TWI480534B - Optical apparatus and operating method thereof - Google Patents

Optical apparatus and operating method thereof Download PDF

Info

Publication number
TWI480534B
TWI480534B TW101127231A TW101127231A TWI480534B TW I480534 B TWI480534 B TW I480534B TW 101127231 A TW101127231 A TW 101127231A TW 101127231 A TW101127231 A TW 101127231A TW I480534 B TWI480534 B TW I480534B
Authority
TW
Taiwan
Prior art keywords
module
auxiliary
optical
test strip
sample
Prior art date
Application number
TW101127231A
Other languages
Chinese (zh)
Other versions
TW201405117A (en
Inventor
William Wang
Meng Shin Yen
Chung Cheng Chou
Original Assignee
Crystalvue Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystalvue Medical Corp filed Critical Crystalvue Medical Corp
Priority to TW101127231A priority Critical patent/TWI480534B/en
Priority to CN201310283723.2A priority patent/CN103575700B/en
Publication of TW201405117A publication Critical patent/TW201405117A/en
Application granted granted Critical
Publication of TWI480534B publication Critical patent/TWI480534B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

光學裝置及其運作方法Optical device and its operation method

本發明係與光學裝置有關,特別是關於一種藉由光學干涉技術對檢體試片進行非破壞性、非接觸式之量測的光學裝置及其運作方法,可省去傳統上將檢體試片切成薄片及染色等繁雜且費時之程序,並能夠在操作過程中提供可調控的功能。The invention relates to an optical device, in particular to an optical device for performing non-destructive and non-contact measurement of a sample piece by optical interference technology, and a method for operating the same, which can save the traditional test The cumbersome and time consuming process of slicing and thinning, and the ability to provide controllable functions during operation.

傳統上,觀察組織切片的流程通常包含下列步驟:(1)檢體取樣;(2)固化;(3)觀察試片。在觀察組織切片的過程中,由於大多數組織結構皆為透光材質,故通常還需要配合染色及顯影等程序,方能得到較佳的觀察效果,以利後續分析程序之進行。Traditionally, the process of observing tissue sections typically involves the following steps: (1) sample sampling; (2) solidification; and (3) observation of test pieces. In the process of observing the tissue section, since most of the tissue structures are light-transmitting materials, it is usually necessary to cooperate with dyeing and developing procedures to obtain a better observation effect for the subsequent analysis procedure.

此外,由於受到光學景深(聚焦位置)之限制,上述的組織切片大多為薄型設計。首先,將檢體固化後切割成薄片,每個薄片之厚度大約為10μm左右,再加上承載玻片之厚度係以不超過0.1mm為限。接著,再將每個單獨的承載玻片分別置於檢測儀器上進行檢測後,再將所有檢測結果進行疊合重組,以重現原本整個檢體的檢測結果。In addition, due to the limitation of the optical depth of field (focus position), the above-mentioned tissue sections are mostly of a thin design. First, the specimen is solidified and cut into thin slices, each of which has a thickness of about 10 μm, and the thickness of the bearing glass is limited to not more than 0.1 mm. Then, each individual carrier slide is placed on the detection instrument for detection, and then all the detection results are superimposed and recombined to reproduce the original detection result of the whole sample.

雖然目前已有許多廠商針對上述技術推出全自動或半自動的檢測平台,以縮短整個檢測流程,然而,實際上檢測試片的製作過程相當繁複且耗費成本。此外,不同的檢體切片過程所得到的疊合重組結果可能會與原本整個檢體的檢測結果有所差異。舉例而言,檢體切片的位置是否剛好破壞 到檢體中之病變組織就可能得到截然不同的疊合重組結果,嚴重影響到其檢測結果的準確性。Although many manufacturers have introduced fully automatic or semi-automatic detection platforms for the above technologies to shorten the entire inspection process, the actual production process of the test strips is quite complicated and costly. In addition, the results of the superposition and recombination obtained by different sample slicing processes may be different from the original test results. For example, is the position of the specimen slice just destroyed? The diseased tissue in the specimen may have a completely different superimposed recombination result, which seriously affects the accuracy of the detection results.

因此,本發明提出一種光學裝置及其運作方法,以解決上述問題。Accordingly, the present invention provides an optical device and method of operating the same to solve the above problems.

根據本發明之一具體實施例為一種光學裝置。於此實施例中,光學裝置包含試片模組、光學檢測模組、輔助模組及資料處理模組。試片模組係用以承載一試片,該試片包含有一檢體。光學檢測模組係用以對該試片中之該檢體進行一深層組織檢測分析。輔助模組係用以對該試片模組及該光學檢測模組之運作提供一輔助功能。資料處理模組係耦接光學檢測模組及輔助模組,用以分析處理光學檢測模組所傳送之一訊號以產生關於該檢體之一檢測結果,或根據輔助模組所傳送之一訊息產生相對應之一調控指令至光學檢測模組或輔助模組。An embodiment of the invention is an optical device. In this embodiment, the optical device includes a test strip module, an optical detection module, an auxiliary module, and a data processing module. The test strip module is used to carry a test piece, and the test piece includes a sample. The optical detection module is used for performing a deep tissue inspection analysis on the sample in the test piece. The auxiliary module is used to provide an auxiliary function for the operation of the test strip module and the optical detection module. The data processing module is coupled to the optical detection module and the auxiliary module for analyzing and processing a signal transmitted by the optical detection module to generate a detection result of the sample, or a message transmitted according to the auxiliary module. A corresponding one of the control commands is generated to the optical detection module or the auxiliary module.

於實際應用中,輔助模組係為獨立設計或依附於試片模組。輔助模組所提供之輔助功能係為試片識別輔助功能、試片對準輔助功能、檢測條件調控輔助功能或檢體儲存狀態監控輔助功能。試片模組係設計為有蓋形式或開放形式,且透過物理固化或機械固定方式限制檢體之移動。In practical applications, the auxiliary modules are designed independently or attached to the test strip module. The auxiliary functions provided by the auxiliary module are the test piece identification auxiliary function, the test piece alignment auxiliary function, the detection condition adjustment auxiliary function or the sample storage state monitoring auxiliary function. The test piece module is designed to be in the form of a cover or an open form, and the movement of the sample is restricted by physical curing or mechanical fixing.

輔助模組可具有一符號、一顏色、一圖樣、一文字、一數字、一條碼、一立體識別區或一立體對準區之設計,以提供試片識別輔助功能及試片對準輔助功能。輔助模組可具有單層或多層透光夾層之設計,導入具有不同穿透、吸收及反 射特性的流體,以提供變換入射該檢體之入射光的波長或能量。輔助模組可具有聚光及散光特性之設計,以提供焦距調整功能。The auxiliary module may have a design of a symbol, a color, a pattern, a text, a number, a code, a stereoscopic recognition area or a stereo alignment area to provide a test strip recognition auxiliary function and a test strip alignment assist function. The auxiliary module can have a single layer or multiple layers of transparent interlayer design, and the introduction has different penetration, absorption and anti-inversion. A characteristic fluid is provided to provide a wavelength or energy that changes the incident light incident on the sample. The auxiliary module can be designed with concentrating and astigmatism to provide focus adjustment.

根據本發明之第二具體實施例為一種光學裝置運作方法。於此實施例中,光學裝置包含試片模組、光學檢測模組、輔助模組及資料處理模組。該方法包含下列步驟:(a)試片模組承載包含有一檢體之一試片;(b)光學檢測模組對試片中之檢體進行一深層組織檢測分析;(c)輔助模組對試片模組及光學檢測模組之運作提供一輔助功能;(d)資料處理模組分析處理光學檢測模組所傳送之一訊號以產生關於該檢體之一檢測結果,或根據輔助模組所傳送之一訊息產生相對應之一調控指令至光學檢測模組或輔助模組。A second embodiment of the invention is a method of operating an optical device. In this embodiment, the optical device includes a test strip module, an optical detection module, an auxiliary module, and a data processing module. The method comprises the following steps: (a) the test strip module carries a test piece containing a sample; (b) the optical detection module performs a deep tissue inspection analysis on the sample in the test piece; (c) the auxiliary module Providing an auxiliary function for the operation of the test strip module and the optical detection module; (d) the data processing module analyzes and processes one of the signals transmitted by the optical detection module to generate a detection result for the sample, or according to the auxiliary mode One of the messages transmitted by the group generates a corresponding one of the control commands to the optical detection module or the auxiliary module.

相較於先前技術,根據本發明之光學裝置及其運作方法係藉由光學干涉技術對檢體試片進行非破壞性且非接觸式之量測,故可直接對厚度較大的檢體試片進行光學檢測,不僅可省去傳統上將檢體試片切成薄片及染色等繁雜且費時之程序,亦能夠有效避免傳統上將所有薄片檢體試片的檢測結果進行疊合重組時所可能產生之誤差,藉以提升光學裝置進行檢測時之準確性及可靠度。此外,根據本發明之光學裝置及其運作方法所使用的檢體試片亦可搭配輔助單元的特殊設計在操作過程中提供可調控的功能,故能讓使用者操作上更為方便。Compared with the prior art, the optical device and the method for operating the same according to the present invention perform non-destructive and non-contact measurement on the test piece by optical interference technology, so that the test piece with a large thickness can be directly tested. Optical inspection of the film not only eliminates the complicated and time-consuming process of cutting the sample piece and dyeing the sample, but also effectively avoids the conventional folding and recombination of the test results of all the sample test pieces. Possible errors to improve the accuracy and reliability of the optical device for inspection. In addition, the sample test piece used in the optical device and the operation method thereof according to the present invention can also be provided with a controllable function in the operation process in combination with the special design of the auxiliary unit, so that the user can operate more conveniently.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

根據本發明之一較佳具體實施例為一種光學裝置。請參照圖1A,圖1A係繪示本實施例之光學裝置的功能方塊圖。如圖1A所示,光學裝置1包含試片模組10、光學檢測模組12、輔助模組14及資料處理模組16。其中,試片模組10係承載包含有檢體SA之試片100;資料處理模組16分別耦接至光學檢測模組12及輔助模組14。需說明的是,輔助模組14除了可以如同圖1A採用獨立設計而與試片模組10分離之外,輔助模組14亦可如同圖1B採用依附於試片模組10之設計,並無特定之限制。A preferred embodiment of the invention is an optical device. Please refer to FIG. 1A. FIG. 1A is a functional block diagram of the optical device of the embodiment. As shown in FIG. 1A, the optical device 1 includes a test strip module 10, an optical detection module 12, an auxiliary module 14, and a data processing module 16. The test module 10 is configured to carry the test piece 100 including the sample SA; the data processing module 16 is coupled to the optical detection module 12 and the auxiliary module 14 respectively. It should be noted that the auxiliary module 14 can be separated from the test strip module 10 as shown in FIG. 1A, and the auxiliary module 14 can also be attached to the test strip module 10 as shown in FIG. 1B. Specific restrictions.

接下來,將分別針對光學裝置1所包含之各模組及其具有的功能進行詳細之介紹。Next, each module included in the optical device 1 and its functions will be described in detail.

於此實施例中,光學檢測模組12係用以對試片模組10所承載之試片100上之檢體SA進行深層組織檢測分析。更詳細地說,光學檢測模組12係利用光學干涉技術對試片100上之檢體SA進行深層組織檢測分析。請參照圖2,圖2係繪示光學檢測模組12利用光學干涉技術進行檢測之示意圖。如圖2所示,光學檢測模組12係透過其分光/耦合單元120實現光學干涉技術以輸出經光學干涉後之光訊號Sout 。其中,Lin 為光源,Lr 為參考光,Ld 為檢測光。需說明的是,光學干涉技術可以是時域(time domain)設計或頻域(frequency domain)設計,並無特定之限制。In this embodiment, the optical detecting module 12 is configured to perform deep tissue inspection and analysis on the sample SA on the test strip 100 carried by the test strip module 10. More specifically, the optical detecting module 12 performs deep tissue inspection analysis on the sample SA on the test strip 100 by optical interference technique. Please refer to FIG. 2. FIG. 2 is a schematic diagram showing the optical detection module 12 performing detection by using optical interference technology. As shown in FIG. 2, the optical detection module 12 implements an optical interference technique through its optical splitting/coupling unit 120 to output optically interfered optical signals Sout . Wherein, L in is a light source, L r is a reference light, and L d is a detection light. It should be noted that the optical interference technology may be a time domain design or a frequency domain design, and is not particularly limited.

至於此實施例中之試片模組10除了承載包含有檢體SA之試片100,以便光學檢測模組12對試片100上之檢體SA進行光學檢測之功能外,試片模組10還可如圖1B所示採用 與輔助模組14結合之設計,於操作或儲存狀態下提供特殊的輔助功能。舉例而言,上述輔助功能可以是試片識別輔助功能、試片對準輔助功能、檢測條件調控輔助功能或檢體儲存狀態監控輔助功能等,但不以此為限。As for the test strip module 10 in this embodiment, in addition to carrying the test strip 100 including the sample SA, so that the optical detecting module 12 performs the optical detection function on the sample SA on the test strip 100, the test strip module 10 Can also be used as shown in Figure 1B The design in combination with the auxiliary module 14 provides special auxiliary functions in the operating or storage state. For example, the auxiliary function may be a test piece identification auxiliary function, a test piece alignment auxiliary function, a detection condition adjustment auxiliary function, or a sample storage state monitoring auxiliary function, but is not limited thereto.

於此實施例中,由於光學檢測模組12可直接對試片模組10所承載之試片100上的檢體SA進行深度組織檢測(大約2-3mm深),可省略傳統試片製作過程中之固化、切片、染色顯影等步驟,故能大幅減少試片製作時間與成本上之浪費。此外,試片模組10之外觀可採用有蓋形式或開放形式之設計。若試片模組10係採用有蓋形式之設計,只需上蓋為透光材質即可(壓克力、玻璃、塑膠片…)。In this embodiment, since the optical detecting module 12 can directly perform deep tissue inspection (about 2-3 mm deep) on the sample SA on the test strip 100 carried by the test strip module 10, the traditional test strip manufacturing process can be omitted. In the steps of curing, slicing, dyeing and developing, the waste time and cost of the test piece can be greatly reduced. In addition, the appearance of the test strip module 10 can be designed in the form of a lid or an open form. If the test strip module 10 is designed in the form of a cover, only the upper cover is made of a light-transmissive material (acrylic, glass, plastic sheet...).

然而,在實際應用中,考量到試片模組10所承載之試片100上的檢體SA可能會受到外在因素產生晃動,或是需要旋轉試片100以對檢體SA進行不同角度之檢測,因此,本發明亦可採用物理固化、機械固定等方式將檢體SA固定住,使其不會產生晃動。However, in practical applications, it is considered that the sample SA on the test strip 100 carried by the test strip module 10 may be shaken by external factors, or the test strip 100 needs to be rotated to perform different angles on the specimen SA. Therefore, the present invention can also fix the sample SA by physical curing, mechanical fixing, or the like so as not to cause sway.

舉例而言,如圖3A所示,若採用物理固化方式,可選擇透過膠水(或蠟油)G進行檢體SA之固定。此外,如圖3B所示,若採用機械固定方式,可將試片模組10之上下結構UD及側邊結構RL均設計為可調尺寸之型式,用以限制住檢體SA之移動。又,前述之物理固化及機械固定兩種方式更可混合實施,以獲得更佳之固定效果,並無特定之限制。For example, as shown in FIG. 3A, if physical curing is employed, the fixation of the sample SA may be performed by means of glue (or wax oil) G. In addition, as shown in FIG. 3B, if the mechanical fixing method is adopted, the upper and lower structures UD and the side structures RL of the test strip module 10 can be designed to be adjustable in size to limit the movement of the specimen SA. Moreover, the above physical curing and mechanical fixing can be carried out in combination to obtain a better fixing effect without particular limitation.

此外,若採用機械固定方式進行檢體SA之固定, 可更包含有一種加壓設計,例如透過上下結構UD直接加壓之設計(如圖4A所示)或是透過施加氣壓PU之設計(如圖4B所示,可另配合通氣孔與外部加壓閥),以將檢體SA壓平後,利於後續之觀察檢測。In addition, if the fixing of the sample SA is performed by mechanical fixing, It may further include a pressurization design, such as a design that is directly pressurized by the upper and lower structures UD (as shown in FIG. 4A) or a design that applies air pressure PU (as shown in FIG. 4B, the vent hole and the external pressure may be additionally provided). Valve), after flattening the sample SA, facilitates subsequent observation and detection.

接下來,將就試片模組10與輔助模組14結合之設計作說明。由於在實際檢測過程中,可能需要進行例如試片身分識別、試片位置對準、檢測區域選定、波長變換、焦距調整等程序,因此,若採用試片模組10與輔助模組14結合之設計,可於操作或儲存狀態下提供特殊的輔助功能。除了可用於檢體操作過程之輔助,若經特殊設計更可提供檢體儲存條件調控、儲存狀態監控之效果。以下將就各功能進行說明。Next, the design of the combination of the test strip module 10 and the auxiliary module 14 will be described. In the actual detection process, it may be necessary to perform procedures such as test piece identification, test piece position alignment, detection area selection, wavelength conversion, focal length adjustment, etc., therefore, if the test strip module 10 and the auxiliary module 14 are combined Designed to provide special accessibility during operation or storage. In addition to being used for the auxiliary operation of the sample, if it is specially designed, it can provide the effect of monitoring the storage conditions of the sample and monitoring the storage status. The following describes each function.

如圖5A至圖5D所示,輔助模組14係用以提供身分識別與位置對準之功能。實際上,輔助模組14可具有符號、顏色、圖樣、文字、數字、條碼、立體識別區或立體對準區等不同之設計,以提供試片識別輔助功能及試片對準輔助功能。As shown in FIG. 5A to FIG. 5D, the auxiliary module 14 is used to provide the functions of identity recognition and position alignment. In fact, the auxiliary module 14 can have different designs such as symbols, colors, patterns, characters, numbers, barcodes, stereoscopic recognition areas or stereo alignment areas to provide the test piece identification auxiliary function and the test piece alignment auxiliary function.

舉例而言,輔助模組14可設計為簡單符號(正、負號)、顏色(紅色成人、綠色小孩)、圖案(動物圖案、植物圖案)、阿拉伯數字、文字(M男性、F女性)、幾何圖形(三角或圓形等),作為試片來源之身分識別。例如圖5A及圖5B中之輔助模組14係分別設計為雙箭頭型的幾何圖案及M字型,以作為識別之用。若輔助模組14搭配上外加的條碼讀取機,更可直接以條碼標示於試片上。此外,上述之身分識別手段更可與位置對準功能相結合,例如圖5B中之M字型的輔助模組14可進行上下 或左右移動而與相對應的凹部對準,還有圖5C及圖5D中之條碼狀的輔助模組14可移動而插入至相對應的間隙以完成對準程序,但不以此為限。For example, the auxiliary module 14 can be designed as simple symbols (positive and negative), color (red adult, green child), pattern (animal pattern, plant pattern), Arabic numerals, characters (M male, F female), Geometry (triangle or circle, etc.), identified as the source of the test piece. For example, the auxiliary modules 14 in FIGS. 5A and 5B are respectively designed as a double arrow type geometric pattern and an M shape for identification. If the auxiliary module 14 is equipped with an additional barcode reader, it can be directly marked on the test strip by bar code. In addition, the above-mentioned identity recognition means can be combined with the position alignment function, for example, the M-shaped auxiliary module 14 in FIG. 5B can be performed up and down. Or the left and right movements are aligned with the corresponding recesses, and the barcode-shaped auxiliary modules 14 in FIGS. 5C and 5D are movable to be inserted into the corresponding gaps to complete the alignment procedure, but not limited thereto.

此外,本發明之識別與對準機制不限上述之平面標示設計,更可直接於試片100的製作過程中形成立體識別對準區H,以與相對應的對準區J對準,如圖6所示,立體識別對準區H可以是試片100的表面上之一凸出部,可透過試片100進行上下或左右移動使得凸出的立體識別對準區H能夠插入至輔助模組14上之具有相對應容置空間的對準區J,以完成對準程序。此外,上述立體識別對準區H更可搭配外部感測元件K進行數位化比對分析,如圖7A及圖7B所示,複數個外部感測元件K可分別設置於輔助模組14上之容置空間旁的不同位置,假設試片100上之凸出的立體識別對準區H可具有圖7A中之第一長度或圖7B中之第二長度,並定義第一長度代表位元“0”且第二長度代表位元“1”,當試片100上之凸出的立體識別對準區H插入至輔助模組14上之容置空間內時,該複數個外部感測元件K即可透過光學或其他型式之感測方式判斷立體識別對準區H之長度為第一長度或第二長度,進而得到其代表的是位元“0”或“1”,以完成數位化比對分析。In addition, the identification and alignment mechanism of the present invention is not limited to the above-described planar design, and the stereoscopic alignment area H can be formed directly in the fabrication process of the test strip 100 to be aligned with the corresponding alignment area J, such as As shown in FIG. 6, the stereoscopic recognition alignment area H may be a protrusion on the surface of the test strip 100, and can be moved up and down or left and right through the test strip 100 so that the convex stereoscopic alignment area H can be inserted into the auxiliary mode. The alignment area J on the group 14 has a corresponding accommodation space to complete the alignment procedure. In addition, the stereoscopic alignment area H can be compared with the external sensing component K for digital comparison analysis. As shown in FIG. 7A and FIG. 7B, a plurality of external sensing components K can be respectively disposed on the auxiliary module 14. Different positions beside the accommodation space, it is assumed that the convex stereoscopic alignment area H on the test strip 100 may have the first length in FIG. 7A or the second length in FIG. 7B, and define the first length representative bit " 0" and the second length represents the bit "1". When the protruding stereoscopic alignment area H on the test strip 100 is inserted into the accommodating space on the auxiliary module 14, the plurality of external sensing elements K The length of the stereoscopic recognition alignment area H can be determined by the optical or other type of sensing method as the first length or the second length, thereby obtaining the bit "0" or "1" to complete the digitization ratio. For analysis.

如圖8A及圖8B所示,輔助模組14係用以提供波長能量變換之功能。此時,輔助模組14可採用透光夾層TL之設計(單層或多層),藉由導入不同穿透、吸收、反射特性之流體(氣、液體)後,即可達到變換實際入射至檢體SA之波長或能量的效果。此外,上述變換波長能 量之設計亦可為陣列化、模組化或堆疊化等不同設計,以形成更多樣化之使用彈性,如圖9A及圖9B所示。As shown in FIGS. 8A and 8B, the auxiliary module 14 is used to provide a function of wavelength energy conversion. At this time, the auxiliary module 14 can adopt the design (single layer or multi-layer) of the light-transmissive interlayer TL, and by introducing fluids (gas, liquid) with different penetrating, absorbing, and reflecting characteristics, the actual incident can be detected. The effect of the wavelength or energy of the body SA. In addition, the above conversion wavelength energy The design of the quantity can also be different designs such as arraying, modularizing or stacking to form a more diverse use flexibility, as shown in Figures 9A and 9B.

如圖10A及圖10B所示,輔助模組14係用以提供焦距調整之功能。此時,輔助模組14可採用具有光學聚光特性(如圖10A所示之凸出部14A)或光學散光特性(如圖10B所示之凹陷部14B)之設計,或是將上述輔助模組14設計為模組化可更換之型式,以調整得到不同的光學效果。此外,如圖11A及圖11B所示,亦可進一步將輔助模組14與光學檢測模組12組合形成連動機制,以方便進行檢體之檢測。更詳細地說,具有凸出部14A之輔助模組14與光學檢測模組12可彼此固定在一起,即使光學檢測模組12相對於試片模組10產生移動,輔助模組14亦會隨著光學檢測模組12一樣移動,使得輔助模組14上之凸出部14A之位置仍會對應於光學檢測模組12,所以光學檢測模組12所發出的檢測光Ld 均能先經過凸出部14A之聚光後才射入至試片模組10。As shown in FIGS. 10A and 10B, the auxiliary module 14 is used to provide a function of focus adjustment. At this time, the auxiliary module 14 may adopt a design having an optical condensing characteristic (the protruding portion 14A as shown in FIG. 10A) or an optical astigmatism characteristic (the depressed portion 14B as shown in FIG. 10B), or the auxiliary mode described above. Group 14 is designed as a modular, replaceable version to adjust for different optical effects. In addition, as shown in FIG. 11A and FIG. 11B, the auxiliary module 14 and the optical detection module 12 may be further combined to form a linkage mechanism to facilitate detection of the sample. In more detail, the auxiliary module 14 having the protruding portion 14A and the optical detecting module 12 can be fixed to each other. Even if the optical detecting module 12 moves relative to the test strip module 10, the auxiliary module 14 will follow The optical detecting module 12 is moved in the same manner, so that the position of the protruding portion 14A on the auxiliary module 14 still corresponds to the optical detecting module 12, so that the detecting light L d emitted by the optical detecting module 12 can be convex first. The concentrating portion 14A is condensed before being incident on the test strip module 10.

需說明的是,上述連動機制更可提供電子訊息之傳輸,如此情況下可利用透明電極所形成之微電極驅動機制(或陣列)提供液體驅動機制,例如電泳、電濕、電毛細等手段直接調控焦距變化效果與焦距作用區域,但不以此為限。It should be noted that the above linkage mechanism can further provide transmission of electronic messages. In this case, the microelectrode driving mechanism (or array) formed by the transparent electrodes can be used to provide a liquid driving mechanism, such as electrophoresis, electrowetting, electrocapillary, etc. Adjust the focal length change effect and the focal length action area, but not limited to this.

於實際應用中,輔助模組14亦可用以提供儲存狀態調控之功能。此時,輔助模組14可與光學檢測模組12或儲存設備(圖未示)耦合,以提供下列數種功能:In practical applications, the auxiliary module 14 can also be used to provide a storage state control function. At this time, the auxiliary module 14 can be coupled with the optical detection module 12 or a storage device (not shown) to provide the following functions:

(1)抽真空:此時,輔助模組14可直接將上述圖4B 所示之氣壓調控方式反向進行操作,將試片100內氣體抽出,避免空氣中微生物或水氣濕度等與檢體SA接觸,以提高檢體SA之保存期限。(1) Vacuuming: At this time, the auxiliary module 14 can directly take the above FIG. 4B The air pressure control method shown is reversely operated to extract the gas in the test piece 100 to prevent the microorganisms or moisture in the air from coming into contact with the sample SA to improve the shelf life of the sample SA.

(2)溫度調控:此時,輔助模組14可包含有溫度調控元件,例如熱電元件或加溫元件。當試片100由儲存設備取出,輔助模組14之溫度調控元件可協助縮短回溫過程以加速檢體SA解凍,並可避免觀察操作過程中產生霧化現象。若溫度調控元件為熱電元件,還可在儲存狀態下提供每一試片100獨立之局部降溫效果。(2) Temperature regulation: At this time, the auxiliary module 14 may include a temperature control element such as a thermoelectric element or a heating element. When the test strip 100 is taken out by the storage device, the temperature control component of the auxiliary module 14 can assist in shortening the temperature recovery process to accelerate the thawing of the sample SA, and can avoid fogging during the observation operation. If the temperature control element is a thermoelectric element, an independent local temperature reduction effect of each test piece 100 can be provided in a stored state.

(3)檢體狀態監控:此時,輔助模組14可包含有化學檢測元件,例如酸鹼檢測元件。當檢體SA儲存狀態不佳,不適合進行後續檢測時,即可透過顏色指標作變色指示,以指示使用者更換檢體SA之恰當時機。(3) Sample state monitoring: At this time, the auxiliary module 14 may include a chemical detecting element such as an acid-base detecting element. When the sample SA is in a poor storage state and is not suitable for subsequent detection, the color indicator can be used to indicate the appropriate timing for the user to change the sample SA.

根據本發明之另一較佳具體實施例為一種光學裝置運作方法。於此實施例中,光學裝置包含試片模組、光學檢測模組、輔助模組及資料處理模組。請參照圖12,圖12係繪示此實施例之光學裝置運作方法的流程圖。Another preferred embodiment of the present invention is a method of operating an optical device. In this embodiment, the optical device includes a test strip module, an optical detection module, an auxiliary module, and a data processing module. Please refer to FIG. 12. FIG. 12 is a flow chart showing the operation method of the optical device of this embodiment.

如圖12所示,首先,於步驟S10中,試片模組承載包含有一檢體之一試片。接著,於步驟S12中,光學檢測模組對試片中之檢體進行一深層組織檢測分析。然後,於步驟S14中,輔助模組對試片模組及光學檢測模組之運作提供一輔助功能。之後,該方法將會執行步驟S16,資料處理模組判斷其接收到的是光學檢測模組所傳送之訊號或輔助模組所傳送之訊息。若步驟S16之判斷結果為資料處理模組所接收到的是光學檢測模組所傳送之訊號,該方法將會執行步驟 S18A,資料處理模組分析處理光學檢測模組所傳送之訊號以產生關於檢體之一檢測結果;若步驟S16之判斷結果為資料處理模組所接收到的是輔助模組所傳送之訊息,該方法將會執行步驟S18B,資料處理模組根據輔助模組所傳送之訊息產生相對應之一調控指令至光學檢測模組或輔助模組。As shown in FIG. 12, first, in step S10, the test strip module carries a test piece including a sample. Next, in step S12, the optical detection module performs a deep tissue detection analysis on the sample in the test piece. Then, in step S14, the auxiliary module provides an auxiliary function for the operation of the test strip module and the optical detection module. After that, the method will perform step S16, and the data processing module determines that it receives the signal transmitted by the optical detection module or the message transmitted by the auxiliary module. If the result of the determination in step S16 is that the data processing module receives the signal transmitted by the optical detection module, the method will perform the steps. S18A, the data processing module analyzes and processes the signal transmitted by the optical detection module to generate a detection result of the sample; if the judgment result in step S16 is that the data processing module receives the message transmitted by the auxiliary module, The method will execute step S18B, and the data processing module generates a corresponding one of the control commands to the optical detection module or the auxiliary module according to the message transmitted by the auxiliary module.

於實際應用中,於步驟S14中,輔助模組可以是獨立設計或依附於試片模組,並且輔助模組所提供之輔助功能可以是試片識別輔助功能、試片對準輔助功能、檢測條件調控輔助功能或檢體儲存狀態監控輔助功能,但不以此為限。於步驟S12中,光學檢測模組係利用一光學干涉技術對檢體進行深層組織檢測分析,並且光學干涉技術可以是時域(time domain)設計或頻域(frequency domain)設計。In an actual application, in step S14, the auxiliary module may be independently designed or attached to the test strip module, and the auxiliary functions provided by the auxiliary module may be the test strip recognition auxiliary function, the test strip alignment auxiliary function, and the detection. Conditional control auxiliary function or sample storage status monitoring auxiliary function, but not limited to this. In step S12, the optical detection module performs deep tissue detection analysis on the sample by using an optical interference technique, and the optical interference technique may be a time domain design or a frequency domain design.

相較於先前技術,根據本發明之光學裝置及其運作方法係藉由光學干涉技術對檢體試片進行非破壞性且非接觸式之量測,故可直接對厚度較大的檢體試片進行光學檢測,不僅可省去傳統上將檢體試片切成薄片及染色等繁雜且費時之程序,亦能夠有效避免傳統上將所有薄片檢體試片的檢測結果進行疊合重組時所可能產生之誤差,藉以提升光學裝置進行檢測時之準確性及可靠度。此外,根據本發明之光學裝置及其運作方法所使用的檢體試片亦可搭配輔助單元的特殊設計在操作過程中提供可調控的功能,故能讓使用者操作上更為方便。Compared with the prior art, the optical device and the method for operating the same according to the present invention perform non-destructive and non-contact measurement on the test piece by optical interference technology, so that the test piece with a large thickness can be directly tested. Optical inspection of the film not only eliminates the complicated and time-consuming process of cutting the sample piece and dyeing the sample, but also effectively avoids the conventional folding and recombination of the test results of all the sample test pieces. Possible errors to improve the accuracy and reliability of the optical device for inspection. In addition, the sample test piece used in the optical device and the operation method thereof according to the present invention can also be provided with a controllable function in the operation process in combination with the special design of the auxiliary unit, so that the user can operate more conveniently.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請 之專利範圍的範疇內。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the purpose is to cover various changes and equal arrangements in the present invention. Within the scope of the patent scope.

S10~S18B‧‧‧流程步驟S10~S18B‧‧‧ Process steps

1‧‧‧光學裝置1‧‧‧Optical device

10‧‧‧試片模組10‧‧‧Test film module

12‧‧‧光學檢測模組12‧‧‧ Optical Inspection Module

14‧‧‧輔助模組14‧‧‧Auxiliary module

16‧‧‧資料處理模組16‧‧‧Data Processing Module

100‧‧‧試片100‧‧‧ test strips

SA‧‧‧檢體SA‧‧‧ specimen

120‧‧‧分光/耦合單元120‧‧‧Splitting/coupling unit

G‧‧‧膠水(或蠟油)G‧‧‧ glue (or wax oil)

UD‧‧‧上下結構UD‧‧‧ upper and lower structure

RL‧‧‧側邊結構RL‧‧‧ side structure

PU‧‧‧氣壓PU‧‧‧ air pressure

H‧‧‧立體識別對準區H‧‧‧3D identification alignment area

K‧‧‧外部感測元件K‧‧‧External sensing components

TL‧‧‧透光夾層TL‧‧‧Transmissive interlayer

J‧‧‧相對應的對準區J‧‧‧ corresponding alignment area

圖1A係繪示根據本發明之一較佳具體實施例中之光學裝置的功能方塊圖。1A is a functional block diagram of an optical device in accordance with a preferred embodiment of the present invention.

圖1B係繪示圖1A中之輔助模組採用依附於試片模組之設計。FIG. 1B illustrates the design of the auxiliary module of FIG. 1A attached to the test strip module.

圖2係繪示光學檢測模組利用光學干涉技術進行檢測之示意圖。FIG. 2 is a schematic diagram showing the optical detection module using optical interference technology for detection.

圖3A係繪示採用物理固化方式進行檢體固定之示意圖。FIG. 3A is a schematic view showing the fixation of the sample by physical curing.

圖3B係繪示採用機械固定方式進行檢體固定之示意圖。FIG. 3B is a schematic view showing the fixation of the specimen by mechanical fixation.

圖4A係繪示採用直接加壓之設計將檢體壓平之示意圖。Figure 4A is a schematic view showing the flattening of the specimen using a direct pressurization design.

圖4B係繪示採用施加氣壓之設計將檢體壓平之示意圖。Fig. 4B is a schematic view showing the flattening of the specimen by the design of the applied air pressure.

圖5A至圖5D係繪示輔助模組提供身分識別與位置對準功能之示意圖。5A to 5D are schematic diagrams showing the auxiliary module providing identity recognition and position alignment functions.

圖6係繪示直接於試片製作過程中形成立體識別、對準區之示意圖。FIG. 6 is a schematic diagram showing the formation of a stereoscopic recognition and alignment area directly in the process of producing a test strip.

圖7A及圖7B係繪示立體識別對準區搭配外部感測元件進行數位化比對分析之示意圖。7A and FIG. 7B are schematic diagrams showing the digital recognition alignment area and the external sensing element for digital comparison analysis.

圖8A及圖8B係繪示輔助模組採用透光夾層之設計提供波長能量變換功能之示意圖。8A and 8B are schematic diagrams showing that the auxiliary module uses a design of a light-transmissive interlayer to provide a wavelength energy conversion function.

圖9A及圖9B係繪示不同型式之變換波長能量設計的示意圖。9A and 9B are schematic diagrams showing different types of converted wavelength energy designs.

圖10A及圖10B係繪示輔助模組採用光學聚光特性及光學散光特性設計之示意圖。10A and 10B are schematic diagrams showing the design of the auxiliary module using optical concentrating characteristics and optical astigmatism characteristics.

圖11A及圖11B係繪示將輔助模組與光學檢測模組組合形成連動機制之示意圖。11A and 11B are schematic diagrams showing the combination of an auxiliary module and an optical detection module to form a linkage mechanism.

圖12係繪示根據本發明之另一較佳具體實施例之光學裝置運作方法的流程圖。12 is a flow chart showing a method of operating an optical device in accordance with another preferred embodiment of the present invention.

1‧‧‧光學裝置1‧‧‧Optical device

10‧‧‧試片模組10‧‧‧Test film module

12‧‧‧光學檢測模組12‧‧‧ Optical Inspection Module

14‧‧‧輔助模組14‧‧‧Auxiliary module

16‧‧‧資料處理模組16‧‧‧Data Processing Module

100‧‧‧試片100‧‧‧ test strips

SA‧‧‧檢體SA‧‧‧ specimen

Claims (10)

一種光學裝置,包含有:一試片模組,用以承載一試片,且該試片包含有一檢體;一光學檢測模組,用以對該試片中之該檢體進行一深層組織檢測分析;一輔助模組,用以對該試片模組及該光學檢測模組之運作提供一輔助功能;以及一資料處理模組,耦接該光學檢測模組及該輔助模組,用以分析處理該光學檢測模組所傳送之一訊號以產生關於該檢體之一檢測結果,或根據該輔助模組所傳送之一訊息產生相對應之一調控指令至該光學檢測模組或該輔助模組;其中,該輔助模組具有一凸出部,該輔助模組係與該光學檢測模組彼此固定在一起,即使該光學檢測模組相對於該試片模組產生移動,該輔助模組亦隨著該光學檢測模組一樣移動,使得該輔助模組上之該凸出部的位置仍對應於該光學檢測模組的位置,該光學檢測模組所發出的一檢測光均先經過該輔助模組上之該凸出部之聚光後才射至該試片模組。 An optical device includes: a test strip module for carrying a test piece, and the test piece includes a sample; an optical detecting module for performing a deep structure on the sample in the test piece An auxiliary module for providing an auxiliary function for the operation of the test strip module and the optical detection module; and a data processing module coupled to the optical detection module and the auxiliary module Equivalently processing a signal transmitted by the optical detection module to generate a detection result of the sample, or generating a corresponding one of the control instructions to the optical detection module according to the message transmitted by the auxiliary module or the The auxiliary module has a protruding portion, and the auxiliary module and the optical detecting module are fixed to each other, even if the optical detecting module moves relative to the test strip module, the auxiliary The module also moves along with the optical detecting module, so that the position of the protruding portion on the auxiliary module still corresponds to the position of the optical detecting module, and a detecting light emitted by the optical detecting module is first After the supplement The converging portion of the projection on the module to the test strip after exit module. 如申請專利範圍第1項所述之光學裝置,其中該試片模組係配合通氣孔與外部加壓閥施加氣壓將該檢體壓平,以利於後續之觀察檢測。 The optical device according to claim 1, wherein the test piece module is pressed with a vent hole and an external pressure valve to apply pressure to flatten the sample to facilitate subsequent observation and detection. 如申請專利範圍第1項所述之光學裝置,其中該光學檢測模組係利用一光學干涉技術對該檢體進行該深層組織檢測分析,且該光學干涉技術係為時域(time domain)設計或頻域 (frequency domain)設計。 The optical device according to claim 1, wherein the optical detecting module performs the deep tissue detection analysis on the sample by an optical interference technique, and the optical interference technology is a time domain design. Frequency domain (frequency domain) design. 如申請專利範圍第1項所述之光學裝置,其中該試片模組係設計為有蓋形式或開放形式,且透過物理固化或機械固定方式限制該檢體之移動。 The optical device of claim 1, wherein the test strip module is designed to have a cover form or an open form, and the movement of the sample is restricted by physical curing or mechanical fixing. 如申請專利範圍第1項所述之光學裝置,其中該輔助模組係具有一符號、一顏色、一圖樣、一文字、一數字、一條碼、一立體識別區或一立體對準區之設計,以提供試片識別輔助功能及試片對準輔助功能。 The optical device of claim 1, wherein the auxiliary module has a design of a symbol, a color, a pattern, a character, a number, a code, a stereoscopic recognition area or a stereo alignment area. To provide test strip recognition auxiliary function and test strip alignment auxiliary function. 如申請專利範圍第1項所述之光學裝置,其中該輔助模組係具有單層或多層透光夾層之設計,導入具有不同穿透、吸收及反射特性的流體,以提供變換入射該檢體之入射光的波長或能量。 The optical device of claim 1, wherein the auxiliary module has a single layer or a plurality of layers of light transmissive interlayers, and introduces fluids having different penetrating, absorbing, and reflecting properties to provide a transformed incident object. The wavelength or energy of the incident light. 如申請專利範圍第1項所述之光學裝置,其中該輔助模組具有一容置空間,複數個外部感測元件分別設置於該容置空間旁的不同位置,該試片上具有凸出的一立體識別對準區,該立體識別對準區具有一第一長度或一第二長度,且該第一長度及該第二長度分別對應於位元0及1,當該試片上之該立體識別對準區插入至該輔助模組之該容置空間內時,該複數個外部感測元件透過光學感測方式判斷該立體識別對準區之長度為該第一長度或該第二長度,進而得到該試片上之該立體識別對準區所代表的是位元0或1。 The optical device of claim 1, wherein the auxiliary module has an accommodating space, and the plurality of external sensing elements are respectively disposed at different positions beside the accommodating space, and the test piece has a convex one. a stereoscopic recognition alignment area having a first length or a second length, and the first length and the second length respectively correspond to the bits 0 and 1, respectively, when the stereo recognition on the test strip When the alignment area is inserted into the accommodating space of the auxiliary module, the plurality of external sensing elements determine, by optical sensing, the length of the stereoscopic alignment area is the first length or the second length, and further The stereoscopic alignment area on the test strip is represented by bit 0 or 1. 一種運作一光學裝置的方法,該光學裝置包含一試片模組、 一光學檢測模組、一輔助模組及一資料處理模組,該方法包含下列步驟:(a)該試片模組承載包含有一檢體之一試片;(b)該光學檢測模組對該試片中之該檢體進行一深層組織檢測分析;(c)該輔助模組對該試片模組及該光學檢測模組之運作提供一輔助功能;以及(d)該資料處理模組分析處理該光學檢測模組所傳送之一訊號以產生關於該檢體之一檢測結果,或根據該輔助模組所傳送之一訊息產生相對應之一調控指令至該光學檢測模組或該輔助模組;其中,該輔助模組具有一凸出部,該輔助模組係與該光學檢測模組彼此固定在一起,即使該光學檢測模組相對於該試片模組產生移動,該輔助模組亦隨著該光學檢測模組一樣移動,使得該輔助模組上之該凸出部的位置仍對應於該光學檢測模組的位置,該光學檢測模組所發出的一檢測光均先經過該輔助模組上之該凸出部之聚光後才射至該試片模組。 A method of operating an optical device, the optical device comprising a test strip module, An optical detecting module, an auxiliary module and a data processing module, the method comprising the following steps: (a) the test chip module carries a test piece including a sample; (b) the optical detection module pair The test piece in the test piece performs a deep tissue inspection analysis; (c) the auxiliary module provides an auxiliary function for the operation of the test piece module and the optical detection module; and (d) the data processing module Analysing a signal transmitted by the optical detection module to generate a detection result of the sample, or generating a corresponding control instruction to the optical detection module or the auxiliary according to a message transmitted by the auxiliary module The auxiliary module has a protruding portion, and the auxiliary module and the optical detecting module are fixed to each other, even if the optical detecting module moves relative to the test strip module, the auxiliary mold The group also moves with the optical detecting module, so that the position of the protruding portion on the auxiliary module still corresponds to the position of the optical detecting module, and a detecting light emitted by the optical detecting module passes through The convex on the auxiliary module The converging portion to the test strip after exit module. 如申請專利範圍第8項所述之方法,其中該試片模組係配合通氣孔與外部加壓閥施加氣壓將該檢體壓平,以利於後續之觀察檢測。 The method of claim 8, wherein the test piece module is pressed with a vent hole and an external pressure valve to apply pressure to flatten the sample to facilitate subsequent observation and detection. 如申請專利範圍第8項所述之方法,其中該輔助模組具有一容置空間,複數個外部感測元件分別設置於該容置空間旁的不同位置,該試片上具有凸出的一立體識別對準區,該立體識別對準區具有一第一長度或一第二長 度,且該第一長度及該第二長度分別對應於位元0及1,當該試片上之該立體識別對準區插入至該輔助模組之該容置空間內時,該複數個外部感測元件透過光學感測方式判斷該立體識別對準區之長度為該第一長度或該第二長度,進而得到該試片上之該立體識別對準區所代表的是位元0或1。The method of claim 8, wherein the auxiliary module has an accommodating space, and the plurality of external sensing elements are respectively disposed at different positions beside the accommodating space, and the test piece has a convex one-dimensional shape Identifying an alignment area having a first length or a second length And the first length and the second length respectively correspond to the bits 0 and 1. When the stereoscopic alignment area on the test strip is inserted into the accommodating space of the auxiliary module, the plurality of external portions The sensing component determines whether the length of the stereoscopic alignment area is the first length or the second length by optical sensing, and further obtains the stereoscopic alignment area on the test piece to represent the bit 0 or 1.
TW101127231A 2012-07-27 2012-07-27 Optical apparatus and operating method thereof TWI480534B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101127231A TWI480534B (en) 2012-07-27 2012-07-27 Optical apparatus and operating method thereof
CN201310283723.2A CN103575700B (en) 2012-07-27 2013-07-08 Optical device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101127231A TWI480534B (en) 2012-07-27 2012-07-27 Optical apparatus and operating method thereof

Publications (2)

Publication Number Publication Date
TW201405117A TW201405117A (en) 2014-02-01
TWI480534B true TWI480534B (en) 2015-04-11

Family

ID=50047943

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101127231A TWI480534B (en) 2012-07-27 2012-07-27 Optical apparatus and operating method thereof

Country Status (2)

Country Link
CN (1) CN103575700B (en)
TW (1) TWI480534B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778718B (en) * 2021-07-21 2022-09-21 台達電子工業股份有限公司 Specimen slide scrape guide system and method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352442A (en) * 2014-08-20 2016-02-24 明达医学科技股份有限公司 Optical measurement device and method
CN105628704A (en) * 2015-11-30 2016-06-01 江苏大学 Quick measurement method based on light interference technology and used for blade surface microstructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067046A (en) * 2008-06-19 2011-05-18 相位全息成像技术公司 Analysis of transparent biological objects
TW201132929A (en) * 2010-03-29 2011-10-01 Univ Nat Taiwan Apparatus for low coherence optical imaging
CN102264279A (en) * 2008-12-26 2011-11-30 佳能株式会社 Optical tomographic imaging apparatus
TW201207375A (en) * 2010-08-06 2012-02-16 Crystalvue Medical Corp Large area optical test apparatus and operating method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214191B2 (en) * 2002-10-07 2009-01-28 国立大学法人 岡山大学 Temperature measuring device
CN2602371Y (en) * 2003-03-07 2004-02-04 孙艳 Thin film surface microscopic unevenness tester
CN101194828B (en) * 2007-12-24 2011-02-02 清华大学深圳研究生院 Nondestructive optics detecting device for Eye aqueous glucose concentration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067046A (en) * 2008-06-19 2011-05-18 相位全息成像技术公司 Analysis of transparent biological objects
CN102264279A (en) * 2008-12-26 2011-11-30 佳能株式会社 Optical tomographic imaging apparatus
TW201132929A (en) * 2010-03-29 2011-10-01 Univ Nat Taiwan Apparatus for low coherence optical imaging
TW201207375A (en) * 2010-08-06 2012-02-16 Crystalvue Medical Corp Large area optical test apparatus and operating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778718B (en) * 2021-07-21 2022-09-21 台達電子工業股份有限公司 Specimen slide scrape guide system and method thereof

Also Published As

Publication number Publication date
CN103575700A (en) 2014-02-12
TW201405117A (en) 2014-02-01
CN103575700B (en) 2016-12-28

Similar Documents

Publication Publication Date Title
EP3710810B1 (en) Sample carrier for optical measurements
US11615672B2 (en) Inspection system and inspection device
US7130047B2 (en) Method of producing polarizers for polarized optical probes
CN107597217B (en) Result-visualized paper-based microfluidic chip and preparation method thereof
KR102287272B1 (en) Test Apparatus and Control Method thereof
JP2017053849A (en) Methods and devices for improved accuracy of test results
TWI480534B (en) Optical apparatus and operating method thereof
CN109261233B (en) Micro-fluidic chip
TW200307126A (en) Unit for checking blood and device for checking blood
EP1851680B1 (en) System and method for optically imaging objects on a detection device by means of a pinhole aperture
KR102525423B1 (en) Image-based analysis of samples
CN103105364A (en) Intelligent dried blood spot (DBS) collecting and processing system
JP2016161546A (en) Micro flow channel chip
KR101304048B1 (en) Method for producing an analytical consumable
US20210354129A1 (en) Microfluidic apparatus, method of detecting substance in microfluidic apparatus, and spectrometer
JP6644329B2 (en) Light guide path built-in chip, light guide member and light guide method
US20200368745A1 (en) Fluid analysis devices
WO2020257809A1 (en) Improved optical transmission sample holder and analysis at multiple wavelengths
JPWO2009037785A1 (en) Body fluid component analysis device inspection method and body fluid component analysis device
JP6169367B2 (en) Optical analyzer
Seetasang et al. Analytical Devices with Instrument-Free Detection Based on Paper Microfluidics
Seetasang et al. 10 Analytical Devices
CN117309756A (en) Apparatus, system and method for sample testing
CN109975216A (en) A kind of portable light spectrum detection device and method based on laser-optical disk
JP2009229263A (en) Inspection system