TWI484171B - A method for the determination of fluid concentration by magnetic catalysis - Google Patents

A method for the determination of fluid concentration by magnetic catalysis Download PDF

Info

Publication number
TWI484171B
TWI484171B TW103107157A TW103107157A TWI484171B TW I484171 B TWI484171 B TW I484171B TW 103107157 A TW103107157 A TW 103107157A TW 103107157 A TW103107157 A TW 103107157A TW I484171 B TWI484171 B TW I484171B
Authority
TW
Taiwan
Prior art keywords
sensing
fluid
electrical
magnetic
electrode sheet
Prior art date
Application number
TW103107157A
Other languages
English (en)
Other versions
TW201534909A (zh
Original Assignee
Univ Nat Changhua Education
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Changhua Education filed Critical Univ Nat Changhua Education
Priority to TW103107157A priority Critical patent/TWI484171B/zh
Application granted granted Critical
Publication of TWI484171B publication Critical patent/TWI484171B/zh
Publication of TW201534909A publication Critical patent/TW201534909A/zh

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

利用磁性催化進行流體濃度感測的方法 【0001】
本發明係有關一種流體感測的方法,尤指一種利用磁性催化流體感測的方法。
【0002】
氣體感測器泛指可將所偵測到之氣體濃度轉變成電性訊號輸出的元件,其偵測氣體種類主要取決於感測材料的選擇,由於工業發展迅速及空氣污染日益嚴重,氣體感測器的需求日益殷切,目前國外已經有許多研究利用標準CMOS製程和後段加工處理製作微感測器,並將微電子電路與微型感測器一起整合在同一晶片上,以形成智慧型感測器,因為此技術完全是依照標準積體電路製程來設計製作微細結構,故微細結構與電子製程具有完全的相容性,此種整合型晶片的優點可以減少雜訊干擾、提高產品性能、縮小晶片面積、提升產量與降低成本等。目前市面上常見的氣體感測器大約分為半導體吸附型、場效電晶體型、紅外線吸收式等氣體感測器;半導體感測器的主要的原理是利用還原性氣體分子與感測材料間產生氧化還原之反應,使材料顆粒表面的氧原子增加或者減少產生材料電阻之變化,電阻變化隨著氣體濃度的高低而不同進而達到氣體偵測之效果。
【0003】
傳統的半導體式氣體感測器,利用發熱器保持高溫狀態下,使半導體金屬氧化物與可燃性氣體接觸,以其電阻變化會與氣體濃度的改變成一定關係作為偵測原理。以金屬氧化物半導體(MOS)為材料之氣體感測器,由於其耐熱性及耐蝕性佳、應答速率快、元件製作容易,以及易與微處理器組合成氣體感測系統或攜帶式監測器,因此被廣泛的使用在家庭、工廠環境中以偵測毒性氣體及燃燒爆炸性氣體。
【0004】
惟,其利用加熱高溫的環境底下才能進行氣體偵測,需要消耗較多的功率,時間以及成本並不符合一般使用者的需求,除此之外,環境的溫度變化差異較難以準確的控制,些微的溫度變化可能就會造成量測結果的誤差。因此如何找到一種可方便使用,並迅速有效偵測氣體或液體成分濃度的方法,實為目前業界所欲共同努力的目標。
【0005】
本發明之主要目的,在於解決習知技術必須利用高溫環境才能進行流體感測,而必須消耗較多的功率,且環境的溫度控制也較為不易的問題。
【0006】
為達上述目的,本發明提供一種利用磁性催化流體感測的方法,用以對一流體進行感測,包含有以下步驟:
【0007】
S1:將一流體感測元件與一電氣感測單元電性連接,該流體感測元件包含有一電導體以及形成於該電導體表面的一感應層,該感應層包含有一感測材料和一磁性材料。
【0008】
S2:將該流體感測元件設置於一磁場產生單元中;
【0009】
S3:使該流體與該流體感測元件接觸,進而使該流體感測元件產生電性變化。
【0010】
S4:該電氣感測單元接收該流體感測元件的電性變化而取得一第一電氣訊號。
【0011】
S5:調整該磁場產生單元而改變該磁場,並透過該電氣感測單元再次接收該流體感測元件的電性變化,而取得一第二電氣訊號。及
【0012】
S6:比較該第一電氣訊號以及該第二電氣訊號,而取得一代表該流體之成分濃度的數據資料。
【0013】
由上述說明可知,本發明具有下列特點:
【0014】
一、在流體感測元件上摻入磁性材料,並利用磁場感應的方式有效提升電導體的感應靈敏度。
【0015】
二、利用改變磁場的方式而比較取得訊號,藉此避免環境磁場變化造成量測數據不準確的問題。
【0016】
三、利用磁場變化進行氣體偵測,而具有低消耗功率之優點。
【0040】
10‧‧‧流體感測元件
【0041】
11‧‧‧電導體
【0042】
12‧‧‧感應層
【0043】
13‧‧‧第一電極片
【0044】
131‧‧‧第一導電環
【0045】
132‧‧‧第一電連接部
【0046】
14‧‧‧第二電極片
【0047】
141‧‧‧第二導電環
【0048】
142‧‧‧第二電連接部
【0049】
20‧‧‧電氣感測單元
【0050】
30‧‧‧磁場產生單元
【0051】
41‧‧‧金屬板
【0052】
42‧‧‧基板
【0053】
S1~S6‧‧‧步驟
【0017】
圖1,為本發明之步驟流程示意圖。
【0018】
圖2,為本發明之方塊配置示意圖。
【0019】
圖3,為本發明之電導體立體結構示意圖。
【0020】
圖4,為本發明之流體感測元件俯視剖面示意圖。
【0021】
圖5A-5B,為本發明之電導體製作流程示意圖。
【0022】
有關本發明之詳細說明及技術內容,現就配合圖示說明如下:
【0023】
請參閱「圖1」及「圖2」所示,本發明係為一種利用磁性催化流體感測的方法,用以對一流體(未圖示)進行感測,包含有以下步驟:
【0024】
S1:基本配置,將一流體感測元件10與一電氣感測單元20電性連接,請配合參閱「圖3」及「圖4」所示,該流體感測元件10包含有一電導體11以及形成於該電導體11表面的一感應層12,該感應層12包含有一感測材料和一磁性材料。其中,為方便表示,「圖3」僅表示該電導體11之結構,而於「圖4」中,在一併以剖面顯示該電導體11以及該感應層12。於本實施例中,該流體為一氧化碳氣體,並利用溶膠凝膠法製備二氧化錫作為該感測材料,而使該流體感測元件10用以偵測該流體的濃度;且該磁性材料係可為氧化鐵、氧化鈷或氧化鎳等,並與該感測材料一併利用溶膠凝膠法製成,在製作方式上,本發明係利用旋轉塗佈的方式將該磁性材料及該感測材料的溶膠凝膠形成於該電導體11上,而形成該感應層12。
【0025】
S2:磁場配置,將該流體感測元件10設置於一磁場產生單元30中,以使該磁場產生單元30所產生的磁場可通過該流體感測元件10。
【0026】
S3:感測電性變化,使該流體與該流體感測元件10接觸,進而使該流體感測元件10產生電性變化,如上所述,於本實施例中係用以感測一氧化碳,因而該流體感測元件10在感測到一氧化碳時,則會改變電阻值,此外,亦有可能藉由改變電容的方式而作為感測流體濃度的判斷基準。
【0027】
S4:取得第一次量測結果,該電氣感測單元20接收該流體感測元件10的電性變化而取得一第一電氣訊號。
【0028】
S5:第二次量測,調整該磁場產生單元30而改變該磁場,並透過該電氣感測單元20再次接收該流體感測元件10的電性變化,而取得一第二電氣訊號。及
【0029】
S6:取得最終數據,比較該第一電氣訊號以及該第二電氣訊號,而取得一代表該流體之成分濃度的數據資料。
【0030】
另需特別說明的是,該電導體11係利用微機電製程而形成,並包含有一第一電極片13以及一與該第一電極片13間隔設置的第二電極片14,於本實施例中,係具有兩個第一電極片13以及一個設置於兩個該第一電極片13之間的第二電極片14。請配合參閱「圖5A」及「圖5B」所示,利用半導體蝕刻製程的方式先形成複數金屬板41,用以作為該第一電極片13以及該第二電極片14,接著如「圖5B」所示,以蝕刻方式挖空基板42,以釋放該基板42,並使結構懸浮。
【0031】
其中該第一電極片13包含有複數同心間隔設置的第一導電環131以及一連接該些第一導電環131的第一電連接部132,該第二電極片14包含有複數同心間隔設置的第二導電環141以及一連接該些第二導電環141的第二電連接部142,且該第一電極片13與該第二電極片14的位置相互對應且平行間隔。藉此,於步驟S3中,該流體可流通於該第一電極片13與該第二電極片14之間而與該第一電極片13及該第二電極片14接觸,因而達到量測該第一電極片13及該第二電極片14之間電阻值的目的。
【0032】
由於環境磁場的變異會影響該流體感測元件10的電性變化,進而影響最後量測的結果。舉例來說,例如環境磁場已經為A高斯,而外加B高斯後的磁場後,最後的磁場強度為A+B高斯,因此,最後該電氣感測單元20所取得的電氣訊號便為不準確的數據,而影響該流體濃度的判斷。因此,於本發明中,係利用兩次的量測結果相比較,而取得相對之間的磁場變化,進而避免環境磁場變異的因素。
【0033】
舉例來說,於步驟S3及S4中,該磁場產生單元30可不運作而不產生磁場,取得單純無外加磁場的該第一電氣訊號,接著於步驟S5中利用該磁場產生單元30外加磁場後,再取得該第二電氣訊號,最後將不加磁場的第一電氣訊號以及外加磁場的第二電氣訊號相減,便可以得到單純外加磁場後的電氣訊號值,而可精準藉由數據資料取得該流體的濃度。再更進一步的說明,該磁場產生單元30可為永久磁鐵,因而不需要額外消耗功率,達到降低整體氣體偵測之功率消耗之目的。
【0034】
綜上所述,本發明具有下列特點:
【0035】
一、在流體感測元件上摻入磁性材料,並利用磁場感應的方式有效提升電導體的感應靈敏度。
【0036】
二、利用改變磁場的方式而比較取得訊號,藉此避免環境磁場變化造成量測數據不準確的問題。
【0037】
三、利用磁場變化進行氣體偵測,而具有低消耗功率之優點。
【0038】
四、利用溶膠凝膠法以及微機電製程的方式分別製作該感應層以及該電導體,而可符合大量生產以及降低成本的目的。
【0039】
五、該第一電極片以及該第二電極片為複數導電環同心設置的方式,而可進一步提高感測的靈敏度,加強感測的準確率。
 
S1~S6‧‧‧步驟

Claims (7)

  1. 【第1項】
    一種利用磁性催化流體感測的方法,用以對一流體進行感測,包含有以下步驟:
    S1:將一流體感測元件與一電氣感測單元電性連接,該流體感測元件包含有一電導體以及形成於該電導體表面的一感應層,該感應層包含有一感測材料和一磁性材料;
    S2:將該流體感測元件設置於一磁場產生單元中;
    S3:使該流體與該流體感測元件接觸,進而使該流體感測元件產生電性變化;
    S4:該電氣感測單元接收該流體感測元件的電性變化而取得一第一電氣訊號;
    S5:調變該磁場產生單元而改變該磁場,並透過該電氣感測單元再次接收該流體感測元件的電性變化,而取得一第二電氣訊號;及
    S6:比較該第一電氣訊號以及該第二電氣訊號,而取得一代表該流體之成分濃度的數據資料。
  2. 【第2項】
    如申請專利範圍第1項所述之利用磁性催化進行流體濃度感測的方法,其中於步驟S1中,該流體為一氧化碳氣體,並利用溶膠凝膠法製備二氧化錫作為該感測材料,而使該流體感測元件用以偵測該流體的濃度。
  3. 【第3項】
    如申請專利範圍第2項所述之利用磁性催化進行流體濃度感測的方法,其中於步驟S1中,該磁性材料係選自於由氧化鐵、氧化鈷及氧化鎳所組成之群組,並與該感測材料一併利用溶膠凝膠法製成。
  4. 【第4項】
    如申請專利範圍第3項所述之利用磁性催化進行流體濃度感測的方法,其中於係利用旋轉塗佈的方式將該磁性材料及該感測材料形成於該電導體上,而形成該感應層。
  5. 【第5項】
    如申請專利範圍第1項所述之利用磁性催化進行流體濃度感測的方法,其中該電導體係利用微機電製程而形成,並包含有一第一電極片以及一與該第一電極片間隔設置的第二電極片,於步驟S3中,該流體流通於該第一電極片與該第二電極片之間而與該第一電極片及該第二電極片接觸。
  6. 【第6項】
    如申請專利範圍第5項所述之利用磁性催化進行流體濃度感測的方法,其中該第一電極片包含有複數同心間隔設置的第一導電環以及一連接該些第一導電環的第一電連接部,該第二電極片包含有複數同心間隔設置的第二導電環以及一連接該些第二導電環的第二電連接部,且該第一電極片與該第二電極片的位置相互對應且平行間隔。
  7. 【第7項】
    如申請專利範圍第5項所述之利用磁性催化進行流體濃度感測的方法,其中於步驟S3及S4中,該磁場產生單元不運作而不產生磁場,取得單純無外加磁場的該第一電氣訊號。
TW103107157A 2014-03-04 2014-03-04 A method for the determination of fluid concentration by magnetic catalysis TWI484171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103107157A TWI484171B (zh) 2014-03-04 2014-03-04 A method for the determination of fluid concentration by magnetic catalysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103107157A TWI484171B (zh) 2014-03-04 2014-03-04 A method for the determination of fluid concentration by magnetic catalysis

Publications (2)

Publication Number Publication Date
TWI484171B true TWI484171B (zh) 2015-05-11
TW201534909A TW201534909A (zh) 2015-09-16

Family

ID=53723475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107157A TWI484171B (zh) 2014-03-04 2014-03-04 A method for the determination of fluid concentration by magnetic catalysis

Country Status (1)

Country Link
TW (1) TWI484171B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635136A (en) * 1994-09-23 1997-06-03 Arizona Board Of Regents Apparatus for sensing combustible gases employing an oxygen-activated sensing element
TWI324238B (en) * 2003-01-09 2010-05-01 John Zink Co Llc Methods and systems for measuring and controlling the percent stoichiometric oxidant in an incinerator
US8596109B2 (en) * 2010-04-14 2013-12-03 Dräger Medical GmbH Device for measuring the concentration of paramagnetic gases
CN103547913A (zh) * 2011-04-27 2014-01-29 德尔格医疗有限责任公司 用于对气体样品中的至少一种气体的浓度测量的装置的测量头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635136A (en) * 1994-09-23 1997-06-03 Arizona Board Of Regents Apparatus for sensing combustible gases employing an oxygen-activated sensing element
TWI324238B (en) * 2003-01-09 2010-05-01 John Zink Co Llc Methods and systems for measuring and controlling the percent stoichiometric oxidant in an incinerator
US8596109B2 (en) * 2010-04-14 2013-12-03 Dräger Medical GmbH Device for measuring the concentration of paramagnetic gases
CN103547913A (zh) * 2011-04-27 2014-01-29 德尔格医疗有限责任公司 用于对气体样品中的至少一种气体的浓度测量的装置的测量头

Also Published As

Publication number Publication date
TW201534909A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
Steinhauer et al. Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere
Nassar et al. Paper skin multisensory platform for simultaneous environmental monitoring
TWI588481B (zh) 金屬氧化物氣體感測器陣列裝置、系統及相關方法
CN106919203B (zh) 具有储热元件的微机电温度控制系统
CN106895924B (zh) 一种柔性温度压力传感器
Moon et al. Semiconductor‐type MEMS gas sensor for real‐time environmental monitoring applications
CN105229451A (zh) 具有浓缩功能的氢气传感器以及其中使用的氢气传感器探头
CN103487474B (zh) 一种具有高灵敏度快速响应的mems电容式湿度传感器
WO2012064645A3 (en) Temperature sensing analyte sensors, systems, and methods of manufacturing and using same
Ge et al. Integrated multifunctional electronic skins with low‐coupling for complicated and accurate human–robot collaboration
CN202472019U (zh) 5300纳米带通红外滤光片
Griessler et al. Tin oxide nanosensors for highly sensitive toxic gas detection and their 3D system integration
JP6213866B2 (ja) 薄膜型水素ガスセンサ
CN106247920B (zh) 一种基于弹性基底夹心叉指电容的表面应变检测器件
Chen et al. Vertically integrated CMOS-MEMS capacitive humidity sensor and a resistive temperature detector for environment application
Paul et al. Inter-digital capacitive ethanol sensor coated with cobalt ferrite nano composite as gas sensing material
TWI484171B (zh) A method for the determination of fluid concentration by magnetic catalysis
JP5936087B2 (ja) 薄膜型水素ガスセンサ
Su et al. A micromachined resistive-type humidity sensor with a composite material as sensitive film
CN103236429B (zh) 带加热单元的微型碳纳米管湿度传感器芯片
TW201115140A (en) Gas sensor capable of simultaneously sensing oxygen and carbon dioxide, manufacturing method thereof and its gas sensor system
Lensch et al. Impedance model for a high-temperature ceramic humidity sensor
JP2007333670A (ja) 熱式質量流量計
CN106813814B (zh) 一种基于mems终端式微波功率传感器结构的压力传感器
US7295126B2 (en) Perforated plane moisture sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees