TWI481833B - Apparatus and methods for computing cumulative light quantity - Google Patents

Apparatus and methods for computing cumulative light quantity Download PDF

Info

Publication number
TWI481833B
TWI481833B TW102125754A TW102125754A TWI481833B TW I481833 B TWI481833 B TW I481833B TW 102125754 A TW102125754 A TW 102125754A TW 102125754 A TW102125754 A TW 102125754A TW I481833 B TWI481833 B TW I481833B
Authority
TW
Taiwan
Prior art keywords
spectral
light quality
data
band
light
Prior art date
Application number
TW102125754A
Other languages
Chinese (zh)
Other versions
TW201403035A (en
Inventor
Yen Dong Wu
Original Assignee
Yen Dong Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yen Dong Wu filed Critical Yen Dong Wu
Priority to TW102125754A priority Critical patent/TWI481833B/en
Publication of TW201403035A publication Critical patent/TW201403035A/en
Application granted granted Critical
Publication of TWI481833B publication Critical patent/TWI481833B/en

Links

Description

一種光質累積計算裝置及方法Light quality accumulation calculation device and method

本發明係關於一種光質累積計算裝置及方法,用以量測特定光譜波長之光質累積數據,以觀察植物的生長情況並進而達成高效率的植物培養。The present invention relates to a light quality accumulation calculation device and method for measuring light quality accumulation data of a specific spectral wavelength to observe plant growth and thereby achieve high efficiency plant culture.

光為植物生長中重要的環境因子之一,主要來自於太陽的輻射。太陽的輻射自波長極長之無線電波(radio wave)、遠、中、近紅外線、可見光、紫外光A、B、C、X射線至波長極短之宇宙線(cosmic ray),為一種連續光譜,其性質與電波相同,一般稱為電磁波。在太陽輻射電磁波中,有三種輻射對植物生長發育最為重要。除了可見光(visible light,380~780奈米)外,尚有紫外線(ultra violet,UV,100~380奈米)和紅外光(infra-red,IR,780~105 奈米)。Light is one of the important environmental factors in plant growth, mainly from the sun's radiation. The sun radiates from a very long wavelength of radio waves, far, medium, near infrared, visible, ultraviolet A, B, C, X-rays to a very short wavelength cosmic ray, a continuous spectrum It has the same properties as electric waves and is generally called electromagnetic waves. Among the solar radiation electromagnetic waves, there are three kinds of radiation that are most important for plant growth and development. In addition to visible light (380 ~ 780 nm), there are ultraviolet (ultra violet, UV, 100 ~ 380 nm) and infrared (infra-red, IR, 780 ~ 10 5 nm).

光強度、光質與光照時間三者對植物影響所及的反應包括:光合作用、葉綠素的合成、趨光性、光敏素參予的反應、光週期性等。對動物影響所及的反應包括:泌乳量、產蛋率、增肉量等。The effects of light intensity, light quality and illumination time on plant effects include photosynthesis, chlorophyll synthesis, phototaxis, photoreceptor reaction, and photoperiod. Responses to animal effects include: lactation, egg production, and meat production.

植物的生長、發育和光合作用不僅受光強度的控制,同時也受光質的控制;此外照光的時間亦有所影響,因此造成光控制植物生長發育相當複雜的過程。植物利用可見光行光合作用,利用紅外光,特別是700~800奈米(nm)控制植物形態的發育(morphogenesis),而紫外線可被生物蛋白質吸收引起傷害。這些反應的產生主要是經過三個主要接光系統(receptor system)。葉綠素a和葉綠素b分別吸收640奈米和660奈米波長光進行光合作用,光敏素(Phytochrome)吸收660、730奈米波長光控制許多形態發生的反應;而黃素(flavin)吸收450奈米波長光引起趨光性(tropism)以及高能量光形態發生(high-energy photomorphogenesis)。Plant growth, development and photosynthesis are not only controlled by light intensity, but also by light quality; in addition, the time of illumination is also affected, thus causing a relatively complex process of light control plant growth and development. Plants use visible light for photosynthesis, using infrared light, especially 700-800 nm (nm) to control the morphogenesis of plant morphology, while ultraviolet light can be absorbed by biological proteins to cause damage. These reactions are produced primarily through three main receptor systems. Chlorophyll a and chlorophyll b absorb light at 640 nm and 660 nm, respectively, for photosynthesis. Phytochrome absorbs 660, 730 nm wavelength light to control many morphological reactions; and flavin absorbs 450 nm. Wavelength light causes tropism and high-energy photomorphogenesis.

波長在300~400奈米的紫外光與700~800奈米的近紅外線(遠紅光)會影響作物的生化反應及其外觀。在400~700奈米的光線與光合作用有很密切的關係,此光帶的光稱為光合作用有效光量(Photosynthetically Active Radiation,簡稱PAR)。Ultraviolet light with a wavelength between 300 and 400 nm and near-infrared light with a wavelength of 700 to 800 nm (far red light) can affect the biochemical reaction and appearance of the crop. Light between 400 and 700 nm is closely related to photosynthesis. The light in this band is called Photosynthetically Active Radiation (PAR).

光質與植物發育的關係,最著名的文獻為R.E.Kendrick與G.H.M.Kronenberg於「Photo morphogenesis in Plant」之論述資料(1986,Martinus Nijhoff Publishers),不同光譜範圍對植物生理的影響如表一所示。The relationship between light quality and plant development, the most famous literature is the discussion of "Photo morphogenesis in Plant" by R.E. Kendrick and G.H.M. Kronenberg (1986, Martinus Nijhoff Publishers). The effects of different spectral ranges on plant physiology are shown in Table 1.

光源射出的光子能量因波長而不同,例如波長400奈米(藍光)的能量為700奈米(紅光)能量的1.75倍,但是對於光合作用而言,兩者波長的作用結果則是相同,藍色光譜中多餘不能作為光合作用的能量則轉變為熱量。換言之,植物光合作用速率是由400~700奈米中植物所能吸收的光子數目決定,而與各光譜所送出的光子數目並不相關。植物對所有光譜而言,其敏感性有所不同,主要是因為葉片內色素的特殊吸收性。葉綠素是植物最常見的色素,但是葉綠素並非對光合作用唯一有用的色素,還有其他色素也會參與光合作用,因此光合作用效率不能只考慮葉綠素的吸收光譜。對植物的形態發展與葉片顏色而言,植物應該接收各種平衡的光源。藍色光源(400~500奈米)對植物的分化與氣孔的調節十分重要。如果藍光不足,遠紅光的比例太多,莖部將過度成長,而容易造成葉片黃化。紅光光譜(655~665奈米)能量與遠紅光光譜(725~735奈米)能量的 比例在1.0與1.2之間,植物的發育正常,但是不同植物對於光譜比例的敏感性也不同。The photon energy emitted by the light source varies with wavelength. For example, the energy of the wavelength of 400 nm (blue light) is 1.75 times that of the energy of 700 nm (red light), but for photosynthesis, the effect of the two wavelengths is the same. The excess energy in the blue spectrum that cannot be used as photosynthesis is converted into heat. In other words, the plant photosynthesis rate is determined by the number of photons that can be absorbed by plants in the 400-700 nm, and is not related to the number of photons sent by each spectrum. Plants have different sensitivities to all spectra, mainly due to the special absorption of pigments in the leaves. Chlorophyll is the most common pigment in plants, but chlorophyll is not the only pigment useful for photosynthesis, and other pigments are also involved in photosynthesis. Therefore, photosynthesis efficiency can not only consider the absorption spectrum of chlorophyll. For plant morphological development and leaf color, plants should receive a variety of balanced light sources. Blue light sources (400~500 nm) are important for plant differentiation and stomata regulation. If the blue light is insufficient, the proportion of far red light is too much, and the stem will grow excessively, which is likely to cause yellowing of the leaves. Red light spectrum (655~665 nm) energy and far red spectrum (725~735 nm) energy The ratio is between 1.0 and 1.2, the development of the plants is normal, but the sensitivity of different plants to the spectral ratio is also different.

光合作用光子通量為單位時間內落到單位面積的平面上波長範圍在400~700奈米的光子的數量,其常用單位為μmol/m2 /s或μE/m2 /s;使用的感測器為光量子感測器(Quantum Sensor)。The photosynthesis photon flux is the number of photons with a wavelength range of 400-700 nm per unit area on a plane per unit time. The common unit is μmol/m 2 /s or μE/m 2 /s; The detector is a Quantum Sensor.

光量的多寡除了以光量子數(μmol/m2 /s)表示之外,尚有照度(lux)與光能(W/m2 )。感測器亦分為此三大類。照度感測器(Photometric Sensor)用來量可見光(380~780奈米),使用單位為Lux(=lumen/m2 ),或燭光(fc=lumen/ft2 )。照度感測器一般並不在溫室中使用,因為係依據人眼對光線的比視感度曲線而設計出來,植物體對光線的敏感度則有另一曲線,兩者不同。In addition to the photon number (μmol/m 2 /s), the amount of light has illuminance and light energy (W/m 2 ). Sensors are also divided into these three categories. The Photometric Sensor is used to measure visible light (380~780 nm) in units of Lux (=lumen/m 2 ) or candlelight (fc=lumen/ft 2 ). Illuminance sensors are generally not used in greenhouses because they are designed according to the human eye's contrast sensitivity curve, and the plant's sensitivity to light has another curve, which is different.

目前全球的溫室產業已邁入環控農業(Controlled Environment Agriculture,CEA)的範疇,環控農業的實踐在於控制動、植物生長的環境以利於其量產,並提高產品品質與提高單位面積與單位時間之產能。不同植物所需要的最適合光譜波長範圍至今尚未完全明瞭,可能因植物類別或是品種差異而不同,而針對不同光譜波長所需照射的量亦因植物的種類而異。環控農業的目標在了解環境與其他關鍵因子對植物生長與生育等生理上的影響,從而調控此些因子,達到提高產能,縮短產程,提高品質等多元的目的。因此植物所需要的光譜波長以及照射量必需預先瞭解,進而藉由調控不同波長之光的照射量而提高產能。At present, the global greenhouse industry has entered the category of Controlled Environment Agriculture (CEA). The practice of environmentally controlled agriculture is to control the environment of animal and plant growth to facilitate its mass production, and to improve product quality and unit area and unit. Time capacity. The most suitable spectral wavelength range required by different plants has not yet been fully understood, and may vary depending on the plant type or variety, and the amount of illumination required for different spectral wavelengths will vary depending on the type of plant. The goal of environmentally-controlled agriculture is to understand the physiological and environmental impacts of other key factors on plant growth and fertility, and to regulate these factors to achieve the goal of increasing production capacity, shortening the labor process, and improving quality. Therefore, the spectral wavelength and the amount of irradiation required by the plant must be known in advance, and the productivity can be improved by controlling the irradiation amount of light of different wavelengths.

是以本發明提供一種光質累積計算裝置,包含:(a)一光譜感測單元,用以量測一光譜波長範圍內之一光質數據;(b)一光譜多波段設定模組,連接至該光譜感測單元,以對該光譜感測單元在該光譜波長範圍內進行全波段或多波段波長之設定;(c)一光質累積計算模組,連接至該光譜感測單元,將經由該光譜感測單元所量測之該光質數據累積計算成一累積光質數據;(d)一資料處理單元,連接至該光質累積計算模組,用以處理並記錄、儲存該累積光質數據;及 (e)一控制單元,連接至該光譜多波段設定模組與該資料處理單元,用以控制該光譜多波段設定模組與該資料處理單元之設定。The invention provides a light quality accumulation calculation device, comprising: (a) a spectral sensing unit for measuring one light quality data in a spectral wavelength range; (b) a spectral multi-band setting module, connecting To the spectral sensing unit, to set the full-band or multi-band wavelength in the spectral wavelength range of the spectral sensing unit; (c) a light quality accumulation calculation module connected to the spectral sensing unit, The light quality data measured by the spectral sensing unit is cumulatively calculated into a cumulative light quality data; (d) a data processing unit coupled to the light quality cumulative computing module for processing and recording and storing the accumulated light Quality data; and (e) a control unit coupled to the spectral multi-band setting module and the data processing unit for controlling the setting of the spectral multi-band setting module and the data processing unit.

根據本發明之光質累積計算裝置,其中該光譜感測單元能夠同時量測該光譜波長範圍內之所有光質數據。The light quality accumulation calculation device according to the present invention, wherein the spectral sensing unit is capable of simultaneously measuring all light quality data in the spectral wavelength range.

根據本發明之光質累積計算裝置,其進一步包含一顯示器,連接至該資料單元,用以顯示所紀錄之累積光質數據。A light quality accumulation computing device according to the present invention, further comprising a display coupled to the data unit for displaying the recorded cumulative light quality data.

根據本發明之光質累積計算裝置,其中該光譜波長範圍為全光譜、360奈米(nm)~830奈米或400奈米~700奈米,而該光質數據之單位為lux、μmol/m2 /s或W/m2The light quality accumulation calculation device according to the present invention, wherein the spectral wavelength range is a full spectrum, 360 nm (nm) to 830 nm or 400 nm to 700 nm, and the unit of the light quality data is lux, μmol/ m 2 /s or W/m 2 .

根據本發明之光質累積計算裝置,在較佳實施例中,該光譜感測單元為一光譜儀,而該光譜多波段設定模組可將不同波段的光譜範圍重疊設定。According to the light quality accumulation calculation device of the present invention, in a preferred embodiment, the spectral sensing unit is a spectrometer, and the spectral multi-band setting module can overlap the spectral ranges of different bands.

本發明另提供一種光質累積計算方法,包含:(a)提供一光譜感測單元,用以量測一光譜波長範圍內之一光質數據;(b)提供一控制單元,用以控制一光譜多波段設定模組與一資料處理單元之設定;(c)經由該光譜多波段設定模組對該光譜感測單元在該光譜波長範圍內進行全波段或多波段波長之設定;(d)提供一光質累積計算模組,用以將該光譜感測單元所量測之該光質數據累積計算成一累積光質數據;及(e)經由該資料處理單元,處理並記錄、儲存該累積光質數據。The invention further provides a light quality accumulation calculation method, comprising: (a) providing a spectral sensing unit for measuring one light quality data in a spectral wavelength range; (b) providing a control unit for controlling one Setting a spectral multi-band setting module and a data processing unit; (c) setting the full-band or multi-band wavelength in the spectral wavelength range of the spectral sensing unit via the spectral multi-band setting module; (d) Providing a light quality cumulative calculation module for cumulatively calculating the light quality data measured by the spectral sensing unit into a cumulative light quality data; and (e) processing, recording, and storing the accumulation via the data processing unit Light quality data.

根據本發明之光質累積計算方法,其進一步提供一顯示器,用以顯示所紀錄之累積光質數據。According to the light quality accumulation calculation method of the present invention, there is further provided a display for displaying the recorded cumulative light quality data.

根據本發明之光質累積計算方法,其中該光譜感測單元能夠同時量測該光譜波長範圍內之所有光質數據。The light quality accumulation calculation method according to the present invention, wherein the spectrum sensing unit is capable of simultaneously measuring all light quality data in the spectral wavelength range.

根據本發明之光質累積計算方法,其中該光譜波長範圍為全光譜、360奈米(nm)~830奈米或400奈米~700奈米,而該光質數據之單位為lux、μmol/m2 /s或W/m2According to the light quality accumulation calculation method of the present invention, the spectral wavelength range is a full spectrum, 360 nm (nm) to 830 nm or 400 nm to 700 nm, and the unit of the light quality data is lux, μmol/ m 2 /s or W/m 2 .

根據本發明之光質累積計算方法,在較佳實施例中,該光譜 感測單元為一光譜儀,而該光譜多波段設定模組可將不同波段的光譜範圍重疊設定。According to the light quality accumulation calculation method of the present invention, in a preferred embodiment, the spectrum The sensing unit is a spectrometer, and the spectral multi-band setting module can overlap the spectral ranges of different bands.

100‧‧‧光質累積計算裝置100‧‧‧Light accumulation calculation device

101‧‧‧光譜感測單元101‧‧‧Spectrum sensing unit

102‧‧‧光譜多波段設定模組102‧‧‧Spectral Multiband Setting Module

103‧‧‧光質累積計算模組103‧‧‧Light Accumulation Calculation Module

104‧‧‧資料處理單元104‧‧‧Data Processing Unit

105‧‧‧控制單元105‧‧‧Control unit

106‧‧‧顯示器106‧‧‧ display

201‧‧‧從光譜感測單元接收資料201‧‧‧Receiving data from the spectrum sensing unit

202‧‧‧選擇波長範圍202‧‧‧Select wavelength range

203‧‧‧400奈米~700奈米203‧‧400nm to 700nm

204‧‧‧360奈米~830奈米204‧‧‧360 nm ~ 830 nm

205‧‧‧全光譜205‧‧‧Full spectrum

206‧‧‧觀看全波段波長範圍206‧‧‧View full-band wavelength range

207‧‧‧選擇分段波長範圍207‧‧‧Select segmental wavelength range

208‧‧‧光質累積運算208‧‧‧Light accumulation calculation

209‧‧‧透過傳輸界面傳至資料單元匯整209‧‧‧Transferred to the data unit through the transfer interface

210‧‧‧即時資料210‧‧ Real-time data

211‧‧‧點選歷史資料211‧‧‧Click on historical data

212‧‧‧點選要顯示波段,顯示於螢幕212‧‧‧Click to display the band, displayed on the screen

圖1為本發明光質累積計算裝置之方塊示意圖。1 is a block diagram of a light quality accumulation calculation device of the present invention.

圖2為本發明光質累積計算方法實施流程圖。2 is a flow chart showing the implementation of the light quality accumulation calculation method of the present invention.

圖3為本發明光質累積計算裝置所顯示之全波段光質數據。3 is a full-band optical quality data displayed by the optical quality accumulation computing device of the present invention.

圖4為本發明光質累積計算裝置所顯示之400奈米~450奈米波長之光質數據。4 is the light quality data of the wavelength of 400 nm to 450 nm displayed by the light quality accumulation calculation device of the present invention.

圖5為本發明光質累積計算裝置所顯示之400奈米~450奈米波長隨時間之光質累積數據。FIG. 5 is the light quality accumulation data of the wavelength of 400 nm to 450 nm displayed with time according to the light quality accumulation calculation device of the present invention.

圖6為本發明光質累積計算裝置所顯示之分段波長之光質數據。Fig. 6 is a light quality data of a segmented wavelength displayed by the light quality accumulation calculating device of the present invention.

下列實施例之目的非為限制本發明,而僅做為本發明之數種態樣及特徵的代表。The following examples are not intended to limit the invention, but are merely representative of several aspects and features of the invention.

圖1為本發明光質累積計算裝置100之方塊示意圖,主要包含:(a)一光譜感測單元101,用以量測一光譜波長範圍內之一光質數據;(b)一光譜多波段設定模組102,連接至該光譜感測單元101,以對該光譜感測單元101在該光譜波長範圍內進行全波段或多波段波長之設定;(c)一光質累積計算模組103,連接至該光譜感測單元101,將經由該光譜感測單元101所量測之該光質數據累積計算成一累積光質數據;(d)一資料處理單元104,連接至該光質累積計算模組103,用以處理並記錄、儲存該累積光質數據;及(e)一控制單元105,連接至該光譜多波段設定模組102與該資料處理單元104,用以控制該光譜多波段設定模組102與該資料處理單元104之設定。本發明光質累積計算裝置100進一步包含一顯示器106,連接至該資料處理單元104,用以顯示所紀錄之累積光質數據。1 is a block diagram of a light quality accumulation computing device 100 of the present invention, which mainly includes: (a) a spectral sensing unit 101 for measuring light quality data in a spectral wavelength range; (b) a spectral multi-band The setting module 102 is connected to the spectrum sensing unit 101 to perform the setting of the full-band or multi-band wavelength in the spectral wavelength range of the spectrum sensing unit 101; (c) a light quality accumulation calculation module 103, Connected to the spectral sensing unit 101, the optical quality data measured by the spectral sensing unit 101 is cumulatively calculated into a cumulative optical quality data; (d) a data processing unit 104 coupled to the optical quality cumulative computing module a group 103 for processing and recording and storing the accumulated light quality data; and (e) a control unit 105 connected to the spectral multi-band setting module 102 and the data processing unit 104 for controlling the spectral multi-band setting The setting of the module 102 and the data processing unit 104. The light quality accumulation computing device 100 of the present invention further includes a display 106 coupled to the data processing unit 104 for displaying the recorded cumulative light quality data.

圖2為本發明光質累積計算方法實施流程圖。透過本發明光譜累積計算裝置從光譜感測單元接收資料並經由控制單元選擇波長範圍400奈米~700奈米、360奈米~830奈米或全光譜。接著選擇觀看全波段或 分段波長範圍(例如400奈米~450奈米、430奈米~460奈米、470奈米~500奈米等)之累積光質。經由光質累積計算模組進行光質累積運算,並透過傳輸界面傳至資料處理單元匯整。此時可選擇即時資料或點選歷史資料並將點選的波段顯示於螢幕。2 is a flow chart showing the implementation of the light quality accumulation calculation method of the present invention. The data is received from the spectral sensing unit by the spectral accumulation calculation device of the present invention and the wavelength range of 400 nm to 700 nm, 360 nm to 830 nm or full spectrum is selected via the control unit. Then choose to watch the full band or The cumulative light quality of the segmented wavelength range (eg, 400 nm to 450 nm, 430 nm to 460 nm, 470 nm to 500 nm, etc.). The light quality accumulation calculation is performed through the light quality accumulation calculation module, and transmitted to the data processing unit through the transmission interface. At this point, you can select the live data or click on the historical data and display the selected band on the screen.

基於上述之裝置及流程,本發明光質累積計算裝置及方法之具體實施結果如下:本發明光質累積計算裝置所顯示之全波段光質數據如圖3;本發明光質累積計算裝置所顯示之400奈米~450奈米波長之光質數據如圖4,若將圖4之400奈米~450奈米波長之光質數據隨時間累積計算則可得圖5之400奈米~450奈米波長隨時間之光質累積數據,計算折線下方所形成的面積即可得400奈米~450奈米波長之累積光質強度。圖6為本發明光質累積計算裝置所顯示之分段波長(例如400奈米~450奈米、470奈米~500奈米等)之光質數據,各分段波長之光質數據亦可如圖5計算出各分段波長隨時間之光質累積數據,且各分段波長範圍可重疊設定。Based on the above apparatus and flow, the specific implementation results of the light quality accumulation calculation device and method of the present invention are as follows: the full-band light quality data displayed by the light quality accumulation calculation device of the present invention is as shown in FIG. 3; the light quality accumulation calculation device of the present invention displays The light quality data of the wavelength of 400 nm to 450 nm is shown in Fig. 4. If the light quality data of the wavelength of 400 nm to 450 nm of Fig. 4 is accumulated over time, the 400 nm to 450 nm of Fig. 5 can be obtained. The cumulative data of the wavelength of the rice wavelength over time, the area formed under the fold line can be calculated to obtain the cumulative light intensity of the wavelength of 400 nm to 450 nm. 6 is the light quality data of the segment wavelength (for example, 400 nm to 450 nm, 470 nm to 500 nm, etc.) displayed by the light quality accumulation calculation device of the present invention, and the light quality data of each segment wavelength can also be used. The light quality accumulation data of each segment wavelength with time is calculated as shown in FIG. 5, and each segment wavelength range can be overlapped and set.

上列詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。The detailed description of the preferred embodiments of the present invention is intended to be limited to the scope of the invention, and is not intended to limit the scope of the invention. The patent scope of this case.

100‧‧‧光質累積計算裝置100‧‧‧Light accumulation calculation device

101‧‧‧光譜感測單元101‧‧‧Spectrum sensing unit

102‧‧‧光譜多波段設定模組102‧‧‧Spectral Multiband Setting Module

103‧‧‧光質累積計算模組103‧‧‧Light Accumulation Calculation Module

104‧‧‧資料處理單元104‧‧‧Data Processing Unit

105‧‧‧控制單元105‧‧‧Control unit

106‧‧‧顯示器106‧‧‧ display

Claims (8)

一種光質累積計算裝置,包含:(a)一光譜感測單元,用以量測一光譜波長範圍內之一光質數據;(b)一光譜多波段設定模組,連接至該光譜感測單元,以對該光譜感測單元在該光譜波長範圍內進行全波段或多波段波長之設定;(c)一光質累積計算模組,連接至該光譜感測單元,將經由該光譜感測單元所量測之該光質數據累積計算成一累積光質數據;(d)一資料處理單元,連接至該光質累積計算模組,用以處理並記錄、儲存該累積光質數據;及(e)一控制單元,連接至該光譜多波段設定模組與該資料處理單元,用以控制該光譜多波段設定模組與該資料處理單元之設定,其中該光譜多波段設定模組可將不同波段的光譜範圍重疊設定。 A light quality accumulation calculation device comprises: (a) a spectral sensing unit for measuring one light quality data in a spectral wavelength range; (b) a spectral multi-band setting module connected to the spectral sensing a unit for performing a full-band or multi-band wavelength setting in the spectral wavelength range of the spectral sensing unit; (c) a light quality accumulation calculation module coupled to the spectral sensing unit via which the spectral sensing is performed The light quality data measured by the unit is cumulatively calculated into a cumulative light quality data; (d) a data processing unit coupled to the light quality cumulative computing module for processing and recording and storing the accumulated light quality data; e) a control unit connected to the spectral multi-band setting module and the data processing unit for controlling the setting of the spectral multi-band setting module and the data processing unit, wherein the spectral multi-band setting module can be different The spectral range of the band is overlapped. 如申請專利範圍第1項之光質累積計算裝置,其進一步包含一顯示器,連接至該資料單元,用以顯示所紀錄之累積光質數據。 The light quality accumulation calculation device of claim 1, further comprising a display connected to the data unit for displaying the recorded cumulative light quality data. 如申請專利範圍第1項之光質累積計算裝置,其中該光譜波長範圍為全光譜、360奈米(nm)~830奈米或400奈米~700奈米。 For example, the light quality cumulative calculation device of claim 1 wherein the spectral wavelength range is full spectrum, 360 nm (nm) to 830 nm or 400 nm to 700 nm. 如申請專利範圍第1項之光質累積計算裝置,其中該光譜感測單元為一光譜儀。 The light quality accumulation calculation device of claim 1, wherein the spectral sensing unit is a spectrometer. 如申請專利範圍第1項之光質累積計算裝置,其中該光質數據之單位為lux、μmol/m2 /s或W/m2The light quality accumulation calculation device of claim 1, wherein the unit of the light quality data is lux, μmol/m 2 /s or W/m 2 . 一種光質累積計算方法,包含:(a)提供一光譜感測單元,用以量測一光譜波長範圍內之一光質數據;(b)提供一控制單元,用以控制一光譜多波段設定模組與一資料處理單元之設定; (c)經由該光譜多波段設定模組對該光譜感測單元在該光譜波長範圍內進行全波段或多波段波長之設定;(d)提供一光質累積計算模組,用以將該光譜感測單元所量測之該光質數據累積計算成一累積光質數據;及(e)經由該資料處理單元,處理並記錄、儲存該累積光質數據,其中該光譜多波段設定模組可將不同波段的光譜範圍重疊設定。 A method for calculating light quality accumulation, comprising: (a) providing a spectral sensing unit for measuring light quality data in a spectral wavelength range; and (b) providing a control unit for controlling a spectral multi-band setting The setting of the module and a data processing unit; (c) setting the full-band or multi-band wavelength in the spectral wavelength range of the spectral sensing unit via the spectral multi-band setting module; (d) providing a light quality cumulative computing module for using the spectrum The light quality data measured by the sensing unit is cumulatively calculated into a cumulative light quality data; and (e) the cumulative light quality data is processed and recorded and stored via the data processing unit, wherein the spectral multi-band setting module can The spectral range of different bands is overlapped. 如申請專利範圍第6項之光質累積計算方法,其中該光譜波長範圍為全光譜、360奈米(nm)~830奈米或400奈米~700奈米。 For example, the calculation method of the light quality accumulation in the sixth application of the patent scope, wherein the spectral wavelength range is a full spectrum, 360 nm (nm) ~ 830 nm or 400 nm ~ 700 nm. 如申請專利範圍第6項之光質累積計算方法,其中該光質數據之單位為lux、μmol/m2 /s或W/m2The light quality accumulation calculation method of claim 6, wherein the unit of the light quality data is lux, μmol/m 2 /s or W/m 2 .
TW102125754A 2013-07-18 2013-07-18 Apparatus and methods for computing cumulative light quantity TWI481833B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102125754A TWI481833B (en) 2013-07-18 2013-07-18 Apparatus and methods for computing cumulative light quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102125754A TWI481833B (en) 2013-07-18 2013-07-18 Apparatus and methods for computing cumulative light quantity

Publications (2)

Publication Number Publication Date
TW201403035A TW201403035A (en) 2014-01-16
TWI481833B true TWI481833B (en) 2015-04-21

Family

ID=50345493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102125754A TWI481833B (en) 2013-07-18 2013-07-18 Apparatus and methods for computing cumulative light quantity

Country Status (1)

Country Link
TW (1) TWI481833B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685644B (en) * 2016-10-21 2020-02-21 長庚大學 Light quantity monitoring method and light quantity monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151247B2 (en) * 2003-07-08 2006-12-19 National University Corporation Nagoya University Mobile measurement system of photoenvironment
TWM396393U (en) * 2010-08-26 2011-01-11 Chang Yu Technology Co Ltd Light source measurement meter
CN102012266A (en) * 2009-09-07 2011-04-13 杭州远方光电信息股份有限公司 Photosynthetic radiation illuminometer and measuring method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151247B2 (en) * 2003-07-08 2006-12-19 National University Corporation Nagoya University Mobile measurement system of photoenvironment
CN102012266A (en) * 2009-09-07 2011-04-13 杭州远方光电信息股份有限公司 Photosynthetic radiation illuminometer and measuring method thereof
TWM396393U (en) * 2010-08-26 2011-01-11 Chang Yu Technology Co Ltd Light source measurement meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685644B (en) * 2016-10-21 2020-02-21 長庚大學 Light quantity monitoring method and light quantity monitoring system

Also Published As

Publication number Publication date
TW201403035A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
Katsoulas et al. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review
Shah et al. Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.)
Padilla et al. Proximal optical sensors for nitrogen management of vegetable crops: A review
Campillo et al. Solar radiation effect on crop production
Valle et al. PYM: a new, affordable, image-based method using a Raspberry Pi to phenotype plant leaf area in a wide diversity of environments
Ostaev et al. Biological fixed assets: Accounting and management problems of commissioning in horticultural enterprises
CN106841116B (en) The detection method and device of artificial blue target
US20140343863A1 (en) Method for evaluating vitality of plant, and measurement system and evaluation system
Rahman et al. LED illumination for high-quality high-yield crop growth in protected cropping environments
CN110121264A (en) Grow the image-taking system and method for cabin assembly line
TW201244627A (en) A method for stimulating plants growth
CN103674855B (en) Optical path system used for monitoring crop growth information
Reichel et al. Impact of three different light spectra on the yield, morphology and growth trajectory of three different Cannabis sativa L. strains
Basile et al. Regulation of the vegetative growth of kiwifruit vines by photo-selective anti-hail netting
TWI481833B (en) Apparatus and methods for computing cumulative light quantity
Brito et al. Grey and black anti-hail nets ameliorated apple (Malus× domestica Borkh. cv. Golden Delicious) physiology under mediterranean climate
Kanash et al. Optical signals of oxidative stress in crops physiological state diagnostics
Chowdhury et al. Estimation of glucosinolates and anthocyanins in kale leaves grown in a plant factory using spectral reflectance
Wong et al. TSWIFT: tower spectrometer on wheels for investigating frequent timeseries for high-throughput phenotyping of vegetation physiology
Ansari et al. Determining wavelenth for nitrogen and phosphorus nutrients through hyperspectral remote sensing in wheat (Triticum aestivum L.) plant
Amaro de Sales et al. Photo-selective shading screens as a cover for production of purple lettuce
Zhang et al. Influence of solar irradiance on hyperspectral imaging-based plant recognition for autonomous weed control
Qin et al. A hyperspectral plant health monitoring system for space crop production
CN202255621U (en) Photosynthetic radiation illuminometer
Katsoulas et al. Calibration methodology of a hyperspectral imaging system for greenhouse plant water status assessment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees