TWI485732B - 具有孔洞形錳氧化物之軟性基材及其製法與應用 - Google Patents

具有孔洞形錳氧化物之軟性基材及其製法與應用 Download PDF

Info

Publication number
TWI485732B
TWI485732B TW102147306A TW102147306A TWI485732B TW I485732 B TWI485732 B TW I485732B TW 102147306 A TW102147306 A TW 102147306A TW 102147306 A TW102147306 A TW 102147306A TW I485732 B TWI485732 B TW I485732B
Authority
TW
Taiwan
Prior art keywords
manganese oxide
soft
substrate
soft substrate
conductive
Prior art date
Application number
TW102147306A
Other languages
English (en)
Other versions
TW201526053A (zh
Inventor
Kuan Jiuh Lin
Wen Yin Ko
Ke Ming Lu
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW102147306A priority Critical patent/TWI485732B/zh
Application granted granted Critical
Publication of TWI485732B publication Critical patent/TWI485732B/zh
Publication of TW201526053A publication Critical patent/TW201526053A/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

具有孔洞形錳氧化物之軟性基材及其製法與應用
本發明關於一種具有孔洞形金屬氧化物之軟性基材及其製造方法及應用,尤指一種具有孔洞形錳氧化物之軟性基材及其在超級電容方面的應用。
隨著石油、天然氣、煤礦等主要能源逐漸枯竭,綠色能源及二次能源逐漸受到重視。但由於綠色能源的不穩定,致使科學家大量研究二次能源,例如二次電池中的超級電容(又稱為電化學電容)。
目前超級電容材料依其儲電機制,可略分為兩種型態。一為電雙層電容電極材料,為利用電極板累積靜電的方式儲存電荷,其特徵為沒有任何的電化學反應發生,而是單純的累積電荷形式儲存電能。另一為法拉第電容電極材料,乃利用電極表面與電解液表面發生之氧化還原反應來儲存電荷,即在電化學的活性反應區來產生儲電的機制。
碳材為目前最可能工業化的電極材料,常見的碳材有活性碳、碳氣膠、奈米碳管、石墨烯(Graphene)等。其中奈米碳管分為單壁奈米碳管(single-wall carbon nanotube,SWCNT)、雙壁奈米碳管(double-wall carbon nanotube,DWCNT)及多壁奈米碳管(multi-wall carbon nanotube,MWCNT),具有良好的電子傳導與高孔洞性,比表面 積約為120~400m2 ,比電容值從15至80F/g。而經過酸化與官能基化後,可提升比電容值。若利用KOH進行奈米碳管活化,對外層碳管進行部分腐蝕,致使孔洞比表面積增多,可有效進行活化。
比較活性碳與奈米碳管,雖然奈米碳管在功率表現方面較活性碳突出,但比較於比表面積與能量密度時,個體的表現上活性碳仍優於奈米碳管。為了提升奈米碳管電容的比能量,可將奈米碳管複合其他材料,例如導電聚合物、金屬氧化物等,來增加其實際應用性。
過渡金屬因其半填滿與空軌域的特性而容易與氧形成氧化物,以及吸附反應物,故經常被使用於超級電容器的電極材料,例如RuO2 ,MnO2 ,NiO,Co3 O4 ,V2 O5 ,IrO2 ,Fe3 O4 ….等。
錳氧化物是近來最受矚目的熱門材料,因其含量豐富、價格低,毒性低,可藉不同晶型結構與組成形貌調控本身的電化學性質,在超級電容電極相關研究上,已受到高度重視。目前,已發展出許多合成途徑製備各式錳氧化物,例如化學共沉積法、溶膠-凝膠法及水熱法。但所得之比電容值卻遠比二氧化錳的理論比電容值1370F/g低很多。而二氧化錳材料於固態電極中不具撓曲性,因此大為降低其應用性。
為解決上述二氧化錳材料的問題,近年來,軟性纖維上均勻沉積二氧化錳的材料遂被應用於超級電容上,但,此種方法雖能增加應用性在纖維上均勻沉積二氧化錳材料,但提高負載重量(mass loading)時,會使比電容值急速下降。且因現有二氧化錳沉積形貌不具孔洞性,當沉積時間拉長時,容易將纖維基材的孔洞覆蓋,致使在負載重量上有所限制。為解決上述二氧化錳材料的問題,合適製備方式的找尋有其必 要性。相較於其他二氧化錳材料的製程,電化學沉積法能簡單地利用外加電位或電流等條件適當地調整二氧化錳的沉積速度及厚度,亦可利用沉積條件的修改來改變二氧化錳形貌、組成成份及化學狀態,以利獲得所需的材料特性。但目前的研究中,若直接在軟性纖維做電沉積MnO2 ,容易覆蓋住孔洞,影響電解質進出。相關技術可參見下列文獻:
[1] Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochemistry Communications, Volume 10, Issue 11, November 2008, Pages 1724-1727.
[2] Mesoporous MnO2 /Carbon Aerogel Composites as Promising Electrode Materials for High-Performance Supercapacitors. Langmuir, 2010, 26 (4), pp 2209-2213.
[3] Highly Regulated Electrodeposition of Needle-Like Manganese Oxide Nanofibers on Carbon Fiber Fabric for Electrochemical Capacitors. J. Phys. Chem. C, 2010, 114 (49), pp 21861-21867.
[4] Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J. Phys. Chem. C, 2008, 112 (38), pp 15075-15083.
[5] High Capacitance of Electrodeposited MnO2 by the Effect of a Surface-Active Agent. Electrochem. Solid-State Lett. 2005 volume 8, issue 7, A373-A377.
為改善習知技術的缺點,本發明利用簡便的浸泡及乾燥(dipping-drying)的方式,形成多層奈米碳管棉布導電基板。再利用電化學沉積法進行恆電壓沉積,氧化形成錳氧化物(MnO2 ),使其沉積於 在棉布上。所得之二氧化錳材料不僅具多孔性有利於電解質進出提高離子交換速度增加儲能效率,多層奈米碳管及棉布作為基板的搭配,更是使材料具穩定撓曲性,可大幅提升其應用性。
本發明的目的在於提供一種具有孔洞形錳氧化物之軟性基材及其製造方法及應用。
本發明具有孔洞形錳氧化物之軟性基材主要包括:一軟性基材、多層奈米碳管及錳氧化物。軟性基材係由軟性纖維構成之孔洞形基材。多層奈米碳管則包覆在軟性纖維的表面,形成一導電軟性基材。錳氧化物係形成於該導電軟性基材上非孔洞之處,具有長度約5~50nm之絲狀結構,或由該絲狀結構相連形成具有孔洞之片狀或網狀結構。
上述之軟性基材無特別限制,可為天然或人造之布、紙、高分子或纖維束。錳氧化物較佳為長度約5~20nm,更佳為10~20nm,之絲狀結構,或由該絲狀結構相連形成之片狀或網狀結構。錳氧化物較佳為二氧化錳。
藉由將具有孔洞形錳氧化物之軟性基材包覆於高分子中,可進一步製成固態超級電容元件。該高分子較佳為聚乙烯醇。
本發明製造上述具有孔洞形錳氧化物之軟性基材之方法包括下列步驟:(1)提供一軟性基材,該軟性基材係由軟性纖維構成之孔洞形基材;(2)將該軟性基材浸泡在多層奈米碳管分散溶液中,再乾燥之,重覆3~10次,使軟性纖維的表面包覆多層奈米碳管,形成一導電軟性基材;及(3)以電化學沉積法將Mn+2 氧化成錳氧化物,並沉積在該導 電軟性基材上非孔洞之處,該錳氧化物具有長度約5~50nm之絲狀結構,或由該絲狀結構相連形成具有孔洞之片狀或網狀結構,以得到具有孔洞形錳氧化物之軟性基材。
上述步驟(2)的多層奈米碳管分散溶液較佳為多層奈米碳管分散在十二烷基硫酸鈉溶液中。多層奈米碳管的濃度為約500~1500mg/L,較佳為約850~1150mg/L。多層奈米碳管與SDS的重量比為約1:5~1:20,較佳為約1:8~1:12。
上述步驟(3)的電化學沉積法通常使用三電極系統,工作電極為該導電軟性基材,輔助電極可為鉑片,參考電極可為Ag/AgCl,電沉積溶液可為MnSO4 溶液。沉積電位較佳為-1.2~-2.0V,更佳為約-1.8V,沉積時間為50~1000秒,較佳為100~630秒。
將上述步驟(3)所得之具有孔洞形錳氧化物之軟性基材浸泡在一(導電性)高分子溶液中,再乾燥之,使軟性基材包覆於高分子材料中。再與一導電性固態材質(例如銅)串聯後,便可得到一固態超級電容元件。高分子溶液可為70~100℃之聚乙烯醇-硫酸溶液,形成酸化之聚乙烯醇。
圖1顯示棉布基材之形貌。
圖2顯示MWCNT-MnO2 -棉布電極的形貌。
圖3顯示MWCNT-MnO2 -棉布電極的電化學阻抗分析。
圖4顯示使用恆電流充放電法測試單電極在液態電解液的表現。
圖5~7顯示使用循環伏安法測試單電極在液態電解液的電壓-電流曲線。
圖8顯示不同掃描速率及MnO2 負載重量的比電容值。
圖9顯示單電極在液態電解液循環充放電的表現。
圖10顯示使用循環伏安法測試固態元件的電壓-電流曲線。
圖11顯示固態元件循環充放電的表現。
本發明製程及試驗使用的儀器及材料包括:
儀器:
1.CV電化學分析儀(electrochemical instrument),型號6002E,廠牌CH Instrument。
2.場發式電子掃描顯微鏡(field-emission scanning electronmicroscopy,FE-SEM),型號Ultra Plus,Zeiss。
3.電化學分析儀,型號PARSTAT 2263,AMETEK Princeton Applied Research。
4.熱壓機,型號Beam,BM-HP-6000K,壓力範圍100~600MPa。
5.高溫爐/1100度箱型爐,型號Blue M Electric,BF51866A。
6.粉末X射線繞射儀(Powder-X-Ray Diffraction),型號X'Pert Pro MRD,PANalytical,測角儀系統:2 θ作動範圍為-40°~220°,最小步徑0.001°。
7.震盪器(Sonicator),型號VCX 750,SONICS & MATERIALS.INC。
材料:
1.十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS),CAS No.151-21-3,Sigama-Aldrich,純度98.5%,界面活性劑。
2.多層奈米碳管(MWCNT),CAS No.308068-56-6。
3.硫酸鈉(Sodium sulfate),CAS No.7757-82-6,SHOWA,純度99.0%。
4.硫酸錳(Manganese sulfate monohydrate),CAS No.10034-96-5,Sigama-Aldrich,純度99%。
5.發泡鎳(Ni foam),CAS No.7440-02-0,新材實業,純度大於99%,厚度1.8mm,孔隙密度110ppi。
本發明製備具有孔洞形錳氧化物之軟性基材係以MWCNT-MnO2 -棉布電極為較佳實施例,詳細步驟如下:
步驟1. 製備MWCNT溶液
量取MWCNT(120mg),製備水溶液(1000ppm),後加入SDS表面分散劑(240mg),故重量比為MWCNT:SDS=1:2。先以磁石攪拌10分鐘,再改用Sonicator 750W攪拌震盪,先以20%震盪30秒,再以40%震盪20分鐘,得到MWCNT溶液。
步驟2. 製備MWCNT-棉布基材
剪取1x2cm之棉布,以酒精清洗,再以去離子水清洗後,以120℃烘乾。將棉布浸泡入MWCNT溶液中三秒後取出,放入烘箱中120℃一小時,再取出用去離子水清洗掉表面分散劑,烘乾120℃一小時。此浸泡-乾燥(dipping-drying)步驟重複五次以上,即可得到MWCNT-棉布基材。
步驟3. 電化學沉積二氧化錳
剪取0.3x15cm之發泡鎳,先後以酒精、去離子水洗淨後曬乾。以熱壓機600MPa壓置在棉布上,製成三片可夾取的工作電極基材。將此工作電極泡於電解液中真空除氧,避免多層奈米碳管疏水性干擾。電化學沉積使用三電極系統,工作電極為MWCNT-棉布,輔助電極為鉑片,參考電極為Ag/AgCl,電沉積溶液為Na2 SO4 (0.1M)+MnSO4 (0.01M)。採用程式化電流-時間曲線(I-t curve),選擇沉積電位為-1.8V,三片基材的沉積時間分別為630秒、200秒、120秒(負載重量分別為0.3mg/cm2 、0.2mg/cm2 、0.1mg/cm2 )。沉積完畢後以去離子水仔細清洗,放置室溫隔夜等待乾燥,可得到具有孔洞形二氧化錳的軟性導電基材,MWCNT-MnO2 -棉布電極。電化學反應為:2H2 O+2e - =H2 +2OH-
Mn2+ +2OH- =Mn(OH)2
2Mn(OH)2 +O2 =2MnO2 +2H2 O
MWCNT-MnO 2 -棉布電極之錳氧化物材料鑑定
1. 表面形貌分析
以碳黑膠帶將實施例所製得的樣品黏貼於載台上,以FE-SEM拍攝表面形貌,在低於10-5 Torr的環境,以加速電壓3~4kV進行掃描偵測。
圖1顯示棉布基材之形貌屬於多孔洞型材料,並有相當的內表面面積。又由於棉布的易吸水性,可使大量的多層奈米碳管附著於其 纖維上,以大幅增加整體導電性,浸泡MWCNT奈米碳管溶液所得之MWCNT-棉布基材可測得其電阻值約<200Ω/sq。
圖2顯示MWCNT-MnO2 -棉布電極(以0.1mg/cm2 為例)的形貌為3D縱深、延綿、薄片狀或網狀。奈米片狀或網狀的二氧化錳相連環繞產生孔洞,厚度僅約10nm,有利於離子的進出,同時在沉積堆疊時能維持MWCNT-棉布基材的孔洞不阻塞。
2. XRD結構鑑定
量測條件為X-ray光源:銅靶(Cu Kα,λ=0.15418nm);掃描範圍:10°~80°;scan step time:19.4436s;step size:0.0330。
利用XPS對MWCNT-MnO2 -棉布電極做鑑定,比對文獻可得知Mn為4+ ,即MnO2
利用粉末繞射儀(p-XRD)分析結果,比對JCPDS#18-0802可得知相連奈米片狀MnO2 的晶型結構是屬於層狀結構之冰鈣鈉錳石(birnessite)相。此結構已被證實,在電容充放電機制中有利於陽離子及質子的進出。
3. 電化學阻抗分析
量測工作電極:MWCNT-MnO2- 棉布(以0.1mg/cm2 為例)
量測對電極:鉑片
量測參考電極:Ag/AgCl
量測電解液:0.1M硫酸鈉水溶液
量測頻率:200kHz-100mHz
圖3顯示所製備之工作電極沒有明顯的半圓成型,法拉第阻 抗也偏小,可知電化學電容在電荷傳遞上快速。同時,由圖與實軸相交的溶液阻抗非常小(<5Ω)可知,意即電解液容易將電極材料浸濕,使得離子能更容易地遷入與遷出,故可知道所合成出之材料有利於超級電容材料的應用。
4. 電化學電容特性探討
(1)液態元件
製備硫酸鈉電解液(0.1M),先抽真空後通氮,有效除氧後才應用於電化學量測。將MWCNT-MnO2 -棉布電極泡入硫酸鈉溶液中,並在真空環境下浸泡1小時,使電解液進入棉布材料中。電化學測量採用三電極系統測試單電極在液態電解液的表現,工作電極為MWCNT-MnO2 -棉布,輔助電極為鉑片,參考電極為Ag/AgCl。
a. 恆電流充放電循環測試
電流密度以1.5~2.5A/g作為最低測試電流密度,再予以倍數電流密度來做測試,以下數據皆採取於第10圈充放電的量測結果。
由恆電流循環充放電的結果,可得知電壓衰退(IR-drop)、內電阻(Resistance)、放電比電容(Discharge specific capacitance)、充電比電容(Charge specific capacitance)、庫倫效率(Coulomb Efficiency)、修正之放電比電容(Discharge for IR drop)。其中:
- IR drop為充放電時,因電極極化產生的過電位(over-potential),導致充放電的截止電壓下降,此計算方法為初始放電最高點電位減掉第二點電位。
- Resistance=V/2i,V為IR drop,i為使用電流,此即為將過 電位去除以使用電流,為電阻極化現象做量化。
- Charge specific capacitance=電流密度□充電時間
- Discharge specific capacitance=電流密度□放電時間
- Coulomb Efficiency=放電比電容值/充電比電容值,為充放電的效能,可觀察電解液的適用性、結構的影響、導電性的變化,以及副反應的產生,皆會影響此值。
- Discharge for IR drop=放電比電容/(△V-IR drop),△V為使用電位範圍,可觀察扣除過電位後,電容的表現。
由結果可得知,MnO2 在負載重量為0.1mg/cm2 時,以電流密度1.6A/g進行恆電流充放電,IR drop=0.0368V,經由計算,可得內電阻36.8Ω,放電比電容146.61F/g,充電比電容229.46F/g,合計庫倫效率約63.89%,而經考慮計算IR drop後的放電比電容值為152.21F/g。
圖4顯示,當負載重量上升時比電容值則會下降,此結果呼應於循環伏安法所得之結果。
b. 循環伏安法
電解液為Na2 SO4 (0.5M),電位範圍0~1V,掃描速率為1mV/s、2mV/s、5mV/s、10mV/s。
取第五圈來進行觀察。圖5~7顯示在MnO2 負載重量分別為0.3mg/cm2 、0.2mg/cm2 、0.1mg/cm2 時的電壓-電流曲線。
圖5顯示在MnO2 負載重量為0.3mg/cm2 的情況下,電極在0-1V有良好的矩形曲線,而電極的氧化還原峰值在低速1mV時最為明顯,因當陽離子在低掃描速率下較容易進行內部的陽離子遷入遷出。而 在0.4~0.5V之間為二氧化錳的還原電位,相對應在0.6~0.7V之間有氧化峰位,即為電極發生了法拉第電流,但因初始循環,電解液尚未將工作電極浸泡透徹,故峰值仍不明顯。
對照圖6~7,可知當掃描速率提升至10mV時,且在放電電流0.5mA之下,循環伏安圖形還能維持對稱矩形,尚未出現明顯極化現象,保持基本電容性能,速率電容性能良好。利用循環伏安法可計算出電容比電容值,如下列公式:
Cs為比電容值,Q為循環伏安法圖的積分面積值,△V為電壓範圍,m為MnO2 重量。
由圖8可知,在固定掃描速率比較之下,MnO2 在負載重量0.1mg/cm2 時比電容值最高,比電容值隨負載重量上升而遞減。如在掃描速率為1mV/s時,MnO2 負載為0.1mg/cm2 、0.2mg/cm2 ,0.3mg/cm2 的比電容值分別為296F/g、243F/g、146F/g。雖然隨著MnO2 的沉積數量上升,電容的表現下降,但仍在可接受範圍內。
c. 電容循環表現
使用循環伏安法,以MnO2 負載為0.1mg/cm2 作電容循環測試,掃描速率為100mV/s,共循環一萬圈。圖9顯示單電極在液態電解液循環充放電的表現,即使在第五千圈,仍能維持95%的電容維持率。
(2)固態元件
將MWCNT-MnO2 -棉布電極浸泡在約85℃的聚乙烯醇 (Polyvinyl Alcohol,PVA)-硫酸溶液中。乾燥後,以100MPa重壓約3分鐘,可得到電極元件。使用銅膠帶將電極元件串聯後,即可成為固態超級電容元件。電化學測量儀器為CH Instrument 6002E。
a. 恆電流充放電
電流密度為0.83~10A/g。
能量密度(Energy Density)=0.5CV2 ,C=比電容值,V=電壓範圍。
表1顯示以不同電流密度對固態元件做測試的結果。
由表中數據可得知,此二氧化錳固態超級電容,在元件數據最關鍵的能量密度(enegery density)與功率密度(power density),表現皆十分優秀,此可歸因於二氧化錳的特殊形貌,帶來電性上的優勢表現。
b. 循環伏安法
電位範圍0~0.8V,掃描速率為100mV/s、500mV/s。
圖10使用循環伏安法測試固態電極的電壓-電流曲線。顯示在MnO2 負載重量為0.1mg/cm2 的情況下,電極在0-0.8V有良好的矩形曲線。
c. 電容循環表現
使用恆電流充放電法,電流密度為10A/g。圖11顯示固態電極的循環充放電效能。由圖中可得知,在一萬圈充放電後,仍能保持超越100%的電容維持率,顯見此二氧化錳超級電容在循環表現上十分穩定良好。
綜上,本發明利用電化學沉積法在軟性纖維上製備出孔洞形相連之奈米片狀或網狀二氧化錳,特徵在於:
1.先以簡單的dipping-drying方式製備出具有導電性的軟性纖維,接著以電化學的方式沉積出均勻緻密且厚度非常薄的相連奈米片狀二氧化錳,其導電性佳,在電化學上表現良好,大幅提升二氧化錳使用效率。
2.形成堆疊孔洞,避免孔洞容易遭覆蓋而阻礙離子進出。
3.從循環伏安法可看出,提升掃描速率後仍未出現電極極化現象,顯示製備出之電極其速率電容表現良好。
4.從電容循環表現來看,於液態測單電極時,可在第5000圈時仍保持95%的電容效率,於固態元件測試時,可在第10000圈時維持100%的電容效率,此為穩定效能之特徵。
5.於固態元件測試中,以恆電流循環充放電做測試,在電流密度0.83A/g之下,可得到Energy Density為13Wh/kg,Power Density為 1.94kW/kg,此數據顯示可達到良好的成效。
6.此外,本發明使用低成本的MWCNT(相較於SWCNT、DWCNT、graphene等高成本原料)、便宜的PVA電解質(不使用離子液體)、並且不使用Ag、Au等高成本貴金屬,再加上易操作的電化學沉積,克服粉末狀在壓片時須要黏著劑的缺點,在超級電容固態元件上具有相當競爭優勢。

Claims (15)

  1. 一種具有孔洞形錳氧化物之軟性基材,包括:一軟性基材,係由軟性纖維構成之孔洞形基材;多層奈米碳管,包覆在該軟性纖維的表面,形成一導電軟性基材;及錳氧化物,形成於該導電軟性基材上非孔洞之處,具有長度約5~50nm之絲狀結構,或由該絲狀結構相連形成具有孔洞之片狀或網狀結構。
  2. 如請求項1之軟性基材,其中該軟性基材為天然或人造之布、紙、高分子或纖維束。
  3. 如請求項1之軟性基材,其中該錳氧化物為長度約5~20nm之絲狀結構,或由該絲狀結構相連形成之片狀或網狀結構。
  4. 如請求項1之軟性基材,其中該錳氧化物為二氧化錳。
  5. 一種固態超級電容元件,包括:如請求項1之具有孔洞形錳氧化物之軟性基材;一高分子,包覆該具有孔洞形錳氧化物之軟性基材;及一導電性固態材質,與該具有孔洞形錳氧化物之軟性基材電性串聯。
  6. 如請求項5之固態超級電容元件,其中該高分子為聚乙烯醇,該導電性固態材質為任一導電金屬。
  7. 一種製造具有孔洞形錳氧化物之軟性基材之方法,包括步驟:(1)提供一軟性基材,該軟性基材係由軟性纖維構成之孔洞形基材;(2)將該軟性基材浸泡在多層奈米碳管分散溶液中,再乾燥之,重覆3~10次,使軟性纖維的表面包覆多層奈米碳管,形成一導電軟性基材;及(3)以電化學沉積法將Mn+2 氧化成錳氧化物,並沉積在該導電軟性基材上非 孔洞之處,使該錳氧化物具有長度約5~50nm之絲狀結構,或由該絲狀結構相連形成具有孔洞之片狀或網狀結構,以得到該具有孔洞形錳氧化物之軟性基材。
  8. 如請求項7之方法,其中該步驟(1)之軟性基材為天然或人造之布、紙、高分子或纖維束。
  9. 如請求項7之方法,其中該步驟(2)之多層奈米碳管分散溶液為多層奈米碳管分散在十二烷基硫酸鈉溶液中,多層奈米碳管的濃度為約500~1500mg/L,多層奈米碳管與SDS的重量比為約1:5~1:20。
  10. 如請求項7之方法,其中該步驟(3)之電化學沉積法使用三電極系統,工作電極為該導電軟性基材。
  11. 如請求項10之方法,其中該三電極系統之輔助電極為鉑片,參考電極為Ag/AgCl,電沉積溶液為MnSO4 溶液。
  12. 如請求項7之方法,其中該步驟(3)之沉積電位為-1.2~-2.0V,沉積時間為50~1000秒。
  13. 如請求項7之方法,其中該步驟(3)之錳氧化物為二氧化錳。
  14. 如請求項7之方法,更包括步驟:(4)將該具有孔洞形錳氧化物之軟性基材浸泡在一高分子溶液中,乾燥後,與一導電性固態材質電性串聯,以得到一固態超級電容元件。
  15. 如請求項14之方法,其中該高分子溶液為70~100℃之聚乙烯醇-硫酸溶液,該導電性固態材質為金屬。
TW102147306A 2013-12-19 2013-12-19 具有孔洞形錳氧化物之軟性基材及其製法與應用 TWI485732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102147306A TWI485732B (zh) 2013-12-19 2013-12-19 具有孔洞形錳氧化物之軟性基材及其製法與應用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102147306A TWI485732B (zh) 2013-12-19 2013-12-19 具有孔洞形錳氧化物之軟性基材及其製法與應用

Publications (2)

Publication Number Publication Date
TWI485732B true TWI485732B (zh) 2015-05-21
TW201526053A TW201526053A (zh) 2015-07-01

Family

ID=53723514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102147306A TWI485732B (zh) 2013-12-19 2013-12-19 具有孔洞形錳氧化物之軟性基材及其製法與應用

Country Status (1)

Country Link
TW (1) TWI485732B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363361B (en) * 2007-12-31 2012-05-01 Taiwan Textile Res Inst Electrode of supercapacitor and the manufacturing method thereof
CN102496486A (zh) * 2010-06-23 2012-06-13 Avx公司 包含改良的锰氧化物电解质的固态电解电容器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI363361B (en) * 2007-12-31 2012-05-01 Taiwan Textile Res Inst Electrode of supercapacitor and the manufacturing method thereof
CN102496486A (zh) * 2010-06-23 2012-06-13 Avx公司 包含改良的锰氧化物电解质的固态电解电容器

Also Published As

Publication number Publication date
TW201526053A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
Cai et al. Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes
Jeon et al. Facile and fast microwave-assisted fabrication of activated and porous carbon cloth composites with graphene and MnO2 for flexible asymmetric supercapacitors
Liao et al. Hierarchical nickel nanowire@ NiCo 2 S 4 nanowhisker composite arrays with a test-tube-brush-like structure for high-performance supercapacitors
Liang et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets
Liu et al. Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor
Zhou et al. Vertical MoS2 nanosheets arrays on carbon cloth as binder-free and flexible electrode for high-performance all-solid-state symmetric supercapacitor
Nithya et al. Progress and development of Fe 3 O 4 electrodes for supercapacitors
Cherusseri et al. Vertically aligned graphene–carbon fiber hybrid electrodes with superlong cycling stability for flexible supercapacitors
Zhou et al. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@ MnO 2 perfect core–shell nanostructures for high-performance flexible supercapacitors
Cheng et al. Three-dimensional α-Fe 2 O 3/carbon nanotube sponges as flexible supercapacitor electrodes
Zhao et al. Dopamine-derived N-doped carbon decorated titanium carbide composite for enhanced supercapacitive performance
Yu et al. Facile synthesis of nitrogen-doped, hierarchical porous carbons with a high surface area: the activation effect of a nano-ZnO template
Raut et al. Comparative studies on MWCNTs, Fe 2 O 3 and Fe 2 O 3/MWCNTs thin films towards supercapacitor application
Li et al. Hierarchical CoMoO 4@ Co 3 O 4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors
Du et al. Facile synthesis and superior electrochemical performances of CoNi 2 S 4/graphene nanocomposite suitable for supercapacitor electrodes
Huang et al. Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors
Nagaraju et al. Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage
Zhu et al. Cotton fabrics coated with lignosulfonate-doped polypyrrole for flexible supercapacitor electrodes
Saray et al. Mesoporous MnNiCoO4@ MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors
Huang et al. Graphene-quantum-dots induced NiCo2S4 with hierarchical-like hollow nanostructure for supercapacitors with enhanced electrochemical performance
Liu et al. Ultrafine nickel–cobalt alloy nanoparticles incorporated into three-dimensional porous graphitic carbon as an electrode material for supercapacitors
Xu et al. Understanding the effect of polypyrrole and poly (3, 4-ethylenedioxythiophene) on enhancing the supercapacitor performance of NiCo 2 O 4 electrodes
Mao et al. Facile synthesis of cobalt sulfide/carbon nanotube shell/core composites for high performance supercapacitors
Yan et al. Electrochemical reduction approach-based 3D graphene/Ni (OH) 2 electrode for high-performance supercapacitors
CN104240960B (zh) 具有离子间隔层的高密度有序石墨烯及其制备方法和应用

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees