antennas The spectroscopy unit (Απ) and the band switcher (SW). The structure of at least one of the FEM 62_68 is as described with reference to FIG. Each of the FEMs 62-68+ may support the same frequency band, different frequency bands, or a combination thereof, respectively. For example, two FEMs can support the same passband (eg 850-900 dirty 2 and 180 (M900MHz), while the other two can support different frequency bands (eg 2.4 GHz, 5 GHz, 60 GHz, etc.). In this case, s〇 c 12 or 52 may be based on at least one of a plurality of RF communication parameters (eg, transmit power level, received signal strength, out-of-band block, signal to noise ratio, signal to interference ratio, operating frequency, interference with other wireless communications, etc.) Select one of the FEMs 62-68 with the same frequency band. For example, the SOC 12 or 52 selects the FEM that provides the best performance level of cellular communication and the WLAN, personal area network, or other wireless that provides the best performance at present. Another FEM for network communication. 25 201212553 Since each of the FEM 62-68 is programmable, s〇c 12 or & can program the selected modules to reduce mutual interference. For example, The FEM supporting cellular communication can be woven to have additional attenuation in rogue communication (eg, 2.4 GHz, 5 GHz, 6 GGHz, etc.). In addition, with conditions (eg, interference, transmit-receive distance, antenna parameters, environmental factors, etc.) The change, the SOC 12 or 52 can adjust the parameters of the selected FEM to substantially compensate for the change. Alternatively, the SOC 12 or 52 can select another FEM to perform at least one of the two communications. The SOC 12 or 52 can select multiple FEMs. 62-68 to support ΜΙΜΟ communication, SIMO communication and/or MS0 communication. For example, in 2*2ΜΙΜ〇 communication, one FEM can be selected for one τχ/κχ ΜΙΜ〇 communication, and another FEM for another tx/rx SOC Communication SOC 12 or 52 may also select one FEM to support transmissions in one frequency band and another FEM to support reception in the same frequency band. For example, SOC 12 or 52 may select the first FEM to support 1800 MHz cellular phones. The first FEM is transmitted and supported by the 1800 MHz cellular phone. For example, the s〇c 12 or 52 can select the first FEM to support the 1800 MHz cellular phone transmission, the second FEM to support the 900 MHz cellular phone transmission, and the third FEM to support the 1800 MHz cellular. Telephone reception, and fourth FEM to support 900MHz cellular phone reception. For another example, SOC 12 or 52 can select the first FEM to support 1800MHz cellular phone transmission, FEM supports 900MHz cellular phone transmission, and the second FEM supports 1800MHz cellular phone reception, and the first FEM supports 900MHZ cellular phone reception. FEM network 60 can be implemented on a single die on a single package substrate 26 201212553 Implemented on multiple dies on a single substrate (eg, each brain on a die) as a separate integrated circuit (5). At least one of the FEMs 62-68 in the rear clearance v may be away from s〇c 12 or %. For example, 'portable computer computing can be sighed to support the wireless femtocell station (f_eell), which is a bit of a miscellaneous material. At least, it is physically distanced from the SOC 12 or 52 - segment distance (for example, greater than i meters). ). In addition, one of the FEMs can be used to communicate with the base station while one or more other FEMs can be used to communicate with other wireless communication (e.g., bee write). For example, the device ίο communicates with a base station (BS) using conventional cellular services, while the device uses a different frequency band with the coffee links of other scale communication devices. The processing module coordinates the signal conversion of other devices _ network and / or cellular access and various keys. For another example, the device 10 is used as a wireless femto-based read for M bees or other handheld devices. A mounted wireless local area link can be compliant with one or more aspects. - Nading is said to be _ quasi (for example, a wireless milliplane-like base station like a BS-like distribution local area radio link). Another protocol enables wireless femtocell station devices to be extended as user interfaces on the Internet Protocol (Ip) channel. The handset's - link is connected to the access point (AP), the _ handcraft is tied to its wire-shaped fine grid, and logically connected to the AP from (4) in other ways. 'For example, the device 10 acts as a wireless femtocell base station (for example, it uses a data call to the beer calling system to wirelessly connect, thereby providing an IP channel to the Internet, which logically connects the AP to the Internet) An application word processor anywhere on the road. For example, the carrier does not have to provide a voice call for the voice call system. 201212553 "The IP channel passes through the Ap to connect the Internet telephony client in the domain to the Internet telephony network. The load and valley 1 of the carrier's data channel determines the number of active handsets supported by the AP. In this example, the link from the AP to the supported wireless device is not in the cellular band' but instead is written using a traditional bee. Standard (ie, the AP is similar to the BS, and the AP performs the converter function when the mobile client is running on the supported wireless device.) The link between the wearer 10 and the supported wireless device is not a write standard. Proprietary-series call step. At this time, the AP runs the device client and the device is a hash extension on the 1p channel. The nano+ device 1G describes itself as Wei. The station of the device. At this time, the device 10 determines whether it satisfies the signal that the quality is not used for the carrier to ride, has better battery life, bit (four) call, etc. If so, then its carrier is registered as a given geographical location. In the femtocell base station. The smart way (60GHz, TVW9 t book will be written by point-to-point wireless such as bee). For its device to the device 'device device (such as carrier (such as they transmit information) strong The BS of the second-line device's carrier is strong. For the mother carrier (for example, the wireless device with weak or no weight, device K), the femtocell base station of the line device actively becomes 10 Become your own femto bee t ... line device wants to shock yourself as a wireless device: micro bee micro high bee =: use, set the dynamic process basis between devices; ^ use. Note that this can be a few picocellular base station APs. If _^ is the other device's milli, ., „ condition change, the other F罟 is from the femto bee that becomes the device, and the bee-high base station AP, and writes as the femto bee 28 201212553 base station The device of the AP becomes a new femto-bee-type base station. For example, a plurality of devices can be combined to form a femto-netw. At this time, the device is used as a relay station for one or more joys. The device is connected to the device as a wireless femto-bee-type base station A/, and the device is used as the host of the device, and they are linked to provide a connection. This is a wireless one. The pico-satellite base station device provides a bee whisper; the connection 'the other provides a cellular data connection, and the third provides a muscle touch connection. For another example, the multiple is placed in the dense field (for example, in a bridge, Determine which device will act as its wireless, picocell base station AP and which services are provided. For example, Jianshe establishes a point-to-point link (60GHz, TVWS, 9dru, 1V, 2.4GHZ, etc.) and then passes Compare, nodes on the mobile site Make sure these links = the duration of the time continues, and whether they move basically together (9) 2 in the same - in a car or train, etc.) if they determine the best overall body from the axis, each or they can be in the same time The signals between the service and the other device are very different. =z is a lot of variables (such as the position in the motor vehicle and the distance from the car body. The best signal is obviously better than the given device can pass through its straight machine.曰4 implements 1, which requests the device with the best signal as the master—(4), and the call will be passed to the other device through the host. 29 201212553 If the carrier signal is lower than ·, the process is repeated and can be mixed Select another - device new = machine. In this special case, all devices know which other devices are performing the test, at least until they are out of range. For example, for the device participating in the network conference, each device is once The user (ie, the device user) provides the user interface. Therefore, each device uses substantially the same carrier-to-one wireless connection. To reduce redundant traffic and reduce the f-plus network capacity of the county, The first device of the road conference becomes a wireless femtocell base station AP of other devices in the same geographical area. If accepted, the first device is registered with the carrier and then serves as its wireless conference at the pico-cell base station. The extension of this scheme can be applied to any type of audio and/or video shot, regardless of the number of given ground_s participating in the conference through the portable computing communication device. Another extension can include ~, he The device shares a 値H-based lang (for example, a device is connected to the Internet-hosted Gu (for example, a (4) library, a dependent micro-bee-base station ΑΡ, and other devices are written by the wireless femto-bee ^= ΑΡ Internet-hosted applications). For example, as a wireless femtocell base station, the touch is based on its ring = for example, in an office, at home, in a wheeled vehicle, in a public place, in a private place, in a dual use, in a private use, etc. ) Configure. The configuration options include frequency usage two, transmit power, secret support unit (four), pin femto bee base station control, decentralized femtocell base station control, allocated capacity, compilation level, symbol and/or interface people. For example, if you are in a public place, the job will be used as a public wireless wireless cellular femtocell. When Cai Cai made a private woven cellular wire division, it chose to be able to ensure the privacy of the communication that it supports in 201212553. 5 is a schematic block diagram of a portable computing communication device 10 including an on-chip system (S0C) 12 coupled to a front end module (/em) network 80 via an RF connection 9 in accordance with another embodiment of the present invention. Or 52. The s〇c 12 or % includes a power management unit το 26, a no-SAW receiver unit 18, a no-saw transmitter unit 20, and a baseband processing unit 22, and may further include a processing module. The connection 9 can be at least one of a coaxial cable, an elastic wire cable, an elastic waveguide, and/or other high frequency. The FEM network 80 includes a plurality of FEMs 62_68 (e.g., two or more) and a frequency conversion module 82. The frequency conversion module 82 includes one or more bypass conversion modules. Each of the FEM 62·68 includes a plurality of power amplifier modules (ΡΑ), a plurality of RX-TX separation modules, at least one antenna tuning unit (), and a band switch (SW). Note that the structure of at least one of the FEMs 62_68 is as described with reference to FIG. The functions of SOC 12 or 52 and FEM 62-68 are similar to s〇c 12 or 52 and FEM 62-68 in FIG. In this embodiment, the inbound or out signal from the FEM and/or the outbound RP signal from the SOC 12 or 52 may be frequency converted prior to routing between s〇c 12 or 52 and the corresponding FEM. For example, s〇c 12 or 52 may form an input and outbound RF signal for processing a carrier frequency of 24 GHz, but with baseband functionality that produces a symbol stream based on a plurality of standardized wireless protocols and/or proprietary protocols. At this point, SOC 12 or 52 generates an outbound symbol stream in accordance with a given radio protocol and upconverts the symbol stream to an RF signal having a 2.4 GHz carrier frequency. RF-RF Inverter Module with Local Oscillator, Mixing Module, and Filtering % Mix the outbound RF signal with local oscillator to produce a mixed signal. The filter section filters the 2012-12553 wave-mixed signal to produce an outbound Rp signal of the desired carrier frequency (eg, 900 MHz, 1800 MHz, 19 〇〇 MHz, 5 GHz, 60 GHz, etc.). Note that the frequency conversion module 82 can include a plurality of RF-RF conversion modules (one or more for the k-South carrier frequency and/or one or more for reducing the carrier frequency). In this regard, the implementation of the general purpose SOC 12 or 52 can be coupled with various implementations of the FEM network 80 (eg, the number of FEM modules 62-68, the number of RF-RF conversion modules, etc.) to form various portable calculations. Communication device. 6 is a schematic block diagram of a portable computing communication device 1A including a plurality of system-on-chips connected to a front end module (FEM;) network 60 via an RF connection 78 (s〇), in accordance with another embodiment of the present invention. C) 12 or 52. Each SOC 12 or 52 includes a power management unit 26, a no-SAW receiver unit 18, a no-SAW transmitter unit 20, a baseband processing unit 22, and a processing module. The Rjp connection 78 can be at least one of a coaxial cable, an elastic fiber cable, a flexible waveguide, and/or other high frequency cable. The FEM network 60 includes a plurality of FEMs 62-68 (eg, two or more) 'where each of the FEMs 62-68 includes a plurality of power amplifier modules (PAs), a plurality of RX-TX split modules, and at least one antenna Tuning unit (ATU) and band switcher (SW). Note that at least one of the FEMs 62-68 has the same structure as described with reference to FIG. In this embodiment 'one SOC 12 or 52 uses at least one of feM 62-68 to support one or more wireless communications (eg, cellular, Wlan, WPAN, etc.) 'Another SOC 12-52 uses one or more other FEMs 62- 68 to support one or more other wireless communications. In order to reduce interference between wireless communications and/or to optimize each wireless communication 'at least one S〇c 12 or 52, a control signal is provided to the FEM 62_68 to adjust its performance. In addition to each s〇c 12 or 52 making 32 201212553 different FEM 62-68-in this example, in another example, two or more SOC 12 "2 can pass the switching module (not shown) in a time division manner Share FEM 62-68. In yet another example, one s 〇 c 丨 2 or 52 may use one path of the FEM 62-68 'the other s 〇 c 12 or 52 may use at least one of the other paths of ρ ΕΜ 62_68. 7 is a block diagram of a portable computing communication device 10, including a plurality of system-on-chips connected to a front end module (FEM) network 80 via an RJP connection 90 (s〇c), in accordance with another embodiment of the present invention. 12 or 52. 3〇 (: 12 or 52 includes power supply unit 26, no SAW receiving H unit 18, no SAW transmitter 4 2〇, baseband processing unit 22' may also include a processing module. It may be at least one of a coaxial Wei, a miscellaneous fiber cable, a hybrid waveguide, and/or other high frequency cable. The FEM network 8G includes a rural FEM 62_68 (eg, two or more) and a variable face group 82. The frequency conversion module 82 Include one or more bypass RF RF conversion modules. Each of FEM 62-68 includes multiple power amplifier modules (PA), rural rx_TX, at least one antenna modulation unit (ATU), and frequency band. Switch (sw). Note that at least one of the FEM 62 68 structures is as described with reference to Figure 3. In this embodiment, one SOC 12 or 52 uses at least one of the FEMs 62_68 to support one or more wireless communications. (eg cellular, WLAN, WPAN, etc.), another SOC 12-52 uses one or more He supports the FEM 62_68 or a variety of other wireless communications. To reduce interference between wireless communications and/or to optimize each wireless communication, at least one SOC 12 or 52 provides control signals to the FEM 62-68. At least one wireless communication can be bribed by Wei Yu 82 to reduce the carrier frequency of the wire communication 33 201212553. Figure 8 is a schematic block diagram of a portable computing communication device 10 including RF via RF according to another embodiment of the present invention. Connected to the system (s〇c) connected to the front-end module (FEM) network 60. The s〇c 1〇〇 includes the power management unit 26 and the plurality of SAW-free receivers 18_丨_18_2 The plurality of non-saw transmitter units 20-1-20-2, one or more baseband processing units 22, may further include a processing module. The RF connection 7〇 may be a coaxial electric coil, an elastic optical fiber, and an elastic waveguide. And/or at least one of the other high frequency electrical windings. The FEM network 6A includes a plurality of fem 62-68 (eg, two or more), wherein each of the FEM 62 68 includes a plurality of power amplifier modules (PA) , multiple RX4X separation modules, at least one antenna adjustment Unit (ATU) and band switcher (sw). Note that the structure of at least one of fem 62_68 is as described with reference to Fig. 3. In this embodiment, 'soc 1〇〇 can utilize at least one of FEM 62_68 for multiple concurrency Wireless communication. For example, a pair of SAW-free transmitters & receivers can be used for WLAN communications, and another pair of SAW-free transmitters & receivers can be used for 850 or 900 MHz cellular telephone communications. As another example, a pair of SAW-free transmitter & receivers can be used for cellular voice communications and another pair of SAw-free transmitters can be used for cellular data communications. Note that these concurrent wireless touches can be in the same frequency band with different carrier frequencies and/or in different frequency bands. 9 is a schematic block diagram of a portable computing communication device 10 including a system on chip (S〇C) 100 connected to a front end module (FEM) network 80 via an RF connection 7 in accordance with another embodiment of the present invention. . The s〇c 1〇〇 includes a power management unit 26, a plurality of SAW-free receiver units 18_Μ8·2, a plurality of SAW-free transmitter units 20-1-20-2, one or more baseband processing units 22, and may also include Department 34 201212553 Management Module. The RF connection 70 can be at least one of a coaxial cable, an elastic fiber optic cable, an elastic waveguide, and/or other frequency-over-frequency cable. The FEM network 80 includes a plurality of FEMs 62-68 (e.g., two or more) and frequency conversion modules. The frequency conversion module 82 includes one or more bypass RF-RF conversion modules. Each of the FEMs 62_68 includes a plurality of power amplifier modules (PAs), a plurality of rx-tx split modules, at least one antenna tuning unit (ATU), and a band switch (sw). Note that the structure of at least one of fem 62-68 is as described with reference to FIG. In the present embodiment, the 'SOC 100 can utilize at least one of the FEMs 62_68 for multiple concurrent wireless communications' and at least one of the carrier frequencies of the wireless communications can be converted by the frequency conversion module 82. For example, a pair of SAW-free transmitters & receivers can be used for WLAN communications, and another pair of SAW-free transmitters & receivers can be used for 850 or 900 hall cellular telephone communications. As another example, a pair of SAW-free transmitter & receivers can be used for cellular voice communications, and another pair of SAW-free transmitter & receivers can be used for cellular data communications. In any of the above examples, the carrier frequency to > one wireless pass # can be increased or decreased by the frequency conversion module 82. 10 is a block diagram of a portable computing communication device 10 in accordance with another embodiment of the present invention, including a system on chip (s〇c) connected to a front end module (FEM) network 120 via an RP connection 122. The 〇s〇c 11〇 includes a power management unit 26, an intermediate frequency (positive) baseband (BB) receiver unit 112, a BB-IF transmitter unit II4, and a baseband processing unit 22, and may further include a processing module. The connection 122 can be at least one of a coaxial Wei, an elastic fiber, a flexible waveguide, and/or other high frequency cable. The FEM network 120 includes a plurality of FEMs 62-68 (e.g., two or more) and a plurality of RF-IF TX and rx pair 124_138. Each of FEM 62·68 is divided into 35 power amplifiers (PA), _ _ χ χ separation module, at least one antenna unit (ATU) and fresh switch (sw) (jTx IF RF132) Each of -138 includes a polarization-based topology, a Cartesian-based topology, a hybrid polarization-based city or mixing, filtering & hybrid module. Each of RX RF-IF and 4-130 includes a low Noise amplifier and downconversion section. Note that at least one structure of the FEM 62_68 is as described with reference to Figure 3. In this embodiment, the baseband processing module 22 converts the outbound data into one according to one or more wireless communication protocols. Or a plurality of outbound symbol streams. The τχ ι_ιρ portion 114 includes a mixing module, and the mixing module mixes the outbound symbol stream with the transmitting positive local vibrating (for example, an oscillation with a frequency of several tens of MHz and ten GHz) One or more outbound IF signals are generated. The SOC 110 provides an outbound IF 4 number to the FEM network 120 via the RF connection 122. Additionally, the SOC 110 provides a representation of which of the rx_tx pair 124-130 and corresponding FEM62-68 will support the selection signal for wireless communication The selected TXIF-RF sections 132-138 mix the IF signal with a second local oscillation (e.g., an RF-IF frequency oscillation) to produce one or more mixed signals. The combined & filter section will have one or more The mixed signal combinations are filtered and filtered to produce a pre-PA outbound RF signal. The pre-PA outbound RF signal will be provided to the corresponding FEM 62-68. For inbound RF signals, with FEM 62- 68 associated antenna receives the signal and provides it to the Band Switch (SW) (if included) or to the ATU (if no switch is included) FEM 62-68 processes the inbound RF signal as described above and will process it The inbound RF signal is provided to the corresponding RXRF-IF section 124-130. 36 201212553 The RXRF-IF section 124-130 mixes the inbound RF signal with a second RX local oscillation (eg, an amplitude of RJF-IF oscillation) to produce One or more inbound IF mixing signals (eg, I and Q mixing signal components or polarization format signals at IF (eg, AOcos^Wt) + Φ(ΐ)). The RXIF-BB portion 112 of the SOC 110 receives one or Multiple inbound IF mixing signals and converting them into one or more inbound symbol streams. Baseband processing module 22 One or more inbound symbol streams are converted to inbound data. Note that S〇c 110 may include multiple RX IF-BB and TX BB-IF sections to support multiple concurrent wireless communications. Figure 11 is in accordance with the present invention. A block diagram of a portable computing communication device 10 of one embodiment 'it includes a system on chip (s〇C) 140 coupled to a front end module (FEM) network 142 via connections 152-154. The S0C 140 includes a power management unit 26, an intermediate frequency (IF)-baseband (BB) receiver unit H4, a BB-IF transmitter unit 146, and a baseband processing unit 22, and may further include a processing module. The RF connections 152-154 can be at least one of coaxial electrical, cable, resilient fiber optic, elastic waveguides, and/or other high frequency cables. The FEM network 142 includes a plurality of FEMs 62_68 (e.g., two or more) and a pair of RF-IF TX and RX sections 148_150. Each of the FEM 62_68 includes a plurality of power amplifier modules (pA), a plurality of split modules, an antenna tuning unit (ATU), and a band switch (sw) qTxif^ »M々50 including polarization based Topology, Cartesian-based topology, hybrid polarization based Kalman topology or mixing, filtering & hybrid modules. The RX RF-IF section includes low noise amplification H and lower variants. Note that the structure of at least one of the distances is as described in Reference 3. 37 201212553 In this embodiment, baseband processing module 22 converts outbound data into one or more outbound symbol streams in accordance with one or more wireless communication protocols.

。TX BB-IF 部146包括混頻模組,混頻模組將該出站符號流與發射正本 地振盪(例如頻率為幾十MHz到幾十GHz的振盪)混頻以產 生一個或多個出站IF信號。 SOC 140通過RF連接152-154向FEM網路142提供出站 IF化5虎。TXIF-RF部150將IF信號與第二本地振盪(例如頻 率為RF-IF的振盪)混頻以產生一個或多個混頻的信號。組合 &濾波部將一個或多個混頻的信號組合,並對它們進行濾波以 產生預PA的出站RF信號,預PA的出站RF信號將被提供給 相應的FEM 62-68。 對於入站RF信號,與FEM 62-68相關的天線接收信號並 將其提供給頻帶切換器(SW)(若包含)或提供給ATU (若 不包含切換器)〇FEM 62-68按照上述方式處理入站rf信號並 將經處理的入站RF信號提供給RX RF—IF部148。RX RF-IF 部148將入站RF信號與第二RX本地振|(例如頻率為卯办 的振盪)混頻以產生一個或多個入站IF混頻信號(例如I和q 混頻信號分量或位於IF的偏振格式信號(例如A⑴cos(coIF(t;) +Φ(ί)) ° SOC 140的RXIF-BB部144接收一個或多個入站IF混頻 信號並將它們轉換為一個或多個入站符號流。基帶處理模組 22將一個或多個入站符號流轉換為入站資料。注意,S0C 140 可以包括多個RX IF-BB144和TX BB-IF部146來支援多個併 發的無線通信。 38 201212553 圖12是根據本發明另一個實施例的可攜式計算通信裝置 10的示意框圖,它包括通過RF連接176與前端模組(FEM) 網路162相連的片上系統(s〇c) 160。SOC 160包括電源管 理單元26、無SAW接收器(RX)下變頻部164、無SAW發 射器(τχ)上變頻部166、基帶處理單元22,還可以包括處 理模組。RF連接176可以是同轴電繞、彈性光纖電繞、彈性 波導和/或其他高頻電纜中至少一種。 FEM網路162包括多個FEM 168-174 (例如兩個或多個) 和一對RF-IF TX與RX部。FEM 168-174中每一個分別包括 多個功率放大器驅動器(PAD)、多個低雜訊放大器(lna)、 多個功率放大器模組(PA)、多個RX_TX分離模組、至少一 個天線調諧單元(ATU)以及頻帶切換器(sw)。注意,fem 168-174中至少一個的結構如同參考圖3所描述的。 在本實施例中,基帶處理模組22根據一種或多種無線通 信協定將出站資料轉換為—個❹個出站符號流^無saw τχ 上變頻部166將出站符號流轉換為一個或多個出站上變頻信 號,無SAW ΤΧ上變頻部166可以類似於缺少功率放大器驅 動器的無SAW TX上變頻部166來實現。 SOC 160通過RF連接176向FEM網路162提供出站上 變頻域。SOC 160還可以向FEM網路162提供驗[選擇信 號。所選的FEM模組通過功率放大器驅動器(pAD)接收出 站上變頻信號。·放大出站上變頻信號以產生預pA的出站 RF信號,然後由FEM 168损按照上述方式和/或將要參考以 下至少一幅附圖進行描述的方式對其進行處理。 39 201212553 對於入站RF彳§號’與FEM 168-174相關的天線接收信號 並將其提供給頻帶切換器(SW)(若包含)或提供給Ατυ (若 不包含切換器)。ATU和RX-TX分離模組按照上述方式處理 入站RF信號,並將處理後的入站RF信號提供給lna。LNa 放大入站RF信號以產生放大的入站rf信號。 無SAW RX部164 (類似於缺少LNA的無SAW接收5| 部實施)接收一個或多個放大的入站IF混頻信號並將它們轉 換為一個或多個入站符號流。基帶處理模組22將一個或多個 入站符號流轉換為入站資料。注意,基帶處理單元22和/或處 理模組可以向每個FEM 168-174的LNA和/或PAD提供控制 信號,以調節其性能(例如增益、線性度、帶寬、效率、雜訊、 輸出動態範圍、擺動速率(slewrate)、上升速率、建立時間、 超調量(overshoot)、穩定因數等)。 圖13是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖,它包括與前端模組(FEM) 182相連的片上系統 (S0C) 180。S0C 180包括多個無SAW接收器部(僅僅示出 了接收器部的LNA和變頻帶通濾波器(FTBpF ))、多個無saw 發射器部(僅僅示出了功率放大器驅動!|(PAD))、處理模組、 基帶處理模組(未示出或包含在處理模組中)以及電源管理單 元(未示出)。 FEM I82包括低頻帶(LB)路徑、高頻帶⑽)路#以 及頻帶切換器(FB SW>LB路徑包括功率放Α||模組(p:)、 低帶阻抗級(LB Z)、低帶低通濾波器(LB LpF)、切換器 (SW)、發射-接收分離模組(τχ-Rx IS〇)(例如雙工器 201212553. The TX BB-IF portion 146 includes a mixing module that mixes the outbound symbol stream with a positive local oscillation (eg, an oscillation having a frequency of tens of MHz to several tens of GHz) to produce one or more outputs. Station IF signal. The SOC 140 provides an outbound IF 5 tiger to the FEM network 142 via RF connections 152-154. The TXIF-RF section 150 mixes the IF signal with a second local oscillation (e.g., an RF-IF oscillation) to produce one or more mixed signals. The combined & filter combines the one or more mixed signals and filters them to produce an outbound RF signal for the pre-PA, which will be provided to the corresponding FEM 62-68. For inbound RF signals, the antenna associated with FEM 62-68 receives the signal and provides it to the Band Switcher (SW) (if included) or to the ATU (if no switch is included) 〇FEM 62-68 as described above The inbound rf signal is processed and the processed inbound RF signal is provided to the RX RF-IF portion 148. The RX RF-IF section 148 mixes the inbound RF signal with a second RX local oscillator | (e.g., frequency oscillation) to produce one or more inbound IF mixing signals (e.g., I and q mixing signal components). Or the RXIF-BB portion 144 of the IF's polarization format signal (eg, A(1)cos(coIF(t;) + Φ(ί)) ° SOC 140 receives one or more inbound IF mixing signals and converts them to one or more Inbound symbol stream. Baseband processing module 22 converts one or more inbound symbol streams into inbound data. Note that SOC 140 may include multiple RX IF-BB 144 and TX BB-IF portions 146 to support multiple concurrent Wireless communication. 38 201212553 FIG. 12 is a schematic block diagram of a portable computing communication device 10 including a system on chip connected to a front end module (FEM) network 162 via an RF connection 176, in accordance with another embodiment of the present invention ( S〇c) 160. The SOC 160 includes a power management unit 26, a no-SAW receiver (RX) downconversion unit 164, a SAW-free transmitter (τχ) up-conversion unit 166, and a baseband processing unit 22, and may further include a processing module. The RF connection 176 can be coaxial electrical winding, elastic fiber electrical winding, flexible waveguide, and/or other At least one of the frequency cables. The FEM network 162 includes a plurality of FEMs 168-174 (eg, two or more) and a pair of RF-IF TX and RX sections. Each of the FEMs 168-174 includes a plurality of power amplifier drivers, respectively. (PAD), multiple low noise amplifiers (lna), multiple power amplifier modules (PA), multiple RX_TX split modules, at least one antenna tuning unit (ATU), and band switcher (sw). Note, fem The structure of at least one of 168-174 is as described with reference to Figure 3. In this embodiment, baseband processing module 22 converts outbound data into one outbound symbol stream according to one or more wireless communication protocols. The saw τ 上 upconversion section 166 converts the outbound symbol stream into one or more outbound upconverted signals, and the no SAW ΤΧ upconversion section 166 can be implemented similarly to the SAW TX upconverter 166 lacking the power amplifier driver. The outbound upconversion domain is provided to the FEM network 162 via the RF connection 176. The SOC 160 can also provide the FEM network 162 with a selection signal. The selected FEM module receives the outbound upconverted signal through the power amplifier driver (pAD). · Zoom out of the station The signal is frequency converted to produce an outbound RF signal of pre-pA, which is then processed by the FEM 168 loss in the manner described above and/or as will be described with reference to at least one of the following figures. 39 201212553 For Inbound RF 彳§号' The antenna associated with FEM 168-174 receives the signal and provides it to the Band Switcher (SW) (if included) or to Ατυ (if no switch is included). The ATU and RX-TX split modules process the inbound RF signals in the manner described above and provide the processed inbound RF signals to lna. LNa amplifies the inbound RF signal to produce an amplified inbound rf signal. The no SAW RX portion 164 (similar to the no SAW reception 5 | implementation lacking the LNA) receives one or more amplified inbound IF mixing signals and converts them into one or more inbound symbol streams. The baseband processing module 22 converts one or more inbound symbol streams into inbound data. Note that the baseband processing unit 22 and/or the processing module can provide control signals to the LNAs and/or PADs of each FEM 168-174 to adjust its performance (eg, gain, linearity, bandwidth, efficiency, noise, output dynamics). Range, slew rate, rate of rise, settling time, overshoot, stability factor, etc.). FIG. 13 is a schematic block diagram of a portable computing communication device including a system on chip (S0C) 180 coupled to a front end module (FEM) 182, in accordance with another embodiment of the present invention. The S0C 180 includes a plurality of SAW-free receiver sections (only the LNA and variable-frequency bandpass filters (FTBpF) of the receiver section are shown), and a plurality of non-saw transmitter sections (only the power amplifier drive is shown!|(PAD) )), a processing module, a baseband processing module (not shown or included in the processing module), and a power management unit (not shown). FEM I82 includes low band (LB) path, high band (10)) way # and band switcher (FB SW> LB path including power amplifier || module (p:), low band impedance level (LB Z), low band Low pass filter (LB LpF), switch (SW), transmit-receive split module (τχ-Rx IS〇) (eg duplexer 201212553)

第二切換器(SW)以及天線調諧單元(ΑΤυ)°ΗΒ路徑包括 功率放大器模組(ΡΑ)、高帶阻抗級(ηβ Ζ)、高帶低通濾波 器(HB LPF )、切換器(SW )、發射-接收分離模組(tx_rx ISO ) (例如雙工器)、第二切換器(S W )以及天線調諧單元(ATU )。 注意,可以利用低帶路徑支援低帶GSM、EDGE和/或WCDMA 無線通信,可以利用高帶路徑支援高帶GSM、EDGE和/或 WCDMA無線通信。 如上所述和/或如同將要參考以下至少一幅附圖進行描述 的,SOC 180用於輸出預PA的出站Rp信號並用於輸入入站 RF信號。FEM 182通過LB路徑或HB路徑接收預PA的出站 RF信號,並通過相應的PA模組將它們放大。阻抗級(LB z 或HB Z)在PA模組的輸出上提供期望的負載,並連接到低 通濾波器(LB LPF或HB LPF)。LPF濾波出站RF信號,根 據切換器(SW)的配置,出站Rp信號被提供給tx-rx 1§〇 模組或ATU。若切換器將LPF與TX-RX ISO模組連接,TX_rxThe second switch (SW) and the antenna tuning unit (ΑΤυ)°ΗΒ path include a power amplifier module (ΡΑ), a high-band impedance stage (ηβ Ζ), a high-band low-pass filter (HB LPF ), and a switch (SW) ), a transmit-receive split module (tx_rx ISO ) (eg, a duplexer), a second switch (SW), and an antenna tuning unit (ATU). Note that low-band paths can be used to support low-band GSM, EDGE, and/or WCDMA wireless communications, and high-band paths can be used to support high-bandwidth GSM, EDGE, and/or WCDMA wireless communications. As described above and/or as will be described with reference to at least one of the following figures, SOC 180 is used to output an outbound Rp signal of a pre-PA and for inputting an inbound RF signal. The FEM 182 receives the outbound RF signals of the pre-PA through the LB path or the HB path and amplifies them through the corresponding PA modules. The impedance level (LB z or HB Z) provides the desired load on the output of the PA module and is connected to a low pass filter (LB LPF or HB LPF). The LPF filters the outbound RF signal, and the outbound Rp signal is provided to the tx-rx 1§〇 module or ATU according to the configuration of the switch (SW). If the switch connects the LPF to the TX-RX ISO module, TX_rx

模組在將出站RF信號提供給ATU之前先將它們衰減。ATU 的功能如上所述和/或將參考以下至少一幅附圖進行描述。 注意’ S0C 180和FEM 182之間沒有分立元件。具體地, 可攜式計算通信裝置*需要财蜂寫電話實關巾所必須的 分立SAW濾波器。以下至少一項為淘汰SAW濾波器和/或其The modules attenuate the outbound RF signals before providing them to the ATU. The functions of the ATU are as described above and/or will be described with reference to at least one of the following figures. Note that there are no discrete components between the S0C 180 and the FEM 182. In particular, the portable computing communication device* requires a separate SAW filter necessary for the beekeeper to write the telephone to the headset. At least one of the following is to eliminate the SAW filter and / or its

他傳統外部組件做出了貢獻:無SAW接收器的結構、無SAW 發射器的結構和/或FEM 182的各種元件的編程 (programmability) ° 圖14是根據本發明另一個實施例的可攜式計算通信裝置 201212553 的示意框圖,它包括與前端模組(FEM) 192相連的片上系統 (SOC) 190。SOC 190包括多個無SAW接收器部(僅僅示出 了接收器部的LNA和變頻帶通濾波器(FTBpF ))、多個無SAw 發射器部(僅僅示出了功率放大器驅動器(PAD乃、處理模組、 基帶處理模組(未示出或包含在處理模組中)以及電源管理單 元(未示出)。 FEM 192包括低頻帶(LB)路徑、高頻帶(HB)路徑以 及頻帶切換器(FB SW)。LB路徑包括功率放大器模組(pA)、 低帶阻抗級(LB Z)、切換器(Sw)、低帶低通濾波器(LB LPF)、發射-接收分離模組(tx-rx IS〇;)(例如雙工器)、第 二切換器(SW)以及天線調諧單元(atu)。]^路徑包括功 率放大器模組(ΡΑ)、高帶阻抗級(ηβ ζ)、切換器(SW)、 高帶低通遽波器(HB LPF )、發射-接收分離模組(τχ-Rx iso ;) (例如雙工器)、第二切換器(SW)以及天線調諧單元(ATU)。 注意,可以利用低帶路徑支援低帶GSM、EDGE和/或WCDMA 無線通彳§ ’可以利用面帶路徑支援高帶GSM、EDGE和/或 WCDMA無線通信。 在S0C 190的各種實施例中,s〇C 190的接收器部中的變 頻帶通濾波器提供充分地濾波帶外阻滯(far-〇utblocker)及滤 波對期望信號產生不可忽略影響的鏡像信號。這將減小接收器 部(基帶處理模組的輸出端或RXBB-IF部的輸入)的模數轉 換器(ADC)的動態範圍需求。相比於可比擬直接轉換 (comparable direction conversion )接收器部’接收器部的超外 差結構有利於減少功耗和死區。 42 201212553 圖15是根據本發明一個實施例的s〇c 2〇〇的处_11?接收 器部204的示意框圖’它包括FEM模組(包括變壓器τι、可 調電容網路C1和/或低雜訊放大器模組(LNA) 206)、混頻模 組208、混頻暫存器210-212、變頻帶通濾波器(FTBPF)電 路模組(包括FTBPF 222和/或其他暫存器214_220)以及接收 器IF-BB部224。SOC 200還包括無SAW發射器部202,並還 可以包括基帶處理單元、處理模組和電源管理單元。 在一個運行的例子中,通過天線接收入站处信號。入站 RF信號包括RF的期望信號分量和頻率高於或低於处的非期 望分量(示出了高於的分量)。關於部204的本地振盪 (例如4〇) ’若jg號在rRF-2fIF ’會出現鏡像信號。注意,這裏 及全文所使用的RF包括高達3GHz的無線電頻帶内的頻率以 及3GHz-300GHz毫米波(或微波)頻帶内的頻率。 天線向FEM提供入站RF信號’該FEM按照上述和/或將 要參考以下至少一幅附圖進行描述的方式處理該即信號。變 壓器T1接收FEM處理後的入站RF信號並將其轉換為差分信 號’可調電谷網路C1 (例如多個串聯連接的開關和電容,其 中所述多個並聯連接)對差分信號進行濾波。可調電容網路 C1從基帶處理單元和/或處理模組(例如s〇c處理資源)接收 控制信號以使能需要的電容。 包含串聯和/或並聯連接的一個或多個低雜訊放大器的低 雜訊放大模組(LNA) 206放大入站RF信號以產生放大的 入站RF信號。LNA206可以從SOC處理資源接收控制信號, 其中該控制彳5说指不以下至少一項的設置:増益、線性度、帶 43 201212553 寬、效率、雜訊、輸出動態範圍、擺動速率、上升速率、建立 時間、超調量和穩定因數。 混頻模組208接收放大的入站处信號並利用轉換模組 (例如π/2相移器或其他類型的相位控制電路)將其轉換為同 相(I)信號分量和正交(Q)信號分量。混頻模組2〇8的一混 頻器將該I信號分量與本地振盪(例如汇〇)的〗信號分量混 頻以產生I混躺錢’另-混頻||將該Q錢分量與該本地 振盡的Q信號分量混頻喊生q混躺信號。注意,混頻模 組208的混頻器可以分別是平衡混頻器、雙平衡混頻器、無源 切換混頻器、吉伯特混頻器(Gilberteellmixe〇或其他類型將 兩個正弦“號相乘並產生“頻率和”信號分量及“頻率差,,信號 分量的電路。還要注意’ Ϊ和Q混綱信射以是差分信號或 單端信號;示出了差分信號。 混頻暫存II 210-212濾波和/或緩存〗和Q混頻的信號, 這些信號隨後將被提供給FTBPF、结構(例如暫存器214_22〇 和變頻帶通驗ϋ (FTBPF) 222)。注意,混頻的信號 分別包括IF形式的健分量,且還可吨括形式的鏡His traditional external components have contributed: the structure without the SAW receiver, the structure without the SAW transmitter, and/or the programmability of the various components of the FEM 182. Figure 14 is a portable version in accordance with another embodiment of the present invention. A schematic block diagram of computing communication device 201212553 includes a system on chip (SOC) 190 coupled to a front end module (FEM) 192. The SOC 190 includes a plurality of SAW-free receiver sections (only the LNA and variable frequency bandpass filters (FTBpF) of the receiver section are shown), and a plurality of SAw-free transmitter sections (only the power amplifier driver is shown (PAD, A processing module, a baseband processing module (not shown or included in the processing module), and a power management unit (not shown). The FEM 192 includes a low band (LB) path, a high band (HB) path, and a band switcher. (FB SW). The LB path includes a power amplifier module (pA), a low-band impedance stage (LB Z), a switch (Sw), a low-band low-pass filter (LB LPF), and a transmit-receive separation module (tx). -rx IS〇;) (for example, duplexer), second switch (SW), and antenna tuning unit (atu). The path includes power amplifier module (ΡΑ), high-band impedance level (ηβ ζ), switching (SW), high-band low-pass chopper (HB LPF), transmit-receive split module (τχ-Rx iso ;) (eg duplexer), second switch (SW) and antenna tuning unit (ATU) Note that low-band paths can be used to support low-band GSM, EDGE, and/or WCDMA wireless communications. The path supports high-bandwidth GSM, EDGE, and/or WCDMA wireless communications. In various embodiments of the SOC 190, the variable frequency bandpass filter in the receiver section of the sC 190 provides adequate filtering of the out-of-band block (far- 〇utblocker) and filtering the image signal that has a non-negligible effect on the desired signal. This will reduce the dynamic range of the analog-to-digital converter (ADC) of the receiver section (the input of the baseband processing module or the input of the RXBB-IF section). Requirement. The superheterodyne structure of the receiver portion of the receiver portion is advantageous for reducing power consumption and deadband compared to comparable direction conversion. 42 201212553 Figure 15 is a s〇c according to an embodiment of the present invention. 2〇〇的处_11? The schematic block diagram of the receiver unit 204 'It includes the FEM module (including the transformer τι, the adjustable capacitor network C1 and / or the low noise amplifier module (LNA) 206), mixing Module 208, mixing registers 210-212, variable frequency bandpass filter (FTBPF) circuit modules (including FTBPF 222 and/or other registers 214_220), and receiver IF-BB portion 224. SOC 200 also includes No SAW transmitter portion 202, and may also include a baseband Unit, processing module, and power management unit. In an operational example, an inbound signal is received through an antenna. The inbound RF signal includes a desired signal component of the RF and an undesired component at a frequency above or below the frequency (shown The higher than the component). About the local oscillation of the part 204 (for example, 4〇) 'If the jg number is in the rRF-2fIF', an image signal will appear. Note that the RF used here and throughout the text includes frequencies in the radio band up to 3 GHz and frequencies in the 3 GHz-300 GHz millimeter wave (or microwave) band. The antenna provides an inbound RF signal to the FEM. The FEM processes the signal in the manner described above and/or as will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound RF signal and converts it into a differential signal 'adjustable valley network C1 (eg, a plurality of series connected switches and capacitors, wherein the plurality of parallel connections) filters the differential signal . The tunable capacitor network C1 receives control signals from the baseband processing unit and/or processing module (e.g., s〇c processing resources) to enable the required capacitance. A low noise amplification module (LNA) 206 comprising one or more low noise amplifiers connected in series and / or in parallel amplifies the inbound RF signal to produce an amplified inbound RF signal. The LNA 206 can receive a control signal from the SOC processing resource, wherein the control 彳5 refers to a setting that does not include at least one of the following: benefit, linearity, band 43 201212553 width, efficiency, noise, output dynamic range, swing rate, rate of rise, Establish time, overshoot and stability factor. The mixing module 208 receives the amplified inbound signal and converts it into an in-phase (I) signal component and a quadrature (Q) signal using a conversion module (eg, a π/2 phase shifter or other type of phase control circuit). Component. A mixer of the mixing module 2〇8 mixes the I signal component with a local oscillator (eg, sink) signal component to generate an I-mixed money 'other-mixing|| The locally vibrated Q signal component is mixed and shouted. Note that the mixer of the mixing module 208 can be a balanced mixer, a double balanced mixer, a passive switching mixer, a Gilberte mixer (Gilberteellmixe or other types of two sinusoidal numbers). Multiply and generate a "frequency and" signal component and a "frequency difference, the circuit of the signal component. Also note that the Ϊ and Q mixed signals are differential or single-ended signals; the differential signal is shown. Save II 210-212 filtered and / or buffered and Q mixed signals, which will then be provided to the FTBPF, structure (such as register 214_22 〇 and variable frequency band pass test (FTBPF) 222). Note that mixed The signals of the frequency include the components of the IF form, and can also be used in the form of mirrors.

像信號分量。還要注意,混頻模組遍何或混頻暫存器2脱U 可以包括紐以衰減不期望的信齡量,使其對if信號分量 影響很小。 ° ; FTBPF 222 (各種實施例將參考以下幾幅賴進行描述) 通過衰減鏡像IF域分4並通過基本上未麵_望IF信號 分量來滤波IF錢。例如’假設FTBpF將铸基帶帶通慮波 器回應頻率變換為IF (例如說〇)渡波器回應。對於這個 201212553 例子,還假設RF是2GHz,L02是1900GHz,且RFimage是 1800GHz。根據這些假設,混頻模組208將產生I混頻的信號 和Q混頻的信號,所產生的信號是期望信號和鏡像信號的組 合。簡化地說,I混頻的信號(例如cos(RF)*cos(L02))包括 期望信號分量的 l/2cos (2000-1900) +l/2cos (2000+1900)和 鏡像信號分量的 l/2cos (1800-1900) +l/2cos ( 1800+1900),Q 混頻的信號(例如sin(RF)*sin(LO))包括期望信號分量的l/2cos (2000-1900) -l/2cos (2000+1900)和鏡像信號分量的 l/2cos (1800-1900) -1/2COS ( 1800+1900)。注意,2000+1900 的頻率 分量由混頻器後的暫存器濾波掉。 FTBPF的窄帶濾波掉(1800-1900)的鏡像頻率和不期望 的信號分量’留下期望信號分量的頻率為(2000-1900)的分 量。具體地,留下的是I混頻信號的1/2C0S (2000-1900)和來 自Q混頻信號的l/2cos ( 2000-1900 )。FTBPF 222利用這兩種 輸入實現期望信號分量的項的相加(例如1/2C0S (2000-1900) +l/2cos (2000-1900) =cos (2000-1900)),並實現鏡像信號分 量的項的相加(例如 l/2cos (1800-1900) _l/2cos (1800-1900) =〇(理想地))。因此,鏡像信號分量衰減’同時期望信號分量 基本上未衰減地被通過。 為了加強FTBPF 222的濾波,它可以從s〇c處理資源接 收一個或多個控制信號。該控制信號可以使FTBPF 222調節 基帶濾波器回應的中,_率(改變高q IF滤波器的中心頻 率)以改變該遽波器的品質因數,以改變增益,以改變帶寬 等。 45 201212553 接收器IF-ΒΒ部224包括混頻部和組合&遽波部。混頻部 將入站彳s號與第二本地振U頻以產生I和卩混頻的信 號。組合轉波部將I和Q混頻的信號組合以產生組合驗 號’然後將該混合信鶴波以產生—個或多個人站符號流。 儘官當前不出的RF_IF部204與用於SIS〇 (單輸入單輸 出)通L的單個天線連接’但是該方案還可以適用於MIS〇(多 輸入單輸出)通信和MiM0 (多輸入多輸出)通信。在這些情 况下’多個天線(例如2或多個)與相應數量的FEM (或根 據FEM中的接收路徑較少數量的FEM)連接。FEM與多個 接收器RF-IF部連接(例如,與天線數量相同),這些接收器 RF-IF部又與相應數量的接收器IF_BB部224連接。基帶處理 單元處理上述多個符號流以產生入站資料。 RX RF-IF部204下列至少一個優點和/或包括下列至少一 個特徵:超外差接收器結構在死區和功耗方面優於相應的直接 轉換接收器;在FTBPF 222中使用複基帶阻抗實現帶通濾波 器中心頻率的頻移,從而使能片上高q鏡像帶阻濾波器的中 心頻率被調諧為期望頻率;且僅需要信號本地振盪器,它可以 用於下變頻混頻器和FTBPF 222。 圖16是根據本發明另一個實施例的SOC 230的RF_IF接 收器部232的示意框圖,它包括FEM介面模組(包括變壓器 T1和/或可調電容網路C1)、變頻帶通濾波器(FTBPF) 234、 低雜訊放大器模組(LNA) 206、混頻部(包括混頻模組208 和/或混頻暫存器210-212)。SOC 230還包括接收器IF-BB部 224、無SAW發射器部202 ’並還可以包括基帶處理單元、處 46 201212553 理模組和/或電源管理單元。 在一個運行的例子中,通過天線接收入站处信號。入站 RF信號包括RF的期望信號分量和頻率高於或低於耵的非期 望分量(示出了高於的分量)。關於Rp_IF部232的本地振盪Like a signal component. It should also be noted that the mixing module or the mixing register 2 may include a button to attenuate an undesired amount of signaling, so that it has little effect on the if signal component. FTBPF 222 (various embodiments will be described with reference to the following figures) by attenuating the mirrored IF domain score 4 and filtering the IF money by the substantially unobserved IF signal component. For example, 'Assume that FTBpF converts the baseband band pass filter response frequency into an IF (for example, 〇) ferrite response. For this 201212553 example, it is also assumed that RF is 2 GHz, L02 is 1900 GHz, and RFimage is 1800 GHz. Based on these assumptions, the mixing module 208 will generate an I-mixed signal and a Q-mixed signal, the resulting signal being a combination of the desired signal and the image signal. In a nutshell, the I-mixed signal (eg cos(RF)*cos(L02)) includes l/2cos (2000-1900) +l/2cos (2000+1900) of the desired signal component and l/ of the image signal component. 2cos (1800-1900) +l/2cos ( 1800+1900), Q mixed signal (eg sin(RF)*sin(LO)) including l/2cos (2000-1900) -l/2cos of the desired signal component (2000+1900) and l/2cos (1800-1900) -1/2COS (1800+1900) of the image signal component. Note that the frequency component of 2000+1900 is filtered by the register after the mixer. The narrowband of the FTBPF filters out (1800-1900) the image frequency and the undesired signal component' leaving the desired signal component at a frequency of (2000-1900). Specifically, 1/2C0S (2000-1900) of the I-mixed signal and l/2cos (2000-1900) from the Q-mixed signal are left. The FTBPF 222 uses these two inputs to achieve addition of the terms of the desired signal component (eg, 1/2C0S (2000-1900) +l/2cos (2000-1900) =cos (2000-1900)), and implements the image signal component. Addition of terms (eg l/2cos (1800-1900) _l/2cos (1800-1900) = 〇 (ideally)). Therefore, the image signal component is attenuated while the signal component is expected to pass substantially without attenuation. To enhance the filtering of the FTBPF 222, it can receive one or more control signals from the s〇c processing resource. The control signal can cause the FTBPF 222 to adjust the mid-rate of the baseband filter response (changing the center frequency of the high q IF filter) to change the quality factor of the chopper to change the gain to change the bandwidth and the like. 45 201212553 Receiver IF-ΒΒ section 224 includes a mixing section and a combination & chop section. The mixing section transmits the inbound 彳s number and the second local oscillating frequency to generate I and 卩 mixed signals. The combined hopping section combines the I and Q mixed signals to produce a combined check' and then the hybrid semaphore to generate one or more human station symbol streams. The RF_IF section 204, which is currently not available, is connected to a single antenna for SIS〇 (single input and single output) through L. 'But this scheme can also be applied to MIS〇 (multiple input single output) communication and MiM0 (multiple input multiple output) ) Communication. In these cases, multiple antennas (e.g., two or more) are coupled to a corresponding number of FEMs (or a smaller number of FEMs based on the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (e.g., the same number of antennas), which in turn are coupled to a corresponding number of receiver IF_BB sections 224. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data. The RX RF-IF section 204 has at least one of the following advantages and/or includes at least one of the following features: the superheterodyne receiver structure is superior to the corresponding direct conversion receiver in terms of deadband and power consumption; using complex baseband impedance in the FTBPF 222 The frequency shift of the bandpass filter center frequency, thereby enabling the center frequency of the on-chip high q-mirror band-stop filter to be tuned to the desired frequency; and only the signal local oscillator is required, which can be used for the downconverting mixer and FTBPF 222 . 16 is a schematic block diagram of an RF_IF receiver portion 232 of a SOC 230 including a FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), a variable frequency bandpass filter, in accordance with another embodiment of the present invention. (FTBPF) 234, low noise amplifier module (LNA) 206, mixing section (including mixing module 208 and/or mixing buffer 210-212). The SOC 230 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202' and may also include a baseband processing unit, a system, and/or a power management unit. In an operational example, the inbound signal is received through the antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below 耵 (the higher component is shown). About the local oscillation of the Rp_IF section 232

(例如fL〇) ’若信號在rRF-2fIF,會出現鏡像信號。天線向FEM 提供入站RFj言號,該FEM按照上述和/或將要參考以下至少(eg fL〇) ’ If the signal is at rRF-2fIF, an image signal will appear. The antenna provides an inbound RFj message to the FEM, which is in accordance with the above and/or will refer to at least the following

一幅附圖進行描述的方式處理該RP信號。變壓器以接收FEM 處理後的人站RF信號並將其轉換為差分信號,可調電容網路 C1根據來自SQC處理獅的控雜麟差分親進行遽波。 FTBPF 234 (各種實施例將參考以下幾幅附圖進行描述) 通過衰減鏡像信號分量和不期望的信號分量並通過基本上未 哀減的』望RF k號分置來滤波入站奸信號。例如,假設 FTBPF將窄帶基帶帶通遽波器回應變頻為处(例如期望信號 分量的載波頻率)以產生高q RF濾波器響應。窄帶高Q处 慮波器渡波掉鏡像信號分量和不期望的信號分量並通過基本 上未衰減的期望信號分量。 、旦低雜成放大器模組(LNA) 2〇6放大期望的入站处信號 刀里以產生放大的期望入站处信號。lna 可以從 230處理資源接收控制信號,其中該控制信號指示以下至少一 項的没置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、 擺動,率、上升速率、建立時間、超調量和穩定因數。 此頻模、组208接收放大的入站即信號並利用π/2相移器 或二他類型的相健制電路將其轉換為同相⑴信號分量和 交(Q)仏號分量。混頻模組2〇8的一個混頻器將該〗信號 201212553 釦里與本地振盪(例如汇〇)的j信號分量混頻以產生j混頻 的信號’另一混頻器將該Q信號分量與該本地振盈的Q信號 分量混頻以產生Q屍躺錢。注意,χ和Q混頻的信號可以 是差分信號或單端信號;示出了差分信號。 混頻暫存器緩存!和Q混頻的信號,這些信號隨後將被提 供給濾波器(例如帶通濾波器)。濾波器236和238分別濾波 I和Q混頻的信號’這些信號隨後被提供給狀IF_BB部224。 接收器IF-BB部224包括混頻部和組合&濾波部。混頻部 將站IF彳。5虎與第一本地振盪混頻以產生I和q混頻的信 號。組合&遽波部將!和q混頻的信號組合以產生組合的信 號’然後將魏合信魏波域生—個或多個人站符號流。 儘管當前示出的RF_IF部232與用於SIS〇 (單輸入單輸 出)通#的單個天線連接,但是該方案還可以適用於MjS〇(多 輸入單輸出)通信和ΜΙΜΟ (多輸入多輸出)通信。在這些情 況下,多個天線(例如2或多個)與相應數量的FEM (或根 據FEM中的接收路徑較少數量的FEM)連接。FEM與多個 接收器RF-IF部連接(例如,與天線數量相同),這些接收器 RF-IF部又與相應數量的接收器IF_BB部224連接。基帶處理 單元處理上述多個符號流以產生入站資料。 圖17是根據本發明另一個實施例的s〇c 24〇的处_正接 收器部242的示意框圖,它包括前端模組介面(包括變壓器 T1和/或可調電容網路C1)、—對基於反相㈣低雜訊放大器 模組(LNA ) 244-246、混頻模組248以及一對互阻 (transimpedance)放大器模組(分別包括互阻放大器(TIA) 48 201212553 250-252、阻抗(Z) 254-256 和/或暫存n 258·260)。SOC 240 還包括接收器IF-BB部224、無SAW發射器部2〇2,並還可 以包括基帶處理單元、處理模組和電源管理單元。 在一個運行的例子中,通過天線接收入站奸信號。入站 RF信號包括RF的期望信號分量和頻率高於或低於卯的非期 望分量(示出了高於的分量)。關於购F部綱的本地振廬 (例如fL0),若信號在rRF-2fIF,會出現鏡像信號。天線向fem 提供入站RF信號,該FEM按照上述和/或將要參考以下至少 -幅附圖進行描述財式處理該RF信號。變壓器们接收fem 處理後的人站RF錢其轉換為差分錢,可調電容網路 C1根據來自S0C 240處理資源的控制信號對差分信號進行濾 第-LNA244放大入站rf信號的正項(p〇sitiveleg)以 產生正項電流(positive leg current)即信號,第二2仙 放大入站RF信號的負項以產生負項電流即信號。lna 244-246分別可以從S0C 24〇處理資源接收控制信號,其中該 控制信號指示以下至少-項的設置:增益、線性度、帶寬、效 率、雜訊、輸出動態範圍、擺動速率、上升速率、建立時間、 超調量和穩定因數。 、 混頻模組248接收正項電流rf信號和負項電流即信號 並利用轉π/2相移器或其他類型的相位控制電路將它們轉換為 同相⑴電流信號和正交(Q)電流信號。混頻模乡且2仙的混 頻器將該I電流信號與本地振Μ (例如肋)#!電流信號混 頻以產生I混頻的電流信號(例如“),並將該卩電流與該 49 201212553 本地振I的Q電流信舰触產生Q雜的電流信號(例如 1BB-Q )。注意’ I和Q混頻的電流信號可以是差分信號或單端信 號;示出了差分信號。還要注意,J和Q混頻的電流信號分別 包括鏡像分量和期望分量。 TIA 250-252 (它的一個或多個實施例將參考以下至少一 幅附圖進行描述)接收I和q混頻的電流信號並通過阻抗(z ) 將它們轉㈣f壓,使得得到的丨和q電壓混頻的信號具有衰 減的鏡像分量和基本未衰減的期望分量。ΉΑ 25〇_252與阻抗 (z)相結合的結構,為低於正的頻率提供了它們的輸入與參 考電位(例如Vdd或地)之間的低阻抗路徑,並為高於正的 頻率&供了它們各自的輸入之間的低阻抗路徑。對於接近IF 的頻率,TIA 250-252將它們放大並將它們轉換為電壓信號。 暫存器向RXIF-BB部224提供I和q電壓信號分量,後者將 它們轉換為入站符號流。 RX RF-IF部224提供下列至少一個優點和/或包括下列至 少一個特徵:超外差接收器結構在死區和功耗方面優於相應的 直接轉換接收器;以及基本上消除了超外差接收器存在的偏移 和閃變雜訊問題。 圖18是根據本發明另一個實施例的s〇c 270的RF-IF接 收器部271的示意框圖,它包括FEM介面模組(包括變壓器 T1和/或可調電容網路C1)、RF變頻帶通濾波器(FTBPF)272、 一對基於反相器的低雜訊放大器模組(LNA) 274-276、混頻 模組278、一對互阻(transimpedance)放大器模組(分別包括 互阻放大器(TIA) 280-282、阻抗(Z) 284-286和/或暫存器 50 201212553The RP signal is processed in a manner described in the accompanying drawings. The transformer receives the FEM-processed human station RF signal and converts it into a differential signal. The tunable capacitor network C1 performs chopping according to the control hybrid squad from the SQC processing lion. The FTBPF 234 (various embodiments will be described with reference to the following figures) filters the inbound signal by attenuating the image signal component and the undesired signal component and by substantially unsuppressed RF k number separation. For example, assume that the FTBPF converts the narrowband baseband bandpass chopper response to (e.g., the carrier frequency of the desired signal component) to produce a high q RF filter response. At the narrowband high Q, the filter bypasses the image signal component and the undesired signal component and passes through the substantially un-attenuated desired signal component. The low-impedance amplifier module (LNA) 2〇6 amplifies the desired inbound signal in the knife to produce an amplified desired inbound signal. Lna can receive control signals from 230 processing resources, wherein the control signals indicate none of the following: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing, rate, rise rate, settling time, super Adjustment and stability factor. The frequency mode, group 208 receives the amplified inbound or out signal and converts it into an in-phase (1) signal component and an in-phase (Q) apostrophe component using a π/2 phase shifter or a two-phase phase-inducing circuit. A mixer of the mixing module 2〇8 mixes the signal 201212553 with the j signal component of the local oscillation (eg, sink) to generate a j-mixed signal. Another mixer uses the Q signal. The component is mixed with the local oscillating Q signal component to produce a Q corpse. Note that the signals mixed by χ and Q can be differential signals or single-ended signals; differential signals are shown. Mix register cache! Signals mixed with Q, which are then supplied to a filter (such as a bandpass filter). Filters 236 and 238 filter the I and Q mixed signals, respectively, which are then supplied to the IF BB portion 224. The receiver IF-BB section 224 includes a mixing section and a combination & filter section. The mixing unit will station IF彳. The 5 tiger mixes with the first local oscillation to produce a signal of I and q mixing. Combination & Chop Department will! The signals mixed with q are combined to produce a combined signal' and then the Weihexin Weibo domain generates one or more human station symbol streams. Although the currently shown RF_IF section 232 is connected to a single antenna for SIS〇 (single input single output)#, the scheme can also be applied to MjS〇 (multiple input single output) communication and ΜΙΜΟ (multiple input multiple output). Communication. In these cases, multiple antennas (e.g., two or more) are coupled to a corresponding number of FEMs (or a smaller number of FEMs based on the receive path in the FEM). The FEM is connected to a plurality of receiver RF-IF sections (e.g., the same number of antennas), which in turn are coupled to a corresponding number of receiver IF_BB sections 224. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data. 17 is a schematic block diagram of a positive-receiving portion 242 of a s〇c 24〇, including a front-end module interface (including a transformer T1 and/or a tunable capacitor network C1), in accordance with another embodiment of the present invention, - for inverting (four) low noise amplifier module (LNA) 244-246, mixing module 248 and a pair of transimpedance amplifier modules (including transimpedance amplifier (TIA) 48 201212553 250-252, respectively Impedance (Z) 254-256 and / or temporary n 258 · 260). The SOC 240 also includes a receiver IF-BB section 224, a SAW-free transmitter section 2〇2, and may also include a baseband processing unit, a processing module, and a power management unit. In an operational example, an inbound signal is received through the antenna. The inbound RF signal includes the desired signal component of the RF and the undesired component of the frequency above or below 卯 (the higher component is shown). Regarding the local vibration of the F department (for example, fL0), if the signal is at rRF-2fIF, an image signal will appear. The antenna provides an inbound RF signal to the fem that processes the RF signal as described above and/or with reference to at least the following figures. The transformer receives the fem-treated human station RF money and converts it into differential money. The tunable capacitor network C1 filters the differential signal according to the control signal from the S0C 240 processing resource. The LN 244 amplifies the positive term of the inbound rf signal (p 〇 s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s s The lna 244-246 can receive control signals from the S0C 24 processing resource, respectively, wherein the control signal indicates at least the following settings: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rate of rise, Set up time, overshoot and stability factor. The mixing module 248 receives the positive current rf signal and the negative current current, and converts them into in-phase (1) current signals and quadrature (Q) current signals by using a π/2 phase shifter or other type of phase control circuit. . The mixer mode and the 2 sen mixer mix the I current signal with a local oscillator (eg, rib) #! current signal to generate an I-mixed current signal (eg, "), and the current is 49 201212553 The local current I's Q current letter ship generates a Q-heavy current signal (eg 1BB-Q). Note that the 'I and Q mixed current signals can be differential or single-ended signals; the differential signal is shown. It is noted that the current signals of the J and Q mixing include an image component and a desired component, respectively. TIA 250-252 (one or more embodiments of which will be described with reference to at least one of the following figures) receive I and q mixing The current signals are converted to (iv)f by impedance (z) such that the resulting 丨 and q voltage mixed signals have an attenuated image component and a substantially un-attenuated desired component. ΉΑ 25〇_252 combined with impedance (z) a structure that provides a low impedance path between their inputs and a reference potential (eg, Vdd or ground) for less than positive frequencies and a low impedance between their respective inputs for higher than positive frequencies & Path. For frequencies close to IF, TIA 250-252 They are amplified and converted into voltage signals. The register provides I and q voltage signal components to the RXIF-BB section 224, which converts them into an inbound symbol stream. The RX RF-IF section 224 provides at least one of the following advantages and And/or include at least one of the following features: the superheterodyne receiver structure outperforms the corresponding direct conversion receiver in terms of deadband and power consumption; and substantially eliminates the offset and flicker noise problems present in the superheterodyne receiver Figure 18 is a schematic block diagram of an RF-IF receiver portion 271 of a s〇c 270, including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), in accordance with another embodiment of the present invention, RF variable frequency bandpass filter (FTBPF) 272, a pair of inverter-based low noise amplifier module (LNA) 274-276, mixing module 278, and a pair of transimpedance amplifier modules (included separately Transimpedance Amplifier (TIA) 280-282, Impedance (Z) 284-286 and/or Register 50 201212553

280-286)以及 IF FTBPF 288。SOC 270 還包括接收器 IF-BB 部224、無SAW發射器部202 ’並還可以包括基帶處理單元、 處理模組和電源管理單元。 在本實施例中,RF FTBPF 272的功能如同參考圖16所描 述的’TIA280-282的功能如同參考圖17所描述的。IFFTBpF 288與RF時鐘同步且其中心頻率在勝正町聊挪的帶寬 使得鏡像信絲本上衰減而賊信號分量基本上未衰減地通 過。因此,濾、波鏡像信號三次:由Rp FTBPF 272、由TIA 280-282 以及然後由IF FTBPF 288。 RX RF-IF部271提供下列至少一個優點和/或包括下列至 少一個特徵:使用兩個時鐘(例如处和L〇2);超外差接收 器結構在死區和功耗方面優於相應的直接轉換接收器;閃變 (flicker)雜訊不重要’因此基帶電路可以是小型的;可以使 用無電感LNA274-276 (例如,LNA可以作為反相器實施); 沒有DC偏移發生,因此淘汰了占地大的偏移消除電路;接收 器結構具有比得上直接轉換接收器的頻率規劃靈活性;包括跨 越RX鏈的先進的帶通濾波級;以及可以輕易地集成於S〇c 270 中。 圖19是根據本發明另一個實施例的s〇c 290的RF-IF接 收器部292的示意框圖,它包括FEM介面模組(包括變壓器 τι和/或可調電容網路匸丨)、^變頻帶通濾波器(FTBpF)272、 一對基於反相器的低雜訊放大器模組(LNA) 274_276、混頻 模組278、一對互阻(transimpedance)放大器模組(分別包括 互阻放大器(TIA) 280-282、阻抗(Z) 284-286和/或暫存器 51 201212553280-286) and IF FTBPF 288. The SOC 270 also includes a receiver IF-BB section 224, a no-SAW transmitter section 202' and may also include a baseband processing unit, a processing module, and a power management unit. In the present embodiment, the function of the RF FTBPF 272 is as described with reference to Fig. 17 as described with reference to Fig. 16. The bandwidth of the IFFTBpF 288 synchronized with the RF clock and its center frequency in the Shengzheng Town is such that the image signal is attenuated and the thief signal component is passed through without attenuation. Therefore, the filtered, wave mirrored signal is three times: by Rp FTBPF 272, by TIA 280-282 and then by IF FTBPF 288. The RX RF-IF section 271 provides at least one of the following advantages and/or includes at least one of the following features: two clocks are used (eg, and L〇2); the superheterodyne receiver structure is superior to the corresponding in terms of deadband and power consumption. Direct conversion of the receiver; flicker noise is not important' so the baseband circuit can be small; the inductorless LNA274-276 can be used (for example, the LNA can be implemented as an inverter); no DC offset occurs, so eliminated Large footprint offset cancellation circuit; receiver architecture with frequency planning flexibility comparable to direct conversion receivers; includes advanced bandpass filtering stages across RX chains; and can be easily integrated into S〇c 270 . 19 is a schematic block diagram of an RF-IF receiver portion 292 of a s〇c 290 including an FEM interface module (including a transformer τι and/or a tunable capacitor network 匸丨), in accordance with another embodiment of the present invention, ^Inverter bandpass filter (FTBpF) 272, a pair of inverter-based low noise amplifier module (LNA) 274_276, mixing module 278, and a pair of transimpedance amplifier modules (including mutual resistance) Amplifier (TIA) 280-282, impedance (Z) 284-286 and/or register 51 201212553

280-286)以及 IF FTBPF 294。SOC 290 還包括接收器 IF-BB 部224、無SAW發射器部202,並還可以包括基帶處理單元、 處理模組和電源管理單元。 在本實施例中’ IF FTBPF 294的功能如同參考圖15所描 述的,TIA的功能如同參考圖17所描述的。RFFTBpF272與 1^〇時鐘同步且其中心頻率在117。1^17丁81)17272的帶寬使得鏡 像信號基本上衰減㈣望信號分量基本上未衰減地通過。因 此’濾、波鏡像信號三次:由Rp FTBPF 272、由TIA 28〇-282 以及然後由IF FTBPF 294。 RX RF-IF部292提供下列至少一個優點和/或包括下列至 少一個特徵:使用一個時鐘(例如U32);超外差接收器結構 在死區和功耗方面優於相應的直接轉換接收器;閃變雜訊不重 要,因此基帶電路可以是小型的;可以使用無電感LNA 274-276 (例如,LNA可以作為反相器實施);沒有DC偏移發 生’因此淘汰了占地大的偏移消除電路;接收器結構具有比得 上直接轉換接收器的頻率規劃靈活性;包括跨越狀鏈的先進 的帶通濾波級;以及可以輕易地集成於S〇C29〇中。 圖20是根據本發明另一個實施例的s〇c 3〇〇的雙頻帶 RF-IF接收器部302的示意框圖,它包括FEM介面模組(包 括變壓器T1和/或可調電容網路ci)、變頻帶通濾波器 (FTBPF) 304、一對低雜訊放大器模組(LNA) 3〇6_3〇8以及 混頻部(包括一對混頻模組310-312、混頻暫存器314-320和/ 或遽波器322-328)。S0C 300還包括接收器IF-BB部224、無 SAW發射器部202 ’並還可以包括基帶處理單元、處理模組和 52 201212553 /或電源管理單元。 ^-個運行的例子巾,通過天線接收人站处信號。入站 RF信號包括-個或多個期望信號分量(例如一個在“,另 -個在和頻率高於或低於即的非期望分量(示出了高 於的分量)。關於RF-IF部的本地缝(一個用於第一期望虾 信號,另-個用於第二期望+ RF信號_w和“),若信號在 rRFr2fIF々/或在rRpr2fiF2,會出現一個或多個鏡像信號分量。 天線向FEM提供入站rf信號,該FEM按照上述和/或將要參 考以下至少一幅附圖進行描述的方式處理該处信號。變壓器 T1接收FEM處理後的入站rf信號並將其轉換為差分信號, 可調電容網路C1根據來自SOC處理資源的控制信號對差分信 號進行濾波。 ° FTBPF 3〇4 (各種實施例將參考以下幾幅附圖進行描述) 通過衰減鏡像信號分量和不期望的信號分量並通過基本上未 衰減的期望RF信號分量來濾波入站即信號。例如,假設 FTBPF將窄帶基帶帶通渡波器變頻為肌和处2 (例如期望 信號分量的載波頻率)以產生兩個高QRP濾波器。窄帶高q RF濾波器分別濾波掉鏡像信號分量和不期望的信號分量並通 過基本上未衰減的期望信號分量。 第一低雜訊放大器模組(LNA)放大期望的入站rpi信 號分量(當入站RF信號中包含時)以產生放大的期望入站 #號,第二低雜訊放大器模組(LNA)放大期望的入站RP2 信號分量(當入站RF信號中包含時)以產生放大的期望入站 RF2信號。每一個LNA分別可以從SOC處理資源接收控制信 53 201212553 號’其中該控制信號指示以下$小 ^ 「芏夕一項的設置:增益、線性度、 六加 ^ 勒心圍、擺動速率、上升速率、建 立時間、超調量和穩定因數。 混頻部的第-混頻模組接收玫大的期望入站肌信號並 用=相移料魏_的相位控制電路將其轉換為同相 ㈣Γ號77量和正又(Q)信號分量。第―混賴組的混頻器 =,號分量與本地振盪(例如‘)的_分量混頻以 產生第—1混_域,並職Q信號分量_本地振盪的Q 減分量混_產生第—Q _触號。注意,第—1和Q 混頻的信號可岐差分錄或單端域;示出了差分信號。 ’吧頻部的第一混頻模組接收放大的期望入站跟信號並 利用=2相移器或其他類型的相位控制電路將其轉換為同相 ⑴仏就分量和正交(Q)信號分量。第二混賴組的混頻器 將該I域分量與本地振盈(例如U的ι信號分量混頻以 產生第二1簡的域’並將該Q信齡減該本地振盪的Q 信號分量混頻以產生第二Q混頻的信號。注意,第二J和Q 混頻的1舌號可岐差分信號或單端信號;*出了 I分信號。 每個混頻器緩存它們各自的I和Q混頻的信號 ,這些信號 隨後將被提供給濾、波器(例如帶通紐器)。誠器遽波!和 Q混頻的信號,這些信號隨後被提供給狀IF_BB部224。 儘管當前示出的RF-IF部302與用於SIS0 (單輸入單輸 出)通信的單個天線連接,但是該方案還可以適用於MJSOC多 輸入單輸出)通信和ΜΙΜΟ (多輸入多輸出)通信。在這些情 況下’多個天線(例如2或多種)與相應數量的FEM (或根 54 201212553 據FEM中的接收路徑較少數量的FEM)連接。fem與多個 接收器RF_IF部連接(例如,與天線數量相同),這些接收器 部又與相應數量的接收器IF_BB部連接。基帶處理單元 處理上述多個符號流以產生人站資料。 、RXRF-IF部3〇2提供下列至少一個優點和/或包括下列至 少一_徵Μ吏用-個時鐘(例如L〇2);能夠利用單個处 輸Μ接收兩個入站RF信號;不再需要兩個外部的SAW遽 波器’-個FTBPF 304有效地濾波兩個通道(例如肌和脱 信號);兩個高QRF·器的令心頻率由本地振1時鐘控制; 以及可以輕易地集成於SOC 300中。 圖21是根據本發明另一個實施例的s〇c 33〇的正接 收器部332的示意框圖,它包括FEM介面模組(包括變壓器 T1和/或可調電容網路C1)、帶有變頻帶通濾波器㈣bPF) 338的低雜訊放大器模組(LNA) 、具有負阻的即變頻帶 通滤波器(FTBPF) 334以及混頻部(包括混頻模組34〇、混 頻暫存器342-344和/或濾波器346_348>s〇c 33〇還包括接收 器IF-BB部224、無SAW發射器部202,並還可以包括基帶 處理單元、處理模組和/或電源管理單元。 在本實施例中,示出的寄生電阻(Rp)與FEM介面模組 相關以代表開關損耗(例如FTBPF的)和/或電感損耗。電感 損耗主要是由於變壓器線圈的歐姆電阻(例如基板上的金屬 線)和/或變壓器下的基板損耗,由於電容C1的調譜,電感 損耗是RF段阻抗的主要分量。較低的寄生電阻將減小濾波的 品質因數,並減小RF以外頻率的帶外衰減。FTBPF334中的 55 201212553 有效地增加了寄生電阻,從而增加了品質因數和帶 減。 ▲在一個運行的例子中,通過天線魏入站RF信號。入站 RF\號包括RF的期望信號分量和頻率高於或低於即的非期 望分量(示出了高於的分量)。關於购F部332的本地振盈 (例如fL〇) ’若信號在rRF_2flF ’會丨現鏡像信號分量。天線向 FEM提供入站rf信號,該FEM按照上述和/或將要參考以下 至少一幅附圖進行描述的方式處理該RF信號。變壓器:Π接 收FEM處理後的入站即信號並將其轉換為差分信號,可調 電奋網路C1根據來自SOC33G處理資源的控制信號對差分信 號進行濾波。 FTBPF 334 (各種實施例將參考以下幾幅附圖進行描述) 通過衰減鏡像錢分f和不賊的信號分量並通過基本上未 衰減的期望RP信號分量來濾波入站肝信號。例如,假設 FTBPF辦將窄帶基帶帶通遽波器變頻為处(例如期望信號 刀里的載波頻率)以產生高q Rp濾波器。窄帶高q Μ濾波 器分別濾波掉鏡像信號分量和不期望的信號分量並通過基本 上未衰減的期望信號分量。此外,FTBPF 334包括負阻,該負 阻類似於寄生電阻(Rp)並補償了寄生電阻代表的損耗(例 如有效地增加了濾波的品質因數並增加了帶外衰減)。可以通 過來自SOC 330處理資源的控制信號根據寄生電阻的變化動 態地調節負阻。280-286) and IF FTBPF 294. The SOC 290 also includes a receiver IF-BB section 224, a no-SAW transmitter section 202, and may also include a baseband processing unit, a processing module, and a power management unit. The function of the 'IF FTBPF 294' in this embodiment is as described with reference to Fig. 15, and the function of the TIA is as described with reference to Fig. 17. The RFFTBpF272 is synchronized with the 1^〇 clock and has a center frequency of 117. 1^17. 81) 17272 has a bandwidth such that the mirror signal is substantially attenuated (four) and the signal component passes through substantially un-attenuated. Therefore, the filter and wave image signals are three times: by Rp FTBPF 272, by TIA 28〇-282 and then by IF FTBPF 294. The RX RF-IF portion 292 provides at least one of the following advantages and/or includes at least one of the following features: using one clock (eg, U32); the superheterodyne receiver structure is superior to the corresponding direct conversion receiver in terms of deadband and power consumption; Flicker noise is not important, so the baseband circuitry can be small; non-inductive LNA 274-276 can be used (for example, LNA can be implemented as an inverter); no DC offset occurs' thus eliminating the large footprint offset Elimination of circuitry; receiver architecture with frequency planning flexibility comparable to direct conversion receivers; advanced bandpass filtering stages including spanning chains; and easy integration into S〇C29〇. 20 is a schematic block diagram of a dual band RF-IF receiver section 302 of a s〇c 3〇〇, including a FEM interface module (including a transformer T1 and/or a tunable capacitor network, in accordance with another embodiment of the present invention). Ci), variable frequency bandpass filter (FTBPF) 304, a pair of low noise amplifier modules (LNA) 3〇6_3〇8 and mixing section (including a pair of mixing modules 310-312, mixing register) 314-320 and / or chopper 322-328). The SOC 300 also includes a receiver IF-BB section 224, a SAW-free transmitter section 202' and may also include a baseband processing unit, a processing module, and a 52201212553/or power management unit. ^-A running example towel that receives signals from the person station through the antenna. The inbound RF signal includes one or more desired signal components (eg, one at the "and the other is an undesired component above and below the frequency (showing a higher component). About the RF-IF portion The local seam (one for the first desired shrimp signal, the other for the second desired + RF signal _w and "), if the signal is at rRFr2fIF 々 / or at rRpr2fiF2, one or more image signal components will appear. The antenna provides an inbound rf signal to the FEM, which processes the signal in accordance with the above and/or will be described with reference to at least one of the following figures. Transformer T1 receives the FEM processed inbound rf signal and converts it to a differential The signal, tunable capacitor network C1 filters the differential signal based on control signals from the SOC processing resources. ° FTBPF 〇4 (various embodiments will be described with reference to the following figures) by attenuating the image signal component and undesired The signal component and the inbound or out signal are filtered by the substantially un-attenuated desired RF signal component. For example, suppose the FTBPF converts the narrowband baseband bandpass waver to muscle and 2 (eg carrier of the desired signal component) Rate) to generate two high QRP filters. The narrowband high q RF filter filters out the image signal component and the undesired signal component and passes the substantially un-attenuated desired signal component. The first low noise amplifier module (LNA) Amplifying the desired inbound rpi signal component (when included in the inbound RF signal) to produce an amplified desired inbound ##, and the second low noise amplifier module (LNA) amplifies the desired inbound RP2 signal component (when The inbound RF signal is included to generate an amplified inbound RF2 signal. Each LNA can receive a control signal from the SOC processing resource 53 201212553 'where the control signal indicates the following $ small ^ : gain, linearity, six plus squares, swing rate, rate of rise, settling time, overshoot and stability factor. The first mixing module of the mixing section receives the expected inbound muscle signal of the rose and uses = The phase shifting circuit of phase shifter Wei_ converts it into in-phase (four) apostrophe 77 and positive (Q) signal components. The mixer of the first-mixed group =, the number component is mixed with the _ component of the local oscillation (eg ') Frequency production The first-to-one mixed-domain, the Q-signal component of the local oscillator, the Q-subtractive component of the local oscillator, and the first-Q and the Q-mixed signals can be recorded in a differential or single-ended domain; The differential signal is shown. The first mixing module of the 'band frequency section receives the amplified desired inbound signal and converts it to in-phase with a =2 phase shifter or other type of phase control circuit (1) 仏 component and positive Crossing the (Q) signal component. The mixer of the second mixed group mixes the I domain component with the local vibrating (eg, the U i signal component of U to generate the second 1st domain) and subtracts the Q signal age The locally oscillated Q signal components are mixed to produce a second Q-mixed signal. Note that the first J and Q mixing 1 tongues can be differential or single-ended; Each mixer buffers their respective I and Q mixed signals, which are then provided to filters, filters (such as bandpasses). Honesty! The signals mixed with Q are then supplied to the IF BB portion 224. Although the currently shown RF-IF section 302 is connected to a single antenna for SIS0 (single-input single-output) communication, the scheme can also be applied to MJSOC multi-input single-output communication and MIMO (multi-input multiple-output) communication. In these cases, multiple antennas (e.g., two or more) are coupled to a corresponding number of FEMs (or roots 54 201212553 based on a smaller number of FEMs in the receive path in the FEM). The fem is connected to a plurality of receiver RF_IF sections (e.g., the same number of antennas), and these receiver sections are in turn connected to a corresponding number of receiver IF_BB sections. The baseband processing unit processes the plurality of symbol streams described above to generate human station data. The RXRF-IF section 3〇2 provides at least one of the following advantages and/or includes at least one of the following clocks (eg, L〇2); capable of receiving two inbound RF signals using a single input; Two additional SAW choppers are needed again - one FTBPF 304 effectively filters the two channels (eg muscle and off-signal); the center frequency of the two high QRFs is controlled by the local oscillator 1 clock; and can be easily Integrated in the SOC 300. 21 is a schematic block diagram of a positive receiver portion 332 of a s〇c 33〇, including an FEM interface module (including a transformer T1 and/or a tunable capacitor network C1), with a EM 〇 33 〇 according to another embodiment of the present invention. Variable band pass filter (4) bPF) 338 low noise amplifier module (LNA), negative resistance band-pass bandpass filter (FTBPF) 334 and mixing section (including mixing module 34〇, mixing temporary storage) The 342-344 and/or the filter 346_348>s〇c 33〇 further includes a receiver IF-BB section 224, a SAW-free transmitter section 202, and may further include a baseband processing unit, a processing module, and/or a power management unit In this embodiment, the parasitic resistance (Rp) is shown to be associated with the FEM interface module to represent switching losses (eg, FTBPF) and/or inductance losses. The inductance loss is primarily due to the ohmic resistance of the transformer coil (eg, on the substrate). The metal loss) and/or the substrate loss under the transformer, the inductance loss is the main component of the RF segment impedance due to the modulation of the capacitor C1. The lower parasitic resistance will reduce the quality factor of the filter and reduce the frequency outside the RF. Out-of-band attenuation. 55 2012125 in FTBPF334 53 effectively increases the parasitic resistance, which increases the quality factor and band reduction. ▲ In an operational example, the RF signal is inbound through the antenna. The inbound RF\ number includes the expected signal component of the RF and the frequency is higher or lower. The undesired component (showing the higher component). The local vibration (for example, fL〇) about the purchased F portion 332 'If the signal is at rRF_2flF', the image signal component will be reflected. The antenna provides the inbound rf to the FEM. Signal, the FEM processes the RF signal in accordance with the above and/or will be described with reference to at least one of the following figures. Transformer: Π Receives the FEM processed inbound signal, and converts it into a differential signal, The network C1 filters the differential signal according to a control signal from the SOC 33G processing resource. The FTBPF 334 (various embodiments will be described with reference to the following figures) by attenuating the signal component of the money segment f and the non-thief and passing substantially Attenuating the desired RP signal component to filter the inbound liver signal. For example, suppose the FTBPF office converts the narrowband baseband bandpass chopper to a location (eg, the carrier frequency in the desired signal knife) The high-order q Rp filter. The narrow-band high q Μ filter filters out the image signal component and the undesired signal component, respectively, and passes through the substantially un-attenuated desired signal component. In addition, the FTBPF 334 includes a negative resistance, which is similar to parasitic The resistor (Rp) compensates for the loss represented by the parasitic resistance (eg, effectively increases the quality factor of the filter and increases the out-of-band attenuation). The negative resistance can be dynamically adjusted based on the change in parasitic resistance by a control signal from the SOC 330 processing resource. .

低雜訊放大器模組(LNA) 336放大期望的入站RF信號 分量以產生放大的期望入站RF信號。LNA 336可以從SOC 56 201212553 33〇處理資源接收控制信號,其中該控制信號指示以下至少一 項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、 擺動速率、上升速率、建立時間、超調量和穩定因數。此外, LNA336可以包括RF fTBPf 338,处TFBpF 338的功能類似 於上述RF FTBPF 334以進—步衰減鏡像信號分量。 混頻模組340接收放大的期望入站处信號並利用π/2相 移器或其他類赌她控制魏將其轉換朗相⑴信號分 里和正父(Q)信號分量。混頻模組34〇的混頻器將該〗信號 分量與本地振S (例如fLQ)的!信號分量混頻以產生丨混頻的 k號’並_ Q信號分量與該本地振盪的q信號分量混頻以 產生Q混頻的信號。注意,j和q混頻的信號可以是差分信號 或單端信號;示出了差分信號。 混頻暫存器緩存I和Q混頻的信號,這些信號隨後將被提 供給遽波H (例如帶職波器)。驗减波〗Η混頻的信 號,這些信號隨後被提供給RXIF-BB部224。 儘管當前示出的RF_IF部332與用於SISO (單輸入單輸 出)通仏的單個天線連接,但是該方案還可以適用於MjS〇(多 輸入單輸出)通信和M!M〇 (多輸入多輸出)通信。在這些情 况下,多個天線(例如2或多個)與相應數量的FEM (或根 據FEM中的接收路徑較少數量的FEM)連接。FEM與多個 接收器RF_IF部連接(例如,與天線數量相同),這些接收器 RF IF α卩又與相應數罝的接收器if_bb部連接。基帶處理單元 處理上述多個符號流以產生入站資料。 RX RF-IF部332提供下列至少一個優點和/或包括下列至 57 201212553 少一個特徵:不再需要片外SAW濾波器和匹配元件;負阻增 加了 FTBPF 334的品質隨;可以補職感損耗,因此電感 具有較低公差;減少了對厚金屬層數量的需求,從而降低了裸 片製造成本;兩個高QRP濾波器的中心頻率由本地振盪時鐘 控制;以及可以輕易地集成於s〇c 330中。 圖22是根據本發明另一個實施例的s〇c 35〇的处_11?接 收器部352的示意框圖,它包括FEM介面模組(包括變壓器 τι和/或可調電容網路⑴、具有複基帶(BB)阻抗的變頻帶 通濾波器(FTBPF) 354、低雜訊放大器模組(LNA) 356以 及混頻部(包括混頻模組34〇和/或混頻暫存器342_344 )。s〇c 350還包括接收器IF_BB部224、無SAW發射器部2〇2,並 還可以包括基帶處理單元、處理模組和/或電源管理單元。 在-個運行的例子中,通過天線接收入站奸信號。入站 RF信,包括RP_望魏分量和辭高於或低於处的非期 望分量(示出了高於的分量)。關於RP_IF部知的本地振盪 (例如fLO) ’若信號在知_2知’會出現鏡像信號分量。天線 向FEM提供入站rf信號,該FEM按照上述和/或將者 下至少-幅附圖進行描述的方式處理該奸信號。變壓器Ή 接收FEM處理後的入站rf信號並將其轉換為差分作號,可 調電容網路α根據來自S0C 35〇處理資源的控制信號對差分 信號進行濾、波。 FTBRP354 (各種實施例將參考以下幾幅_進行描述) 通過衰減鏡像信齡量料敏的錢分量並通過基本上未 衰減的期望RF信號分量來濾波入站 15就。例如,假設 58 201212553 FTBPF 354將窄帶基帶帶通濾波器變頻為Rp (例如期望信號 分量的載波頻率)以產生高Q RJF濾波器。窄帶高q处濾波 器分別濾波掉鏡像信號分量和不期望的信號分量並通過基本 上未衰減的期望信號分量。通過複基帶阻抗354的使用,可以 調節窄帶基帶BPF的中心頻率。例如根據對複BB阻抗354 的調節,可以使帶通區域在頻率上變得更高或更低。 低雜訊放大器模組(LNA) 356放大期望的入站Rp信號 刀量以產生放大的期望入站处信號。LNA 356可以從 35〇處理資源接收控制信號,其中該控制信號指示以下至少一 項的設置:增益、線性度、帶寬、效率、雜訊、輸出動態範圍、 擺動速率、上升速率、建立量和穩定因數。 混頻部的混頻模組34G接收放大的期望入站RF信號並利 ==n或其他_的她控㈣路將其轉換為同相⑴ ^刀里和正X (Q) #號分量。賴模組獨的混頻器將該 ^號刀▲里與本地紐(例如U的〗信號分量混頻以產生^ 2的彳。號’並將該Q信號分量與該本地振錢q信號分量 八仁=產生Q㊄頻的信號。注意’1和Q混躺信號可以是差 刀仏麵單端信號;示出了差分信號。 混頻暫存器342·344 在 後將被提供跡㈣ο Q、痛的信號,這些信號隨 波I和Ο、(列如帶通遽波器)。遽波器346-348濾 ^ 信號’這些信號隨後被提供給腿F-BB部224。 出)通信S的田1不出的你处部352與用於SIS〇 (單輸入單輸 輪入單天線連接,但是該方案還可以適用於腫〇(多 早輪出)通信和_〇(多輸人多輪出)通信。在這些情 59 201212553 況下’多個天線(例如2或多種)與相應數量的FEM (或根 據FEM中的接收路徑較少數量的FEM)連接。FEM與多個 接收器RF-IF部連接(例如,與天線數量相同),這些接收器 RF-IF部又與相應數量的接收器IF_BB部連接。基帶處理單元 處理上述多個符號流以產生入站資料。 RX RF-IF部352提供下列至少一個優點和/或包括下列至 少一個特徵:超外差接收器相比類似直接轉換接收器的優點在 於最小區域和功率;FTBPF 354中複基帶阻抗的使用使得帶通 濾波器的中心頻率改變;複基帶阻抗354可以利用開關和電容 實現,且它的巾心由LO時鐘控制;姻下㈣混頻||所使用 的同一 LO時鐘將片上高Q鏡像帶阻濾波器(例如FTBpF) 調諧為期望頻率;RF_IF部352使用信號鎖相環(pLL);以及 可以輕易地集成於SOC 350中。 圖23是根據本發明一個實施例的s〇c 36〇的發射器部的 示意框圖’它包括上_混麵組淑、魏ϋ本地振盈模組 (LO) 364、變頻帶通濾波器(FTBpF)施、輸出模組(包 括電容_ 368_370和/或變壓n T1)以及功率放大器驅動器 (PAD) 372。PAD 372包括如圖連接的電晶體φ_〇2、電阻 R1和電合C1。注意’電容C1和/或電阻幻可以利用一個或 夕個電阳體Q1_Q2實現。s〇c 36()還包括無SAw接收器部 364並還可以包括基帶處理單元、處理模組和/或電源管理單 元。 在個運仃的例子中,上變頻混頻模組362接收基帶(BB ) I和Q錢(例如出料舰_比和正絲示)。上變頻混 201212553 頻模組362可以採用直接轉換拓撲或超外差拓撲將bb z和卩 信號轉換為上變頻信號,後者的載波頻率在所期望的RF。 FTBPF 366 (各種實施例將參考以下幾幅附圖進行描述) 通過衰減帶外信號分量並通過基本上未衰減的上變頻信號來 慮波上變頻彳§號。例如,假設FTBPF 366將窄帶基帶帶通滤 波器變頻為RF (例如上變頻信號的載波頻率)以產生高Q处 濾波器。窄帶高QRF濾波器濾波掉帶外信號並通過基本上未 衰減的上變頻信號。 電容陣列368·370提供可調低賴波n,魏波器濾波共 模雜訊和/或線性雜訊。變壓器T1將差分上變頻信號轉換為單 端#號’後者隨後被PAD 372放大。PAD 372向FEM提供放 大的上變頻k號,FEM進一步將其放大,從而將它從入站肝 信號中分離,並提供將它提供給天線以便發射。 TX部提供下列至少一個優點和/或包括下列至少一個特 徵:超外差接收器相比類似直接轉換接收器的優點在於最小區 域和功率;使用與發射器上變頻混頻器LC負載的TXLO 364 同步的FTBPF 366減少了發射器雜訊和rx頻率的其他帶外雜 訊,但對期望的TX信號的影響很小;高QFTBPF 366的基帶 阻抗可以利用電容來實現’且它的中心頻率由TX LO 364控 制;淘汰了 TXSAW濾波器;以及易於集成到S〇C36〇中。 圖24是根據本發明另一個實施例的s〇c 380的發射器部 382的示意框圖’它包括上變頻混頻模組362、發射器本地振 盪模組(LO)、變頻帶通濾波器(FTBPF)、輸出模組(包括 電容陣列368-370和/或變壓器T1)以及功率放大器驅動器 201212553 (PAD) 372。PAD 372包括如圖連接的電晶體、電阻和電容。 庄意,電容和/或電阻可以利用一個或多個電晶體實現。s〇c 380還包括無SAW接收器部364,並還可以包括基帶處理單 元、處理模組和/或電源管理單元。 在本實施例中,上變頻混頻模組包括如圖所示的無源混頻 結構,該無源混頻結構可以採用5〇%占空比L〇時鐘。在一個 運行的例子中,通過圖左邊的電路將L〇〗和Q信號分量混合, 通過圖右邊的電路將roi和q信號分量混合。然後,將混合 的LO信號分量與混合的BB信號分量混合以產生上變頻信 唬。例如,LO一 1+將能量注入它對應的電容中且LOj—從該電 合中提取能量(反之亦然),從而在該電容兩端以對應於L〇 的速率產生變化的賴。LQ—Q+和l〇_Q·對它們的電容做類 似處理’健姉9G度。通過加法㈤點㈣容㈣變化的電 壓叠加在-起减生混合的L〇信齡量。_難發生在混 頻器的基帶側。 TX部382提供下列至少-個優點和/或包括下列至少一個 特徵.Vbl和Vb2驅動的電晶體是高電壓電晶體(例如,她 電壓>2.5V);以及該TX、结構提供低功率高效率區域設計並使 用由50%占空比LO時鐘驅動的無源混頻器,相比由25%占空 比時鐘驅動的混頻器來說降低了功耗。 圖25是根據本發明一個實施例的卵_正接收器部的一部 分的示意框圖,包括單端FTBPF (變頻帶通舰器)394。狀 RF-IF部的該部分包括變壓器Ή、可變電容網路ci和lna 392。FTBPF 394包括多個電晶體(例如開關網路)和多個基 62 201212553 帶阻抗(Zbb(s) ) 396-402。 在一個運行的例子中,前端模組(FEM) 390通過天線接 收入站RF信號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號’並將FEm 390處理後的入站 处信號提供給變壓器T1。變壓器T1升高或降低入站rf信 號的電壓電平,隨後由可變電容網路C1對其進行濾波。注意, 若不需要對入站RF信號的電壓電平進行調節和/或不需要變 壓器T1提供的分離’那麼可以省略變壓器τι。 FTBPF 394提供高Q (品質因數)Rjp濾波器,該濾波器 遽波入站RF信號使得入站RF信號的期望信號分量基本未衰 減地傳遞給LNA 392且不期望的信號分量(例如阻滯、鏡像 等)衰減。為了實現該濾波器,基帶阻抗(Zbb汹)396_4〇2 共同提供具有相應濾波器回應的低q基帶濾波器,其中每個 基帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和 /或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同 的或其組合。還要注意,每個基帶阻抗的阻抗可以通過來自 SOC處理資源的控制信號進行調節,從而調節低Q基帶濾波 器的性能(例如帶寬、衰減速率、品質因數等)。 通過時鐘生成器404提供的時鐘信號將低Q基帶濾波器 變頻為期望的RF頻率以產生高QRp濾波器。圖27示出了低 Q基帶濾波器回應向高Q RF濾波器回應的變頻,圖26示出 了時鐘生成器404的一個實施例。 如圖26所示,時鐘生成器(它的各種實施例將參考以下 至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信號具 63 201212553 有25/〇占空比且依次相移9〇。。時鐘信號的頻率對應於入站 即信號的載波頻率,並可以被調節以更好地跟蹤載波頻率。 時鐘生成器404還可以生成本地振盪時鐘信號(未示出),後 者用於下變頻入站RF信號為入站IF信號。 回到對圖25的討論,FTBPF 394接收時鐘信號,這些時 鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站 RF信號。由於時鐘速率在RF (例如入站处信號的期望分量 的載波頻率),基帶阻抗響應(低Q帶通濾波器共同地)轉移 到RP,從而實現高QRP帶通濾波器。 圖28疋根據本發明一個實施例的包含4個電晶體和4個 電容的單端FTBPF 410的示意框圖,其中電晶體和電容提供 基帶阻抗。4個電容提供集中的基帶阻抗,後者提供如圖29 所示的低Q基帶帶通濾波器。具體地,一個電容(或並聯的4 個)的阻抗是1/sC,其中s是2πί*。因此,隨著頻率(f)接近 零,電谷的阻抗接近無窮,且隨著頻率(f)增加,電容的阻 抗下降。另外,零頻率時電容的相位從90。變到-90。。 回到對圖28的討論,由於將時鐘信號施加於電晶體,電 谷連接到FTBPF410的公共節點(例如FTBpF的輸入)。通過 這種方式,電容的性能可以被頻移到如圖3〇所示的時鐘信號 的速率(例如fL〇)。具體地,電容(以及並聯的4個電容)的 阻抗被移動到時鐘的頻率。由於L〇接近無窮的阻抗,ftbpf 410在LO具有高阻抗,因此對載波頻率與l〇相當的信號分 量的影響較小。隨著頻率偏離L0,FTBpF 41〇的阻抗減小, 因此FTBPF 410有效地“衰減(sh〇rt),,載波頻率與不相當 64 201212553 的信號分量。 圖31是根據本發明另一個實施例的处_117接收器部的一 部分的示意框圖,它包括差分FTBPF 412 (變頻帶通濾波器)。 RXRF-IF部的該部分包括變壓器τι、可變電容網路ci和lna 393。FTBPF化包括多個電晶體和多個基帶阻抗(Zbb⑻) 414-420 。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收入站RF仏號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號’並將FEM 39〇處理後的入站 RF信號提供給變壓器T1。變壓器T1將單端入站即信號轉 換為差分入站RF信號。 12杈供差分高Q (品質因數)RP濾波器,該 波器濾波差分入站RF信號使得入站即信號的期望信號分 ^本未衰減地傳遞給LNA 393且不期望的信號分量(例如 滯、鏡像等)衰減。為了實現該滤、波器,基帶阻抗(ζ_ 414-420共同提供具有相顧波H回應的低卩基帶淚波器, 中每個基帶阻抗分別可以是電容、_電容魏器二開關電 電阻和/或複阻抗。注意,每健帶阻抗的阻抗可以是相同的 不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通過 自SOC處理資_控制錢騎稱,從而 波器的性能(例如帶寬、衰減速率、品f因數等)㈣絲 通過時鐘生成|| 422提供的時鐘信號將 變頻為期望的KP頻率以產生高Q㈣波器。圖 Q絲遽波器回應向高Q RF遽波器回應的變頻,圖32㈤ 65 201212553 了時鐘生成器422的一個實施例。 如圖32所示,時鐘生成器422 (它的各種實施例將參考 以下至少-幅_進行描述)產生4個時鐘信號,每個時鐘信 號具有25%占空比且依次相移%。。時鐘信號的頻率對應^ 入站RF信號的載波頻率,並可以被調節以更好地跟縱載波頻 率。時鐘生成H 422還可以生成本地振蘆時鐘信號(未示出), 後者用於下變頻入站RF信號為入站IF信號。 回到對圖31的討論’ FTBPF 412接收時鐘信號,這些時 鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與二站 RF域。由於時鐘速率在RP (例如入站即信號的期望分量 的載波頻率)’基帶阻抗響應(低Q帶通濾波ϋ共同地)轉移 到RF,從而實現高QRF帶通濾波器。 圖34是根據本發明另一個實施例的处-吓接收器部的一 部分的示意框® ’它包括單端FTBPF 43〇 (變頻帶通濾波器)。 RXRF IF σ卩的該部分包括變壓II T1、可變電容網路a和匕做 392。FTBPF43G包括多個電晶體和複基帶濾波器432。 在一個運行的例子中,前端模組(FEM) 390通過天線接 收入站RF彳§號,按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該即信號,並將fem 39〇處理後的入站 即^號提供給變壓器T1。變壓器T1升高或降低入站Rp信 號的電壓電平’P4後由可㈣細路α對其進·波。注意, 右=需要對入站RF信號的電壓電平進行調節和/或不需要變 壓器丁 1 k供的分離,那麼可以省略變壓器T1。 FTBPF 430提供高q (品質因數)处遽波器,該濾波器 66 201212553 遽波入站RF信號使得入站Rp信號的期望信號分量基本未衰 減地傳遞給LNA 392且不期望的信號分量(例如阻滞、鏡像 等)衰減。為了實現賊波器’複基帶滤波器极提供低q 基帶濾、波器,後者的帶通區域可以偏移零頻率。注意,可以通 過來自SOC處理資源的控制信號調節複基帶遽㈣极的性 能(例如帶寬、衰減速率、品質因數、頻率偏移等)。A low noise amplifier module (LNA) 336 amplifies the desired inbound RF signal component to produce an amplified desired inbound RF signal. The LNA 336 can receive a control signal from the SOC 56 201212553 33〇 processing resource, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rate of rise, establishment Time, overshoot and stability factor. In addition, LNA 336 may include RF fTBPf 338, which functions similarly to RF FTBPF 334 described above to further attenuate the image signal component. Mixing module 340 receives the amplified desired inbound signal and uses a π/2 phase shifter or other type of bet to control it to convert the binary phase (1) signal and positive (Q) signal components. The mixer of the mixing module 34〇 combines the 〗 signal component with the local oscillator S (eg fLQ)! The signal components are mixed to produce a chirped k-number and the Q-signal component is mixed with the locally oscillating q signal component to produce a Q-mixed signal. Note that the mixed signal of j and q can be a differential signal or a single-ended signal; a differential signal is shown. The mixing buffer buffers the I and Q mixed signals, which are then supplied to the chopping H (e.g., with a home wave). The reduced wave Η Η mixed signals are then supplied to the RXIF-BB section 224. Although the currently shown RF_IF section 332 is connected to a single antenna for SISO (single input single output) overnight, the scheme can also be applied to MjS〇 (multiple input single output) communication and M!M〇 (multiple input multiple Output) communication. In these cases, multiple antennas (e.g., two or more) are coupled to a corresponding number of FEMs (or a smaller number of FEMs based on the receive path in the FEM). The FEM is connected to a plurality of receiver RF_IF sections (e.g., the same number of antennas), and these receivers RF IF α卩 are connected to the corresponding number of receiver if_bb sections. The baseband processing unit processes the plurality of symbol streams described above to generate inbound data. The RX RF-IF section 332 provides at least one of the following advantages and/or includes the following to 57 201212553. One feature is that the off-chip SAW filter and matching components are no longer needed; the negative resistance increases the quality of the FTBPF 334; the sense of loss can be compensated, Therefore, the inductor has lower tolerances; the need for a thick metal layer is reduced, thereby reducing the manufacturing cost of the die; the center frequency of the two high QRP filters is controlled by the local oscillation clock; and can be easily integrated into the s〇c 330 in. 22 is a schematic block diagram of a receiver portion 352 of a s〇c 35A, including an FEM interface module (including a transformer τι and/or a tunable capacitor network (1), in accordance with another embodiment of the present invention, Variable frequency bandpass filter (FTBPF) 354 with complex baseband (BB) impedance, low noise amplifier module (LNA) 356, and mixing section (including mixing module 34〇 and/or mixing register 342_344) The s〇c 350 further includes a receiver IF_BB section 224, a no-SAW transmitter section 2〇2, and may further include a baseband processing unit, a processing module, and/or a power management unit. In an example of operation, an antenna is used. Receive inbound signal. Inbound RF signal, including RP_Wang component and undesired component above or below the word (showing higher component). Local oscillation (eg fLO) about RP_IF part The image signal component appears if the signal is known. The antenna provides the inbound rf signal to the FEM, which processes the victim signal in the manner described above and/or described in at least one of the figures. Receiving the inbound rf signal after FEM processing and converting it into a differential number, adjustable The capacitance network α filters and waves the differential signal according to the control signal from the SOC 35 〇 processing resource. FTBRP354 (various embodiments will be described with reference to the following _) by attenuating the image of the age-sensitive amount of money and passing the basic The un-attenuated desired RF signal component is filtered to inbound 15. For example, assume that 58 201212553 FTBPF 354 converts the narrowband baseband bandpass filter to Rp (e.g., the carrier frequency of the desired signal component) to produce a high Q RJF filter. The filter at high q filters out the image signal component and the undesired signal component, respectively, and passes through the substantially un-attenuated desired signal component. By using the complex baseband impedance 354, the center frequency of the narrow-band baseband BPF can be adjusted. For example, according to the complex BB The adjustment of impedance 354 can cause the bandpass region to become higher or lower in frequency. A low noise amplifier module (LNA) 356 amplifies the desired inbound Rp signal magnitude to produce an amplified desired inbound signal. The LNA 356 can receive a control signal from 35 〇 processing resources, wherein the control signal indicates a setting of at least one of: gain, linearity, bandwidth Efficiency, noise, output dynamic range, swing rate, rise rate, build amount, and stability factor. The mixing module 34G of the mixing section receives the amplified desired inbound RF signal and controls the ==n or other _ (4) The road converts it into the same phase (1) ^ knife and positive X (Q) # component. Lai module's unique mixer mixes the ^ knife with the local button (such as U) to generate ^ 2 彳. No. 'and the Q signal component and the local vibration q signal component eight kernel = generate Q five-frequency signal. Note that the '1 and Q mixed lying signal can be a differential knife face single-ended signal; Differential signal. The mixing registers 342·344 will be provided with traces (4) ο Q, pain signals, which follow the waves I and Ο, (such as bandpass choppers). The choppers 346-348 filter ^ signals' these signals are then provided to the leg F-BB portion 224. Out) Communication S's field 1 is not out of your department 352 and is used for SIS〇 (single-input single-input single-antenna connection, but the program can also be applied to swollen (early early round-out) communication and _〇 ( Multiple input and multiple rounds of communication. In these cases, the number of antennas (for example, 2 or more) is connected with the corresponding number of FEMs (or a smaller number of FEMs according to the receiving path in the FEM). FEM and more The receiver RF-IF sections are connected (e.g., the same number of antennas), and the receiver RF-IF sections are in turn coupled to a corresponding number of receiver IF_BB sections. The baseband processing unit processes the plurality of symbol streams to generate inbound data. The RX RF-IF portion 352 provides at least one of the following advantages and/or includes at least one of the following features: a superheterodyne receiver has advantages over a similar direct conversion receiver in minimum area and power; the use of complex baseband impedance in the FTBPF 354 enables the band The center frequency of the pass filter is changed; the complex baseband impedance 354 can be realized by the switch and the capacitor, and its core is controlled by the LO clock; the same LO clock used by the (4) mixing || Device FTBpF) is tuned to the desired frequency; RF_IF section 352 uses a signal phase locked loop (pLL); and can be easily integrated into SOC 350. Figure 23 is a schematic illustration of a transmitter section of s〇c 36〇, in accordance with one embodiment of the present invention. Block diagram 'It includes upper _ mixed face group, Wei Wei local vibration module (LO) 364, variable frequency band pass filter (FTBpF) application, output module (including capacitor _ 368_370 and / or transformer n n1) And a power amplifier driver (PAD) 372. The PAD 372 includes a transistor φ_〇2, a resistor R1, and a junction C1 as shown in the figure. Note that the capacitance C1 and/or the resistance illusion can be realized by using one or a solar body Q1_Q2. The s〇c 36() also includes a non-SAw receiver unit 364 and may also include a baseband processing unit, a processing module, and/or a power management unit. In an example, the upconversion mixing module 362 receives the baseband. (BB) I and Q money (for example, the output ship _ ratio and the positive wire). The up-conversion hybrid 201212553 frequency module 362 can convert the bb z and 卩 signals into up-converted signals using a direct conversion topology or a super-heterodyne topology, the latter The carrier frequency is at the desired RF. FTBPF 366 (various embodiments will be The following figures are described by attenuating the out-of-band signal component and factoring up the up-converted 彳§ by a substantially un-attenuated up-converted signal. For example, suppose the FTBPF 366 converts the narrow-band baseband bandpass filter to RF (eg Upconverting the carrier frequency of the signal to produce a high Q filter. The narrowband high QRF filter filters out the out-of-band signal and passes the substantially un-attenuated up-converted signal. Capacitor array 368·370 provides an adjustable low-wave n, Wei The filter filters common mode noise and/or linear noise. Transformer T1 converts the differential upconverted signal to a single-ended ##' which is then amplified by PAD 372. The PAD 372 provides an extended upconversion k number to the FEM, which is further amplified by the FEM to separate it from the inbound liver signal and provide it to the antenna for transmission. The TX portion provides at least one of the following advantages and/or includes at least one of the following features: a superheterodyne receiver has advantages over a similar direct conversion receiver in minimum area and power; uses a TXLO 364 with a transmitter upconverting mixer LC load The synchronous FTBPF 366 reduces transmitter noise and other out-of-band noise at the rx frequency, but has little effect on the desired TX signal; the baseband impedance of the high QFTBPF 366 can be achieved using a capacitor' and its center frequency is controlled by TX LO 364 control; eliminated TXSAW filter; and easy to integrate into S〇C36〇. 24 is a schematic block diagram of a transmitter portion 382 of a s〇c 380, which includes an upconversion mixing module 362, a transmitter local oscillation module (LO), and a variable frequency bandpass filter, in accordance with another embodiment of the present invention. (FTBPF), output module (including capacitor array 368-370 and/or transformer T1), and power amplifier driver 201212553 (PAD) 372. The PAD 372 includes transistors, resistors, and capacitors as shown in the figure. Solemnly, the capacitance and/or resistance can be achieved using one or more transistors. The s〇c 380 also includes a SAW-free receiver unit 364 and may also include a baseband processing unit, a processing module, and/or a power management unit. In this embodiment, the upconversion mixing module includes a passive mixing structure as shown in the figure, and the passive mixing structure can employ a 5〇% duty cycle L〇 clock. In an operational example, the L〇 and Q signal components are mixed by the circuit on the left side of the figure, and the roi and q signal components are mixed by the circuit on the right side of the figure. The mixed LO signal component is then mixed with the mixed BB signal component to produce an upconverted signal. For example, LO-1+ injects energy into its corresponding capacitance and LOj—extracts energy from the union (and vice versa), thereby producing a change at the rate corresponding to L〇 across the capacitor. LQ-Q+ and l〇_Q· are similarly processed for their capacitances. By adding (five) points (four), the capacitance of the (four) change is superimposed on the amount of L-〇-age of the mixed-mixing. _ hard to occur on the baseband side of the mixer. TX portion 382 provides at least one of the following advantages and/or includes at least one of the following features: Vbl and Vb2 driven transistors are high voltage transistors (e.g., her voltage >2.5V); and the TX, structure provides low power high The efficiency region is designed and uses a passive mixer driven by a 50% duty cycle LO clock, which reduces power consumption compared to a mixer driven by a 25% duty cycle clock. Figure 25 is a schematic block diagram of a portion of an egg-positive receiver portion including a single-ended FTBPF (Frequency Variable Bandpass Ship) 394, in accordance with one embodiment of the present invention. This portion of the RF-IF portion includes a transformer Ή, a variable capacitance network ci, and an na 392. The FTBPF 394 includes a plurality of transistors (e.g., a switching network) and a plurality of bases 62 201212553 with impedance (Zbb(s)) 396-402. In one operational example, the front end module (FEM) 390 receives the inbound RF signal through the antenna 'processes the RF signal' and processes the FEm 390 as described above and/or with reference to at least one of the following figures. The inbound signal is provided to transformer T1. Transformer T1 raises or lowers the voltage level of the inbound rf signal, which is then filtered by variable capacitance network C1. Note that the transformer τι can be omitted if the voltage level of the inbound RF signal is not required to be adjusted and/or the separation provided by the transformer T1 is not required. The FTBPF 394 provides a high Q (quality factor) Rjp filter that chops the inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 392 and undesired signal components (eg, block, Mirror, etc.) Attenuation. To implement the filter, the baseband impedance (Zbb汹) 396_4〇2 together provide a low q baseband filter with a corresponding filter response, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or Complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.). The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by clock generator 404 to produce a high QRp filter. Figure 27 shows the frequency conversion of the low Q baseband filter in response to the high Q RF filter, and Figure 26 illustrates one embodiment of the clock generator 404. As shown in Figure 26, the clock generator (which various embodiments will be described with reference to at least one of the following figures) produces four clock signals, each clock signal having 63 201212553 having a 25/〇 duty cycle and sequentially phase shifting 9〇. . The frequency of the clock signal corresponds to the carrier frequency of the inbound or signal and can be adjusted to better track the carrier frequency. The clock generator 404 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Returning to the discussion of Figure 25, the FTBPF 394 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound RF signals. Since the clock rate is at RF (e.g., the carrier frequency of the desired component of the signal at the inbound), the baseband impedance response (the low Q bandpass filter is commonly) is transferred to the RP to achieve a high QRP bandpass filter. Figure 28 is a schematic block diagram of a single-ended FTBPF 410 comprising four transistors and four capacitors, wherein the transistors and capacitors provide baseband impedance, in accordance with one embodiment of the present invention. Four capacitors provide a concentrated baseband impedance, which provides a low Q baseband bandpass filter as shown in Figure 29. Specifically, the impedance of one capacitor (or four in parallel) is 1/sC, where s is 2πί*. Therefore, as the frequency (f) approaches zero, the impedance of the valley is near infinity, and as the frequency (f) increases, the impedance of the capacitor decreases. In addition, the phase of the capacitor is from 90 at zero frequency. Change to -90. . Returning to the discussion of Figure 28, the valley is connected to the common node of the FTBPF 410 (e.g., the input of the FTBpF) due to the application of the clock signal to the transistor. In this way, the performance of the capacitor can be frequency shifted to the rate of the clock signal as shown in Figure 3 (e.g., fL〇). Specifically, the impedance of the capacitor (and the four capacitors in parallel) is moved to the frequency of the clock. Since L〇 is close to infinite impedance, ftbpf 410 has a high impedance at LO, so the effect on the carrier frequency is comparable to that of the signal component. As the frequency deviates from L0, the impedance of FTBpF 41〇 decreases, so FTBPF 410 effectively "attenuates" the carrier frequency with a signal component that is not equivalent to 64 201212553. Figure 31 is a diagram of another embodiment of the present invention. A schematic block diagram of a portion of the _117 receiver section, which includes a differential FTBPF 412 (frequency bandpass filter). This portion of the RXRF-IF section includes a transformer τι, a variable capacitance network ci, and an na 393. The FTBPFization includes Multiple transistors and multiple baseband impedances (Zbb(8)) 414-420. In one operating example, the front end module (FEM) 39〇 receives the inbound RF nickname through the antenna 'according to the above and/or will refer to at least one of the following The RF signal is processed in the manner described in the accompanying drawings and the inbound RF signal processed by the FEM 39〇 is supplied to the transformer T1. The transformer T1 converts the single-ended inbound signal into a differential inbound RF signal. A high Q (quality factor) RP filter that filters the differential inbound RF signal such that the desired signal of the inbound or out signal is transmitted to the LNA 393 undesirably and undesired (eg, stagnation, mirroring, etc.) attenuation In order to realize the filter and wave, the baseband impedance (ζ_ 414-420 provides a low-turn baseband tear waver with a response of the wave H, each of which can be a capacitor, a capacitor, a second switch, and a resistor. / or complex impedance. Note that the impedance of each strap impedance can be the same different or a combination thereof. Also note that the impedance of each baseband impedance can be controlled by the self-SOC processing, so that the performance of the wave (eg bandwidth, attenuation rate, product f factor, etc.) (d) The clock generated by the clock generation || 422 will be converted to the desired KP frequency to produce a high Q (qua) wave. Figure Q wire chopper responds to high Q RF遽The frequency converter responds to the frequency conversion, Figure 32 (f) 65 201212553. One embodiment of the clock generator 422. As shown in Figure 32, the clock generator 422 (the various embodiments of which will be described with reference to the following at least - amplitude) produces 4 clocks. Signal, each clock signal has a 25% duty cycle and phase shift by %. The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better match the vertical carrier frequency. Clock generation H 42 2 A local oscillating clock signal (not shown) can also be generated, which is used to downconvert the inbound RF signal to the inbound IF signal. Returning to the discussion of Figure 31, the FTBPF 412 receives the clock signals, which are coupled to the transistor. Connected to sequentially connect their respective baseband impedances to the two-station RF domain. Since the clock rate is at RP (eg, inbound, ie, the carrier frequency of the desired component of the signal), the baseband impedance response (low-Q bandpass filter is commonly used) is transferred to the RF. Thus, a high QRF bandpass filter is implemented.Figure 34 is a schematic block of a portion of the inferior receiver portion in accordance with another embodiment of the present invention. 'It includes a single-ended FTBPF 43" (frequency bandpass filter). This portion of the RXRF IF σ卩 includes the transformer II T1, the variable capacitor network a, and the 392. The FTBPF 43G includes a plurality of transistors and a complex baseband filter 432. In an operational example, the front end module (FEM) 390 receives the inbound RF 彳 § via the antenna and processes the signal as described above and/or as described with reference to at least one of the following figures, and the fem 39 The inbound station after the processing is supplied to the transformer T1. Transformer T1 raises or lowers the voltage level of the inbound Rp signal 'P4, which is then waved by the (4) fine path α. Note that right = the voltage level of the inbound RF signal needs to be adjusted and/or the separation of the transformer is not required, then the transformer T1 can be omitted. The FTBPF 430 provides a high q (quality factor) at the chopper, and the filter 66 201212553 chopped the inbound RF signal such that the desired signal component of the inbound Rp signal is substantially un-attenuated to the LNA 392 and undesired signal components (eg, Blocking, mirroring, etc.) attenuation. In order to realize the low frequency q baseband filter and wave filter of the sinus wave filter, the band pass region of the latter can be offset by zero frequency. Note that the performance of the complex baseband (four) poles (e.g., bandwidth, attenuation rate, quality factor, frequency offset, etc.) can be adjusted by control signals from the SOC processing resources.

通過時鐘生成器434提供的時鐘信號將頻率偏移的低Q 基帶遽波器變頻為期望的RF頻率以產生頻率偏移的高q卯 滤波器。圖36示出了頻率偏移的低μ帶濾波器向頻率偏移 的高Q RF渡波器的變頻,圖35示出了時鐘生成器434的一 個實施例。 如圖35所示,時鐘生成㈣434 (它的各種實施例將參考 ,下至少-幅附圖進行描述)產生4個時鐘信號,每個時鐘信 號具有25/〇占空比且依次相移9〇。。時鐘信號的頻率對應於 入站RF信號的載波頻率,並可以被調節以更好地跟縱载波頻 率。時鐘生成g 434還可以生成本地振财鐘信號(未示出), 後者用於下變頻入站RF信號為入站IF信號。替代地,FT删 43〇的至少一個時鐘信號可以用作ΙΌ時鐘信號。 回到對圖34的討論,FTBpF物接收時鐘信號,這. 鐘信號與電晶體相連以依次連接它够自的複基帶據波器血 入站RF信號。由於時鐘速率在处(例如入站即信號的期望 分量的載波頻率),複基帶渡波器432的回應轉移到虾(和/ 或LO)’從而實現高QRF帶通遽波器。 圖37是根據本發明另一個實施例的RF-IF接收器部的一 67 201212553 部分的示意㈣,它包括齡FTBPF44G(變解猶波器)。 狀卿部的該部分包括變壓器T1、可變電容網路α和厦 差刀FTBPF440包括多個電晶體和複基帶遽波器糾2。 在個運行的例子令,前端模組(FEM) 39〇通過天線接 收^站RF信號’按照上述和/或將要參考以下至少一幅附圖進 仃私述的方式處理該RP信號,並將fem 39〇處理後的入站 肝信號提供給變壓器们。變壓器T1將單端入站rf信號轉 換為差分入站RF信號。 。差分FTBPF440提供高q (品質因數)处濾波器,該濾 波器遽波差分入站RF信號使得入站肝信號的期望信號分量 2本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻 印鏡像等)衰減。為了實現該滤波器,複基帶遽波器442提 供低Q基帶濾波H,後者的帶通區域可以偏移零頻率。注意, 可以通過來自SOC處理資源的控制錢調節複基帶滤波器 442的性能(例如帶寬、衰減速率、品質因數、頻率偏移等)。 通過時鐘生成器444提供的時鐘信號將頻率偏移的低q 基帶濾波器麵為期望的RF頻率以產生頻率偏移的高Q卯 攄波器。圖39示出了頻率偏移的低q基帶渡波器向頻率偏移 的鬲Q RF濾波器的變頻,圖%示出了時鐘生成器444的一 個實施例。 、如圖38所示’時鐘生成器物(它的各種實施例將參考 以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信 號具有25%占空比且依次姉9G。。時鐘錢_率對應於 入站RF L號的載波頻率,並可以被調節以更好地跟縱載波頻 68 201212553 率。時鐘生成器444還可以生成本地振盈時鐘信號(未示出), 後者用於下_人站RF錢為人站IF信號。賊地,ρτΒρρ 440的至少一個時鐘信號可以用作L〇時鐘信號。 回到對圖37的討論,FTBPF 440接收時鐘信號,這些時 鐘信號與電晶體相連贼次連接它們各自的複基帶據波器與 入站RF信號。由於時鐘速率在rf (例如入站即信號的期望 分量的載波頻率),複基帶濾波器442的回應轉移到幻/(和/ 或LO),從而實現高QRp帶通濾波器。 圖40是根據本發明另一個實施例的rpjf接收器部的一 部分的示意框圖,它包括FTBPF 440 (變頻㈣渡波器)。狀 RF-IF部的該部分包括變壓器耵、可變電容網路α和lna 393。差分FTBPF 440包括多個電晶體和複基帶滤波器442。 複基帶濾波器442包括多個基帶阻抗(例如Zbb(s)) 45〇_456、 正增益級(Gm) 458和負增益級(_gM) 46〇。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收入站RF信號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號,並將FEM 39〇處理後的入站 RF信號提供給變壓器T1。變壓器T1將單端入站Rp信號轉 換為差分入站RF信號。 差分FTBPF 440提供咼Q (品質因數)处濾波器,該濾 波器濾波差分入站RF信號使得入站RF信號的期望信號分量 基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻 滯、鏡像等)衣減。為了實現該濾、波器,複基帶遽波器442提 供低Q基帶濾波器,後者的帶通區域可以偏移零頻率,該偏 69 201212553 移基於增益級與基帶阻抗間的比率。注意,每個基帶阻抗分別 可以是電容、開關電容滤波器、開關電容電阻和/或複阻抗。 還要注意’每個基帶阻抗的阻抗可以是相同的、不同的或其組 合、。還要注意,每個基帶阻抗的阻抗和/或至少一個增益級的 增^可以通過來自SGC處理資源的㈣信號進行調節,從而 調節低Q基帶滤波器的性能(例如帶寬、衰減速率、品質因 數等)。 通過時鐘生成器444提供的時鐘信號將頻率偏移的低Q 基帶滤波器變頻為期望的RF頻率以產生頻率偏移的高q奵 濾波器。圖42示出了頻率偏移的高QRp遽波器,圖q示出 了時鐘生成器444的一個實施例。 如圖41所示,時鐘生成器444 (它的各種實施例將參考 ,下至少-幅附圖進行描述)產生4個時鐘信號,每個時鐘信 喊具有25/。占空比且依次相移9()。。時鐘信號賴率對應於 入站RP信號的載波頻率,並可以被調節以更好地跟縱載波頻 率。時鐘生成器444還可以生成本地缝時鐘信號(未示出), 用於下變頻入站Rp信號為入站正信號。替代地,FTBpF糊 的至少一個時鐘信號可以用作LO時鐘信號。 ▲回到對圖4G的討論’ FTBPF 接收時鐘健,這些時 鐘錢與電晶體相連以依次連接它們各自的複基帶遽波器祀 與2奸信號。由於時鐘速率在RF (例如入站RF信號的期 望刀里的載波頻率)’複基帶滤波器442的回應轉移到即(和 /或⑼,從而實現高QRF^t驗器。 圖43疋根據本發明另一個實施例的RF-IF接收器部的一 201212553 部分的示意框圖,它包括FTBPF 44〇 (變頻帶通濾波器)。RX Rf-if部的該部分包括變壓器T1、可變電容網路Cl和LNA 393。差分FTBPF 44〇包括多個電晶體和複基帶濾波器442。 複基帶遽波器442包括多個電容、正增益級(Gm) 458和負 增益級(-GM) 460。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收入站RF彳§號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號,並將FEM 39〇處理後的入站 RF信號提供給變壓器T1。變壓器T1將單端入站处信號轉 換為差分入站RF信號。 差分FTBPF 440提供高Q (品質因數)卯遽波器,該滤 波器濾波差分入站RF信號使得入站RF信號的期望信號分量 基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻 滯、鏡像等)衰減。為了實現該遽波器,複基帶濾、波器442提 供低Q基帶滤波器’後者的帶通區域可以偏移零頻率,該偏 移基於增益級與電容之間的比率。注意,每個電容的容值^以 是相同的、不_或其組合。還要注意,每個電容的容值和/ 或至少-個增益級的增益可輯過來自s〇c處理資源的控制 信號進行調節,從而調節低Q基帶濾'波器的性能(例如帶寬、 衰減速率、品質因數等)。 通過時鐘生成器444提供的時鐘信號將頻率偏移的低Q 基帶濾波器變頻為期望的RF頻率以產生頻率偏移的高卩处 濾波器。如圖44所示的時鐘生成器444 (它的各種實施例將 參考以下至少-幅附圖進行描述)產生4個時鐘信號,每個時 201212553 鐘k唬具有25%占空比且依次相移9〇。。時鐘信號的頻率對 應於入站RF錢的舰解,並可以被瓣以更好地跟縱載 波頻率。時鐘生成器444還可以生成本地振盪時鐘信號(未示 出),後者用於下變頻入站RF信號為入站IF信號。替代地, FTBPF 440的至少一個時鐘信號可以用作l〇時鐘信號。 回到對圖43的討論,FTBPF 44〇接收時鐘信號,這些時 鐘信號與電晶體相連以依次連接它們各自的複基帶濾波器442 與入站RF信號。由於時鐘速率在处(例如入站处信號的期 望分量的載波頻率)’複基帶濾波器442的回應轉移到Rp (和 /或LO),從而實現高QRF帶通濾波器。 圖45是根據本發明另一個實施例的即办接收器部的一 部分的示意框圖,它包括FTBPF440 (變頻帶通濾波器)。!〇( RF-IF部的該部分包括變壓器τι、可變電容網路C1、控制模 組470和LNA 393。差分FTBPF 440包括多個電晶體和複基 帶濾波器442。複基帶濾波器442包括多個基帶阻抗(例如The low Q baseband chopper of the frequency offset is frequency converted to a desired RF frequency by a clock signal provided by clock generator 434 to produce a frequency shifted high q卯 filter. Figure 36 illustrates frequency conversion of a low frequency band offset low frequency band filter to a frequency shifted high Q RF waver. Figure 35 illustrates an embodiment of a clock generator 434. As shown in FIG. 35, clock generation (four) 434 (which various embodiments will be described with reference to at least the following figures) produces four clock signals, each having a 25/〇 duty cycle and sequentially phase shifting by 9 〇. . . The frequency of the clock signal corresponds to the carrier frequency of the inbound RF signal and can be adjusted to better follow the vertical carrier frequency. The clock generation g 434 can also generate a local flash clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Alternatively, at least one clock signal of the FT erasing can be used as the chirp clock signal. Returning to the discussion of Figure 34, the FTBpF object receives a clock signal that is coupled to the transistor to sequentially connect it to the complex baseband data stream inbound RF signal. Since the clock rate is at (e.g., the carrier frequency of the desired component of the inbound signal), the response of the complex baseband waver 432 is transferred to the shrimp (and/or LO)' to achieve a high QRF bandpass chopper. Figure 37 is a schematic (4) of a portion of the RF-IF receiver portion, in accordance with another embodiment of the present invention, in accordance with an embodiment of the present invention, including an age-based FTBPF 44G (variable solution). This portion of the shape includes a transformer T1, a variable capacitance network α, and a differential knife FTBPF 440 including a plurality of transistors and a complex baseband chopper. In an example of operation, the front end module (FEM) 39 receives the station RF signal through the antenna. The RP signal is processed in accordance with the above and/or will be described with reference to at least one of the following figures, and the fem will be processed. The in-situ liver signal after the 39〇 treatment is provided to the transformers. Transformer T1 converts the single-ended inbound rf signal into a differential inbound RF signal. . The differential FTBPF 440 provides a high q (quality factor) filter that filters the differential inbound RF signal such that the desired signal component 2 of the inbound liver signal is transmitted to the LNA 393 undesirably and undesirably (eg, blocked) Printed image, etc.) Attenuation. To implement the filter, complex baseband chopper 442 provides low Q baseband filtering H, the bandpass region of which can be offset by zero frequency. Note that the performance of the complex baseband filter 442 (e.g., bandwidth, attenuation rate, quality factor, frequency offset, etc.) can be adjusted by control from the SOC processing resources. The low q baseband filter face of the frequency offset is clocked by the clock generator 444 to the desired RF frequency to produce a frequency shifted high Q卯 chopper. Figure 39 shows frequency conversion of a frequency shifted low q baseband ferrite to a frequency shifted 鬲Q RF filter, and Figure 1 shows an embodiment of a clock generator 444. As shown in Fig. 38, the 'clock generators (the various embodiments of which will be described with reference to at least one of the following figures) generate four clock signals, each having a 25% duty cycle and sequentially 姊9G. . The clock money rate corresponds to the carrier frequency of the inbound RF L number and can be adjusted to better match the vertical carrier frequency. The clock generator 444 can also generate a local oscillating clock signal (not shown) for the lower _ station RF money to be the human station IF signal. At least one clock signal of ρτΒρρ 440 can be used as the L〇 clock signal. Returning to the discussion of Figure 37, the FTBPF 440 receives clock signals that are connected to the transistor and connected to their respective complex baseband data and inbound RF signals. Since the clock rate is at rf (e.g., the in-carrier, i.e., the carrier frequency of the desired component of the signal), the response of the complex baseband filter 442 shifts to phantom/(and/or LO), thereby implementing a high QRp bandpass filter. Figure 40 is a schematic block diagram of a portion of an rpjf receiver portion including an FTBPF 440 (inverter (four) waver) in accordance with another embodiment of the present invention. This portion of the RF-IF section includes a transformer 耵, a variable capacitance network α, and an 娜 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442. The complex baseband filter 442 includes a plurality of baseband impedances (e.g., Zbb(s)) 45〇_456, a positive gain stage (Gm) 458, and a negative gain stage (_gM) 46〇. In an operational example, the front end module (FEM) 39 receives the inbound RF signal through the antenna 'the RF signal is processed as described above and/or will be described with reference to at least one of the following figures, and the FEM 39〇 The processed inbound RF signal is supplied to the transformer T1. Transformer T1 converts the single-ended inbound Rp signal to a differential inbound RF signal. The differential FTBPF 440 provides a 咼Q (quality factor) filter that filters the differential inbound RF signal such that the desired signal component of the inbound RF signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, block , mirroring, etc.) clothing reduction. To implement the filter and waver, the complex baseband chopper 442 provides a low Q baseband filter whose bandpass region can be offset by zero frequency, which is based on the ratio between the gain stage and the baseband impedance. Note that each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Also note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance and/or the gain of at least one gain stage can be adjusted by the (four) signal from the SGC processing resource to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor). Wait). The low Q baseband filter of the frequency offset is frequency converted to the desired RF frequency by the clock signal provided by clock generator 444 to produce a high frequency shift of the frequency shift. Figure 42 shows a high QRp chopper with frequency offset and Figure q shows an embodiment of a clock generator 444. As shown in Figure 41, clock generator 444 (which various embodiments will be described with reference to at least the drawings) produces four clock signals, each clock having a 25/. The duty cycle is sequentially shifted by 9 (). . The clock signal rate corresponds to the carrier frequency of the inbound RP signal and can be adjusted to better match the vertical carrier frequency. The clock generator 444 can also generate a local slot clock signal (not shown) for downconverting the inbound Rp signal to an inbound positive signal. Alternatively, at least one clock signal of the FTBpF paste can be used as the LO clock signal. ▲ Returning to the discussion of Figure 4G, the FTBPF receives the clocks, which are connected to the transistors to connect their respective complex baseband choppers and 2 signals. Since the clock rate is at RF (eg, the carrier frequency of the desired blade of the inbound RF signal), the response of the complex baseband filter 442 is shifted to (ie, and/or (9), thereby achieving a high QRF^ Detector. Figure 43 A schematic block diagram of a portion of 201212553 of the RF-IF receiver section of another embodiment of the invention includes an FTBPF 44〇 (frequency conversion bandpass filter). The portion of the RX Rf-if section includes a transformer T1 and a variable capacitance network. The path Cl and the LNA 393. The differential FTBPF 44A includes a plurality of transistors and a complex baseband filter 442. The complex baseband chopper 442 includes a plurality of capacitors, a positive gain stage (Gm) 458, and a negative gain stage (-GM) 460. In an operational example, the front end module (FEM) 39 receives the inbound RF through the antenna, and processes the RF signal in accordance with the above and/or will be described with reference to at least one of the following figures. The 39 〇 inbound RF signal is supplied to transformer T1. Transformer T1 converts the single-ended inbound signal into a differential inbound RF signal. Differential FTBPF 440 provides a high Q (quality factor) chopper that filters Differential inbound RF signal enables inbound RF signals The desired signal component is transmitted to the LNA 393 substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. To implement the chopper, the complex baseband filter, waver 442 provides a low Q baseband filter 'the latter' The bandpass region can be offset by a zero frequency based on the ratio between the gain level and the capacitance. Note that the capacitance of each capacitor is the same, not _ or a combination thereof. Also note that each capacitor The gain and/or the gain of at least one gain stage can be adjusted by adjusting the control signal from the s〇c processing resource to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.). The frequency offset low Q baseband filter is frequency converted to a desired RF frequency by a clock signal provided by clock generator 444 to produce a high frequency filter of frequency offset. Clock generator 444 as shown in FIG. Various embodiments will be described with reference to at least the following figures to produce four clock signals, each of which has a 25% duty cycle and a phase shift of 9 依次. The frequency of the clock signal corresponds to the inbound RF. Money The ship can be throttled to better follow the vertical carrier frequency. Clock generator 444 can also generate a local oscillator clock signal (not shown) that is used to downconvert the inbound RF signal to an inbound IF signal. At least one clock signal of the FTBPF 440 can be used as the l clock signal. Returning to the discussion of Figure 43, the FTBPF 44 receives the clock signals that are coupled to the transistors to sequentially connect their respective complex baseband filters 442 with Inbound RF signal. Since the clock rate is at (e.g., the carrier frequency of the desired component of the signal at the inbound), the response of the complex baseband filter 442 is shifted to Rp (and/or LO), thereby implementing a high QRF bandpass filter. Figure 45 is a schematic block diagram of a portion of a ready-to-use receiver portion including an FTBPF 440 (frequency conversion band pass filter) in accordance with another embodiment of the present invention. ! 〇 (This portion of the RF-IF section includes a transformer τι, a variable capacitor network C1, a control module 470, and an LNA 393. The differential FTBPF 440 includes a plurality of transistors and a complex baseband filter 442. The complex baseband filter 442 includes multiple Baseband impedance (for example

Zbb(s) ) 450-456、正增益級(Gm ) 458 和負增益級(-GM) 460。 在一個運行的例子中’前端模組(FEM) 39〇通過天線接 收入站RF信號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號’並將FEM 390處理後的入站 RF信號提供給變壓器Ή。變壓器T1將單端入站RF信號轉 換為差分入站RF信號。 差分FTBPF 440 ^供尚Q (品質因數)处遽波器,該遽 波器濾波差分入站RF信號使得入站Rp信號的期望信號分量 基本未衰減地傳遞給LNA 393且不期望的信號分量(例如阻 72 201212553 可鏡像荨)衣減。為了實現該滤波器,複基帶濾波器442提 供低Q基帶濾波器,後者的帶通區域可以偏移零頻率,該偏 移基於增益級與基帶阻抗間的比率,該比率由控制模組獨提 供的控制信號進行設置。 控制模組470是SOC處理資源的一部分,它根據以下至 少一項確定所期望的低Q帶通濾波器回應(例如增益、帶寬、 品質因數、頻率偏移等):入站RF信號的信噪比(SNR)、入 站财信號的信擾比(SIR)、所接收的信號的強度、誤碼率等。 1艮據所期望的回應,控制模組獨確定基帶阻抗和/或增益模 組的設置。注意,控制模、组可以根據它所監視的各種因數 的變化對所期望的喊進行持續更新、定期更新和/或在滿足 性此特點鮮時(例如發射神電平改變、驗低於間值、 SIR低於閾值、所接收的信號的強度低於閣值等)更新。 、一旦喊定(或更新)了低Q基帶濾波器的頻率回應,將 通過時鐘生成H 476提供的時鐘信號把該低q基帶滤波器變 頻為期望的RF頻率以產生頻率偏移的高Q处濾波器。如圖 斤示的時鐘生成器476(它的各種實施例將參考以下至少一 =圖進行描述)產生4個時鐘錢,每個時鐘信號具有Μ% 占二比且依次相移90。。時鐘信號的頻率對應於入站处信號 的载波頻率,並可吨觸狀好地職紐鮮。時鐘生成 器476還可以生成本地振i時鐘信號(未示出),後者用於下 變頻入站RF 6號為入站IF信號。替代地,柳的至少 一個時鐘信踔可以用作ΙΌ時鐘信號。 回到對圖45的討論,FTBpF _接收時齡號這些時 73 201212553 鐘信號與電晶體相連以依次連接它們各㈣複基㈣波器祕 與入^处錢。由於時鐘速率在即(例如入站RF信號的期 望刀里的載波頻率)’複基帶遽波器442的回應轉移到即(和 /或LO) ’從而實現高QRp帶通遽波器。 -圖47是根據本發明—個實施例的複基帶(bb)毅器撕 的示思框圖’ b包括多個可調基帶阻抗伽-伽、可調正增益 級咖和可調負增益級彻。每個可調基帶阻抗可以包括以下 至少-項.可選電容網路492 (例如可調電容)、可編程的開 關電容網路494、可編程的開關電容遽波器496 (i階到n階) 以及能夠提供雛基帶醉回應的元件(例如诚、電容、電 阻)的任意組合。 可調增益級(+Gm和_Gm) 488-49G可以分別包括連接有 增益網路的放大ϋ。增益網路可以包括以下至少—項:電阻、 電今、可變電阻、可變電料。就此而言,可以調節每個增益 級的增益以改變複基帶滤波器442的性能。具體地,通過可調 Ρ且抗的阻抗做變增益’可以改變低Q帶賴波闕頻率偏 移。此外或替代地’通過控制模組47〇提供的控制信號可以改 變複基帶紐器442的帶寬、增益、擺動速率、品f因數和/ 或其他性能。 圖48是根據本發明一個實施例的為狀即办部將複BB 濾波器442的頻率回應轉換為高QRF濾波器的頻率回應的示 意圖,其包括具有圖47所示可調複基帶濾波器442的1?1^1>17 440。在該示意圖中,可以對複基帶濾波器442提供的低卩基 帶濾波器的帶寬、擺動速率、增益、頻率偏移和/或其他性能 201212553 進行調節。低Q _舰1!的可概後畴徵可以被轉 換為RF (或LO)。就此而言,通過調節低Q基帶驗器的性 能,可以類似地調節相應高Q基帶濾波器的性能。 圖49是根據本發明另一個實施例的接收器部的一 部分的示意框圖,包括FTBPF 412 (變頻帶通渡波器)。狀 购F部的該部分包括ϊ 504和Q肌1]7混頻㈱,以及混頻 暫存器502。FTBPF模組包括FTBPF和其他暫存器。FTBpF 包括多個電晶體和多個基帶阻抗(例如Zbb(s)) 414、416、418 和 420。 在一個運行的例子中,I混頻器5〇4將入站即信號的j 分量與本地振盪(例如,的〖分量混頻以產 生I混頻的信號。I混頻暫存器緩存〗混頻的信號並將緩存的工 此頻#號長:供給FTBPF模組412。類似地,Q混頻器將入站 RFk號的Q分量與本地振盪(例如,fL〇2=fRp—心)的q分量 混頻以產生Q混頻的信號。q混頻暫存器緩存Q混頻的信號 並將缓存的Q混頻信號提供給FTBPF模組412。 FTBPF412提供高Q (品質因數)IF濾波器,該濾波器濾 波入站IF信號(例如I和q混頻的信號)使得入站正信號的 期望信號分量基本未衰減地傳遞且不期望的信號分量(例如阻 滯、鏡像等)衰減。為了實現該濾波器,基帶阻抗(Ζββφ) ) 414、 416、418和420共同提供具有基帶濾波器回應的低q基帶濾 波器’其中每個基帶阻抗分別可以是電容、開關電容濾波器、 開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以 是相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗Zbb(s) ) 450-456, positive gain stage (Gm) 458 and negative gain stage (-GM) 460. In an operational example, a Front End Module (FEM) 39 receives an inbound RF signal through an antenna 'Processing the RF signal ' and processing the FEM 390 as described above and/or with reference to at least one of the following figures; The subsequent inbound RF signal is supplied to the transformer Ή. Transformer T1 converts the single-ended inbound RF signal into a differential inbound RF signal. The differential FTBPF 440 ^ is for a Q (quality factor) chopper that filters the differential inbound RF signal such that the desired signal component of the inbound Rp signal is substantially un-attenuated to the LNA 393 and the undesired signal component ( For example, the resistance 72 201212553 can be mirrored 荨) clothing reduction. To implement the filter, the complex baseband filter 442 provides a low Q baseband filter whose bandpass region can be offset by a zero frequency based on the ratio between the gain level and the baseband impedance, which is provided by the control module alone. The control signal is set. Control module 470 is part of the SOC processing resource that determines the desired low Q bandpass filter response (eg, gain, bandwidth, quality factor, frequency offset, etc.) based on at least one of the following: signal to noise of the inbound RF signal Ratio (SNR), signal to interference ratio (SIR) of the incoming financial signal, strength of the received signal, bit error rate, and the like. 1. According to the expected response, the control module uniquely determines the baseband impedance and/or gain mode settings. Note that the control mode, group can continuously update, periodically update, and/or satisfy the characteristics of the desired shout according to the changes in the various factors it monitors (eg, launching God level changes, checking below the inter-value) , SIR is below the threshold, the strength of the received signal is lower than the threshold, etc.) is updated. Once the frequency response of the low Q baseband filter is asserted (or updated), the low q baseband filter is converted to the desired RF frequency by the clock signal provided by the clock generation H 476 to produce a high Q of the frequency offset. filter. The clock generator 476 (which various embodiments will be described with reference to at least one of the following figures) produces four clocks, each clock signal having a Μ% ratio and a phase shift of 90. . The frequency of the clock signal corresponds to the carrier frequency of the signal at the inbound, and can be used for a good touch. The clock generator 476 can also generate a local oscillator i clock signal (not shown) for downconverting the inbound RF No. 6 into an inbound IF signal. Alternatively, at least one clock signal of the willow can be used as the chirp clock signal. Returning to the discussion of Figure 45, the FTBpF_receives the age number when these are connected. The 201212553 clock signal is connected to the transistor to connect them in turn (4) complex base (four) wave device secret and input money. Since the clock rate is (i.e., the carrier frequency in the desired knife of the inbound RF signal), the response of the complex baseband chopper 442 shifts to (i.e., / or LO)' to achieve a high QRp bandpass chopper. - Figure 47 is a block diagram of a complex baseband (bb) device tearing according to an embodiment of the present invention. b includes a plurality of adjustable baseband impedance gamma-gamma, an adjustable positive gain stage, and an adjustable negative gain stage. thorough. Each tunable baseband impedance can include at least the following: an optional capacitor network 492 (eg, a tunable capacitor), a programmable switched capacitor network 494, and a programmable switched capacitor chopper 496 (i-order to n-th order) And any combination of components (such as honesty, capacitance, resistance) that can provide a drunk response. Adjustable Gain Levels (+Gm and _Gm) The 488-49G can each include an amplifier that is connected to a gain network. The gain network can include at least the following items: resistance, current, variable resistance, variable electrical material. In this regard, the gain of each gain stage can be adjusted to vary the performance of the complex baseband filter 442. Specifically, the low Q-band 赖 阙 frequency offset can be changed by making the variable gain by the adjustable impedance. Additionally or alternatively, the bandwidth, gain, swing rate, factor f, and/or other performance of the complex baseband 442 can be varied by the control signals provided by the control module 47A. Figure 48 is a diagram showing the frequency response of the complex BB filter 442 to a high QRF filter for the frequency response of the BB filter 442, including the tunable complex baseband filter 442 of Figure 47, in accordance with one embodiment of the present invention. 1?1^1>17 440. In this diagram, the bandwidth, swing rate, gain, frequency offset, and/or other performance 201212553 of the low-keyband baseband filter provided by the complex baseband filter 442 can be adjusted. The low Q _ ship 1! can be converted to RF (or LO). In this regard, by adjusting the performance of the low Q baseband detector, the performance of the corresponding high Q baseband filter can be similarly adjusted. Figure 49 is a schematic block diagram of a portion of a receiver portion including an FTBPF 412 (frequency-converting bandpass ferrite) in accordance with another embodiment of the present invention. This portion of the purchased F portion includes ϊ 504 and Q muscle 1]7 mixing system, and a mixing register 502. The FTBPF module includes the FTBPF and other registers. The FTBpF includes a plurality of transistors and a plurality of baseband impedances (e.g., Zbb(s)) 414, 416, 418, and 420. In a running example, the I mixer 5〇4 mixes the j component of the inbound or out signal with the local oscillator (eg, the component is mixed to produce the I-mixed signal. The I mix buffer cache) The frequency signal will be buffered by the frequency ## length: supplied to the FTBPF module 412. Similarly, the Q mixer will combine the Q component of the inbound RFk number with the local oscillation (eg, fL 〇 2 = fRp - heart) The q component is mixed to produce a Q-mixed signal. The q-mixer buffer buffers the Q-mixed signal and provides the buffered Q-mixed signal to the FTBPF module 412. The FTBPF412 provides a high-Q (quality factor) IF filter. The filter filters the inbound IF signal (eg, the I and q mixed signals) such that the desired signal component of the inbound positive signal is transmitted substantially un-attenuated and the undesired signal components (eg, block, mirror, etc.) are attenuated. Implementing the filter, the baseband impedance (Ζββφ) 414, 416, 418, and 420 together provide a low q baseband filter with a baseband filter response. Each of the baseband impedances can be a capacitor, a switched capacitor filter, or a switched capacitor resistor. And / or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note the impedance of each baseband impedance

75 S 201212553 可以通過來自SOC處理資源的控制信號進行調節,從而調節 低Q基帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。 通過時鐘生成器510提供的時鐘信號將頻率偏移的低Q 基帶濾波器變頻為期望的IF頻率以產生頻率偏移的高濾 波器。圖51示出了頻率偏移的低(^基㈣波器向頻率偏移的 高QIF濾波器的變頻,圖50示出了時鐘生成器51〇的一 施例。 如圖50所示,時鐘生成器51〇 (它的各種實施例將參考 以下至少一幅附圖進行描述)產生4個時鐘信號,每個時鐘信 號具有25%占空比且依次相移9〇。。時鐘信號的頻率對應於 入站IF信號的載波頻率,並可以調節以更好地跟蹤載波頻率。 時鐘生成器510還可以生成本地振盪時鐘信號(未示出),後 者用於下變頻入站RF信號為入站IF信號(例*L〇2)。替代 地’ FTBPF412的至少-_鐘信號可㈣作L〇時鐘信號。 回到對圖49的討論,FTBPF 412接收時鐘信號,這些時 鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站 IF信號。由於時鐘速率在IF (例如入站正信號的期望分量的 載波頻率)’基帶阻抗響應(低q帶通濾波器共同地)轉移到 IF (和/或L02),從而實現高qIF帶通濾波器。 圖52是根據本發明另一個實施例的RF-IF接收器部的一 部分的示雜圖,它包括IF FTBPF (魏帶通舰器)模組 530。RX RF-IF部的該部分包括j和q即_正混頻器以及混頻 暫存器。IF FTBPF 530模組包括差分if FTBPF 530和其他暫 存器。差分EFFTBPF 530包括多個電晶體和多個基帶阻抗(例 76 201212553 如 ZbB(s))。 在一個運行的例子中,I混頻器522將入站RF信號的I 分量與本地振盪(例如,fL〇2=fRF _知52〇)的j分量混頻以產 生I混頻的信號。I混頻暫存器522緩存j混頻的信號並將緩 存的I混頻信號提供給FTBPF 53〇模組。類似地,Q混頻器 523將入站RP信號的q分量與本地振盪(例如,&=心—知 521)的Q分量混頻以產生Q混頻的信號。Q混頻暫存器523 緩存Q混頻的信號並將緩存的Q混頻信號提供給FTBpF 53〇 模組。 FTBPF 530提供高Q(品質因數)慮波器,該滤、波器渡 波入站IF信號(例如ϊ和q混頻的信號)使得入站π信號的 期望信號分量基本未麵地舰且不難的錢分量(例如阻 滯、鏡像等)衰減。為了實現_、波H,基帶阻抗〜吻)说、 534、536、538、540、542、544和546共同提供低Q基帶攄 波器’其中每個基帶阻抗分別可以是電容、開關電容據波器、 開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以 是相同的、不_或其組合1要注意,每個基帶阻抗的阻抗 可以通過來自SOC處理資源的控制信號進行調節,從而調節 低Q基帶紐器的性能(例如帶寬、衰減速率、品f因數等)。 通過時鐘生成ϋ提供的時鐘域將辭偏移的低q 滤波器變頻為期望的IF頻率以產生頻率偏移的高Q IF據波 器。如圖53所示的時鐘生成器55〇 (它的各種實施例將^考 Γ下至少—巾_進行描述)產生8個時鐘信號,每個時鐘信 號具有12.5%占空比且依次相移吵。時鐘信號的頻率對應於 77 201212553 入站IF信號的載波頻率,並可以調節以更好地跟蹤載波頻率。 時鐘生成器550還可以生成本地振盪時鐘信號(未示出),後 者用於下變頻入站RF信號為入站正信號(例如£〇2)。替代 地’ FTBPF的至少一個時鐘信號可以用作l〇時鐘信號。 回到對圖52的討論,FTBPF 530接收時鐘信號,這些時 鐘信號與電晶體相連以依次連接它們各自的基帶阻抗與入站 IF信號。由於時鐘速率在IF (例如入站吓信號的期望分量的 載波頻率)’基帶阻抗響應(低q帶通濾波器共同地)轉移到 IF (和/或L02),從而實現高qif帶通濾波器。 圖54是根據本發明一個實施例的处办接收器部的一部 分的示意框圖,它包括單端FTBPF 56〇 (變頻帶通濾波器), 且單端FTBPF 560包含負阻。RX RF-IF部的該部分包括變壓 器、可變電容網路和LNA。FTBPF 560包括多個電晶體和多 個基帶阻抗(ZBB(S)) 562、564、566 和 568。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收入站RF信號,按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RF信號,並將FEM 39〇處理後的入站 RF信號提供給變壓器。變壓器升高或降低入站Μ信號的電 壓電平’隨後由可魏容網路對其進行紐。注意,料需要 對入站RF信號的賴電平進行調節和/或不需要變壓器提供 的分離’那麼可以省略變壓器。 FTBPF 560提供高Q (品質因數)RF慮波器,該攄波器 RF信號使得入站即信號的期望信號分量基本未衰 減地傳遞給LNA 392且不期望的信號分量(例如阻滯、鏡像 78 201212553 等)衰減。為了實現該遽波器,基帶阻抗(Zbb⑻)562、564、 566和568共同提供低q基帶濾波器’其中每個基帶阻抗分別 可以是電容、開關電容驗H、關電容電時/或複阻抗。 =意,每個基帶阻抗的阻抗可以是相_、不同的或其組合。 還要注意’每個基帶阻抗恤抗可以通過來自s〇c處理資源 的控制信號進行調節,從而調節低Q基帶舰器的性能(例 如帶寬、衰減速率、品質因數等)。 、另外’ FTBPF 560包括負阻(例如_2R)以補償電感損耗、 補償開關祕和/或提高低q帶職波器的選擇性和/或品質因 數負阻可以按如圖56所不的實施,即包括多個電晶體。 通過時鐘生成器提供的時鐘信號將低Q基㈣波器變頻 為期望的RF頻率以產生高QRp渡波器。如圖55所示的時鐘 生成器(它的各種實施例將參考以下至少一幅附圖進行描述) 產生^個時鐘城’每個時鐘信號具有25%纟空比且依次相 移90乂時鐘信號的頻率對應於入站处信號的載波頻率,並 可以調㈣更好地跟蹤載波頻率。時鐘生成器仍還可以生成 本地顧時鐘信號(未示出),後者用於下變頻入站RF信號 為入站IF信號。 ▲回到對圖54的討論,FTBPF 接收時鐘信號,這些時 鐘L號與電晶體相連以依次連接它們各自的基帶阻抗與入站 处信號。由於時鐘速率在处(例如入站RF信號的期望分量 的載皮頻率)’基帶阻抗響應(低Q帶通濾波器制地)轉移 到RF’從而實現高QRF帶通渡波器。 圖57是根據本發日月一個實施例的RF-IF接收器部的一部 79 201212553 分的示意框圖,它包括差分FTBPF 580 (變頻帶通濾波器), 且差分FTBPF 580包含負阻。rxrpjj:部的該部分包括變壓 器、可變電容網路和LNA 393。差分FTBPF 580包括多個電 晶體和多個基帶阻抗(Zbb⑻)。 在一個運行的例子中,前端模組(FEM) 390通過天線接 收入站RP信號’按照上述和/或將要參考以下至少一幅附圖進 行描述的方式處理該RP信號,並將FEM 39〇處理後的入站 k號提供給變壓器。變壓器升高或降低入站即信號的電 壓電平隨後由可變電容網路對其進行遽波。注意,若不需要 對入站RF信號的電壓電平進行調節和/或不需要變壓器提供 的分離,那麼可以省略變壓器。 FTBPF 580提供高Q (品質因數)RF濾波器,該遽波器 ;慮波入站RF信號使得入站RP信號的期望信號分量基本未衰 減地傳遞給LNA 393且不期望的信號分量(例如阻滯、鏡像 等)衰減。為了實現該濾、波器,基帶阻抗(ZBB(s))共同提供 低Q基帶濾、波器,其中每個基帶阻抗分別可以是電容、開關 電容滤波H、開關電容電阻和/或複阻抗。注意,每個基帶阻 =的阻抗可以是相同的、不_或其組合。還要注意,每個基 W抗的卩认可以通過來自SQC處理資源的控制信號進行調 節’從而調節低Q基㈣波器的性能(例如帶寬、衰減速率、 品質因數等)。 /外’ F聊包括負阻(例如处)以補償電感損耗、 _開_耗和/或提高低Q帶猶波器的選雜和/或品質因 數。負阻可以按如圖56所示的實施。 201212553 ▲通過時鐘生成器582提供的時鐘信號將低Q基帶濾波器 變頻為期望的RF頻率以產生高QRF濾波器。如圖58所示的 時鐘生成器582 (它的各種實施例將參考以下至少-幅附圖進 行描述)產生4個時鐘信號,每個時鐘信號具有25%占空比 且依次相移90。。時鐘信號的頻率對應於入站处信號的載波 頻率,並可以被調節以更好地跟蹤載波頻率。時鐘生成器582 還可以生成本地振盪時鐘信號(未示出),後者用於下變頻入 站RF信號為入站IF信號。 回到對圖57的討論,FTBPF 580接收時鐘信號,這些時 鐘#號與電晶體相連以依次連接它們各自的基帶阻抗與入站 號。由於時鐘速率在RP (例如入站处信號的期望分量 的載波頻率)’基帶阻抗響應(低q帶通滤波器制地)轉移 到RF,從而實現高QRF帶通濾波器。 圖59是根據本發明另一個實施例的处_正接收器部的一 部分的示意框圖,它包括雙頻帶FTBPF (變頻帶通濾波器) 5 90 ° RX RF-IF部的該部分包括變壓器、可變電容網路和LNa 392_1及392-2。FTBPF 590包括多個電晶體和多個基帶阻抗 (ZBB(s)) 592、594、596 和 598。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收雙頻帶入站RF信號(例如5^和f^2),按照上述和/或將要 參考以下至少一幅附圖進行描述的方式處理該Rp信號,並將 FEM處理後的入站rf信號提供給變壓器。變壓器升高或降低 入站RF信號的電壓電平,隨後由可變電容網路Ci對其進行 濾波。注意,若不需要對入站RJT信號的電壓電平進行調節和 201212553 /或不需要變壓器提供的分離,那麼可以省略變壓器。 FTBPF 590提供兩個高Q (品質因數)RP濾波器(一個 以fRFl為中心頻率,另一個以fRF2為中心頻率),這些濾波器 慮波入站RF信號使得雙頻帶入站RF信號的期望信號分量基 本未衰減地傳遞給LNA 392-1和392-2且不期望的信號分量 (例如阻滞、鏡像等)衰減。這兩個高QRF渡波器由多個基 帶阻抗(ZBB(s)592、594、596和598)和多個電晶體形成,其 中每個基帶阻抗包括另外多個基帶阻抗(例如Zbb,⑻592、 594、596和598)和另外多個電晶體。另外多個基帶阻抗 (ZBB’(s)592、594、596和598)提供低Q基帶濾波器,其中 另外多個基帶阻抗中每一個分別可以是電容、開關電容濾波 器、開關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗 可以是相同的、不同的或其組合。還要注意,每個基帶阻抗的 阻,可以通過來自S〇C處理資源的控制信號進行調節,從而 調節低Q基帶舰㈣性能(例如帶寬、衰減速率、品質因 數等)。 通過時鐘生成n _提供㈣鐘錢(鮮為fD)將低Q 基帶^波器變頻為期望的即頻率(例如fDK〇2)/2)以 產生冋QRF驗ϋ。如圖6G所示的時鐘生成器_ (它的各 種實施㈣參相下至少__目進储述)產生 4個時鐘信 2例如L〇wlq’4),每辦鐘信號具有洲纟空比且依 時鐘信號的頻率對應於入站m信號的第一頻帶 的载波頻率(例如fj^p丨或vt , ^ L〇l)減去入站RF信號的第二頻帶 丨μ (例如或W)的差值的1/2,並可以被調節 82 201212553 以更好地跟縱至少—個載波頻率。 =第-多個電晶體與速率為_叫〇4 (由如圖 鐘生成器咖產生)同步,由第一多個基帶阻抗形成 、=同Q RF滤波器被變頻為更高的期望Rf頻率其中 5 61 * 城⑽土 被變頻為叫。因此’第—高Q帶通渡波 :的回應㈣fD為中心頻率,還示出了三階諧波。參考圖幻, ^一局Q帶通滤波器被變頻為fc也和fc %以產生兩個 :^^11 ° ^ +W/2 ^ f〇=(fL01 .fL02)/2 , fc -厂L02,fc +fD=L01。因此’其中一個高Q帶通濾波器以⑽ 或%2)為中心,另一個高Q帶通濾波器以L01 (或fRF1) 為令心。因此,第—高Q帶通舰器通過入站RF信號的頻率 為L02 (或%2)的期望信號分量,第二高Q帶通滤波器通過 入站RF信號的頻率為L01 (或fRpi)的期望信號分量。 圖63是根據本發明另一個實施例的肌正接收器部的一 部分的不意框圖,它包括雙頻帶差分FTBPF (變頻帶通濾波 器)610°RXRF_IF部的該部分包括變壓器、可變電容網路和 LNA 393-1及393-2。FTBPF 610包括多個電晶體和多個基帶 阻抗(ZBB(s)) 612、614、616 和 618。 在一個運行的例子中,前端模組(FEM) 39〇通過天線接 收雙頻帶入站RF信號(例如和fRF2),按照上述和/或將要 參考以下至少一幅附圖進行描述的方式處理該RP信號,並將 FEM處理後的入站Rjp信號提供給變壓器Ή。該變壓器將入 站RF信號轉換為差分入站rf信號。 83 201212553 FTBPF 610提供兩個高Q (品質因數)Rp濾波器(一個 以fRF1為中心頻率,另一個以為中心頻率),這些淚波器 濾波入站RF信號使得雙頻帶入站RF信號的期望信號=量美 本未衰減地傳遞給LNA 393_1和393-2且不期望的信號分量 (例如阻滯、鏡像等)衰減。這兩個高QRJF觀器由多個基 帶阻抗(ZBB(S) 612、614、616和618)和多個電晶體形成了 其中每個基帶阻抗包括另外多個基帶阻抗(例如Zbb,⑻612、 614、616和618)和另外多個電晶體。另外多個基帶阻抗,⑻ 612、614、616和618)提供低Q基帶遽波器,其中另外 基帶阻抗中每—個分別可以是電容、_電容舰器、開關電 容電阻和/或·抗。注意’每個絲阻抗的阻抗可以是相同 的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可以通 過來自SQC處理資源的控制信號進行調節,從而調節低q基 帶濾波器的性能(例如帶寬、衰減速率、品質因數等)。" 通過時鐘生成器6GG提供的時鐘信號(頻率為&)將低q 基帶濾波器變頻為期望的RF頻率(例如fD=(WW2)、 產生冋QRF滤波器。如圖6〇所示的時鐘生成器_ (它的各 種實施纖參考町至少—幅關進行财)產生4個時鐘信 號(例如LO〗到l〇’4) ’每個時鐘信號具有25%纟空比且依 次相移90。。時鐘信號的頻率對應於入站 的載波頻率(例如w,fL。,)減去入㈣信號的:二 的載波頻率(例如“或“)的差值的1/2,並可以被調節 以更好地跟蹤至少一個載波頻率。 由於第—多個電晶體與速率為fc的L0】-L04 (由如圖6〇 84 201212553 所示的時鐘生成器產生)同步,由第一多個基帶阻抗形成的高 Q RF濾波器被變頻為更高的期望Rf頻率,其中 fc=(fLO丨+fL〇2)/2。因此,其中一個高Q帶通濾波器以l〇2(或 fRF2)為中心’另一個高Q帶通濾波器以L01 (或心丨)為中 心。因此,第一高Q帶通濾波器通過入站RF信號的頻率為 L02 (或fRF2)的期望信號分量,第二高Q帶通濾波器通過入 站RF#说的頻率為L01 (或f^pi)的期望信號分量。 圖64是根據本發明另一個實施例的rf-IF接收器部的一 部分的示意框圖’它包括變壓器、可變電容網路、一對基於反 相器的LNA 395、混頻器和輸出暫存器(或單位增益驅動器)。 混頻器包括多個電晶體、一對互阻放大器(TIA) 622及624 和伴隨的阻抗(Z) 626及628。 在一個運行的例子中’LNA 395向混頻器提供差分電流 (iRF和-irf)。在電流域(current domain)中,混頻器將差分 電流與本地振盪的差分1630分量(LOjp和LOnJ混頻以產生 I混頻的電流信號。混頻器還將差分電流與本地振盪的差分Q 632分量(LOqp和LOqn)混頻以產生q混頻的電流信號。 第一 TIA 622及624通過相關阻抗(z ) 626及628放大I 混頻的電流信號,並產生電壓域丨混頻的信號。同樣地,第二 TIA通過相關阻抗(z) 626及628放大Q混頻的電流信號, 並產生電壓域Q混頻的信號。 圖65是根據本發明另一個實施例的用於处-正接收器部 的時鐘生成器634的示意框圖。該時鐘生成器(它的各種實施 例將參考以下至少一幅附圖進行描述)產生4個時鐘信號(例 85 201212553 如LO[P、LOIN、LOqP和L〇QN),每個時鐘信號具有25%占 空比且依次相移90。。 圖66是根據本發明一個實施例的互阻放大器(ΉΑ)和 相應阻抗(Z) 640及642的示意框圖。該TIA包括電流源、 頻率相關(frequency dependent)放大器(-A⑻)、IF電晶體(TIF) 和低頻電晶體(TLF )。TIA的每個輸出腳中的相應阻抗包括電 阻、電容和電晶體。 在一個運行的例子中,在in_和in+接收差分輸入電流。負 輸入節點的電流節點分析(例如KCL—基爾霍夫(Kirch〇ff)電 流法則)顯示,電流源電流(ib)等於輸入電流(丨、)+穿過 電容的電流(ic) +穿過tif的電流(i0UT) +穿過Tlf的電流。 正輸入(out+)的KVL (基爾霍夫電壓法則)顯示,輸出電壓 (V〇ut+ )等於Vdd_z*I〇UT (即穿過&的電流)。 在兩頻(例如高於入站RF信號的rRp),電容的阻抗變為 主要,輸入基本上都減少;因此,輸出電流(i〇uT)基本上不 包含咼頻分量。在低頻(例如,低於入站Rp信號的rj^),針 對TIF配置放大器和低頻電晶體,對於低頻電流T【F基本上是 開路。這可以通過改變電晶體的大小及偏置放大器來實現,使 得TLF在低頻的阻抗遠小於z+T1F 〇 對於期望頻率範圍内的頻率(例如fRF),相比的阻抗 以及相應阻抗Z 640、642,電容和TLF具有較高阻抗。因此, iOuTHb-‘且 v〇UT=Z*i〇UT。相應地,ΉΑ 和相應阻抗 z 64〇、 642可以調諧用於提供高Q RF帶通濾波器。注意,TIA的至 少一個分量可以通過S0C處理資源提供的控制信號進行調 86 201212553 節’從而調節高Q帶通濾波器的性能。 圖67是根據本發明一個實施例的低雜訊放大器(LNA) 670的示意框圖,它包括FTBPF 650、672、674和678。LNA 670包括電流源、一對輸入電晶體(T3和T4)、一對偏置電晶 體(Τ1和Τ2)以及輸出阻抗(示出了電阻,但還可以是電感、 電晶體、電容和/或其組合。注意,電流源可以被無源裝置(例 如電阻、電感、電容和/或其組合)代替或可以被省略。FTBPF 650、672、674和678可以位於LNA670中如圖所示的任意位 置。 圖68是根據本發明一個實施例的差分4相FTBPF (變頻 帶通;慮波器)680的示意框圖,它包括多個電晶體和4個基帶 阻抗(例如ζββ⑻)682、684、686和688。基帶阻抗(zbb(s)) 682、684、686和688共同提供低Q基帶濾波器,其中每個基 帶阻抗分別可以是電容、開關電容濾波器、開關電容電阻和/ 或複阻抗。注意,每個基帶阻抗的阻抗可以是相同的、不同的 或其組合。還要注意’每個基帶阻抗的阻抗可以通過來自 處理資源的控制舰進行調節,從蝴節低Q基帶遽波器的 性能(例如帶寬、衰減速率、品質因數等)。The 75 S 201212553 can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q baseband filter (eg bandwidth, attenuation rate, quality factor, etc.). The low frequency baseband filter of the frequency offset is converted to a desired IF frequency by a clock signal provided by the clock generator 510 to produce a high frequency filter with frequency offset. Fig. 51 shows the frequency conversion of the low-frequency (four-wave) to frequency-shifted high QIF filter, and Fig. 50 shows an example of the clock generator 51. As shown in Fig. 50, the clock The generator 51A (the various embodiments of which will be described with reference to at least one of the following figures) produces four clock signals, each having a 25% duty cycle and sequentially phase shifting by 9 〇. The frequency of the clock signal corresponds to The carrier frequency of the inbound IF signal can be adjusted to better track the carrier frequency. The clock generator 510 can also generate a local oscillator clock signal (not shown) that is used to downconvert the inbound RF signal to the inbound IF. Signal (example *L〇2). Alternatively, at least the -_ clock signal of the 'FTBPF 412 can be used as the L〇 clock signal. Returning to the discussion of Figure 49, the FTBPF 412 receives the clock signals that are connected to the transistors in sequence. Connect their respective baseband impedances to the inbound IF signal. Since the clock rate is at IF (eg carrier frequency of the desired component of the inbound positive signal) 'baseband impedance response (low q bandpass filter common) is transferred to IF (and / Or L02) to achieve high Fig. 52 is a schematic diagram of a portion of an RF-IF receiver section including an IF FTBPF module 530. RX RF-IF section in accordance with another embodiment of the present invention. This part includes the j and q _ positive mixers and the mixing register. The IF FTBPF 530 module includes a differential if FTBPF 530 and other registers. The differential EFFTBPF 530 includes multiple transistors and multiple baseband impedances ( Example 76 201212553 eg ZbB(s). In an operational example, I mixer 522 mixes the I component of the inbound RF signal with the j component of the local oscillation (eg, fL 〇 2 = fRF _ know 52 〇) The frequency is used to generate an I-mixed signal. The I-mix buffer 522 buffers the j-mixed signal and provides the buffered I-mixed signal to the FTBPF 53A module. Similarly, the Q mixer 523 will inbound RP. The q component of the signal is mixed with the Q component of the local oscillation (eg, &=heart-known 521) to produce a Q-mixed signal. The Q-mix register 523 buffers the Q-mixed signal and mixes the buffered Q. The frequency signal is provided to the FTBpF 53〇 module. The FTBPF 530 provides a high Q (quality factor) filter that crosses the inbound IF signal (eg ϊ and q) The mixed signal) makes the expected signal component of the inbound π signal substantially unaffected by the ship and the difficult money component (such as block, mirror, etc.) is attenuated. To achieve _, wave H, baseband impedance ~ kiss) said, 534 536, 538, 540, 542, 544, and 546 together provide a low Q baseband chopper [wherein each baseband impedance can be a capacitor, a switched capacitor, a switched capacitor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, not or a combination thereof. Note that the impedance of each baseband impedance can be adjusted by a control signal from the SOC processing resource to adjust the performance of the low Q baseband ( For example, bandwidth, attenuation rate, product f factor, etc.). The low Q filter of the speech offset is converted to the desired IF frequency by the clock generation ϋ provided clock domain to produce a frequency offset high Q IF data filter. The clock generator 55A shown in FIG. 53 (the various embodiments of which will describe at least the towel) will generate eight clock signals, each clock signal having a duty cycle of 12.5% and phase shifting in sequence. . The frequency of the clock signal corresponds to the carrier frequency of the 77 201212553 inbound IF signal and can be adjusted to better track the carrier frequency. The clock generator 550 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound positive signal (e.g., £2). Alternatively, at least one clock signal of the 'FTBPF' can be used as a clock signal. Returning to the discussion of Figure 52, the FTBPF 530 receives clock signals that are coupled to the transistors to sequentially connect their respective baseband impedances to the inbound IF signals. A high-qif bandpass filter is implemented because the clock rate is shifted to IF (and/or L02) at the IF (eg carrier frequency of the desired component of the inbound jitter signal) 'baseband impedance response (low q bandpass filter common) . Figure 54 is a schematic block diagram of a portion of a receiver portion including a single-ended FTBPF 56 (frequency band pass filter) and a single-ended FTBPF 560 including a negative resistance, in accordance with one embodiment of the present invention. This part of the RX RF-IF section includes transformers, variable capacitor networks, and LNAs. The FTBPF 560 includes a plurality of transistors and a plurality of baseband impedances (ZBB(S)) 562, 564, 566, and 568. In an operational example, a front end module (FEM) 39 receives an inbound RF signal through an antenna and processes the RF signal in accordance with the above and/or will be described with reference to at least one of the following figures, and the FEM 39〇 The processed inbound RF signal is provided to the transformer. The voltage level at which the transformer raises or lowers the inbound chirp signal is then followed by the Weirong network. Note that the material needs to be adjusted for the level of the inbound RF signal and/or the separation provided by the transformer is not required. Then the transformer can be omitted. The FTBPF 560 provides a high Q (quality factor) RF filter that causes the desired signal component of the inbound or out signal to be substantially un-attenuated to the LNA 392 and unwanted signal components (eg, block, mirror 78) 201212553, etc.) attenuation. In order to implement the chopper, the baseband impedances (Zbb(8)) 562, 564, 566, and 568 together provide a low q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor, a H, a closed capacitor, or a complex impedance. . = Meaning, the impedance of each baseband impedance can be phase_, different, or a combination thereof. Also note that each baseband impedance response can be adjusted by a control signal from the s〇c processing resource to adjust the performance of the low Q baseband (eg, bandwidth, attenuation rate, quality factor, etc.). In addition, 'FTBPF 560 includes negative resistance (such as _2R) to compensate for inductance loss, compensate for switching secrets and / or improve the selectivity of low q-band servos and / or quality factor negative resistance can be implemented as shown in Figure 56 That includes multiple transistors. The low Q-based (qua) wave is converted to the desired RF frequency by a clock signal provided by the clock generator to produce a high QRp ferrite. A clock generator as shown in FIG. 55 (various embodiments of which will be described with reference to at least one of the following figures) generates a clock city' each clock signal having a 25% null ratio and sequentially phase shifting 90 乂 clock signal The frequency corresponds to the carrier frequency of the signal at the inbound, and can be adjusted (4) to better track the carrier frequency. The clock generator can still generate a local clock signal (not shown) that is used to downconvert the inbound RF signal to an inbound IF signal. ▲ Returning to the discussion of Figure 54, the FTBPF receives the clock signals that are connected to the transistors to sequentially connect their respective baseband impedances to the inbound signals. The high QRF bandpass ferrite is achieved because the clock rate is at (e.g., the carrier frequency of the desired component of the inbound RF signal) ' baseband impedance response (low Q bandpass filter) is transferred to RF'. Figure 57 is a schematic block diagram of a portion of the RF-IF receiver section 79 201212553, which includes a differential FTBPF 580 (frequency bandpass filter), and the differential FTBPF 580 includes a negative resistance, in accordance with an embodiment of the present invention. Rxrpjj: This part of the section includes the transformer, variable capacitor network, and LNA 393. The differential FTBPF 580 includes a plurality of transistors and a plurality of baseband impedances (Zbb(8)). In one operational example, the front end module (FEM) 390 receives the inbound RP signal through the antenna 'processes the RP signal as described above and/or will be described with reference to at least one of the following figures, and processes the FEM 39〇 The inbound k number is provided to the transformer. The voltage level at which the transformer raises or lowers the inbound signal is then chopped by the variable capacitance network. Note that the transformer can be omitted if the voltage level of the inbound RF signal does not need to be adjusted and/or the separation provided by the transformer is not required. The FTBPF 580 provides a high Q (quality factor) RF filter that filters the inbound RF signal such that the desired signal component of the inbound RP signal is substantially un-attenuated to the LNA 393 and undesired signal components (eg, Hysteresis, mirroring, etc.) attenuation. To achieve this filter, the baseband impedance (ZBB(s)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter H, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband resistance = can be the same, not _ or a combination thereof. Note also that the acknowledgment of each base W can be adjusted by the control signal from the SQC processing resource to adjust the performance of the low Q-based (four) wave (eg, bandwidth, attenuation rate, quality factor, etc.). / outside 'F talks include negative resistance (such as at the location) to compensate for inductance losses, _ open_loss and / or improve the selection and / or quality factor of the low Q band. The negative resistance can be implemented as shown in FIG. 201212553 ▲ The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by clock generator 582 to produce a high QRF filter. A clock generator 582, as shown in Figure 58 (which various embodiments will be described with reference to at least the following figures), generates four clock signals, each having a 25% duty cycle and sequentially phase shifted by 90. . The frequency of the clock signal corresponds to the carrier frequency of the signal at the inbound and can be adjusted to better track the carrier frequency. The clock generator 582 can also generate a local oscillator clock signal (not shown) for downconverting the inbound RF signal to an inbound IF signal. Returning to the discussion of Figure 57, the FTBPF 580 receives clock signals that are connected to the transistors to sequentially connect their respective baseband impedances and inbound numbers. Since the clock rate is shifted to RF at the RP (e.g., carrier frequency of the desired component of the signal at the inbound), the baseband impedance response (low q bandpass filter) is transferred to the RF, thereby implementing a high QRF bandpass filter. Figure 59 is a schematic block diagram of a portion of a positive-receiver portion including a dual-band FTBPF (Frequency Bandpass Filter) 5 90 ° RX RF-IF portion including a transformer, in accordance with another embodiment of the present invention Variable capacitance network and LNa 392_1 and 392-2. The FTBPF 590 includes a plurality of transistors and a plurality of baseband impedances (ZBB(s)) 592, 594, 596, and 598. In an operational example, a front end module (FEM) 39A receives dual band inbound RF signals (e.g., 5^ and f^2) through an antenna, as described above and/or with reference to at least one of the following figures. The Rp signal is processed in a manner, and the FEM-processed inbound rf signal is supplied to the transformer. The transformer raises or lowers the voltage level of the inbound RF signal, which is then filtered by the variable capacitor network Ci. Note that the transformer can be omitted if the voltage level of the inbound RJT signal does not need to be adjusted and 201212553 / or the separation provided by the transformer is not required. The FTBPF 590 provides two high-Q (quality factor) RP filters (one with fRF1 as the center frequency and the other with fRF2 as the center frequency). These filters consider the inbound RF signal to make the desired signal for the dual-band inbound RF signal. The components are transmitted to the LNAs 392-1 and 392-2 substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. The two high QRF ferrites are formed by a plurality of baseband impedances (ZBB(s) 592, 594, 596, and 598) and a plurality of transistors, wherein each baseband impedance includes a plurality of additional baseband impedances (eg, Zbb, (8) 592, 594 , 596 and 598) and a plurality of other transistors. A plurality of other baseband impedances (ZBB'(s) 592, 594, 596, and 598) provide a low Q baseband filter, wherein each of the other plurality of baseband impedances may be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or Or complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by control signals from the S〇C processing resources to adjust the performance of low Q baseband ships (eg, bandwidth, attenuation rate, quality factor, etc.). The low Q baseband filter is converted to the desired frequency (e.g., fDK〇2)/2 by the clock generation n _ providing (four) clocks (freshly fD) to produce the 冋QRF test. As shown in FIG. 6G, the clock generator _ (its various implementations (four) are at least __目目) generates 4 clock signals 2 such as L〇wlq'4), and each clock signal has a continental short-sell ratio And subtracting the second frequency band 丨μ of the inbound RF signal (for example, or W) according to the frequency of the clock signal corresponding to the carrier frequency of the first frequency band of the inbound m signal (eg, fj^p丨 or vt, ^ L〇l) The difference is 1/2 and can be adjusted 82 201212553 to better match at least the carrier frequency. = the first plurality of transistors are synchronized with the rate _ 〇 ( 4 (generated by the clock generator), formed by the first plurality of baseband impedances, = the same Q RF filter is converted to a higher desired Rf frequency Among them, 5 61 * city (10) soil was converted to call. Therefore, the response of the 'first-high Q-band pass wave: (f) is the center frequency, and the third-order harmonic is also shown. Referring to the diagram magic, ^ a Q-bandpass filter is frequency converted to fc and fc% to produce two: ^^11 ° ^ +W/2 ^ f〇=(fL01 .fL02)/2 , fc - plant L02 , fc +fD=L01. Therefore, one of the high Q bandpass filters is centered on (10) or %2, and the other high Q bandpass filter is centered on L01 (or fRF1). Therefore, the frequency of the inbound RF signal passing through the inbound RF signal is L02 (or %2), and the frequency of the second high Q bandpass filter passing the inbound RF signal is L01 (or fRpi). Expected signal component. Figure 63 is a block diagram of a portion of a muscle positive receiver portion including a dual band differential FTBPF (Frequency Bandpass Filter) 610°RXRF_IF portion including a transformer, a variable capacitance network, in accordance with another embodiment of the present invention. Road and LNA 393-1 and 393-2. The FTBPF 610 includes a plurality of transistors and a plurality of baseband impedances (ZBB(s)) 612, 614, 616, and 618. In an operational example, a front end module (FEM) 39 receives a dual band inbound RF signal (e.g., and fRF2) through an antenna, and processes the RP in accordance with the above and/or as described with reference to at least one of the following figures. The signal is supplied to the transformer Ή after the FEM processed inbound Rjp signal. The transformer converts the inbound RF signal into a differential inbound rf signal. 83 201212553 FTBPF 610 provides two high Q (quality factor) Rp filters (one with fRF1 as the center frequency and the other with the center frequency). These tear filters filter the inbound RF signal to make the desired signal for the dual band inbound RF signal. The amount of attenuation is transmitted to the LNAs 393_1 and 393-2 without attenuation and unwanted signal components (eg, block, mirror, etc.) are attenuated. The two high QRJF viewers are formed by a plurality of baseband impedances (ZBB(S) 612, 614, 616, and 618) and a plurality of transistors each of which includes a plurality of additional baseband impedances (eg, Zbb, (8) 612, 614 , 616 and 618) and a plurality of other transistors. A further plurality of baseband impedances, (8) 612, 614, 616 and 618) provide a low Q baseband chopper, wherein each of the additional baseband impedances may be a capacitor, a capacitance vessel, a switched capacitor resistor and/or an anti-resistance, respectively. Note that the impedance of each wire impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by control signals from the SQC processing resources to adjust the performance of the low q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.). " The clock signal (frequency &) provided by the clock generator 6GG converts the low q baseband filter to the desired RF frequency (eg, fD=(WW2), produces a 冋QRF filter. As shown in Figure 6〇 The clock generator _ (its various implementations of the fiber reference at least - the edge of the money) generates 4 clock signals (such as LO to l 〇 '4) 'Each clock signal has a 25% open ratio and phase shift 90 The frequency of the clock signal corresponds to the inbound carrier frequency (eg w, fL.,) minus the input (four) signal: the carrier frequency of the two (eg "or") is 1/2 of the difference and can be adjusted To better track at least one carrier frequency. Since the first plurality of transistors are synchronized with L0]-L04 (generated by the clock generator as shown in Fig. 6〇20122012553) of the rate fc, by the first plurality of basebands The impedance-formed high Q RF filter is frequency converted to a higher desired Rf frequency, where fc = (fLO 丨 + fL 〇 2) / 2. Therefore, one of the high Q bandpass filters is l 〇 2 (or fRF2) Centered on 'another high Q bandpass filter centered around L01 (or heart). Therefore, the first high Q bandpass filter is The frequency of the inbound RF signal is the desired signal component of L02 (or fRF2), and the second high Q bandpass filter passes the desired signal component of the frequency of L01 (or f^pi) through the inbound RF#. Figure 64 is based on A schematic block diagram of a portion of an rf-IF receiver portion of another embodiment of the present invention includes a transformer, a variable capacitance network, a pair of inverter-based LNAs 395, a mixer, and an output register (or Unity Gain Driver) The mixer consists of multiple transistors, a pair of transimpedance amplifiers (TIAs) 622 and 624 and the accompanying impedances (Z) 626 and 628. In one running example the 'LNA 395 is supplied to the mixer. Differential current (iRF and -irf). In the current domain, the mixer mixes the differential current with the local oscillator's differential 1630 component (LOjp and LOnJ to produce an I-mixed current signal. The mixer also The differential current is mixed with the differential Q 632 component (LOqp and LOqn) of the local oscillation to produce a q-mixed current signal. The first TIAs 622 and 624 amplify the I-mixed current signal through the associated impedances (z) 626 and 628, And generate a signal in the voltage domain 丨 mixing. Similarly, the second TIA pass The correlated impedances (z) 626 and 628 amplify the Q-mixed current signal and produce a voltage domain Q-mixed signal. Figure 65 is a clock generator 634 for a local-positive receiver portion in accordance with another embodiment of the present invention. A schematic block diagram of the clock generator (the various embodiments of which will be described with reference to at least one of the following figures) produces four clock signals (example 85 201212553 such as LO[P, LOIN, LOqP and L〇QN), each The clock signals have a 25% duty cycle and are phase shifted by 90 in sequence. . Figure 66 is a schematic block diagram of a transimpedance amplifier (ΉΑ) and corresponding impedances (Z) 640 and 642, in accordance with one embodiment of the present invention. The TIA includes a current source, a frequency dependent amplifier (-A(8)), an IF transistor (TIF), and a low frequency transistor (TLF). The corresponding impedance in each output pin of the TIA includes resistors, capacitors, and transistors. In a running example, the differential input current is received at in_ and in+. Current node analysis of the negative input node (eg KCL-Kirch〇ff current law) shows that the current source current (ib) is equal to the input current (丨,) + the current through the capacitor (ic) + through The current of tif (i0UT) + the current through Tlf. The positive input (out+) KVL (Kirchhoff voltage law) shows that the output voltage (V〇ut+) is equal to Vdd_z*I〇UT (ie, the current through & At two frequencies (e.g., higher than the rRp of the inbound RF signal), the impedance of the capacitor becomes dominant and the input is substantially reduced; therefore, the output current (i〇uT) does not substantially contain the chirp component. At low frequencies (e.g., lower than the rj^ of the inbound Rp signal), the amplifier and low frequency transistors are configured for the TIF, and the low frequency current T [F is essentially open. This can be achieved by changing the size of the transistor and biasing the amplifier so that the impedance of the TLF at low frequencies is much smaller than the frequency of z+T1F 〇 for the desired frequency range (eg fRF), the impedance compared to the corresponding impedance Z 640, 642 Capacitors and TLFs have higher impedance. Therefore, iOuTHb-' and v〇UT=Z*i〇UT. Accordingly, ΉΑ and the corresponding impedance z 64 〇, 642 can be tuned to provide a high Q RF bandpass filter. Note that at least one component of the TIA can be adjusted by the control signal provided by the S0C processing resource to adjust the performance of the high Q bandpass filter. Figure 67 is a schematic block diagram of a low noise amplifier (LNA) 670 that includes FTBPFs 650, 672, 674, and 678, in accordance with one embodiment of the present invention. The LNA 670 includes a current source, a pair of input transistors (T3 and T4), a pair of bias transistors (Τ1 and Τ2), and an output impedance (showing the resistance, but can also be an inductor, a transistor, a capacitor, and/or Combinations. Note that the current source can be replaced by passive devices (such as resistors, inductors, capacitors, and/or combinations thereof) or can be omitted. The FTBPFs 650, 672, 674, and 678 can be located anywhere in the LNA 670 as shown. Figure 68 is a schematic block diagram of a differential 4-phase FTBPF (frequency conversion bandpass; filter) 680 comprising a plurality of transistors and 4 baseband impedances (e.g., ζββ(8)) 682, 684, 686, in accordance with one embodiment of the present invention. And 688. Baseband impedance (zbb(s)) 682, 684, 686, and 688 together provide a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by the control ship from the processing resource, from the low Q baseband chopper of the butterfly performance Such as bandwidth, attenuation rate, quality factor, etc.).

通過時鐘生成器提供的時鐘信號(例如l〇i_l〇4)將低Q 基帶遽波器變頻為期望的RF頻率以產生高Q处或正遽波 器差分兩Q RF遽波器滤波差分即或IF信號使得即或正 信號的期望健分量基本未衰親傳遞且補望的信號分量 (例如阻滯、鏡像等)衰減。 圖69是根據本發明一個實施例的4相FTBpF _的頻率 87 201212553 響應的示意圖,它示出了信號饋通魏與疊加信號讀波。信號 饋通諧波692在+/-3、+/·5、+/_7和仏9,疊加信號諧波69〇在 -3、-5、-7 和-9 〇 圖70是根據本發明另一個實施例的3相(變頻帶 通遽波器)的示意框圖’它包括翅電晶體和3個基帶阻 抗(例如ZBB⑻)702、704和7〇6。基帶阻抗(^⑼)7〇2、 7〇4和7〇6共同提供低q基帶遽波器,其中每個基帶阻抗分別 叮以疋電谷、開關電谷滤波II、開關電容電阻和/或複阻抗。 注意’每個絲阻抗_抗可岐相_、不_或其組合。 還要庄思,母個基帶阻抗的阻抗可以通過來自s〇c處理資源 的控制信號進行調節,從而調節低Q基帶濾波器的性能(例 如帶寬、衰減速率、品質因數等)。 通過如圖71所示的由時鐘生成器提供的時鐘信號(例如 LCVLOa)將低Q基帶濾波器變頻為期望的即頻率以產生高 QRF或IF濾波器。差分高qrp濾波器遽波差分即或圧信 號使得RF餅錢的賊信齡量基本未韻轉遞且不期 望的信號分量(例如阻滯、鏡像等)衰減。 圖72是根據本發明一個實施例的3相FTBpF 7〇〇的頻率 響應的示意圖,它示出了信號饋通諧波與疊加信號諧波。信號 饋通諧波708在+/-5和+/-7,疊加信號諧波710在5和7。 圖73是根據本發明另一個實施例的4相FTBPF (變頻帶 通濾波器)712的示意框圖,它包括多個電晶體和4個電容。 這些電容共同提供低Q基帶濾波器。注意,每個電容的容值 可以是相同的、不同的或其組合。還要注意,每個電容的容值 S8 201212553 可以通過來自SOC處理資源的控制信號進行調節,從而調節 低Q基帶舰㈣性能(例如帶寬、衰減料、品質因數等)。 通過時鐘生成H提供的軸^ (例如⑴灿)將 絲遽波器變頻為期望的即頻率以產生高Q奸或ιρ遽波 器。差分高Q RF遽波器據波差分处或正信號使得虾或正 信號的期望錢分量基本未衰減地傳遞且望的信號分 (例如阻滯、鏡像等)衰減。 圖74疋根據本發明另一個實施例的4相FTBpF (變頻 通濾波器)714的示意_,它包括多健晶體和如圖所示盘 電晶體相触2娜帶峨(例如Zbb(s))。基物⑻ 舳提供低Q基輯如,射每個絲阻抗相可以是I 谷、開關電容濾波器、開關電容電阻和/或複阻抗。注立,— 個基帶阻抗雜抗可以是_的、不同的或其组合 = 意一,每個基帶阻抗的阻抗可以通過來自s〇c處理資源的控制 k號進仃调郎,從而調節低Q基帶滤波器的性能(例^、 衰減率、品質因數等)。 來見、 通過時鐘生成器提供的時鐘信號(例如L〇i 基帶戚波器變頻為期望的RP頻率以產生高Q卵或H 器。差分高Q RF渡波器攄波差分处或IF信號使得卯 么號的紐^號分量基本未衰義傳遞且不期 〇The low Q baseband chopper is frequency converted to the desired RF frequency by a clock signal provided by the clock generator (eg, l〇i_l〇4) to produce a high Q or positive chopper differential two Q RF chopper filter differential or The IF signal causes the desired healthy component of the positive or positive signal to be substantially un-attenuated and the signal component of the complement (eg, block, mirror, etc.) is attenuated. Figure 69 is a diagram showing the response of the frequency of the 4-phase FTBpF _ 87 201212553, which shows the signal feedthrough and the superimposed signal read wave, in accordance with one embodiment of the present invention. The signal feedthrough harmonics 692 are at +/-3, +/·5, +/_7, and 仏9, and the superimposed signal harmonics 69〇 are at -3, -5, -7, and -9. FIG. 70 is another according to the present invention. A schematic block diagram of a 3-phase (frequency-converting bandpass chopper) of one embodiment 'which includes a finned transistor and three baseband impedances (e.g., ZBB(8)) 702, 704, and 7〇6. The baseband impedance (^(9)) 7〇2, 7〇4, and 7〇6 together provide a low-q baseband chopper, where each baseband impedance is divided into a valley, a switched gate, a switched capacitor, and/or Complex impedance. Note that 'each wire impedance _ anti-coherent phase _, not _ or a combination thereof. Also, the impedance of the baseband impedance can be adjusted by the control signal from the s〇c processing resource to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation rate, quality factor, etc.). The low Q baseband filter is frequency converted to a desired, i.e., frequency, by a clock signal (e.g., LCVLOa) provided by the clock generator as shown in Figure 71 to produce a high QRF or IF filter. The differential high-qrp filter chopping difference, or 圧 signal, makes the thief-receiving of the RF cake money substantially untransferred and the expected signal components (such as block, mirror, etc.) are attenuated. Figure 72 is a schematic illustration of the frequency response of a 3-phase FTBpF 7 , showing signal feedthrough harmonics and superimposed signal harmonics, in accordance with one embodiment of the present invention. The signal feedthrough harmonics 708 are at +/- 5 and +/- 7, and the superimposed signal harmonics 710 are at 5 and 7. Figure 73 is a schematic block diagram of a 4-phase FTBPF (frequency conversion band pass filter) 712 comprising a plurality of transistors and 4 capacitors in accordance with another embodiment of the present invention. These capacitors together provide a low Q baseband filter. Note that the capacitance of each capacitor can be the same, different, or a combination thereof. Also note that the capacitance of each capacitor, S8 201212553, can be adjusted by control signals from the SOC processing resources to adjust the performance of low Q baseband ships (eg, bandwidth, attenuating materials, quality factors, etc.). The wire chopper provided by the clock generation H (e.g., (1) can) converts the wire chopper to a desired frequency, i.e., to produce a high Q or a chopper. The differential high-Q RF chopper is based on the difference or positive signal so that the expected money component of the shrimp or positive signal is transmitted substantially un-attenuated and the desired signal component (e.g., block, mirror, etc.) is attenuated. 74 is a schematic diagram of a 4-phase FTBpF (frequency conversion pass filter) 714 according to another embodiment of the present invention, which includes a multi-crystal crystal and a disc-shaped contact lens as shown in the figure (for example, Zbb(s) ). The substrate (8) 舳 provides a low Q basis. For example, the impedance phase of each wire can be I valley, switched capacitor filter, switched capacitor resistance and/or complex impedance. Note, the baseband impedance hybrid impedance can be _, different or a combination of = meaning, the impedance of each baseband impedance can be adjusted by the control k from the s〇c processing resource, thereby adjusting the low Q Baseband filter performance (example ^, attenuation rate, quality factor, etc.). To see, the clock signal provided by the clock generator (for example, the L〇i baseband chopper is converted to the desired RP frequency to generate a high Q egg or H. The differential high Q RF waver chop difference or IF signal makes 卯The number of the new number of the slogan is basically unsuccessful and is not expected.

(例如阻滯、鏡像等)衰減。 H 、、圖75是根據本發明另一個實施例的4相ftb 通濾波器)716的示意框圖,它包括多個電晶體和4個基帶: 抗(例如zBB⑻)。基帶阻抗(Zbb⑻)制提供低q基^慮波 89 201212553 器’其中母個基帶阻抗分別可以是電容、開關電容遽波器、開 關電容電阻和/或複阻抗。注意,每個基帶阻抗的阻抗可以是 相同的、不同的或其組合。還要注意,每個基帶阻抗的阻抗可 以通過來自SOC處理資源的控制信號進行調節,從而調節低 Q基f遽波器的性能(例如帶寬、衰減率、品質因數等)。 通過時鐘生成器提供的時鐘信號(例如L0rL04)將低q 基帶濾波器變頻為期望的RF頻率以產生高Q财或正濾波 器。差分向Q RF遽波器遽波差分Rp或ip信號使得Rp或正 信號的期望信號分量基本未衰減地傳遞且不期望的信號分量 (例如阻滯、鏡像等)衰減。 圖76是根據本發明另一個實施例的4相ftbpf (變頻帶 通濾波器)720的示意框圖,它包括多個電晶體和丨個複基帶 阻抗(例如ZBB,c(co)) 722。複基帶阻抗提供低Q基帶濾波器, 後者相對0偏移w〇C。注意,複基帶阻抗可以通過來自s〇c 處理資源的控_號進行娜,從而低Q基帶遽波器的 性能(例如帶寬、衰減率、品質因數、頻率偏移等)。 通過時鐘生成器提供的時鐘信號(例如1〇1丄〇4)將低Q 基帶濾波器變頻為期望的RF頻率以產生高Q处或正濾波 器。差分咼QRF濾波器濾波差分处或正信號使得处或正 信號的期望信號分量基本未衰減地傳遞且不期望的信號分量 (例如阻滞、鏡像等)衰減。 … 圖77是根據本發明-個實施例的祕FTBpF (變頻帶通 濾'波器)的複基帶阻抗的示意框圖。複基帶阻抗726包括第一 基帶阻抗(例如Zbb⑽)、負增益級(例如-jGm(co)V1M(co))、 201212553 第二基帶阻抗(例# Zbb(0)))和正择 ⑽)。因此,複絲阻抗包括實數=(阳和虛 =Μ)。複基帶阻抗提供具有如圖所示頻率回應 帶賴波器’其中實數分量由㈣的曲線表示,虛數分 w<0的曲線表示。 、圖78是根據本發曰月一個實施例的4相打脈(變頻帶通 滤波器)的示意框目’它包括複基帶阻抗,該基帶阻抗通過電 容實現。複基帶阻抗提供低q絲渡波器73〇,後者相對〇偏 移w〇C,該偏移量取決於增益(Gm)與電容阻抗(Cbb)之 間的比率。注意,複基帶阻抗可以通過來自s〇c處理資源的 控制信號進行靖’從而低Q基帶舰n的性能(例如 帶寬、衰減率、品質因數 '頻率偏移等)。例如,可以調節電 容和/或增益模組。 通過時鐘生成器提供的時鐘信號(例如L01_L04)將頻率 偏移的低Q基帶滤波器變頻為期望的即頻率以產生高QRF 或IF濾波器。差分高Q即滤、波器遽波差分RF或IF信號使 得RF或_號_黯號分量基本未衰減地舰且不期望的 信號分量(例如阻滯、鏡像等)衰減。 圖79疋根據本發明一個實施例的瓜相FTBpF(變頻帶通 德波器)732的示意框目,它包括多個電晶體和爪個電容,其 中m->2。每些電容共同提供低Q基帶驗器。注意,每個電 容的容值可以是相同的、不同的或其組合。還要注意,每個電 谷的谷值可輯過來自SC)C處理資_控制信舰行調節, 從而調即低Q基㈣波||的性能(例如帶寬、衰減速率、品 201212553 質因數等)。Attenuation (eg block, mirror, etc.). H, FIG. 75 is a schematic block diagram of a 4-phase FTB filter 716 according to another embodiment of the present invention, which includes a plurality of transistors and 4 basebands: (for example, zBB(8)). The baseband impedance (Zbb(8)) provides a low q-base wave. The 2012 baseband impedance can be a capacitor, a switched capacitor chopper, a switching capacitor resistor, and/or a complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by control signals from the SOC processing resources to adjust the performance of the low Q-based f-chopper (e.g., bandwidth, attenuation rate, quality factor, etc.). The low q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by the clock generator (e.g., L0rL04) to produce a high Q or positive filter. The differential Q RF chopper clamps the differential Rp or ip signal such that the desired signal component of the Rp or positive signal is transmitted substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. Figure 76 is a schematic block diagram of a 4-phase ftbpf (frequency conversion bandpass filter) 720 comprising a plurality of transistors and a plurality of complex baseband impedances (e.g., ZBB, c(co)) 722, in accordance with another embodiment of the present invention. The complex baseband impedance provides a low Q baseband filter, which is offset from zero by w〇C. Note that the complex baseband impedance can be performed by the control _ number from the s〇c processing resource, thus the performance of the low Q baseband chopper (such as bandwidth, attenuation rate, quality factor, frequency offset, etc.). The low Q baseband filter is converted to the desired RF frequency by a clock signal (e.g., 1〇1丄〇4) provided by the clock generator to produce a high Q or positive filter. The differential 咼QRF filter filters the difference or positive signal such that the desired signal component of the positive or positive signal is transmitted substantially un-attenuated and the undesired signal component (e.g., block, mirror, etc.) is attenuated. Figure 77 is a schematic block diagram of the complex baseband impedance of a secret FTBpF (frequency band pass filter) in accordance with an embodiment of the present invention. The complex baseband impedance 726 includes a first baseband impedance (e.g., Zbb (10)), a negative gain stage (e.g., -jGm(co)V1M(co)), a 201212553 second baseband impedance (example #Zbb(0)), and a positive selection (10). Therefore, the multifilament impedance includes real numbers = (yang and imaginary = Μ). The complex baseband impedance is provided as a curve representation with a frequency response as shown in the figure, where the real component is represented by the curve of (4) and the imaginary component is w<0. Figure 78 is a schematic illustration of a 4-phase pulse (frequency bandpass filter) according to one embodiment of the present invention. It includes a complex baseband impedance that is achieved by capacitance. The complex baseband impedance provides a low q-wave ferrite 73〇 which is offset relative to w〇C, which is dependent on the ratio between the gain (Gm) and the capacitive impedance (Cbb). Note that the complex baseband impedance can be used to control the performance of the low-Q baseband n (such as bandwidth, attenuation rate, quality factor 'frequency offset, etc.) by the control signal from the s〇c processing resource. For example, the capacitance and/or gain module can be adjusted. The frequency offset low Q baseband filter is frequency converted to the desired or frequency to produce a high QRF or IF filter by a clock signal provided by the clock generator (e.g., L01_L04). The differential high Q or filter, wave chop differential RF or IF signal attenuates the RF or _ _ 黯 component substantially un-attenuated and undesired signal components (eg, block, mirror, etc.). Figure 79 is a schematic illustration of a melon phase FTBpF (frequency conversion band pass filter) 732 comprising a plurality of transistors and claw capacitors, wherein m - > 2, in accordance with one embodiment of the present invention. Each capacitor together provides a low Q baseband detector. Note that the capacitance of each capacitor can be the same, different, or a combination thereof. It should also be noted that the valley value of each electricity valley can be adjusted from the SC) C processing resource control bank, so that the performance of the low Q base (four) wave | | (such as bandwidth, attenuation rate, product 201212553 quality factor Wait).

通過時鐘生成器提供的時鐘信號(例如说叫)將低Q 基帶濾波器變頻為期望的RP頻率以產生高q Μ或正滤波The low Q baseband filter is frequency converted to the desired RP frequency by a clock signal (eg, called) provided by the clock generator to produce high q Μ or positive filtering

器。差分高Q处遽波器濾、波差分RF或IF信號使得RF或IF 信號的期望信號分量基本未衰減地傳遞且不期望的信號分量 (例如阻滯、鏡像等)衰減。 圖80疋根據本發明_個實施例的瓜相FtbPF(變頻帶通 遽波器)734的示意姻,它包括多個電晶體和m個基帶阻抗 (例如ZBB(S)) ’其巾m是4的整數倍且大於$。基帶阻抗 (ZBB(s))共同提供低q基帶渡波器,其中每個基帶阻抗分別 可乂疋電合開關電谷遽波器、開關電容電阻和/或複阻抗。 注意,每個基帶阻抗的阻抗可以是相同的、不同的或其組合。 還要注意’每個基帶阻抗_抗可以通過來自s〇c處理資源 的控制信號進行調節’從而調節低Q基帶遽波器的性能(例 如帶寬、衰減率、品質因數等)。 通過時鐘生成器提供的時鐘信號(例如l〇i_l〇m )將低q 基帶遽波器變頻為期望的RP頻率以產生高Q处或正滤波 器。差分高QRF遽波器渡波IF信號的差分號分量和差分 Q信號分量使得LF域的期望域分量基本未衰減地傳遞且 不期望的信號分量(例如阻滞、鏡像等)衰減。 圖si疋根據本發明-個實施例的m相ftbpf(變頻帶通 濾波器)736的示意_,它包括多個電晶體和m/2個基帶阻 抗(例如zBB(s)),其中m大於等於4。基帶阻抗(Μ))共 同提供低Q基帶滤波器,其中每個基帶阻抗分別可以是電容、、 92 201212553 開關電容毅n、_電容€阻和/或複阻抗。注意,每個基 帶阻抗的阻抗可以是相同的、不_或其組合。還要注意,每 個基帶阻抗的阻抗可以通過來自s〇c處理魏的控號進 行調節’從而調節低Q基帶滤波器的性能(例如帶寬、衰減 率、品質因數等)。 通過時鐘生成ϋ提供的時鐘信號(例如叫叫)將低Q 基帶渡波器變頻為期望的RF頻率以產生高Q即或正滤波 器差刀尚Q RF ;慮波器滤波差分RP或IF信號使得即或正 信號的期望錢分量基本未衰齡傳遞且獨望的信號分量 (例如阻滯、鏡像等)衰減。 圖82是根據本發明一個實施例的m相FTBpF(變頻帶通 渡波器)738❺示意框圖’它包括多個電晶體和m個基帶阻抗 (例如ΖβΒ⑻)’其中m大於等於2。基帶阻抗(Zbb(s))共同 提供低Q絲紐H ’其巾每健帶阻抗分別可以是電容、 開關電容舰H、_電容電阻和/或複阻抗。注意,每個基 帶阻抗的阻抗可以是相同的、不同的或其組合。還要注意,每 個基帶阻抗的阻抗可以通過來自soc處理資源的控制信號進 行調節,從而調節低Q基帶濾波器的性能(例如帶寬、衰減 率、品質因數等)。 ~ 通過時鐘生成器提供的時鐘信號(例如L0rL04)將低Q 基帶濾波器變頻為期望的RF頻率以產生高Q即或IF濾波 器差为咼Q见7濾、波器瀘、波差分RF或IF信號使得Rp或if 仏號的期望信號分量基本未衰減地傳遞且不期望的信號分量 (例如阻滯、鏡像等)衰減。 93 201212553 圖83是根據本發明一個實施例的單端m相ftbpf(變頻 帶通濾波器)740的示意框圖,它包括多個電晶體和m個基帶 阻抗(例如ZBB⑻),其中爪大於等於2。基帶阻抗(Zbb⑻) 共同提供低Q基帶濾波器,其中每個基帶阻抗分別可以是電 容、開關電容濾波器、開關電容電阻和/或複阻抗。注意,每 個基帶阻抗的阻抗可以是相同的、不同的或其組合。還要注 意,每個基帶阻抗的阻抗可以通過來自S〇c處理資源的控制 信號進行調節’從而調節低q基帶濾波器的性能(例如帶寬、 衰減率、品質因數等)。 通過時鐘生成器提供的時鐘信號(例如L〇1_l〇4)將低Q 基帶濾波器變頻為期望的RF頻率以產生高Q处或IF濾波 器。差分高QRF濾波器濾波差分RF或正信號使得处或正 4吕號的期望信號分量基本未衰減地傳遞且不期望的信號分量 (例如阻滯、鏡像等)衰減。 圖84是根據本發明一個實施例的爪相FTBPF 740的頻 率響應的示意圖,它示出了低Q帶通濾波器被變頻為更高頻 (例如fL0)。fLO對應於RF頻率、正頻率、本地振盪或其組 合。 圖85疋根據本發明一個實施例的用於m相ftbpf的時 鐘生成器750的示意框圖。該時鐘生成器包括多個觸發器 (DFF ) 752、754和756以及多個脈衝收窄器(pulse n_wer ) 7S8、760和?62。觸發器7S2、754和756與速率為m*fRp的 時鐘信號(elk)及時鐘柵信號(clkb)同步。從每個觸發器 752、754和756得到的時鐘脈衝由相應的脈衝收窄器進行脈 94 201212553 衝收窄。 脈衝收窄器758、760和762包括兩對如圖連接的電晶體。 左邊下面的電晶體小於其他電晶體,使上升沿時間慢於下降沿 時間,從而收窄脈衝。 圖86是根據本發明另一個實施例的用於瓜相FTBpF的 時鐘生成H 77G的示;|麵。該時鐘生成器包括多個觸發器 (DFF) 772、774和776以及多個及閘。觸發器772、774和 776與速率為(1/2) *m*fRF的時鐘信號(dk)及時鐘拇信號 (clkb)同步。及閘從第一觸發器爪接收非反相輸出並從下 -觸發H 774接收反相輸出以確保連續的時鐘脈衝不重疊。 圖幻是根據本發明另一個實施例的用於瓜相FTBpF的 時鐘生成H 790的示意框圖。該時鐘生成器包括環振蘯器792 =及多個賴電路。每個邏輯f路包括及咖肋器或暫存 器。環振盪H 792的栅值為時鐘速率的处是奇數,它等 於或大於3)。每個邏輯電路從環振盪器792接收連續脈衝, 使付連續的時鐘脈衝不重疊。 圖88是根據本發明一個實施例的用於3相FTBpF的時鐘 生成器800 $示意框圖,該時鐘生成$包括環振蓋器792以及 多個ϋ輯電路。每個賴電路包括關及暫存脉/或反相器 的組合。例如,每個邏輯電路包括及閘、反相器和暫存器。環 振蓋器792的栅值(gated)為時鐘速率3*fRp。通過邏輯電路, 及閘被偏置以產生1/3占空比的非重疊時鐘(例如dku〇2、 elk 2 806 和 elk 3 804 )。 圖89疋根據本發明另一個實施例的用於3相FTBpF的時 95 201212553 鐘生成H 810的示意框圖,該時鐘生成器包括兩個環振盈器 792以及乡個賴門。每轉輯電路包括及暫存器和/或反 相器的組合。例如,每個邏輯電路包括及閘、反相器和暫存器。 第-環振蘆器792的栅值為時鐘速率3*fRF,第二環振盈器792 的柵值為3*ί^的反相(inversi〇n)(例如-3*ί^)。在這種配置 下’時在里仏號1-3 812、814和816如圖88所示,時鐘信號4-6 818、820和822分別是時鐘信號丨-3的反相。 圖90是根據本發明一個實施例的部分前端模組(FEM) 810及部分SOC812的示意框圖。FEM81〇的該部分包括功率 放大器模組(PA) 814、雙工器、平衡網路818和共模感應電 路。雙工器包括變壓器(或其他結構,例如頻率可選雙工器和 /或電子平衡雙工器),平衡網路818包括至少一個可變電阻和 至乂、個可變電谷。共模感應電路包括一對連接在變壓器次級 之間的電阻。SOC 812的該部分包括峰值檢測器82〇、調諸引 擎822和低雜訊放大器模組(LNA)。替代地,峰值檢測器82〇 和/或調諧引擎822可以位於FEM 810中。 在一個運行的例子中,PA814將出站RF信號提供給變壓 器初級雙線圈的中央抽頭。根據天線與平衡網路818之間的阻 抗差,出站RF信號的電流在兩個線圈間分流。若平衡網路8 j 8 的阻抗與天線阻抗基本匹配,電流基本上平均分流向兩個線 圈。 利用如圖所示的線圈配置,若初級線圈的電流基本相等, 那麼它們在次級線圈的磁場基本上相互抵消。因此,次級的出 站RF彳§號基本上是衰減的。對於入站RF信號,初級的兩個 96 201212553 線圈根據入站RF信號的電流產生磁場。此時,增加了磁場, 因而在次級產生了相對於初級中兩倍的電流(假設每個線圈具 有相同匝數)。因此,變壓器放大了入站Rp信號。 若天線阻抗與平衡網路818的阻抗不匹配,次級中將出現 出站RF信號電流分量(例如TX洩漏量)。例如,假設從線圈 流向電感的電流是iP1,從線圈流向平衡網路8丨8的電流是h, 那麼τχ、搞量可以表示為iprip2。共模錢餘的電阻感應 τχ洩漏量。例如,電阻的中心節點的電壓等於vs_ (Hr+hra),其中vs是次級的電壓,2iR是所接 收的入站RF信號的電流。假設Ri=R2且ipi=ip2,那麼中心節 點的電壓等於VS的丨/2。较1 ipi不等於-,電阻的中心 節點的電壓將偏離1/2VS,偏離量與差值成比例。 檢測器820檢測電阻的中心節點的電壓偏離1/2ν§的差 值,並將該差值的運算式提供給調諧引擎822。調諧引擎822 解析該差值,並生成控繼肋調節平_關阻抗。例如, 若iP1>iP2,那麼共模感應電路(例如電阻的中心節點)的電壓 將大於1/2VS,這表示平衡網路818的阻抗過大。因此,調諧 引擎822纟成控制信號以減小平衡網路818 _抗。又例如, 若ΐρι<ΐΡ2 ’那麼共模感應電路的電壓將小於1/2VS,這表示平 衡網路的阻抗過小。因此,觸引擎822域控制信號以增加 平衡網路818的阻抗。 調譜引擎822可以解析共模電壓偏差,確定平衡網路818 的期望阻抗,並相應地生成控制信號。替代地,調譜引擎幻2 可以反復地生成控制信如逐步地_平衡纟祕818的阻 97 201212553 抗直到獲得期望的阻抗。利用任意方法,調譜引擎822的功 能=保持平衡網路818的随鼓_阻抗基本上相匹配 (ik著時間、使用和/或環境條件的變化)以最小化茂漏量。 圖91疋根據本發明另一個實施例的部分前端模組(fem) 請及部分SOC 832的示意框圖。FEM 83〇的該部分包括功率 2器模組(PA) 836、雙工器838、平衡網路842、天線調 谐單το (ATU) 840和共模感應電路。雙工器838包括變磨器 (或其他結構,例如頻率可選雙工器838和/或電子平衡雙工 器838)’平衡網路包括至少一個可變電阻和至少一個可變電 容。共模感應電路包括—對連接在變壓器次級之間的電阻。 S〇C 832的該部分包括峰值檢測H 848、調諧引擎850、查找 表(LUT) 844、處理模組846和低雜訊放大器模組(LNA) 852。替代地’峰值檢測器848和/或調諧引擎85〇可以位於fem 830 中。 除了共模感應電路(即電阻)、檢測器848、調諧引擎85〇 和平衡網路842提供的用於平衡平衡網路842的阻抗與天線阻 抗這一功能(如參考圖9〇所描述的)外,FEM83〇還包括ATU 840。ATU 840包括一個或多侧定的無源元件和/或一個或多 個可變的無源元件。例如,ATU 84〇可以包括可變電容-電感 電路、可變電容、可變電感等。 在一個運行的例子中,ΡΑ836將放大的出站处信號提供 給雙工器838,後者包括功能如參考圖所描述的變壓器。 雙工器838輸出放大的出站处信號給ATU84〇,通過存儲在 LUT 844中的設置來調諧ATU 84〇,從而提供期望的天線匹配 98 201212553 電路(例如,阻抗匹配、品質因數、帶寬等)。ATU 84〇將出 站RF信號輸出給天線以便發射。Device. The chopper filter, wave differential RF or IF signal at the differential high Q causes the desired signal component of the RF or IF signal to pass substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) to decay. Figure 80 is a schematic illustration of a melon phase FtbPF (frequency conversion bandpass chopper) 734 according to the present invention, which includes a plurality of transistors and m baseband impedances (e.g., ZBB(S)). An integer multiple of 4 and greater than $. The baseband impedance (ZBB(s)) together provides a low q baseband ferrite, where each baseband impedance can be electrically coupled to a switching electric chopper, a switched capacitor resistor, and/or a complex impedance. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that 'each baseband impedance _ resistance can be adjusted by a control signal from s〇c processing resources' to adjust the performance of the low Q baseband chopper (e.g., bandwidth, attenuation rate, quality factor, etc.). The low q baseband chopper is frequency converted to the desired RP frequency by a clock signal (e.g., l〇i_l〇m) provided by the clock generator to produce a high Q or positive filter. The differential number component and the differential Q signal component of the differential high QRF chopper wave IF signal cause the desired domain component of the LF domain to pass substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) to decay. Figure Si is an illustration of an m-phase ftbpf (frequency conversion bandpass filter) 736 according to an embodiment of the present invention, which includes a plurality of transistors and m/2 baseband impedances (e.g., zBB(s)), where m is greater than Equal to 4. The baseband impedance (Μ) provides a low Q baseband filter, where each baseband impedance can be a capacitor, 92 201212553 switched capacitor, n, _ capacitor, and/or complex impedance. Note that the impedance of each baseband impedance can be the same, not _ or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by the control from s〇c processing Wei' to adjust the performance of the low Q baseband filter (eg, bandwidth, attenuation, quality factor, etc.). The clock signal generated by the clock generation (eg, called) converts the low Q baseband ferrite to the desired RF frequency to produce a high Q or positive filter differential Q RF; the filter filters the differential RP or IF signal such that That is, the expected money component of the positive signal is substantially non-aged and the signal component (eg, block, mirror, etc.) is attenuated. Figure 82 is a schematic block diagram of a m-phase FTBpF (frequency-converting bandpass ferrite) 738, which includes a plurality of transistors and m baseband impedances (e.g., ΖβΒ(8))' where m is greater than or equal to two, in accordance with one embodiment of the present invention. The baseband impedance (Zbb(s)) together provides a low Q wire H', which can be a capacitor, a switched capacitor ship H, a _capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. Also note that the impedance of each baseband impedance can be adjusted by control signals from the soc processing resources to adjust the performance of the low Q baseband filter (e.g., bandwidth, attenuation, quality factor, etc.). ~ The clock signal provided by the clock generator (eg L0rL04) is used to convert the low Q baseband filter to the desired RF frequency to produce a high Q or IF filter difference is 咼Q see 7 filter, wave 泸, wave differential RF or The IF signal causes the desired signal component of the Rp or if apostrophe to pass substantially un-attenuated and the undesired signal component (eg, block, mirror, etc.) to decay. 93 201212553 FIG. 83 is a schematic block diagram of a single-ended m-phase ftbpf (frequency conversion bandpass filter) 740 including a plurality of transistors and m baseband impedances (eg, ZBB(8)), wherein the jaws are greater than or equal to one, in accordance with an embodiment of the present invention. 2. The baseband impedance (Zbb(8)) together provides a low Q baseband filter, where each baseband impedance can be a capacitor, a switched capacitor filter, a switched capacitor resistor, and/or a complex impedance, respectively. Note that the impedance of each baseband impedance can be the same, different, or a combination thereof. It is also noted that the impedance of each baseband impedance can be adjusted by the control signal from the S〇c processing resource' to adjust the performance of the low q baseband filter (e.g., bandwidth, attenuation rate, quality factor, etc.). The low Q baseband filter is frequency converted to the desired RF frequency by a clock signal provided by the clock generator (e.g., L〇1_l〇4) to produce a high Q or IF filter. The differential high QRF filter filters the differential RF or positive signal such that the desired signal component at or at the positive signal is transmitted substantially un-attenuated and the unwanted signal components (e.g., block, mirror, etc.) are attenuated. Figure 84 is a schematic illustration of the frequency response of the claw phase FTBPF 740, which illustrates the low Q band pass filter being frequency converted to a higher frequency (e.g., fL0), in accordance with one embodiment of the present invention. fLO corresponds to RF frequency, positive frequency, local oscillation or a combination thereof. Figure 85 is a schematic block diagram of a clock generator 750 for m-phase ftbpf, in accordance with one embodiment of the present invention. The clock generator includes a plurality of flip flops (DFF) 752, 754 and 756 and a plurality of pulse narrowers (pulse n_wer) 7S8, 760 and ? 62. The flip-flops 7S2, 754 and 756 are synchronized with a clock signal (elk) of rate m*fRp and a clock gate signal (clkb). The clock pulses obtained from each of the flip-flops 752, 754, and 756 are pulsed by the corresponding pulse constrictor 94 201212553. Pulse narrowers 758, 760 and 762 comprise two pairs of transistors connected as shown. The lower left transistor is smaller than the other transistors, making the rising edge time slower than the falling edge time, thereby narrowing the pulse. Figure 86 is a diagram showing the clock generation H 77G for the melon phase FTBpF in accordance with another embodiment of the present invention. The clock generator includes a plurality of flip flops (DFF) 772, 774, and 776 and a plurality of gates. The flip-flops 772, 774, and 776 are synchronized with a clock signal (dk) of rate (1/2) * m*fRF and a clock signal (clkb). The AND gate receives the non-inverted output from the first flip-flop and receives the inverted output from the lower-trigger H 774 to ensure that successive clock pulses do not overlap. The diagram is a schematic block diagram of a clock generation H 790 for a melon phase FTBpF in accordance with another embodiment of the present invention. The clock generator includes a ring oscillator 792 = and a plurality of circuits. Each logical path includes a rib or a register. The gate value of the ring oscillation H 792 is an odd number at the clock rate, which is equal to or greater than 3). Each logic circuit receives successive pulses from ring oscillator 792 such that successive clock pulses do not overlap. Figure 88 is a schematic block diagram of a clock generator 800$ for a 3-phase FTBpF that includes a ring oscillator 792 and a plurality of circuit circuits, in accordance with one embodiment of the present invention. Each of the circuits includes a combination of off and temporary pulses/or inverters. For example, each logic circuit includes a gate, an inverter, and a register. The gate of the ring oscillator 792 is clocked at 3*fRp. Through the logic circuit, the AND gate is biased to produce a 1/3 duty cycle non-overlapping clock (eg, dku〇2, elk 2 806, and elk 3 804). Figure 89A is a schematic block diagram of a 2012 810 generation H 810 for a 3-phase FTBpF, the clock generator including two ring oscillators 792 and a home gate. Each revolution circuit includes a combination of a register and/or a phase inverter. For example, each logic circuit includes a gate, an inverter, and a register. The gate value of the first-loop vibrator 792 is a clock rate of 3*fRF, and the gate value of the second ring oscillator 792 is inverted (inversi〇n) (for example, -3*ί^) of 3*ί^. In this configuration, as shown in Fig. 88, the clock signals 4-6 818, 820, and 822 are the inversion of the clock signal 丨-3, respectively. Figure 90 is a schematic block diagram of a portion of a front end module (FEM) 810 and a portion of a SOC 812, in accordance with one embodiment of the present invention. This portion of the FEM 81 包括 includes a power amplifier module (PA) 814, a duplexer, a balanced network 818, and a common mode sensing circuit. The duplexer includes a transformer (or other structure, such as a frequency selectable duplexer and/or an electronically balanced duplexer), and the balanced network 818 includes at least one variable resistor and a variable electrical valley. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the SOC 812 includes a peak detector 82A, an engine 822, and a low noise amplifier module (LNA). Alternatively, peak detector 82A and/or tuning engine 822 may be located in FEM 810. In one operating example, the PA 814 provides an outbound RF signal to the center tap of the primary double coil of the transformer. Depending on the impedance difference between the antenna and the balanced network 818, the current of the outbound RF signal is shunted between the two coils. If the impedance of the balanced network 8 j 8 substantially matches the impedance of the antenna, the current is substantially evenly split to two coils. With the coil configuration as shown, if the primary coils are substantially equal in current, their magnetic fields in the secondary coils substantially cancel each other out. Therefore, the secondary outbound RF彳§ is basically attenuated. For inbound RF signals, the primary two 96 201212553 coils generate a magnetic field based on the current of the inbound RF signal. At this point, the magnetic field is increased, thus producing twice the current in the secondary relative to the primary (assuming each coil has the same number of turns). Therefore, the transformer amplifies the inbound Rp signal. If the antenna impedance does not match the impedance of the balanced network 818, an outbound RF signal current component (e.g., TX leakage) will appear in the secondary. For example, suppose the current flowing from the coil to the inductor is iP1, and the current flowing from the coil to the balanced network 8丨8 is h, then τχ, the amount can be expressed as iprip2. The common mode of the residual resistance induces the amount of τχ leakage. For example, the voltage at the center node of the resistor is equal to vs_(Hr+hra), where vs is the secondary voltage and 2iR is the current of the received inbound RF signal. Assuming Ri = R2 and ipi = ip2, then the voltage at the center node is equal to 丨/2 of VS. If 1 ipi is not equal to -, the voltage at the center node of the resistor will deviate from 1/2 VS, and the amount of deviation is proportional to the difference. Detector 820 detects that the voltage at the center node of the resistor deviates from the difference of 1/2 ν § and provides an expression of the difference to tuning engine 822. The tuning engine 822 parses the difference and generates a control rib to adjust the flat-off impedance. For example, if iP1 > iP2, the voltage of the common mode sensing circuit (e.g., the center node of the resistor) will be greater than 1/2 VS, which indicates that the impedance of the balanced network 818 is too large. Thus, tuning engine 822 becomes a control signal to reduce the balance network 818 _ resistance. For another example, if ΐρι<ΐΡ2 ’ then the voltage of the common mode sensing circuit will be less than 1/2 VS, which means that the impedance of the balanced network is too small. Thus, the engine 822 domain control signal is added to increase the impedance of the balanced network 818. The metrology engine 822 can resolve the common mode voltage deviation, determine the desired impedance of the balanced network 818, and generate control signals accordingly. Alternatively, the phasing engine illusion 2 can repeatedly generate control signals such as step by step _ 纟 818 818 818 818 818 818 818 818 818 818 818 818 818 818 2012 2012 2012 2012 2012 2012 2012 2012 2012 Using any method, the function of the tempering engine 822 = the drum _ impedance of the balanced network 818 is substantially matched (ik changes in time, usage, and/or environmental conditions) to minimize the amount of leakage. Figure 91 is a schematic block diagram of a portion of a front end module (fem) and a portion of a SOC 832 in accordance with another embodiment of the present invention. This portion of the FEM 83A includes a Power 2 Module (PA) 836, a duplexer 838, a balanced network 842, an antenna tuning single το (ATU) 840, and a common mode sensing circuit. Duplexer 838 includes a variator (or other structure, such as frequency selectable duplexer 838 and/or electronically balanced duplexer 838). The balanced network includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the S 〇 C 832 includes a peak detection H 848, a tuning engine 850, a look up table (LUT) 844, a processing module 846, and a low noise amplifier module (LNA) 852. Alternatively, peak detector 848 and/or tuning engine 85A may be located in fem 830. In addition to the common mode sensing circuit (ie, resistor), detector 848, tuning engine 85, and balanced network 842 provide the function of balancing the impedance of the balanced network 842 with the antenna impedance (as described with reference to FIG. 9A). In addition, the FEM83〇 also includes the ATU 840. The ATU 840 includes one or more side-by-side passive components and/or one or more variable passive components. For example, the ATU 84 can include variable capacitance-inductor circuits, variable capacitors, variable inductors, and the like. In an operational example, ΡΑ 836 provides an amplified outbound signal to duplexer 838, which includes a transformer having the functionality as described with reference to the figures. The duplexer 838 outputs the amplified outbound signal to the ATU 84A, tuning the ATU 84A through the settings stored in the LUT 844 to provide the desired antenna matching 98 201212553 circuit (eg, impedance matching, quality factor, bandwidth, etc.) . The ATU 84 outputs the outbound RF signal to the antenna for transmission.

對於入站RF信號,天線接收該信號並將其提供給ATU 840後者再將其提供給雙工器838。雙工器838將入站RF信 说輸出給LNA 852和共模感應電路。共模感應電路、檢測器 ⑽、調讀引擎mo和平衡網路如的功能如上面參考圖卯所 描述的。 處理模組846用於監視FEM _的各種參數。例如,處 理模組846可以監視天線阻抗、發射功率、pA836的性能(例 如增益、、線性度、帶寬、效率、雜訊、輸出動態範圍、擺動速 率、上升速率、建立咖、超婦、敎隨等)、接收的信 號強度、SNR、SIR、調諧引擎請所做的調節等。處理模組 846解析這些參數以較刪㈣的性能可否進一步優化。例 如,處理模組846可以確定對ATU 84〇進行調節可以提高pA 836的性能。此時,處理模組_定址LUT m以提供對蕭 _的期望設置。若ATU 840中的這觀變影響了細_ 與=衡網路842之間的阻抗平衡,調譜引擎85〇將做出適當的 舖站。 在另-個實施例中,處理模組846提供調譜弓丨擎85〇的功 能並對ATU _和平衡網路842的平衡進行調節, 望的FEM 830的性能。在又另一個實纟 , 似貫施例中,平衡網路842 疋固疋的,ATU 840在FEM 830中提供湘珍从灿 ^ τ Τ权供期望的調節以獲得阻 抗平衡並獲得所期望的FEM 830的性能。 圖92是根據本發明另—個實施例的用於犯和犯蜂寫運 99 201212553 行的部分前端模組(FEM) 860及部分s〇C 862的示意框圖。 FEM860的該部分包括功率放大器模組(pA) 866、雙工器、 平衡網路和共模感應電路。雙工器包括變壓器(或其他結構, 例如頻率可選雙卫||和/或電子平衡雙卫器),平_路包括開 關、至少-個可變電阻和至少一個可變電容。共模感應電路包 括一對連接在變壓器次級之間的電阻。s〇c 862的該部分包括 峰值檢測器872、調諸引擎874、開關和低雜訊放大器模組 (LNA) 876。替代地,峰值檢測器872和/或調諧引擎874可 以位於FEM860中。 在該實施例中,雙工器最適用於頻分雙工(FDD), 用於3G蜂窩電話應用中且平衡網路開關和LNA876開關是打 開的。在用於2G蜂窩應用的時分雙工(TDD)中,通過開關 將平衡網雜路。這樣基本上消除了 3_dB理論插人損耗極限 並僅留下實現損耗(implementati〇n丨〇ss)。注意,對於2G發 射,LNA876開關是關閉的,對於2G接收,LNA876開關時 打開的。還要注意,對於3G模式,FEM和s〇c 862的功能 如同參考圖90和/或91所描述的。 圖93是根據本發明一個實施例的2G τχ模式下圖犯所 示的部分前端模組(FEM) 860及部分S0C 862的示意框圖。 在該模式中,LNA 876開關將LNA 876短路,平衡網路開關 將平衡網路短路。由於次級線圈兩端的短路,初級線圈基本上 也被短路。因此,PA866高效地直接連接到天線。 圖94疋根據本發明一個實施例的rx模式下圖92所 不的部分前端模組(FEM) 860及部分S〇c 862的示意框圖。 100 201212553 在該模式中,LNA門 衡網路短路。在這種:置;開變=,閉,因此將平 的巴倫變壓器。 τ顏器的功能如同用於接收器部 圖95是根據本發明__ 干立dr® + ^ 個實鈿例的小信號平衡網路880的 不思框圖,它包括多個電曰 日體、夕個電阻和多個電容。平衡網 物的物叫嘯號⑼㈣比特)進 平衡_ t包知電容的可糾另—㈣比特信 唬(例如5比特)進行控制。 Ο如若平衡網路的電阻側包括4個電阻_電晶體電路, Ά-個電阻·電晶體電路的公共節點(c_ onnode)與下一 電阻-電晶體電路的Η極連接。在該例子中,每朗極還連接 用於接收4比特的比特控制信號。例如,最左端電阻_電晶體 電路的門極接收最有效比特,下一最左電阻-電晶體電路接收 第一最有效比特,依此類推。另外,最左端電阻-電晶體電路 的電阻是R4,下一最左電阻_電晶體電路的電阻是R3,依此 類推。因此,例如,當4比特控制信號是〇001時,僅僅最右 端電阻-電晶體電路是開啟的,且它的電阻R1提供最終的電 阻。當4比特控制信號是〇〇11時,最右端的兩個電阻_電晶體 電路是開啟的’且最終的電阻為R1//R2。當4比特控制信號是 0111時,隶右端的三個電阻-電晶體電路是開啟的,且最終的 電阻為R1//R2//R3。當4比特控制信號是1111時,所有四個 電阻-電晶體電路都是開啟的,且最終的電阻為 R1//R2//R3//R4。平衡網路的電容側功能類似。 在另一個實施例中,每個電阻-電晶體電路和每個電容-電 101 201212553 晶體電路可以獨立地由相應控制信號的比特位元進行控制。對 於上述附圖中描述的並在這裏修改後的四電阻_電晶體電路配 置’控制信號1000產生電阻R4;控制信號0100產生電阻R3 ; 控制信號1010產生電阻R4//R2 ;依此類推。 圖96是根據本發明一個實施例的大信號平衡網路882的 示意框圖,它包括RLC(電阻·電感_電容)網路和多個電晶體。 電晶體被門控開和關以提供RLC網路不同的電阻、電感和/或 電容組合,從而所期望的平衡網路阻抗。此時,電晶體具有相 對很小的電壓擺幅,因此可以使用較低電壓電晶體。 圖97是根據本發明另一個實施例的部分前端模組(fem) _及部分SOC 892的示意框圖。FEM 890的該部分包括功率 放大器模組(PA) 896、雙工器_、平衡網路_和共模感 應電路。雙工器898包括變壓器(或其他結構,例如頻率可選 雙工器898和/或電子平衡雙工器_),平衡網路包括至少一 個可變電阻和至少―個可變電容。共模感應電路包括一對連接 在變壓器次級之間的電阻。·的該部分包括峰值檢測器 9〇2、調諧引擎904、茂漏量檢測906模組和低雜訊放大器模 組(LNA) 908。替代地,峰值檢測器9〇2、 模組和/或機引㈣何聰於腿㈣巾。 除了茂漏量檢㈣9〇6模組,本實施例的功能類似於圖卯 咖不Γ施例。茂漏量模組用於根據PA 896輸出檢測平衡網路 —電路的電晶體導通電阻的變化。例如,若柳輸出增 匕將使平衡網路_中電晶體導通電阻改變。該改^ 平衡網路_的整體阻抗。相應㈣漏量檢測9Q6模組^ 102 201212553 導通電阻改變並將代表性信號提供給調諧引擎904和/或處理 模組(如圖91中所示)。 根據洩漏量檢測906模組的輸入,調諧引擎9〇4調節平衡 網路900的阻抗。替代地或此外,處理模組使用來自洩漏量檢 測906模組的輸入來調節ATU的設置。不論採用哪種特定方 法,都補償了平衡網路900中電晶體的和/或功率放大器中電 晶體的導通阻抗的變化。 圖98是根據本發明另一個實施例的部分前端模組(fem) 910及部分SOC 912的示意框圖。FEM 910的該部分包括功率 放大器模組(ΡΑ) 916、雙工器918、平衡網路920和共模减 應電路。雙工器918包括變壓器(或其他結構,例如頻率可選 雙工器918和/或電子平衡雙工器918),平衡網路包括至少一 個可變電阻和至少一個可變電容。共模感應電路包括一對連接 在變壓器次級之間的電阻。SOC 912的該部分包括峰值檢測器 922、處理模組926 (包含調諧引擎的功能)和低雜訊放大器 模組(LNA) 924。替代地’峰值檢測器922和/或調諧引擎可 以位於FEM910中。 對於調節雙工器918的ΤΧ衰減和/或rx增益的能力,本 實施例的功能類似於圖90所示實施例。例如,當發射功率相 對較低時(例如入站RF信號的阻滯較小和/或入站处信號的 信號強度相對較高),處理模組926向雙工器918提供信號, 使雙工器918減小ΤΧ衰減,從而減小插入損耗。 例如,若雙工器918包括如圖90所示的變壓器和/或其他 類型的頻率可選雙工器918,可以將部分濾波器短路以便^減 103 201212553 广刀離的代h下增加她。又例如,若雙卫器⑽包括電子平 衡雙工器,該分離可以解衡網路的分離相平衡。 圖疋根據本土明另—個實施例的部分前端模組(阳 930及部分S0C 932的示意框圖。職93〇的該部分包括功率 放大器模組(PA) 936、雙工器938和平衡網路_。雙工器 938包括變壓H (或其他結構,例如頻率可選雙工器⑽^ 或電子平衡雙4⑽)、寄生電容和鑛電容,平衡網路包 括至個可變電阻和至少—個可變電容。共模感應電路包括 -對連接在變壓器次級之間的電阻。s〇c 932的該部分包括峰 值檢測器、處理模組(包含調譜引擎的功能)和低雜訊放大器 模組(LNA) 940。僅僅示出了 LNA94〇。 在該實施例t,增加補償電容以補償寄生電容(例如卬 和Cp2)的失匹,該失匹是由於初級線圈(例如li和^)之 間的失匹導致的。因此,選擇補償電容(Ccl和Μ),使 Cpl+Cc卜CP2+Ce2。增加補償電容後’雙工器的分離帶 寬大於沒有補償電容時的分離帶寬。 圖1〇〇是根據本發明另一個實施例的部分前端模組 (FEM ) 950及部分LNA 952的示意框圖。FEM 的該部分 包括功率放大器模組(PA) 954、雙工器956和平衡網路958。 雙工器956包括變壓器(或其他結構’例 册平贼:請),罐㈣ Cp4)。LNA 952包括輸入電晶體、偏置電晶體、電感(L3) 和負載阻抗(Z),其中輸入電晶體具有寄生電容(Cp)。由於 在LNA 952中包含了 L3 ’雙工器956和職952的共模間隔 104 201212553 相比傳統LNA 952輸入配置得到了提高。 圖101疋根據本發明-個實施例的目1〇〇所示部分前端模 組(FEM)和部分LNA _效的示意㈣。該示意圖示 出了共模間隔是如何提高的。通過變壓器的寄生電容(Cp3和 CP4)連接到次級線圈(L)的非平衡電流與不同的譜振電路 連接,這·振電路由域(L3)和輸人電晶體的寄生電容形 成。諧振電路提供高差分阻抗和低共模阻抗。 圖102疋根據本發明另一個實施例的部分前端模組 (FEM) 960及部分S0C %2的示意框圖。聰96〇的該部分 包括功率放大器模組(PA)、雙工器、平衡網路97〇和共模感 應電路。雙包括髓|| (或其他結構,例如鮮可選雙工 器和/或電子平衡雙工器),平衡轉包括至少一個可變電阻和 至夕、個可變電谷。共模感應電路包括—對連接在變壓器次級 之間的電阻。SOC962的該部分包括峰值檢測器974、處理模 組976 (包含調諧引擎的功能)和單端低雜訊放大器模組 (LNA) 972。替代地,峰值檢測器9?4和/或調譜引擎可以位 於 FEM 960 中。 在該實施例中,通過使用單端LNA 972基本上消除了共 模間隔。圖中所示FEM 960和SOC 962的其他部的功能如上 所述。 圖103是根據本發明一個實施例的雙工器的變壓器的示 思框圖該變壓器包括初級線圈(L1&L2 )和次級線圈(L2 )。 初級線圈分別具有相同的匝數;次級線圈可以與初級線圈具有 相同匝數或不同匝數。線圈的繞向如圖所示。 105 201212553 圖104是根據本發明_個實施例的IC封裝基板和/或印制 電路板上積體電路的4個厚金屬層上實施的變㈣的實現的 不思圖。初級線圈位於上兩層上,次級線圈位於下兩層上。位 於-層上的次級的第—線圈可用與其他層上的其他線圈串聯 或並聯連接。 圖105是根據本發明_個實施例的IC爿裝基板和/或印刺 電路板上1C的3個厚金屬層上的變壓器的實現的示意圖。初 級線圈位於頂層上並使用下於互連^至少—個初級線圈 可以旋轉90。。次級線圈位於下面的第三層上。 圖106是根據本發明另一個實施例的部分前端模組 (FEM) 990及部分s〇c 992的示意框圖。聰99〇的該部分 包括功率放大器模組(PA) 994、雙工器9%、平衡網路1〇〇〇、 音注(tone injection)模组998和共模感應電路。雙工器_ 包括變壓器(或其他結構’例如頻率可選雙工器9%稗或電 子平衡雙工器996),平衡網路包括至少一個可變電阻和至少 -個可變電容。共模感應電路包括—對連接在變壓器次級之間 的電阻。S0C 962的該部分包括峰值檢測器膽、處理模组 腦(_職引料魏)、基帶處醇元和健訊放大器 模組(LNA) 1006。替代地,峰值檢測器咖和 可以位於FEM 990中。 在一個運行的例子中 .…、模感應電路、調諸引擎、檢 臓和平衡網路1000的功能如上所述。在报多情況下,每接 收器頻帶低於或等於LNA1_ _解終物且件; 小發射器(τχ)和/或接收器(RX)雜訊。當τχ〜或狀雜 106 201212553 訊處於或低於雜訊平臺時,很難纟陳ϋ很難跟蹤天線的阻 抗。 為了增強對天線阻抗的跟蹤,音注模組998在接收器頻帶 中注入音調(tone)(例如Ac〇s(0r^⑼)。雙工器996不同 於TXk號地衰減RX音調,因為它位於rx頻帶中,且雙工 器996和平衡網路1〇〇〇可調諧用於τχ頻帶。因此,在雙工 器996的RX側上(例如變壓器的次級上)產生容易檢測的洩 漏信號。 基於RX音調的洩漏信號通過接收器部傳播直至它被轉換 為基帶信號。在基帶,該音調幅度是RX頻帶間隔的測量值。 根據RX頻帶間隔的測量值,可以確定天線的阻抗。隨著天線 阻抗的改變’可以調節天線調諧單元和/或平衡網路1000以跟 蹤天線的阻抗。注意,在基帶可以輕易地除去該音調。 圖是根據本發明另一個實施例的部分前端模組 (FEM) 1010及部分s〇c 1〇12的示意框圖。FEM1〇1〇的該 部分包括功率放大器模組(pA) 1〇14、雙工器1〇16、平衡網 路1018和共模感應電路(未示出)。雙工器包括變壓器 (或其他結構,例如頻率可選雙工器1〇16和/或電子平衡雙工 器1016)。共模感應電路包括一對連接在變壓器次級之間的電 阻。SOC觀的該部分包括峰值檢測器臟(未示出)、處 理模組1020 (執行調譜引擎的功能)和低雜訊放大器模組 (LNA) 1022。替代地,峰值檢測器1〇〇2和/或調諧引擎可以 位於FEM1010中。 平衡網路1018包括RLC網路,該RLC網路具有多個可 107 201212553 變電阻、多個可變電容和至少—個電感。在該實施例中,… 調,平衡網路1018以提供可大幅變化的阻抗,從而更好地與 可以 天線阻抗匹配 圖108是根據本發明—個實施例的平衡網路的電阻 體(R-T)電路的阻抗的示意框圖。電容相當於電晶體的寄1 電容。由於R-T電路包括真實的無源電阻,它可以為插入損耗 上的3dB理論極限做貢獻。 圖1〇9是根據本發明另-個實施例的平衡網路的電阻-電 晶體(R-T)電路的阻抗的示意框圖。在該實施例中,r_t電 路包括電感弱化的共源電晶體。因此,它是—個活躍的電阻, 並不為插人損耗上的3dB理論極限做貢獻。因此,平衡網路 僅有的損耗是實施損耗。 圖110是根據本發明-個實施例的平衡網路1〇3〇的示意 框圖’它包括阻抗上變頻H 1G32和—個或多個基帶阻抗(滿 1034)。阻抗上變頻器與期望頻率(例如fL〇或y同步。阻 抗上變頻H 1G32與基帶阻抗的組合可以按照_於上述m相 變頻帶通濾波器的方式實施。 圖111疋根據本發明另一個實施例的平衡網路的示意框 圖’匕包括兩個阻抗上變頻器腿、1044和相應的基帶阻抗 (zbb 1046、1048)。每個阻抗上變頻器與期望頻率(例如fRF τχ 或fRF_RX)同步。阻抗上變頻器1〇42、1〇44與一個或多個基帶 阻抗的每種組合可以按照類似於上述m相變頻帶_波器的 方式實施。 圖112是根據本發明一個實施例的用於平衡網路中的負 108 201212553 阻抗1050的示意框圖。該電路包括基帶負阻抗1〇5〇電路,例 如如圖56所示的,抗上變頻器1052可以按照類似於上述m 相變頻帶通濾波器的方式實施。 圖113是根據本發明一個實施例的偏振接收器1〇6〇的示 意框圖,它包括鎖相環(PLL) 1068、模數轉換器(ADC 1064、 1066)、相位處理模組1〇62、峰值檢測器1〇7〇和幅度處理模 組1062。PLL 1068包括相位和頻率檢測器(pFD)、電荷栗、 環路濾波器、壓控振盪器(VC0)、分頻器(可以是1:1分頻 器)、求和模組以及調製器(sigma_ddta)模組。 在一個運行的例子中,天線接收入站处信號(例如 AOOcosCwRFOO+e⑼)並將其通過FEM (未示出)提供給接收 器部的PLL 1068和峰值檢測器1070。峰值檢測器1〇7〇(可能 疋包絡檢測器)分離幅度項(例如A⑴)。然後,通過a£>c 1064、1066將幅度項轉換數位信號。PLL 1〇68處理入站处 信號的cos^Rpie+eCt))以提取相位信號(例如θ⑴)。處理模組 1062解析幅度信號和相位信號以恢復發射的資料。 圖U4是根據本發明一個實施例的暫存器電路的示意框 圖該電路可以用於連接本地振盪器的PLL 1082與下變頻混 頻模組的混頻器和/或上變頻混頻模組。暫存器電路包括差分 暫存器和編織連接1086。編織連接1086產生了增加的電感(相 對于並聯線路)’從而衰減了給混頻器的不期望的高頻分量。 另外,可以選擇編織連接1086的大小和性質以得到所期望的 線路間電容,從而產生調諧的且分佈的L-C電路。 圖115是根據本發明一個實施例的交織連接11〇〇的示意 109 201212553 框圖’它包括位於基板(例如裸片、封裝基板等)—層上的第 一線路她於基板另-層上㈣—線路。這麵路麵層上交 織以提高相互間的磁耗合。另外,至少—條線路可 環路以增加其诚。 圖116是根據本發明-個實施例的接收器的示意框圖,它 包括輪入部、下變頻混頻部和互阻放大器(TIA 1126、1128)。 輸入部包括MN m2、增益模組、電感和電容。下變頻混頻部 包括混頻器和本地振m器。TIA1126、1128分別包括如圖連接 的^晶體和電阻。注意’正極輸人還可时制電阻與正極輸 出端上的電^狀_公共節點,貞極輸人射以連接到電阻 與負極輸出端上的電晶體之間的公共節點。 本文可到的,術語“基本上,,或“大約,,,對相應的術語 和/或元件__提供-内可接受的公差。這種業内可 接受的公紐小於1%到m,並職於,但不限於,元件值、 積體電路處理波動、溫度波動、上升和下降咖和/或熱雜訊。 組件間的關係從小百分比的差分到大的差分。本文還可能用到 的術5吾可操作地連接”、“連接”和/或“耦合,,,包括通過中間 元件(例如’該元件包括,但不限於,元件、元件、電路和/ 或模組)直接連接和/或間接連接,其中對於間接連接,中間 插入元件並不改變仏號的資訊,但可以調整其電流電平、電壓 電平和/或功率電平。本文還可能用到,推斷連接(亦即,一 個元件根據推論連接纟彳另—個元件)包括龍元件之間用相同 於“可操作地連接,,的方法直接和間接連接。本文還可能用到, 術語“可操作地連接,,,表明元件包括以下-個或多個:功率連 110 201212553 接、輸入、輸出等,用於在啟動時執行一個或多個相應功能並 可以進一步包括與-«多個其他元件_斷連接。本文還可 能用到,術語“相關的” ’正如這裏可能用的,包括單獨元件和 /或散入另—個元件的某個元件的直接和/或間接連接 。本文還 可能用到,術語“比較結果有利,,,正如這裏可能用的,指兩個 或多個元件、彳§號等之間的比較提供—個想要的關係。例如, 當想要的隱是健丨具妓於_2 _麟,當信號】的 幅度大於信號2的幅度或信號2的幅度小於信號丨幅度時,可 以得到有利的比較結果。 儘g上述附圖中示出的電晶體是場效應電晶體㈤丁), 但本領域技術人員應綱白,上述電晶體可以制任意類型的 =晶體結構,包括但不限於,雙極、金屬氧化物半導體場效應 電晶體(MOSFET)、N阱電晶體、p阱電晶體、猶型、耗 盡型以及零電壓閾值(VT)電晶體。 以上心助於說明指疋的功能和_的方法步驟對本發明 進行了贿。為了描述的雜,缝舰組賴師方法步驟 縣蝴_。細,只躲定的功能和關 係此夠適當地實現,界限和順序的變化是允許的。任何上述變 化的界限或順序應被視為捕麵制範圍内。 本發明至少部分借祕_個或多個實闕進行了描述 文所使用的本發明的實施例適用于說明本發明的方面、特徵、 概念和/或實例。構成本發_裝置、製造方法、機器和/ =物理實補可料括參考本靖駐少—個實施例進 描述的方面、特徵、概念、實例等中至少一項。 111 201212553 —以上還借助於說㈣些重要魏的魏模崎本發明進 订了描述。為了描述的方便’這些功能組成模組的界限在此處 ,專門定義。當這些重要的魏被適#地實晴,變化其界限 是允許的。類似地,流程圖模組也在此處被專門定義來說明某 些重要的功能,為廣泛應用,流程圖模組的界限和順序可以被 另外定義,只要仍能實現這些重要功能。上述功能模組、流程 圖功能模組的界限及順序的變化仍應被視為在權利要求保護 fe圍内。本領域技術人員也知悉此處所述的功能模組,和其他 的說明性模組、模組和元件,可以如示例或由分立組件、特殊 功能的積體電路、帶有適當軟體的處理器及類似的裝置組合而 成。 【圖式簡單說明】 圖1是現有技術無線通信裝置的示意框圖; 圖2是根據本發明一個實施例的可攜式計算通信裝置的 示意框圖; 圖3是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖4是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖5疋根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖6是根據本發明另一個實施例的可攜式計算通信裂置 的示意框圖; 112 201212553 圖7是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖8是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖9是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖10是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖11是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖12是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖13是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖14是根據本發明另一個實施例的可攜式計算通信裝置 的示意框圖; 圖15是根據本發明一個實施例的SOC的RF-IF接收器部 的示意框圖; 圖16是根據本發明另一個實施例的SOC的RF-IF接收器 部的不意框圖, 圖17是根據本發明另一個實施例的SOC的RF-IF接收器 部的示意框圖; 圖18是根據本發明另一個實施例的SOC的RF-IF接收器 部的示意框圖; 113 201212553 圖19是根據本發明另一個實施例的soc的财41?接收器 部的示意框圖; ° 圖20是根據本發明另一個實施例的S0C的奸丑接收器 部的示意框圖; 圖21疋根據本發明另一個實施例的SOC的接收号 部的不意框圖; 圖22是根據本發明另一個實施例的s〇C的^p_IF接收器 部的示意框圖; 圖23是根據本發明一個實施例的SOC的發射器部的示奄 框圖; 圖24是根據本發明—個實施例的s〇c的發射器部的示意 框圖; 圖25是根據本發明—個實施例的包含fTBPf (變頻帶通 濾波器)的RF-IF接收器部的一部分的示意框圖; 圖26是根據本發明—個實施例的用於rp_iF接收器部的 時鐘生成器的示意框圖; 圖27是根據本發明一個實施例的RF-IF接收器部的頻率 響應的示意圖; 圖28是根據本發明一個實施例的FTBPF的示意框圖; 圖29是根據本發明一個實施例的FTBPF的基帶分量的相 位和頻率回應的示意圖; 圖30是根據本發明一個實施例的FTBPF的RF分量的相 位和頻率回應的示意圖; 圖31是根據本發明另一個實施例的包含FTBPF (變頻帶 114 201212553 通濾波器)的RF-IF接收If部件的部分的示意框圖; 圖32是根據本發明另—個實施例的用於处正接收器部 件的時鐘生成器的示意框圖; 圖33是根據本發明另一個實施例的处_11?接收器部件的 頻率回應的示意圖; 圖34是根據本發明另一個實施例的包含FTBpF (變頻帶 通濾、波器)的购㈣收器部的部分的示意框圖; 圖35是根據本發明另一個實施例的用於处_正接收器部 件的時鐘生成器的示意框圖; 。。 圖36是根據本發明另—個實施例的处_正接收器部件的 頻率回應的示意圖; 圖37是根據本發明另—個實施例的包含FTBpF (變頻帶 遽波器)的RF-IF接收器部的—部分的示意框圖; 圖38是根據本發明另一個實施例的用於腦F接收器部 的時鐘生成器的示意框圖; ° 圖39是根據本發明另一個實施例的抓正接收器部 率回應的示意圖; 圖4〇是根據本發明另—個實施例的包含FTBPF (變頻帶 通;慮波器)的RF-IF接收H部的一部分的示意框圖; 圖41是根據本發明另一個實施例的用於处-正接收器部 的時鐘生成器的示意框圖; 圖42是根據本發明另一個實施例的抓正接收器部的 率回應的示意圖; 圖43是根據本發明另—個實施例的包含FTBpF (變頻帶 115 201212553 通遽、波器)的RF_IF接收器部的部分的示意框圖; 圖44是根據本發明另一個實施例的用於处_正接收器部 的時鐘生成器的示意框圖; 圖45是根據本發明另一個實施例的包含fTBPF (變頻帶 通慮波器)的RF-IF接收器部的部分的示意框圖; 圖46是根據本發明另一個實施例的用於处_正接收器部 的時鐘生成器的示意框圖; 圖47是根據本發明一個實施例的複數基帶(BB)濾波器 的示意框圖; 圖48是根據本發明一個實施例的將複數BB濾波器頻率 響應轉換為高Q值RF遽波器頻率回應的示意圖; 圖49是根據本發明另—個實施例的包含FTBpF (變頻帶 通據波器)的RF_IF接㈣部的部分㈣意框圖; 圖50疋根據本發明另—個實施例的用於肝_正接收器 的時鐘生成器的示意框圖; 。σ 圖51是根據本發明另—個實施例的队正接收器部 率回應的示意圖; 1 圖52是根據本發明另—個實施例的包含FTBpF (變 通濾、波器)的RP-IF接收n部的部分的示意框圖; 圖53疋根據本發明另—個實關_於即_1?接收 的時鐘生成器的示意框圖; 圖54是根據本發明另—個實施例的包含FTBpF (變 通渡波器)的购F接收器部的—部分的示意框圖;帶 圖55是根據本發明另一個實施例的用於肌正接收器部 116 201212553 的時鐘生成器的示意框圖; 圖56是根據本發明一個實施例的負阻的示意框圖; 圖57是根據本發明另一個實施例的包含FTBPF (變頻帶 通渡波器)的RF-IF接收器部的一部分的示意框圖; 圖58是根據本發明另一個實施例的用於处_11?接收器部 的時鐘生成器的示意框圖; 圖59是根據本發明另一個實施例的包含ftbpf (變頻帶 通濾波器)的RF-IF接收器部的一部分的示意框圖; 圖60是根據本發明另—個實施例的用於处_11?接收器部 的時鐘生成器的示意框圖; 圖61是根據本發明一個實施例的处办接收器部的第一 LO的頻率回應的示意圖; 圖62是根據本發明一個實施例的处_正接收器部的第二 LO的頻率回應的示意圖; 圖63是根據本發明另一個實施例的包含FTBpF (變頻帶 通濾波器)的RF_IF接收器部的_部分的示意框圖; 圖64是根據本發明另一個實施例的包含混頻器的购f 接收器部的一部分的示意框圖; 圖65是根據本發明另一個實施例的抓正接收器部的時 鐘生成器的示意框圖; 圖66是根據本發明一個實施例的跨阻抗(打挪如网繼) 放大器(TIA)的示意框圖; 圖67是根據本發明一個實施例的包含FTBpF $低雜訊放 大器(LNA)的示意框圖; 201212553 圖68是根據本發明一個實施例的4相FTBPF (變頻帶通 遽波器)的示意框圖; 圖69是根據本發明一個實施例的4相FTBPF的頻率響應 的不意圖; 圖70是根據本發明另一個實施例的3相FTBPF (變頻帶 通滤波器)的示意框圖; 圖71是根據本發明一個實施例的3相FTBPF的時鐘信號 的示意圖; 圖72是根據本發明一個實施例的3相FTBPF的頻率響應 的示意圖; 圖73是根據本發明另一個實施例的4相FTBPF的示意框 圖; 圖74是根據本發明另一個實施例的4相FTBPF的示意框 圖; 圖75是根據本發明另一個實施例的4相FTBPF的示意框 圖; 圖76是根據本發明另一個實施例的4相FTBPF的示意框 圖; 圖77是根據本發明一個實施例的FTBPF的複數基帶阻抗 的不意框圖; 圖78是根據本發明一個實施例的4相FTBPF的示意框 面 · 園, 圖79是根據本發明一個實施例的m相FTBPF的示意框 圖; 118 201212553 圖80是根據本發明一個實施例的^相FTBPF的示意框 圖; 圖81是根據本發明一個實施例的m相FTBPF的示意框 圖; 圖82是根據本發明一個實施例的m相FTBPF的示意框 因 · 園, 圖83是根據本發明一個實施例的m相FTBPF的示意框 圖; 圖84是根據本發明一個實施例的m相FTBPF的頻率響 應的示意圖; 圖85是根據本發明一個實施例的m相FTBPF的時鐘生 成的不意框圖; 圖86是根據本發明另一個實施例的m相FTBPF的時鐘 生成器的示意框圖; 圖87是根據本發明另一個實施例的爪相FTBPF的時鐘 生成器的示意框圖; 圖88是根據本發明一個實施例的3相FTBPF的時鐘生成 器的示意框圖; 圖89是根據本發明另一個實施例的3相FTBPF的時鐘生 成器的示意框圖; 圖90是根據本發明一個實施例的前端模組(FEM)和SOC 中每一個的其中一部分的示意框圖; 圖91是根據本發明另一個實施例的前端模組(FEM)和 SOC中每一個的其中一部分的示意框圖;For an inbound RF signal, the antenna receives the signal and provides it to the ATU 840 which then provides it to the duplexer 838. The duplexer 838 outputs the inbound RF signal to the LNA 852 and the common mode sensing circuit. The functions of the common mode sensing circuit, the detector (10), the read engine mo, and the balanced network are as described above with reference to FIG. The processing module 846 is used to monitor various parameters of the FEM_. For example, the processing module 846 can monitor antenna impedance, transmit power, performance of the pA836 (eg, gain, linearity, bandwidth, efficiency, noise, output dynamic range, swing rate, rate of rise, build coffee, super woman, 敎Etc.), received signal strength, SNR, SIR, adjustments made by the tuning engine, etc. The processing module 846 parses these parameters to further optimize the performance of the deleted (four). For example, the processing module 846 can determine that adjusting the ATU 84 can improve the performance of the pA 836. At this point, the processing module _ addresses the LUT m to provide the desired setting for Xiao _. If this change in the ATU 840 affects the impedance balance between the thin _ and the 690 network, the modulo engine 85 will make the appropriate paving. In another embodiment, the processing module 846 provides the ability to adjust the balance of the ATU_ and balance network 842 to the performance of the FEM 830. In yet another embodiment, in the example embodiment, the balance network 842 is sturdy, and the ATU 840 provides the desired adjustment in the FEM 830 for the desired balance to obtain the desired impedance. The performance of the FEM 830. Figure 92 is a schematic block diagram of a portion of a front end module (FEM) 860 and a portion s C 862 for use in committing and committing bee writing, 2012-12553, in accordance with another embodiment of the present invention. This part of the FEM860 includes a power amplifier module (pA) 866, a duplexer, a balanced network, and a common mode sensing circuit. The duplexer includes a transformer (or other structure, such as a frequency selective double guard || and/or an electronic balance double guard), the flat path includes a switch, at least one variable resistor, and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the s〇c 862 includes a peak detector 872, an engine 874, a switch, and a low noise amplifier module (LNA) 876. Alternatively, peak detector 872 and/or tuning engine 874 can be located in FEM 860. In this embodiment, the duplexer is best suited for Frequency Division Duplex (FDD), used in 3G cellular telephone applications and the balanced network switch and LNA 876 switch are open. In Time Division Duplex (TDD) for 2G cellular applications, the balance network is crossed by switches. This basically eliminates the 3_dB theoretical insertion loss limit and leaves only the implementation loss (implementati〇n丨〇ss). Note that for 2G transmission, the LNA876 switch is off, and for 2G reception, the LNA876 is turned on when the switch is turned on. Note also that for the 3G mode, the functions of the FEM and s〇c 862 are as described with reference to Figs. 90 and/or 91. Figure 93 is a schematic block diagram of a portion of a front end module (FEM) 860 and a portion of a SOC 862 shown in the 2G τ χ mode, in accordance with one embodiment of the present invention. In this mode, the LNA 876 switch shorts the LNA 876 and the balanced network switch shorts the balanced network. Due to the short circuit across the secondary coil, the primary coil is also substantially shorted. Therefore, the PA866 is efficiently connected directly to the antenna. Figure 94 is a schematic block diagram of a portion of a front end module (FEM) 860 and a portion S 〇c 862 of Figure 92 in an rx mode, in accordance with one embodiment of the present invention. 100 201212553 In this mode, the LNA gate network is shorted. In this: set; open change =, closed, so will be flat balun transformer. The function of the τ 颜 器 is as used for the receiver section. FIG. 95 is a block diagram of the small signal balancing network 880 according to the present invention __ dry dr +1 + ^ example, which includes a plurality of eel body , a resistor and a capacitor. The balance of the net object is called the whistle (9) (four) bit) into the balance _ t packet capacitance can be corrected - (four) bit signal 例如 (for example, 5 bits) for control. For example, if the resistance side of the balanced network includes four resistor-transistor circuits, the common node of the resistor-transistor circuit (c_onnode) is connected to the drain of the next resistor-transistor circuit. In this example, each ridge is also connected to receive a 4-bit bit control signal. For example, the gate of the leftmost resistor_transistor circuit receives the most significant bit, the next leftmost resistor-transistor circuit receives the first most significant bit, and so on. In addition, the resistance of the leftmost resistor-transistor circuit is R4, and the resistance of the next leftmost resistor_transistor circuit is R3, and so on. Thus, for example, when the 4-bit control signal is 〇001, only the rightmost resistor-transistor circuit is turned on, and its resistor R1 provides the final resistance. When the 4-bit control signal is 〇〇11, the two rightmost resistance-transistor circuits are turned on and the final resistance is R1//R2. When the 4-bit control signal is 0111, the three resistor-transistor circuits at the right end are turned on, and the final resistance is R1//R2//R3. When the 4-bit control signal is 1111, all four resistor-transistor circuits are turned on and the final resistance is R1//R2//R3//R4. The capacitive side function of the balanced network is similar. In another embodiment, each of the resistor-transistor circuit and each of the capacitors can be independently controlled by the bits of the respective control signals. The four-resistor-transistor circuit configuration 'control signal 1000' described in the above figures and modified herein produces a resistor R4; the control signal 0100 produces a resistor R3; the control signal 1010 produces a resistor R4//R2; and so on. Figure 96 is a schematic block diagram of a large signal balancing network 882 that includes an RLC (resistor-inductor-capacitor) network and a plurality of transistors, in accordance with one embodiment of the present invention. The transistor is gated on and off to provide a different combination of resistance, inductance and/or capacitance of the RLC network to achieve the desired balanced network impedance. At this point, the transistor has a relatively small voltage swing, so a lower voltage transistor can be used. Figure 97 is a schematic block diagram of a portion of a front end module (fem) and a portion SOC 892, in accordance with another embodiment of the present invention. This part of the FEM 890 includes Power Amplifier Module (PA) 896, Duplexer_, Balanced Network_, and Common Mode Inductor. Duplexer 898 includes a transformer (or other structure, such as frequency selectable duplexer 898 and/or electronically balanced duplexer _), and the balanced network includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion includes a peak detector 〇2, a tuning engine 904, a leak detection 906 module, and a low noise amplifier module (LNA) 908. Alternatively, the peak detector 9 〇 2, the module and/or the machine guide (4) He Cong in the leg (four) towel. In addition to the leak detection (4) 9〇6 module, the function of this embodiment is similar to the example. The Leakage Module is used to detect changes in the transistor's on-resistance of the balanced network-circuit based on the PA 896 output. For example, if the output of the willow is increased, the balance network _ transistor's on-resistance will change. This changes the overall impedance of the balanced network_. Corresponding (d) Leakage Detection 9Q6 Module ^ 102 201212553 On-resistance changes and provides a representative signal to tuning engine 904 and/or processing module (as shown in Figure 91). The tuning engine 9〇4 adjusts the impedance of the balancing network 900 based on the input of the leak detection 906 module. Alternatively or in addition, the processing module uses the input from the leak detection 906 module to adjust the ATU settings. Regardless of which particular method is employed, the variation in the on-resistance of the transistor in the balance network 900 and/or in the power amplifier is compensated. Figure 98 is a schematic block diagram of a portion of a front end module (fem) 910 and a portion of a SOC 912, in accordance with another embodiment of the present invention. This portion of the FEM 910 includes a power amplifier module (ΡΑ) 916, a duplexer 918, a balanced network 920, and a common mode mitigation circuit. The duplexer 918 includes a transformer (or other structure, such as a frequency selectable duplexer 918 and/or an electronically balanced duplexer 918) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of SOC 912 includes peak detector 922, processing module 926 (which includes the functionality of the tuning engine), and low noise amplifier module (LNA) 924. Alternatively, the peak detector 922 and/or the tuning engine can be located in the FEM 910. For the ability to adjust the chirp attenuation and/or rx gain of duplexer 918, the functionality of this embodiment is similar to the embodiment shown in FIG. For example, when the transmit power is relatively low (eg, the blockage of the inbound RF signal is small and/or the signal strength of the signal at the inbound is relatively high), the processing module 926 provides a signal to the duplexer 918 to enable duplexing. The 918 reduces the enthalpy attenuation, thereby reducing insertion loss. For example, if the duplexer 918 includes a transformer and/or other type of frequency selectable duplexer 918 as shown in Fig. 90, a partial filter can be shorted to increase her by the generation of the 2012. As another example, if the double guard (10) includes an electronic balance duplexer, the separation can balance the separation phase balance of the network. Figure 疋 According to the local Ming and other examples of the front-end module (yang 930 and part of the S0C 932 schematic block diagram. This part of the 93 包括 includes the power amplifier module (PA) 936, duplexer 938 and balance network Road _. Duplexer 938 includes transformer H (or other structure, such as frequency selectable duplexer (10) ^ or electronic balance double 4 (10)), parasitic capacitance and mineral capacitance, the balanced network includes a variable resistance and at least - Variable capacitance. The common mode sensing circuit includes a pair of resistors connected between the transformer secondary. This part of the s〇c 932 includes a peak detector, a processing module (including the function of the tuning engine), and a low noise amplifier. Module (LNA) 940. Only LNA 94 is shown. In this embodiment t, the compensation capacitor is added to compensate for the parasitic capacitance (eg, 卬 and Cp2), which is due to the primary coil (eg, li and ^) Therefore, the compensation capacitor (Ccl and Μ) is selected to make Cpl+CcBu CP2+Ce2. After adding the compensation capacitor, the duplexer's separation bandwidth is larger than the separation bandwidth without the compensation capacitor. 〇〇 is another embodiment in accordance with the present invention A schematic block diagram of a portion of the front end module (FEM) 950 and a portion of the LNA 952. This portion of the FEM includes a power amplifier module (PA) 954, a duplexer 956, and a balanced network 958. The duplexer 956 includes a transformer (or other Structure 'inventory flat thief: please), can (four) Cp4). The LNA 952 includes an input transistor, a bias transistor, an inductor (L3), and a load impedance (Z), wherein the input transistor has a parasitic capacitance (Cp). Since the L3 ’ duplexer 956 and the 952 common mode interval 104 201212553 are included in the LNA 952, the input configuration is improved compared to the traditional LNA 952. Figure 101 is a schematic representation of a portion of the front end module (FEM) and a portion of the LNA _ effect shown in Figure 1 of the present invention. This schematic shows how the common mode spacing is improved. The unbalanced current connected to the secondary coil (L) through the parasitic capacitance (Cp3 and CP4) of the transformer is connected to a different spectral circuit, which is formed by the domain (L3) and the parasitic capacitance of the input transistor. The resonant circuit provides high differential impedance and low common mode impedance. Figure 102 is a schematic block diagram of a portion of a front end module (FEM) 960 and a portion of a SCC %2 in accordance with another embodiment of the present invention. This part of Cong 96〇 includes power amplifier module (PA), duplexer, balanced network 97〇 and common mode sensing circuit. The double includes the marrow|| (or other structure, such as a freshly selectable duplexer and/or an electronically balanced duplexer), and the balanced turn includes at least one variable resistor and a variable electric valley. The common mode sensing circuit includes a pair of resistors connected between the secondary of the transformer. This portion of the SOC 962 includes a peak detector 974, a processing module 976 (which includes the functionality of the tuning engine), and a single-ended low noise amplifier module (LNA) 972. Alternatively, the peak detectors 9-4 and/or the metrology engine can be located in the FEM 960. In this embodiment, the common mode spacing is substantially eliminated by using a single-ended LNA 972. The functions of the FEM 960 and other parts of the SOC 962 shown in the figure are as described above. Figure 103 is a schematic block diagram of a transformer of a duplexer including a primary coil (L1 & L2) and a secondary coil (L2), in accordance with one embodiment of the present invention. The primary coils each have the same number of turns; the secondary coils can have the same number of turns or different turns as the primary coil. The winding of the coil is as shown. 105 201212553 Figure 104 is an illustration of the implementation of the variation (4) implemented on the four thick metal layers of the IC package substrate and/or the integrated circuit on the printed circuit board in accordance with one embodiment of the present invention. The primary coil is on the upper two layers and the secondary coil is on the lower two layers. The first coil of the secondary layer on the - layer can be connected in series or in parallel with other coils on the other layers. Figure 105 is a schematic illustration of an implementation of a transformer on an IC armor substrate and/or three thick metal layers of 1C on a barbed circuit board in accordance with one embodiment of the present invention. The primary coil is located on the top layer and is used under the interconnection ^ at least one primary coil can be rotated 90. . The secondary coil is located on the third layer below. Figure 106 is a schematic block diagram of a portion of a front end module (FEM) 990 and a portion s〇c 992 in accordance with another embodiment of the present invention. This part of Cong 99〇 includes power amplifier module (PA) 994, duplexer 9%, balanced network 1〇〇〇, tone injection module 998 and common mode sensing circuit. The duplexer _ includes a transformer (or other structure such as a frequency selective duplexer 9% 电 or an electronically balanced duplexer 996) that includes at least one variable resistor and at least one variable capacitor. The common mode sensing circuit includes - a pair of resistors connected between the secondary of the transformer. This part of the S0C 962 includes the peak detector biliary, the processing module brain (the quoting element), the baseband alcohol element, and the sounding amplifier module (LNA) 1006. Alternatively, the peak detectors can be located in the FEM 990. In a running example, the functions of the ...., the analog sensing circuit, the engine, the inspection and balancing network 1000 are as described above. In the case of multiple reports, each receiver band is lower than or equal to LNA1__decombination and pieces; small transmitter (τχ) and/or receiver (RX) noise. When τχ~ or 杂 106 201212553 is at or below the noise platform, it is difficult to trace the impedance of the antenna. To enhance tracking of the antenna impedance, the tone module 998 injects a tone into the receiver band (eg, Ac〇s (0r^(9)). The duplexer 996 attenuates the RX tone differently than the TXk number because it is located In the rx band, and the duplexer 996 and the balanced network 1 are tunable for the τ χ band. Therefore, an easily detectable leakage signal is generated on the RX side of the duplexer 996 (e.g., on the secondary of the transformer). The leakage signal based on the RX tone propagates through the receiver section until it is converted to a baseband signal. At baseband, the tone amplitude is a measure of the RX band spacing. Depending on the measured value of the RX band spacing, the impedance of the antenna can be determined. The impedance change 'can adjust the antenna tuning unit and/or the balance network 1000 to track the impedance of the antenna. Note that the tone can be easily removed at the baseband. Figure is a partial front end module (FEM) according to another embodiment of the present invention A schematic block diagram of 1010 and part s〇c 1〇12. This part of FEM1〇1〇 includes power amplifier module (pA) 1〇14, duplexer 1〇16, balanced network 1018 and common mode sensing circuit ( Not shown The duplexer includes a transformer (or other structure, such as frequency selective duplexer 1〇16 and/or electronically balanced duplexer 1016.) The common mode sensing circuit includes a pair of resistors connected between the transformer secondary. This portion of the view includes the peak detector dirty (not shown), the processing module 1020 (which performs the functions of the tuning engine), and the low noise amplifier module (LNA) 1022. Alternatively, the peak detector 1〇〇2 and The tuning engine can be located in the FEM 1010. The balancing network 1018 includes an RLC network having a plurality of 107 201212553 variable resistors, a plurality of variable capacitors, and at least one inductor. In this embodiment, ... The network 1018 is balanced to provide a substantially variable impedance to better match the antenna impedance. FIG. 108 is a schematic block diagram of the impedance of a balanced body (RT) circuit in accordance with an embodiment of the present invention. The capacitance is equivalent to the capacitance of the transistor. Since the RT circuit includes a true passive resistor, it can contribute to the 3dB theoretical limit on the insertion loss. Figure 1-9 is a balanced network in accordance with another embodiment of the present invention. The resistance- A schematic block diagram of the impedance of a transistor (RT) circuit. In this embodiment, the r_t circuit includes an inductively weakened common-source transistor. Therefore, it is an active resistor, not a 3dB theory of insertion loss. The limit contributes. Therefore, the only loss of the balanced network is the implementation loss. Figure 110 is a schematic block diagram of a balanced network 1〇3〇 according to an embodiment of the invention, which includes impedance upconversion H 1G32 and Or multiple baseband impedances (full 1034). The impedance upconverter is synchronized with the desired frequency (eg fL〇 or y. The combination of impedance upconversion H 1G32 and baseband impedance can be implemented in accordance with the above m-phase variable frequency bandpass filter) . Figure 111 is a schematic block diagram of a balanced network in accordance with another embodiment of the present invention, including two impedance upconverter legs, 1044 and corresponding baseband impedances (zbb 1046, 1048). Each impedance upconverter is synchronized to the desired frequency (eg fRF τχ or fRF_RX). Each combination of impedance upconverters 1〇42, 1〇44 and one or more baseband impedances can be implemented in a manner similar to the m-phase variable frequency band-waves described above. Figure 112 is a schematic block diagram of a negative 108 201212553 impedance 1050 for balancing a network, in accordance with one embodiment of the present invention. The circuit includes a baseband negative impedance 1〇5〇 circuit. For example, as shown in Fig. 56, the anti-upconverter 1052 can be implemented in a manner similar to the m-phase variable frequency band pass filter described above. Figure 113 is a schematic block diagram of a polarization receiver 1〇6〇 including a phase-locked loop (PLL) 1068, an analog-to-digital converter (ADC 1064, 1066), and a phase processing module 1〇62, in accordance with one embodiment of the present invention. The peak detector 1〇7〇 and the amplitude processing module 1062. The PLL 1068 includes a phase and frequency detector (pFD), a charge pump, a loop filter, a voltage controlled oscillator (VC0), a frequency divider (which can be a 1:1 divider), a summing module, and a modulator ( Sigma_ddta) module. In one operational example, the antenna receives an inbound signal (e.g., AOOcosCwRFOO+e(9)) and provides it to the PLL 1068 and peak detector 1070 of the receiver section via an FEM (not shown). The peak detector 1〇7〇 (possibly the envelope detector) separates the amplitude term (eg A(1)). The amplitude term is then converted to a digital signal by a£>c 1064, 1066. PLL 1〇68 processes the cos^Rpie+eCt) of the signal at the inbound to extract the phase signal (e.g., θ(1)). Processing module 1062 parses the amplitude and phase signals to recover the transmitted data. Figure U4 is a schematic block diagram of a scratchpad circuit that can be used to connect a local oscillator PLL 1082 to a mixer of a downconversion mixing module and/or an upconversion mixing module, in accordance with one embodiment of the present invention. . The scratchpad circuit includes a differential register and a braided connection 1086. The braided connection 1086 produces an increased inductance (relative to the parallel line)' thereby attenuating undesirable high frequency components to the mixer. In addition, the size and nature of the braided connection 1086 can be selected to achieve the desired inter-line capacitance, resulting in a tuned and distributed L-C circuit. Figure 115 is a schematic illustration of an interleaving connection 11 109 201212553 block diagram 'which includes a first line on a substrate (e.g., die, package substrate, etc.) layer on her substrate (the other layer) -line. This pavement layer is interwoven to increase magnetic compatibility with each other. In addition, at least one line can be looped to increase its honesty. Figure 116 is a schematic block diagram of a receiver including a wheeling section, a downconversion mixing section, and a transimpedance amplifier (TIA 1126, 1128) in accordance with an embodiment of the present invention. The input section includes a MN m2, a gain module, an inductor, and a capacitor. The downconverting mixing section includes a mixer and a local oscillator. The TIA1126 and 1128 respectively include a crystal and a resistor connected as shown in the figure. Note that the positive input can also be used to connect the resistor to the common node on the positive output, and the drain is connected to the common node between the resistor and the transistor on the negative output. As used herein, the term "substantially," or "about," provides an acceptable tolerance to the corresponding term and/or component. This industry-acceptable public is less than 1% to m and is used for, but not limited to, component values, integrated circuit processing fluctuations, temperature fluctuations, rising and falling coffee, and/or thermal noise. The relationship between components varies from a small percentage difference to a large difference. Also possible herein is a operative connection, "connection" and/or "coupling", including through intermediate elements (eg, 'the element includes, but is not limited to, elements, elements, circuits, and/or modes Group) direct and/or indirect connections, where for intermediate connections, the intermediate insertion element does not change the information of the apostrophe, but its current level, voltage level and/or power level can be adjusted. It is also possible in this paper to infer connections (that is, one element is connected to another element according to inference), including direct and indirect connections between dragon elements using the same method as "operably connected." The term "operably connected" means that the element comprises the following one or more: power connection 110 201212553 connection, input, output, etc., for performing one or more corresponding functions at startup and may further include - «Multiple other components _ broken connection. As used herein, the term "associated" as used herein may include a direct and/or indirect connection of a single element and/or an element that is interspersed with another element. It may also be used herein that the term "comparison results are advantageous, as may be used herein, to refer to a comparison between two or more elements, 彳§, etc. to provide a desired relationship. For example, when desired Hidden is that the health of the 丨 _ _ _, when the amplitude of the signal is greater than the amplitude of the signal 2 or the amplitude of the signal 2 is less than the amplitude of the signal ,, can obtain favorable comparison results. The crystal is a field effect transistor (five), but those skilled in the art should understand that the above transistor can be made into any type of crystal structure, including but not limited to, bipolar, metal oxide semiconductor field effect transistor (MOSFET). , N-well transistor, p-well transistor, yaw type, depletion mode, and zero voltage threshold (VT) transistor. The above description helps explain the function of the fingerprint and the method steps of the invention. Miscellaneous, suspending the ship's method of stepping down the county. _. Fine, only dodging functions and relationships are properly implemented, boundaries and order changes are allowed. The boundaries or order of any of the above changes should be considered as the face Within the scope of the system. The present invention has been described with respect to the embodiments of the present invention, which are used to illustrate the aspects, features, concepts and/or examples of the present invention. The machine and / = physical compensation may include at least one of the aspects, features, concepts, examples, etc. described in the description of the present invention. 111 201212553 - The above also means by means of (four) some important Wei's Wei model Saki has made a description of the invention. For the convenience of description, the boundaries of these functional components are defined here. When these important Weis are properly cleared, changing their boundaries is allowed. Similarly, the process The graph module is also specifically defined here to illustrate some important functions. For a wide range of applications, the boundaries and order of the flowchart module can be additionally defined as long as these important functions can still be realized. Variations in the boundaries and order of the functional modules are still considered to be within the scope of the claims. Those skilled in the art are also aware of the functional modules described herein, and other illustrative modules, The group and elements may be combined as an example or by a discrete component, a special function integrated circuit, a processor with appropriate software, and the like. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a prior art wireless communication device. 2 is a schematic block diagram of a portable computing communication device in accordance with one embodiment of the present invention; FIG. 3 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; A schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 5 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 6 is another embodiment of the present invention. A schematic block diagram of a portable computing communication split; 112 201212553 FIG. 7 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 8 is a portable embodiment in accordance with another embodiment of the present invention. FIG. 9 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 10 is another embodiment of the present invention. FIG. 11 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; FIG. 12 is a portable computing communication in accordance with another embodiment of the present invention. Figure 13 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; Figure 14 is a schematic block diagram of a portable computing communication device in accordance with another embodiment of the present invention; 15 is a schematic block diagram of an RF-IF receiver section of a SOC according to an embodiment of the present invention; FIG. 16 is a block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention, and FIG. 17 is A schematic block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention; FIG. 18 is a schematic block diagram of an RF-IF receiver section of a SOC according to another embodiment of the present invention; 113 201212553 FIG. A schematic block diagram of a sigma receiver portion of a soc according to another embodiment of the present invention; FIG. 20 is a schematic block diagram of an ugly receiver portion of a SOC according to another embodiment of the present invention; Another embodiment of the SO of the invention FIG. 22 is a schematic block diagram of a ^p_IF receiver section of s〇C according to another embodiment of the present invention; FIG. 23 is a transmitter section of a SOC according to an embodiment of the present invention. Figure 24 is a schematic block diagram of a transmitter portion of s〇c in accordance with an embodiment of the present invention; Figure 25 is a diagram including fTBPf (frequency bandpass filter) in accordance with an embodiment of the present invention. A schematic block diagram of a portion of an RF-IF receiver portion; Figure 26 is a schematic block diagram of a clock generator for the rp_iF receiver portion in accordance with an embodiment of the present invention; Figure 27 is an RF diagram in accordance with one embodiment of the present invention. Figure 28 is a schematic block diagram of an FTBPF according to an embodiment of the present invention; Figure 29 is a schematic diagram of phase and frequency response of a baseband component of an FTBPF according to an embodiment of the present invention; 30 is a schematic diagram of phase and frequency response of an RF component of an FTBPF according to an embodiment of the present invention; FIG. 31 is an RF-IF receiving If component including an FTBPF (frequency conversion band 114 201212553 pass filter) according to another embodiment of the present invention; part Figure 32 is a schematic block diagram of a clock generator for aligning receiver components in accordance with another embodiment of the present invention; Figure 33 is a _11? receiver component in accordance with another embodiment of the present invention. FIG. 34 is a schematic block diagram of a portion of a purchase (four) receiver portion including an FTBpF (frequency conversion band pass filter, wave device) according to another embodiment of the present invention; FIG. 35 is another embodiment of the present invention. A schematic block diagram of a clock generator for a _ positive receiver component; . 36 is a schematic diagram of frequency response of a positive receiver component in accordance with another embodiment of the present invention; and FIG. 37 is an RF-IF reception including FTBpF (frequency conversion chopper) in accordance with another embodiment of the present invention. FIG. 38 is a schematic block diagram of a clock generator for a brain F receiver portion according to another embodiment of the present invention; FIG. 39 is a grasping diagram according to another embodiment of the present invention. A schematic diagram of a positive receiver portion rate response; FIG. 4A is a schematic block diagram of a portion of an RF-IF receiving H portion including an FTBPF (frequency conversion band pass; wave filter) according to another embodiment of the present invention; A schematic block diagram of a clock generator for a positive-positive receiver portion in accordance with another embodiment of the present invention; FIG. 42 is a schematic diagram of a rate response of a grab receiver portion in accordance with another embodiment of the present invention; A schematic block diagram of a portion of an RF_IF receiver portion including an FTBpF (frequency band 115 201212553 wanted, wave) in accordance with another embodiment of the present invention; FIG. 44 is a diagram for use in accordance with another embodiment of the present invention. Schematic diagram of the clock generator of the receiver section Figure 45 is a schematic block diagram of a portion of an RF-IF receiver section including an fTBPF (Frequency Variable Bandpass Filter) in accordance with another embodiment of the present invention; Figure 46 is a diagram for use in accordance with another embodiment of the present invention; Figure 47 is a schematic block diagram of a complex baseband (BB) filter in accordance with one embodiment of the present invention; Figure 48 is a plurality of BBs in accordance with one embodiment of the present invention. A schematic diagram of a filter frequency response converted to a high Q RF chopper frequency response; FIG. 49 is a partial (four) frame of an RF_IF connection (four) portion including an FTBpF (frequency bandpass data filter) in accordance with another embodiment of the present invention. Figure 50 is a schematic block diagram of a clock generator for a liver_positive receiver in accordance with another embodiment of the present invention; σ Figure 51 is a schematic diagram of a team positive receiver rate response in accordance with another embodiment of the present invention; 1 Figure 52 is an RP-IF reception including FTBpF (variable filter, waver) in accordance with another embodiment of the present invention. A schematic block diagram of a portion of n; FIG. 53 is a schematic block diagram of a clock generator received according to another embodiment of the present invention; FIG. 54 is a diagram showing an FTBpF according to another embodiment of the present invention. A schematic block diagram of a portion of the F receiver portion of the (variable waver); FIG. 55 is a schematic block diagram of a clock generator for the muscle positive receiver portion 116 201212553 according to another embodiment of the present invention; 56 is a schematic block diagram of a negative resistance according to an embodiment of the present invention; FIG. 57 is a schematic block diagram of a portion of an RF-IF receiver section including an FTBPF (Frequency Variable Bandpass Waver) according to another embodiment of the present invention; Figure 58 is a schematic block diagram of a clock generator for a receiver portion according to another embodiment of the present invention; Figure 59 is a diagram including a ftbpf (frequency band pass filter) according to another embodiment of the present invention. A schematic block diagram of a portion of the RF-IF receiver section; 60 is a schematic block diagram of a clock generator for the _11? receiver section in accordance with another embodiment of the present invention; FIG. 61 is a frequency of the first LO of the receiver portion in accordance with one embodiment of the present invention. Figure 62 is a schematic diagram of the frequency response of the second LO at the positive receiver portion; Figure 63 is a diagram showing the inclusion of an FTBpF (frequency bandpass filter) in accordance with another embodiment of the present invention. Figure 64 is a schematic block diagram of a portion of a f-receiver portion including a mixer; Figure 65 is another embodiment of the present invention, in accordance with another embodiment of the present invention; FIG. 66 is a schematic block diagram of a transimpedance (TIA) amplifier according to an embodiment of the present invention; FIG. 67 is a schematic block diagram of a transimpedance (TIA) amplifier according to an embodiment of the present invention; A schematic block diagram of an embodiment comprising a FTBpF$low noise amplifier (LNA); 201212553 Figure 68 is a schematic block diagram of a 4-phase FTBPF (frequency bandpass chopper) in accordance with one embodiment of the present invention; One embodiment of the present invention FIG. 70 is a schematic block diagram of a 3-phase FTBPF (frequency conversion band pass filter) according to another embodiment of the present invention; FIG. 71 is a 3-phase FTBPF according to an embodiment of the present invention. Figure 72 is a schematic diagram of the frequency response of a 3-phase FTBPF in accordance with one embodiment of the present invention; Figure 73 is a schematic block diagram of a 4-phase FTBPF in accordance with another embodiment of the present invention; Schematic block diagram of a 4-phase FTBPF of one embodiment; FIG. 75 is a schematic block diagram of a 4-phase FTBPF according to another embodiment of the present invention; FIG. 76 is a schematic block diagram of a 4-phase FTBPF according to another embodiment of the present invention; Figure 77 is a block diagram of a complex baseband impedance of an FTBPF in accordance with one embodiment of the present invention; Figure 78 is a schematic illustration of a 4-phase FTBPF in accordance with one embodiment of the present invention, and Figure 79 is a block diagram of a 4-phase FTBPF in accordance with one embodiment of the present invention. Schematic block diagram of a m-phase FTBPF; 118 201212553 FIG. 80 is a schematic block diagram of a phase FTBPF according to an embodiment of the present invention; FIG. 81 is a schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention; A schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention, FIG. 83 is a schematic block diagram of an m-phase FTBPF according to an embodiment of the present invention; and FIG. 84 is a frequency response of an m-phase FTBPF according to an embodiment of the present invention. Figure 85 is a schematic block diagram of clock generation of an m-phase FTBPF according to an embodiment of the present invention; Figure 86 is a schematic block diagram of a clock generator of an m-phase FTBPF according to another embodiment of the present invention; A schematic block diagram of a clock generator of a claw phase FTBPF according to another embodiment of the present invention; FIG. 88 is a schematic block diagram of a clock generator of a 3-phase FTBPF according to an embodiment of the present invention; FIG. 89 is another A schematic block diagram of a clock generator for a 3-phase FTBPF of an embodiment; FIG. 90 is a schematic block diagram of a portion of each of a front-end module (FEM) and a SOC, in accordance with one embodiment of the present invention; A schematic block diagram of a front end module (FEM) and a portion of each of the SOCs of another embodiment;

119 S 201212553 圖92是根據本發明另一個實施例的前端模組(fem )和 SOC中每一個的其中一部分的示意框圖; 圖93是根據本發明一個實施例的2G TX模式下前端模組 (FEM)和SOC中每一個的其中一部分的示意框圖; 圖94是根據本發明一個實施例的2GTX模式下前端模組 (FEM)和SOC中每一個的其中一部分的示意框圖; 圖95是根據本發明一個實施例的小信號平衡網路的示意 框圖; 圖96是根據本發明一個實施例的大信號平衡網路的示意 框圖; 圖97是根據本發明另一個實施例的前端模組(FEM)和 SOC中母一個的其中一部分的示意框圖; 圖98是根據本發明另一個實施例的前端模組(FEM)和 SOC中母一個的其中一部分的示意框圖; 圖99是根據本發明另一個實施例的前端模組(FEM)和 SOC中每一個的其中一部分的示意框圖; 圖100是根據本發明另一個實施例的前端模組(FEM)和 LNA中每一個的其中一部分的示意框圖; 圖101是根據本發明一個實施例的前端模組(FEM)和 LNA中每一個的其中一部分的等效電路的示意框圖; 圖102是根據本發明另一個實施例的前端模組(FEM)和 LNA中每一個的其中一部分的示意框圖; 圖103是根據本發明一個實施例的變壓器巴侖 (transformerbalim)的示意框圖; 120 201212553 圖104是根據本發明一個實施例的變壓器巴命 (transformerbalun)的實施示意圖; 圖105是根據本發明另一個實施例的變壓器巴侖 (transformerbalun)的實施示意圖; 圖106是根據本發明另一個實施例的前端模組(FEM)和 LNA中每一個的其中一部分的示意框圖; 圖107是根據本發明另一個實施例的前端模組(FEM)和 LNA中每一個的其中一部分的示意框圖; 圖108是根據本發明一個實施例的阻抗的示意框圖; 圖109是根據本發明另一個實施例的阻抗的示意框圖; 圖110是根據本發明一個實施例的平衡網路的示意框圖; 圖111是根據本發明另一個實施例的平衡網路的示意框 圖; 圖112是根據本發明一個實施例的負阻抗的示意框圖; 圖113是根據本發明一個實施例的偏振接收器的示意框 iS| · 園, 圖114是根據本發明一個實施例的暫存器電路的示意框 圖; 圖115是根據本發明一個實施例的編織連接(weaved connection)的示意框圖; 圖116是根據本發明一個實施例的接收器的示意框圖。 【主要元件符號說明】 可攜式計算通信裴置10 片上系統(S0C) 12 前端模組(KEM) 14 天線16119 S 201212553 FIG. 92 is a schematic block diagram of a portion of each of a front end module (fem) and a SOC according to another embodiment of the present invention; FIG. 93 is a front end module in a 2G TX mode according to an embodiment of the present invention. A schematic block diagram of a portion of each of (FEM) and SOC; FIG. 94 is a schematic block diagram of a portion of each of the front end module (FEM) and SOC in 2GTX mode, in accordance with one embodiment of the present invention; Is a schematic block diagram of a small signal balancing network in accordance with one embodiment of the present invention; FIG. 96 is a schematic block diagram of a large signal balancing network in accordance with one embodiment of the present invention; FIG. 97 is a front end in accordance with another embodiment of the present invention. A schematic block diagram of a module (FEM) and a portion of a parent in the SOC; FIG. 98 is a schematic block diagram of a front end module (FEM) and a portion of the parent in the SOC according to another embodiment of the present invention; Is a schematic block diagram of a portion of each of a front end module (FEM) and a SOC according to another embodiment of the present invention; FIG. 100 is a diagram of each of a front end module (FEM) and an LNA according to another embodiment of the present invention. of BRIEF DESCRIPTION OF THE DRAWINGS FIG. 101 is a schematic block diagram of an equivalent circuit of a portion of each of a front end module (FEM) and an LNA in accordance with one embodiment of the present invention; FIG. 102 is another embodiment of the present invention A schematic block diagram of a portion of each of a front end module (FEM) and an LNA; FIG. 103 is a schematic block diagram of a transformer balim in accordance with one embodiment of the present invention; 120 201212553 FIG. 104 is a diagram in accordance with the present invention Schematic diagram of a transformer balun of an embodiment; FIG. 105 is a schematic diagram of a transformer balun according to another embodiment of the present invention; FIG. 106 is a front end module (FEM) according to another embodiment of the present invention. Schematic block diagram of a portion of each of the LNAs; and FIG. 107 is a schematic block diagram of a portion of each of a front end module (FEM) and an LNA in accordance with another embodiment of the present invention; FIG. Schematic block diagram of impedance of one embodiment; FIG. 109 is a schematic block diagram of impedance in accordance with another embodiment of the present invention; FIG. Schematic block diagram of a balanced network of an embodiment; Figure 111 is a schematic block diagram of a balanced network in accordance with another embodiment of the present invention; Figure 112 is a schematic block diagram of a negative impedance in accordance with one embodiment of the present invention; A schematic block diagram of a polarization receiver according to an embodiment of the present invention, FIG. 114 is a schematic block diagram of a register circuit according to an embodiment of the present invention; FIG. 115 is a braided connection according to an embodiment of the present invention ( Schematic block diagram of a weaved connection; Figure 116 is a schematic block diagram of a receiver in accordance with one embodiment of the present invention. [Main component symbol description] Portable computing communication device 10 System-on-a-chip (S0C) 12 Front-end module (KEM) 14 Antenna 16

121 S 201212553 無表面聲波接收器部18 無表面聲波發射器部20 基帶處理單元 22 處理模組24 電源管理單元 26 接收器(RX)射頻(RF)-中頻(IF)部28 接收器(RX) IF-基帶(BB)部 30 1 變頻帶通濾波器(FTBPF) 32 功率放大器(PA) 34-36 接收器-發射器(RX-TX)分離模組38-40 天線調諧單元(ATU) 42-44 頻帶(FB)切換器46 前端模組(FEM) 50 片上系統(SOC) 52 天線調諧單元(ATU) 54 前端模組(FEM)網路60 前端模組(FEM) 62-68 RF連接70 RF連接 78 前端模組(FEM)網路80 變頻模組 82 RF-RJF變頻模組86 RF連接 90 片上系統(SOC) 100 片上系統(SOC) 110 中頻(IF) ·基帶(BB)接收器部112 BB_IF發射器部 114 前端模組(FEM)網路120 RP連接 122 RXRF-IF 部 124-130 TXIF-RF 部 132-138 片上系統(SOC) 140 刖端模組(FEM)網路142 中頻(IF)-基帶(bb)接收器部 144 BB_IF發射器部 146 RXRF-IF 部 148 TXIF-RJF 部 150 RF 連接 152-154 片上系統(s〇c) 160 前端模組(FEM)網路162 122 201212553 無SAW接收器(RX)下變頻部164 無SAW發射器(TX)上變頻部166 FEM 168-174 RF連接176 片上系統(SOC) 180 前端模組(FEM) 182 片上系統(SOC) 190 前端模組(FEM) 192 片上系統(SOC) 200 無SAW發射器部202 RF-IF接收器部 204 低雜訊放大器模組(LNA) 206 混頻模組 208 混頻暫存器 210-212 暫存器 214-220 變頻帶通濾波器(FTBPF)222 接收器IF-BB部 224 片上系統(SOC) 230 RF-IF接收器部 232 變頻帶通濾波器(FTBPF) 234 濾波器 236、238 片上系統(SOC) 240 RF-IF接收器部 242 低雜訊放大器模組(LNA) 244-246 混頻模組 248 互阻放大器(TIA )250-252 阻抗(Z) 254-256 暫存器 258-260 片上系統(SOC) 270 RF-IF接收器部271 RF變頻帶通濾波器(FTBPF) 272 低雜訊放大器模組(LNA) 274-276 混頻模組 278 互阻放大器(TIA ) 280-282 阻抗(Z) 284-286 IF FTBPF 288 片上系統(SOC) 290 RF-IF接收器部292 IF FTBPF 294 片上系統(SOC) 300 雙頻帶RF-IF接收器部302 變頻帶通濾波器(FTBPF) 304 低雜訊放大器模組(LNA) 306-308 123 201212553 混頻模組 310-312 混頻暫存器 314-320 濾波器322·328 片上系統(SOC ) 330 RF-IF接收器部332 RF變頻帶通濾波器(FTBPF) 334 低雜訊放大器模組(LNA) 336 變頻帶通濾波器(FTBPF) 338 混頻模組340 混頻暫存器 342-344 濾波器 346-348 片上系統(SOC) 350 變頻帶通濾波器(FTBPF) 低雜訊放大器模組(LNA) 片上系統(SOC) 360 上變頻混頻模組 362 發射器本地振盪模組(LO) 變頻帶通濾波器(FTBPF) RF-IF接收器部352 354 356 364 366 電容陣列 368-370 片上系統(SOC) 380 FEM 390 單端變頻帶通濾波器(FTBPF) 基帶阻抗(Zbb⑻) 396-402 時鐘生成器 404 差分FTBPF 412 時鐘生成器 422 複基帶濾波器 432 差分FTBPF 440 時鐘生成器 444 功率放大器驅動器(PAD) 372 發射器部382 LNA 392 394 單端 FTBPF 410 基帶阻抗(ZBB⑻)414-420 單端 FTBPF 430 時鐘生成器 434 複基帶濾波器442 基帶阻抗(ZBB(S)) 450-456 124 201212553 正增益級(Gm) 458 控制模組 470 可調基帶阻抗 480 可調負增益級 490 可編程的開關電容網路494 Q RF-IF混頻器 500 I混頻器 504 I混頻暫存器 522 負增益級(-GM) 460 時鐘生成器 476 可調正增益級 488 可選電容網路 492 可編程的開關電容濾波器496 混頻暫存器 502 時鐘生成器 510 Q混頻暫存器 523 IFFTBPF (變頻帶通濾波器)模組53〇 基帶阻抗(ZBBz(s)) 532、534、536、538、540、542、544、546 時鐘生成器 550 單端FTBPF 560 基帶阻抗(ZBB⑻)562、564、566、568 時鐘生成器 572 差分FTBPF 580 時鐘生成器 582 雙頻帶變頻帶通濾波器(FTBPF) 590 基帶阻抗(ZBB(s)) 592、594、596、598 時鐘生成器 600 雙頻帶差分變頻帶通濾波器(FTBPF) 610 基帶阻抗(ZBB(s)) 612 >614 >616 >618 互阻放大器(TIA ) 622、624 相關阻抗(Z ) 626、628 差分I 630 差分Q 632 時鐘生成器 634 相應阻抗(Z) 640、642 低雜訊放大器(LNA) 670 FTBPF 650、672、674、678 4 相 FTBPF 680121 S 201212553 Surfaceless Acoustic Receiver Unit 18 Surface Acoustic Wave Transmitter Unit 20 Baseband Processing Unit 22 Processing Module 24 Power Management Unit 26 Receiver (RX) Radio Frequency (RF) - Intermediate Frequency (IF) Section 28 Receiver (RX IF-Baseband (BB) Part 30 1 Variable Frequency Band Filter (FTBPF) 32 Power Amplifier (PA) 34-36 Receiver-Transmitter (RX-TX) Separation Module 38-40 Antenna Tuning Unit (ATU) 42 -44 Band (FB) Switcher 46 Front End Module (FEM) 50 System-on-Chip (SOC) 52 Antenna Tuning Unit (ATU) 54 Front End Module (FEM) Network 60 Front End Module (FEM) 62-68 RF Connection 70 RF Connection 78 Front End Module (FEM) Network 80 Frequency Conversion Module 82 RF-RJF Frequency Conversion Module 86 RF Connection 90 System-on-Chip (SOC) 100 System-on-Chip (SOC) 110 Intermediate Frequency (IF) · Baseband (BB) Receiver Part 112 BB_IF Transmitter Unit 114 Front End Module (FEM) Network 120 RP Connection 122 RXRF-IF Unit 124-130 TXIF-RF Unit 132-138 System on Chip (SOC) 140 Terminal Module (FEM) Network 142 Frequency (IF)-baseband (bb) receiver section 144 BB_IF transmitter section 146 RXRF-IF section 148 TXIF-RJF section 150 RF connection 152-154 on-chip System (s〇c) 160 Front End Module (FEM) Network 162 122 201212553 No SAW Receiver (RX) Downconverter 164 No SAW Transmitter (TX) Upconverter 166 FEM 168-174 RF Connection 176 System on Chip ( SOC) 180 Front End Module (FEM) 182 System-on-Chip (SOC) 190 Front End Module (FEM) 192 System-on-Chip (SOC) 200 No SAW Transmitter Unit 202 RF-IF Receiver Unit 204 Low Noise Amplifier Module (LNA) 206 Mixing Module 208 Mixing Register 210-212 Register 214-220 Variable Frequency Pass Filter (FTBPF) 222 Receiver IF-BB Section 224 System on Chip (SOC) 230 RF-IF Receiver Section 232 Variable Frequency Band Filter (FTBPF) 234 Filter 236, 238 System on Chip (SOC) 240 RF-IF Receiver Unit 242 Low Noise Amplifier Module (LNA) 244-246 Mixing Module 248 Transimpedance Amplifier (TIA) 250-252 Impedance (Z) 254-256 Register 258-260 System on Chip (SOC) 270 RF-IF Receiver Section 271 RF Variable Frequency Bandpass Filter (FTBPF) 272 Low Noise Amplifier Module (LNA) 274- 276 Mixing Module 278 Transimpedance Amplifier (TIA) 280-282 Impedance (Z) 284-286 IF FTBPF 288 System-on-Chip (SOC) 290 RF-IF Connection Unit 292 IF FTBPF 294 System on Chip (SOC) 300 Dual Band RF-IF Receiver Unit 302 Variable Frequency Band Filter (FTBPF) 304 Low Noise Amplifier Module (LNA) 306-308 123 201212553 Mixing Module 310- 312 Mixing Register 314-320 Filter 322·328 System-on-Chip (SOC) 330 RF-IF Receiver Unit 332 RF Variable Frequency Bandpass Filter (FTBPF) 334 Low Noise Amplifier Module (LNA) 336 Variable Frequency Band Filter (FTBPF) 338 Mixing Module 340 Mixing Register 342-344 Filter 346-348 System on Chip (SOC) 350 Variable Frequency Pass Filter (FTBPF) Low Noise Amplifier Module (LNA) System-on-Chip ( SOC) 360 Upconverting Mixing Module 362 Transmitter Local Oscillation Module (LO) Variable Bandpass Filter (FTBPF) RF-IF Receiver Section 352 354 356 364 366 Capacitor Array 368-370 System on Chip (SOC) 380 FEM 390 Single-Ended Frequency Bandpass Filter (FTBPF) Baseband Impedance (Zbb(8)) 396-402 Clock Generator 404 Differential FTBPF 412 Clock Generator 422 Complex Baseband Filter 432 Differential FTBPF 440 Clock Generator 444 Power Amplifier Driver (PAD) 372 Transmit Department 382 LNA 392 394 Single FTBPF 410 baseband impedance (ZBB(8)) 414-420 single-ended FTBPF 430 clock generator 434 complex baseband filter 442 baseband impedance (ZBB(S)) 450-456 124 201212553 positive gain stage (Gm) 458 control module 470 adjustable baseband Impedance 480 Adjustable Negative Gain Stage 490 Programmable Switched Capacitor Network 494 Q RF-IF Mixer 500 I Mixer 504 I Mix Register 522 Negative Gain Stage (-GM) 460 Clock Generator 476 Adjustable Positive gain stage 488 Optional capacitor network 492 Programmable switched capacitor filter 496 Mix register 502 Clock generator 510 Q Mix register 523 IFFTBPF (frequency band pass filter) module 53 〇 baseband impedance ( ZBBz(s)) 532, 534, 536, 538, 540, 542, 544, 546 Clock Generator 550 Single-Ended FTBPF 560 Baseband Impedance (ZBB(8)) 562, 564, 566, 568 Clock Generator 572 Differential FTBPF 580 Clock Generator 582 Dual Band Variable Frequency Bandpass Filter (FTBPF) 590 Baseband Impedance (ZBB(s)) 592, 594, 596, 598 Clock Generator 600 Dual Band Differential Frequency Bandpass Filter (FTBPF) 610 Baseband Impedance (ZBB(s) ) 612 >614 >616 > 618 Transimpedance Amplifier (TIA) 622, 624 Related Impedance (Z) 626, 628 Differential I 630 Differential Q 632 Clock Generator 634 Corresponding Impedance (Z) 640, 642 Low Noise Amplifier (LNA) 670 FTBPF 650, 672, 674, 678 4 Phase FTBPF 680

125 S 201212553 基帶阻抗 ZBB(s) 682、684、686、688 疊加彳§號諧波 690 信號饋通譜波692 3相FTBPF (變頻帶通濾波器)700 基帶阻抗ZBB⑻ 702、704、706 t號饋通諸波 708 疊加信號譜波710 4相FTBPF (變頻帶通濾波器)712 4相FTBPF (變頻帶通濾波器)714 4相FTBPF (變頻帶通濾波器)716 4相FTBPF (變頻帶通濾波器)720 複基帶阻抗ZBBC((〇) 722 複基帶阻抗 726 低Q基帶濾波器 730 m相FTBPF (變頻帶通濾波器)732 m相FTBPF (變頻帶通濾波器)734 m相FTBPF (變頻帶通濾波器)736 m相FTBPF (變頻帶通濾波器)738 m相FTBPF (變頻帶通濾波器)740 時鐘生成器 750 觸發器(DFF) 752、754、756 脈衝收窄器(pulse narrower) 758、760、762125 S 201212553 Baseband Impedance ZBB(s) 682, 684, 686, 688 Superimposed 彳 § Harmonic 690 Signal Feedthrough Spectrum 692 3-Phase FTBPF (Frequency Conversion Bandpass Filter) 700 Baseband Impedance ZBB(8) 702, 704, 706 t Feedthrough Wave 708 Superimposed Signal Wave 710 4-phase FTBPF (Frequency Bandpass Filter) 712 4-phase FTBPF (Frequency Bandpass Filter) 714 4-phase FTBPF (Frequency Bandpass Filter) 716 4-phase FTBPF (Frequency Bandpass Filter) 720 Complex baseband impedance ZBBC((〇) 722 Complex baseband impedance 726 Low Q baseband filter 730 m phase FTBPF (frequency conversion bandpass filter) 732 m phase FTBPF (frequency conversion bandpass filter) 734 m phase FTBPF (inverter Bandpass filter) 736 m phase FTBPF (frequency bandpass filter) 738 m phase FTBPF (frequency bandpass filter) 740 clock generator 750 flip flop (DFF) 752, 754, 756 pulse narrower 758, 760, 762

770 790 環振盪器 800 時鐘生成器 812、814、816 818、820、822 830 SOC 雙工器 時鐘生成器 時鐘生成器 時鐘生成器 時鐘信號1·3 時鐘信號4-6 前端模組(FEM) 功率放大器模組(ΡΑ) 836 觸發器(DFF) 772、774、776 792 810 832 838 126 201212553 天線調諧單元(ATU) 840 平衡網路 842 查找表(LUT) 844 處理模組 846 峰值檢測器 848 調諧引擎 850 低雜訊放大器模組(LNA) 852 前端模組(FEM) 860 SOC 862 功率放大器模組(PA) 866 峰值檢測器 872 調諧引擎 874 開關和低雜訊放大器模組(LNA) 876 小信號平衡網路 880 大信號平衡網路 882 前端模組(FEM) 890 SOC 892 功率放大器模組(PA) 896 雙工器 898 平衡網路 900 峰值檢測器 902 調諧引擎 904 洩漏量檢測 906 模組和低雜訊放大器模組(LNA) 908 前端模組(FEM) 910 SOC 912 功率放大器模組(PA) 916 雙工器 918 平衡網路 920 峰值檢測器 922 低雜訊放大器模組(LNA) 924 處理模組 926 前端模組(FEM) 930 SOC 932 功率放大器模組(PA) 936 雙工器 938 平衡網路 940 前端模組(FEM) 950 LNA 952 功率放大器模組(PA) 954 雙工器 956 平衡網路 958 前端模組(FEM) 960 SOC 962 平衡網路 970 127 201212553 單端低雜訊放大器模組(LNA) 972 峰值檢測器 974 處理模組 976 前端模組(FEM) 990 S0C 992 功率放大器模組(PA) 994 雙工器 996 音注(tone injection)模組 99S 1 平衡網路 1000 峰值檢測器 1002 處理模組 1004 低雜訊放大器模組(LNA) 1006前端模組(FEM) 1010 SOC 1012 功率放大器模組(PA) 1014 雙工器 1016 平衡網路 1018 處理模組 1020 低雜訊放大器模組(LNA ) 1022 平衡網路 1030 阻抗上變頻器 1032 基帶阻抗(Zbb) 1034 阻抗上變頻器1042、1044 基帶阻抗(Zbb) 1046、1048 負阻抗 1050 抗上變頻器 1052 偏振接收器 1060 相位處理模組 1062 模數轉換器(ADC ) 1064、1066 鎖相環(PLL) 1068 峰值檢測器 1070 幅度處理模組 1072 PLL 1082 編織連接 1086 交織連接 1100 MN 1112 互阻放大器(TIA) 1126、1128 128770 790 Ring Oscillator 800 Clock Generator 812, 814, 816 818, 820, 822 830 SOC Duplexer Clock Generator Clock Generator Clock Generator Clock Signal 1·3 Clock Signal 4-6 Front End Module (FEM) Power Amplifier Module (ΡΑ) 836 Trigger (DFF) 772, 774, 776 792 810 832 838 126 201212553 Antenna Tuning Unit (ATU) 840 Balanced Network 842 Lookup Table (LUT) 844 Processing Module 846 Peak Detector 848 Tuning Engine 850 Low Noise Amplifier Module (LNA) 852 Front End Module (FEM) 860 SOC 862 Power Amplifier Module (PA) 866 Peak Detector 872 Tuning Engine 874 Switch and Low Noise Amplifier Module (LNA) 876 Small Signal Balance Network 880 Large Signal Balancing Network 882 Front End Module (FEM) 890 SOC 892 Power Amplifier Module (PA) 896 Duplexer 898 Balanced Network 900 Peak Detector 902 Tuning Engine 904 Leak Detection 906 Module and Low Miscellaneous Amplifier Module (LNA) 908 Front End Module (FEM) 910 SOC 912 Power Amplifier Module (PA) 916 Duplexer 918 Balanced Network 920 Peak Detector 922 Low Miscellaneous Amplifier Module (LNA) 924 Processing Module 926 Front End Module (FEM) 930 SOC 932 Power Amplifier Module (PA) 936 Duplexer 938 Balanced Network 940 Front End Module (FEM) 950 LNA 952 Power Amplifier Module ( PA) 954 Duplexer 956 Balanced Network 958 Front End Module (FEM) 960 SOC 962 Balanced Network 970 127 201212553 Single-Ended Low Noise Amplifier Module (LNA) 972 Peak Detector 974 Processing Module 976 Front End Module ( FEM) 990 S0C 992 Power Amplifier Module (PA) 994 Duplexer 996 tone injection module 99S 1 Balanced Network 1000 Peak Detector 1002 Processing Module 1004 Low Noise Amplifier Module (LNA) 1006 Front End Module (FEM) 1010 SOC 1012 Power Amplifier Module (PA) 1014 Duplexer 1016 Balanced Network 1018 Processing Module 1020 Low Noise Amplifier Module (LNA) 1022 Balanced Network 1030 Impedance Upconverter 1032 Baseband Impedance ( Zbb) 1034 Impedance Upconverter 1042, 1044 Baseband Impedance (Zbb) 1046, 1048 Negative Impedance 1050 Anti-Upconverter 1052 Polarization Receiver 1060 Phase Processing Module 1062 Analog to Digital Converter (ADC) 1064, 1066 Phase-Locked Loop (PLL) 1068 Peak Detector 1070 Amplitude Processing Module 1072 PLL 1082 Braided Connection 1086 Interleaved Connection 1100 MN 1112 Transimpedance Amplifier (TIA) 1126, 1128 128

Claims (1)

201212553 七、申請專利範圍: 1、 一種可攜式計算裝置,其特徵在於包括· 前端模組,與天線部連接並用於從一個或多個入站射頻 #號中分離出一個或多個出站射頻信號; 無表面聲波接收器,用於: 通過以下步驟將所述一個或多個入站射頻信號轉換 為一個或多個入站中頻信號: 將基帶濾波器回應變頻為中頻濾波器回應和射 頻滤波器回應中至少一種; 當所述基帶濾波器回應變頻為所述射頻濾波器 回應時根據所述射頻濾波器響應濾波所述一個或多 個入站射頻信號;以及 當所述基帶濾波器回應被變頻為所述中頻濾波 器回應時根據所述中頻濾波器響應濾波所述一個或 多個入站中頻信號;以及 將所述一個或多個入站中頻信號轉換為一個或多個 入站符號流; 無表面聲波發射器,用於將一個或多個出站符號流轉換 為所述一個或多個出站射頻信號;以及 基帶處理單元,用於: 將出站資料轉換為所述一個或多個出站符號流;以 及 將所述一個或多個入站符號流轉換為入站資料。 2、 如申凊專利範圍第1項所述的可攜式計算裝置,其中,還包 C <e^ 129 201212553 括·· 所述m端模組咖於從—個或多個第二人站射頻信號中 分離出個或多個第二出站射頻信號,其中所述一個或多個 入站和出站射頻信號位於第—頻帶中,所述一個或多個第二 入站射頻信號位於第二頻帶中; 無表面聲波接收器還用於: 通過以下步驟將所述-個或多個第二人站射頻信號 轉換為-個或多個第二入站中頻信號,其中: 將第一基帶遽波器回應變頻為第二中頻渡波器 回應和第二射頻濾波器回應中至少一種; 當所述第二基帶驗器回應變頻為所述第二射 頻遽波器簡時根據所述第二射麵波轉應滤波 所述-個或多個第二入站射頻信號;以及 當所述第二基帶舰器回應變頻為所述第二中 頻遽波器回應時根據所述第二中頻濾'波器響應驗 所述-個或多個第二入站中頻信號:以及 將所述-個或多個第二人站中頻信號轉換為一個或 多個第二入站符號流; 。所述絲©聲波發射n還驗將—個或多個第二出站符 號流轉換為所述一個或多個第二出站射頻信號;以及 所述基帶處理單元還用於: 將第二出站資料轉換為所述—個或多個第二出站符 號流;以及 將所述-個或多個第二人站符號流轉換為第二入站 130 201212553 資料。 · 3、如申請專利範圍第!項所述的可攜式計算裝置,其中,所 前端模組包括: 、天、_料元’與所敍線料触辦_於提供與 所述天線部的阻抗相匹配的阻抗; :個或多個功率放大器,用於放大所述-個或多個出站 射頻信號以產生一個或多個放大的出站射頻信號; 分離模組,與所述無表面波接收器、所述天線調諧單元 以及所述-個或多個功率放大器相連,所述分離模組用於: 向所述天線調諧單元輸出所述一個或多個放大的出 站射頻信號;以及 在所述分離模組與所述無表面波接收器的連接中衰 減所述一個或多個放大的出站射頻信號從而將所述一個 或多個入站射頻信號從所述一個或多個出站射頻信號中 分離。 4、 如申請專利細第3項所述的可攜式計算裝置,其中,所述 基帶處理單元還用於生成以下至少一項: 天線調諧單元控制信號,用於根據所述天線部的阻抗變 化調節所述天線調諧單元的阻抗; 分離控制信號,用於調節所述一個或多個輸出射頻信號 的衰減;以及 功率放大器控制信號,用於調節所述一個或多個功率放 大器的一個或多個參數。 5、 如申請專利範圍第i項所述的可擴式計算裝置,其中,所述 131 201212553 無表面波發射器包括: 、上變頻混麵組’歸將所述—個或多個㈣符號流轉 換為一個或多個上變頻信號; 發射變頻帶通遽波器,用於: 將第二基帶較n簡變頻為第二射頻帶通遽波器 回應;以及 根據所述第二射頻帶賴波ϋ響輯賴述-個或 多個上變頻信號以產生-個或多個濾波的上變頻信號; 以及 輸出模組’胁調節所述—個或多健、波的上變頻信號 以產生一個或多個調節的上變頻信號;以及 功率放大器驅動器,用於放大所述一個或多個調節的上 變頻信號以產生所述一個或多個出站射頻信號。 6、 如申請專利範圍第5項所述的可攜式計算裝置,其中,所述 基帶處理單元還用於: 生成發射器控制信號’所述發射器控制信號用於調節以 下至少一項:所述第二基帶濾波器回應、所述第二射頻帶通 濾波器回應以及所述功率放大器驅動器的參數。 7、 如申請專利範圍第1項所述的可攜式計算裝置,其中,所述 無表面波接收器包括: 射頻-中頻接收器部,包括: 低雜訊放大器’用於放大所述一個或多個入站射頻 信號以產生一個或多個放大的入站射頻信號; 中頻下變頻模組,用於將所述一個或多個放大的入 132 201212553 站射頻信號轉換為所述一個或多個入站中頻信號;以及 具有所述射頻帶通滤波器響應的變頻帶通濾、波器, 用於濾波所述一個或多個入站射頻信號或濾波所述一個 或多個入站中頻信號;以及 中頻-基帶接收器部,用於將所述一個或多個入站中頻信 號轉換為一個或多個入站符號流。 8、如申請專利範圍第1項所述的可攜式計算裝置,其中,還包 括: 第一積體電路,用於支援所述第一基帶處理單元、所述 無表面波接收器和所述無表面波發射器;以及 第二積體電路,用於支援所述前端模組。 9、如申請專利範圍第1項述的可攜式計算裝置,其中,還包栝 以下至少一項: 處理模組,用於: 執行-滅多個可攜式計算錢功能生成所述出站 資料;以及 執行所述-個或多個可攜式計算裝置功能處理所述 輸入;以及 電源管理單元’用於執行所述可攜式計算裝置的一個或 多個電源管理功能。 w、一種可攜式計算裝置,其特徵在於,包括: 前端模組,所述前端模組包括·· 多個功率放大n ’其中所述多個功較大器中的功 率放大器放大多個出站射頻信號中的第一出站射頻信 133 201212553 號; 多個分離模組,其中所述多個分離模組中的分離模 組從所述第一出站射頻信號中分離多個入站射頻信號中 的第一入站射頻信號;以及 至少一個天線調諧單元,用於根據控制信號提供與 天線部的阻抗相匹配的阻抗,其中所述天線調諧單元從 所述天線部接收所述第一入站射頻信號,並向所述天線 部輸出所述第一出站射頻信號; 無表面聲波接收器’用於將多個人站射頻信號轉換為多 個入站符號流; 無表面聲波發射器,用於將多個出站符號流轉換為所述 多個出站射頻信號;以及 基帶處理單元,用於: 根據所述天線部的阻抗變化生成所述控制信號; 將多個出站資料轉換為所述細㈣槪流;以及 將所述多個入站符號流轉換為多個入站資料。 134201212553 VII. Patent application scope: 1. A portable computing device, comprising: a front end module connected to the antenna portion and configured to separate one or more outbound stations from one or more inbound radio frequency # numbers Radio frequency signal; surface acoustic wave receiver for: converting the one or more inbound radio frequency signals into one or more inbound IF signals by: converting the baseband filter response to an intermediate frequency filter response And at least one of the RF filter responses; filtering the one or more inbound radio frequency signals according to the RF filter response when the baseband filter responds to the RF filter response; and when the baseband filtering Filtering the one or more inbound intermediate frequency signals according to the intermediate frequency filter response when the response is frequency converted to the intermediate frequency filter; and converting the one or more inbound intermediate frequency signals into one Or a plurality of inbound symbol streams; a surface acoustic wave transmitter for converting one or more outbound symbol streams into the one or more outbound radio frequency signals; And a baseband processing unit for: converting the outbound data to the one or more outbound symbol streams; and converting the one or more inbound symbol streams into inbound data. 2. The portable computing device according to claim 1, wherein the package further comprises: <e^ 129 201212553, wherein the m-end module is served by one or more second persons Separating one or more second outbound radio frequency signals from the station radio frequency signal, wherein the one or more inbound and outbound radio frequency signals are located in a first frequency band, and the one or more second inbound radio frequency signals are located In the second frequency band; the surface acoustic wave receiver is further configured to: convert the one or more second human station radio frequency signals into one or more second inbound intermediate frequency signals by the following steps, wherein: a baseband chopper response frequency conversion is at least one of a second intermediate frequency waver response and a second RF filter response; and when the second baseband detector responds to the second RF chopper, the according to the Transmitting, by the second surface wave, the one or more second inbound radio frequency signals; and when the second baseband carrier responds to the second intermediate frequency chopper response IF filter 'wave detector response test - one or more second inbound IF No.: and converting the one or more second person station intermediate frequency signals into one or more second inbound symbol streams; The silk acoustic wave transmission n further converts one or more second outbound symbol streams into the one or more second outbound radio frequency signals; and the baseband processing unit is further configured to: Transmitting the station data into the one or more second outbound symbol streams; and converting the one or more second person station symbol streams into a second inbound 130 201212553 data. · 3, such as the scope of patent application! The portable computing device of the present invention, wherein the front end module comprises: , a day, a material element, and a line material to provide an impedance matching the impedance of the antenna portion; a plurality of power amplifiers for amplifying the one or more outbound radio frequency signals to generate one or more amplified outbound radio frequency signals; a separation module, and the surfaceless wave receiver, the antenna tuning unit And the one or more power amplifiers are connected, the separation module is configured to: output the one or more amplified outbound radio frequency signals to the antenna tuning unit; and in the separation module and the The one or more amplified outbound radio frequency signals are attenuated in the connection without the surface wave receiver to separate the one or more inbound radio frequency signals from the one or more outbound radio frequency signals. 4. The portable computing device of claim 3, wherein the baseband processing unit is further configured to generate at least one of: an antenna tuning unit control signal for changing impedance according to the antenna portion Adjusting an impedance of the antenna tuning unit; separating control signals for adjusting attenuation of the one or more output RF signals; and power amplifier control signals for adjusting one or more of the one or more power amplifiers parameter. 5. The expandable computing device of claim i, wherein the 131 201212553 surface-free wave transmitter comprises: , an up-converting mixed-surface group, wherein the one or more (four) symbol streams are returned Converting to one or more upconverted signals; transmitting a variable frequency bandpass chopper for: converting the second baseband to a second RF bandpass chopper response; and according to the second RF band Resolving one or more upconverted signals to produce one or more filtered upconverted signals; and an output module 'sense adjusting the one or more healthy, wave upconverted signals to produce one or a plurality of adjusted upconverted signals; and a power amplifier driver for amplifying the one or more adjusted upconverted signals to generate the one or more outbound radio frequency signals. 6. The portable computing device of claim 5, wherein the baseband processing unit is further configured to: generate a transmitter control signal, the transmitter control signal, to adjust at least one of the following: A second baseband filter response, the second RF bandpass filter response, and parameters of the power amplifier driver. 7. The portable computing device of claim 1, wherein the surface-free wave receiver comprises: a radio frequency-intermediate frequency receiver unit, comprising: a low noise amplifier 'for amplifying the one Or a plurality of inbound radio frequency signals to generate one or more amplified inbound radio frequency signals; an intermediate frequency down conversion module configured to convert the one or more amplified ingress 132 201212553 station radio frequency signals into the one or a plurality of inbound IF signals; and a variable frequency bandpass filter having the RF bandpass filter response, for filtering the one or more inbound RF signals or filtering the one or more inbounds And an intermediate frequency-baseband receiver section for converting the one or more inbound intermediate frequency signals into one or more inbound symbol streams. 8. The portable computing device of claim 1, further comprising: a first integrated circuit for supporting the first baseband processing unit, the surfaceless wave receiver, and the a surface waveless transmitter; and a second integrated circuit for supporting the front end module. 9. The portable computing device of claim 1, wherein the portable computing device further comprises at least one of the following: a processing module, configured to: execute-deactivate multiple portable computing functions to generate the outbound data And executing the one or more portable computing device functions to process the input; and the power management unit 'for performing one or more power management functions of the portable computing device. A portable computing device, comprising: a front end module, wherein the front end module comprises: · a plurality of power amplifications n 'where the power amplifiers in the plurality of power amplifiers are amplified by a plurality of a first outbound radio frequency signal 133 201212553 in the station radio frequency signal; a plurality of separation modules, wherein the separation module of the plurality of separation modules separates the plurality of inbound radio frequencies from the first outbound radio frequency signal a first inbound radio frequency signal in the signal; and at least one antenna tuning unit for providing an impedance matching the impedance of the antenna portion based on the control signal, wherein the antenna tuning unit receives the first input from the antenna portion a radio frequency signal and outputting the first outbound radio frequency signal to the antenna portion; a surface acoustic wave receiver 'for converting a plurality of human station radio frequency signals into a plurality of inbound symbol streams; no surface acoustic wave transmitter, Converting a plurality of outbound symbol streams into the plurality of outbound radio frequency signals; and a baseband processing unit, configured to: generate the control signal according to an impedance change of the antenna portion; Converting a plurality of outbound data into the fine (four) trickle stream; and converting the plurality of inbound symbol streams into a plurality of inbound materials. 134
TW100119490A 2010-06-03 2011-06-03 Portable computing device with a saw-less transceiver TWI485995B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35128410P 2010-06-03 2010-06-03
US13/070,980 US8483642B2 (en) 2010-06-03 2011-03-24 Saw-less receiver with offset RF frequency translated BPF
US13/076,116 US8761710B2 (en) 2010-06-03 2011-03-30 Portable computing device with a saw-less transceiver

Publications (2)

Publication Number Publication Date
TW201212553A true TW201212553A (en) 2012-03-16
TWI485995B TWI485995B (en) 2015-05-21

Family

ID=46764607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100119490A TWI485995B (en) 2010-06-03 2011-06-03 Portable computing device with a saw-less transceiver

Country Status (2)

Country Link
HK (1) HK1165116A1 (en)
TW (1) TWI485995B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575894B (en) * 2014-05-22 2017-03-21 晨星半導體股份有限公司 Method and device for suppressing harmonic signals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643848B2 (en) * 2004-04-13 2010-01-05 Qualcomm, Incorporated Multi-antenna transceiver system
US8149818B2 (en) * 2006-12-30 2012-04-03 Broadcom Corporation Mesh network within a device
TWI439059B (en) * 2007-01-24 2014-05-21 Marvell World Trade Ltd Frequency and q-factor tunable filters using frequency translatable impedance structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575894B (en) * 2014-05-22 2017-03-21 晨星半導體股份有限公司 Method and device for suppressing harmonic signals

Also Published As

Publication number Publication date
TWI485995B (en) 2015-05-21
HK1165116A1 (en) 2012-09-28

Similar Documents

Publication Publication Date Title
TWI474629B (en) Saw-less receiver with rf frequency translated bpf
US8483642B2 (en) Saw-less receiver with offset RF frequency translated BPF
US9154166B2 (en) Front-end module network
US8725085B2 (en) RF front-end module
US8761710B2 (en) Portable computing device with a saw-less transceiver
US9031515B2 (en) Transceiver including a weaved connection
US8483628B2 (en) Multiple-phase frequency translated filter
US8369807B2 (en) Polar-based RF receiver
US8666351B2 (en) Multiple band saw-less receiver including a frequency translated BPF
US8565711B2 (en) SAW-less receiver including an IF frequency translated BPF
TW201210213A (en) Front end module with compensating duplexer
TW201212552A (en) Front end module with an antenna tuning unit
US9001740B2 (en) Front-end module network for femtocell applications
US8565710B2 (en) Wireless transmitter having frequency translated bandpass filter
US20110299634A1 (en) Saw-less receiver with a frequency translated bpf having a negative resistance
EP2613451A1 (en) Saw-less receiver with RF Frequency translated BPF
US20110299631A1 (en) Saw-less receiver including transimpedance amplifiers
TW201212553A (en) Portable computing device with a SAW-less transceiver

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees