TWI480402B - An oxide sintered body sputtering target, a method for manufacturing the target, a gate insulating film made of an oxide, and a heat treatment method of the gate insulating film - Google Patents
An oxide sintered body sputtering target, a method for manufacturing the target, a gate insulating film made of an oxide, and a heat treatment method of the gate insulating film Download PDFInfo
- Publication number
- TWI480402B TWI480402B TW099114618A TW99114618A TWI480402B TW I480402 B TWI480402 B TW I480402B TW 099114618 A TW099114618 A TW 099114618A TW 99114618 A TW99114618 A TW 99114618A TW I480402 B TWI480402 B TW I480402B
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide
- sintered body
- powder
- insulating film
- sputtering target
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/44—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/721—Carbon content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/724—Halogenide content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/726—Sulfur content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/727—Phosphorus or phosphorus compound content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/79—Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Formation Of Insulating Films (AREA)
Description
本發明係關於一種由鑭(La)與鋁(Al)之氧化物所構成之燒結體濺鍍靶、該靶之製造方法、由鑭(La)與鋁(Al)之氧化物所構成之閘極絕緣膜及該閘極絕緣膜之熱處理方法。
鑭(La)係包含於稀土元素之中,作為一種礦物資源以混合複合氧化物之形態而含有於地殼中。稀土元素由於係分離自較稀有存在的礦物,故被冠以此種名稱,但就地殼總體而言絕不稀少。鑭係原子序為57、原子量為138.9之白色的金屬,於常溫下具有六方最密堆積結構。其熔點為921℃,沸點為3500℃,密度為6.15g/cm3
,於空氣中表面會被氧化,於水中則會緩慢溶解。可溶解於熱水、酸中。無延性,但略有展性。其電阻率為5.70×10-6
Ωcm。於445℃以上會燃燒而形成氧化物(La2
O3
)(參照理化學辭典)。
對於稀土元素而言,通常氧化數為3之化合物較為穩定,鑭亦為3價。最近,係將鑭作為金屬閘材料、高介電常數材料(High-k)等電子材料而持續進行研究開發,為受到矚目之金屬。
鑭金屬,由於在純化時有容易發生氧化的問題,因此屬於難以高純度化之材料,並不存在高純度製品。又,將鑭金屬放置於空氣中時,由於會在短時間內發生氧化變成黑色,因此亦有處理不易的問題。
最近,對新一代MOSFET中之閘絕緣膜係要求薄膜化,但迄今為止被使用作為閘絕緣膜之SiO2
,會由於隧道效應而導致漏電流增加,難以正常動作。
因此,作為其代替品,係提出有具有高介電常數、高熱穩定性、對矽中之電洞及電子具有高能量障壁的HfO2
、ZrO2
、Al2
O3
、La2
O3
。特別是此等材料之中,La2
O3
之評價較高,研究其電特性後,而完成有將其作為新一代MOSFET中之閘絕緣膜的研究報告(參照非專利文獻1)。但是,於該專利文獻之情形,為研究對象者係La2
O3
膜,並未特別提及La元素之特性及行為。
如此,關於鑭(氧化鑭),可謂尚處於研究階段,在對此種鑭(氧化鑭)之特性進行研究時,若鑭金屬本身係以濺鍍靶材的形態存在,則具有如下的大優點:可於基板上形成鑭的薄膜,又,容易研究與矽基板之界面處的行為,並且容易形成鑭化合物而研究高介電常數閘絕緣膜等之特性,又,作為製品之自由度增加。
然而,即使製作成鑭濺鍍靶,亦會如上述般於空氣中在短時間(10分鐘左右)發生氧化。若在靶形成氧化膜時,則會引起導電度下降,而導致濺鍍不良。又,若於空氣中長時間放置時,則甚至會引起與空氣中的水分發生反應而變成為被氫氧化物之白色粉末覆蓋的狀態而無法進行正常濺鍍的問題。因此,在製作靶之後,必須立即進行真空包裝或用油脂覆蓋,採取抗氧化的對策。但此係非常繁雜之作業。因為此等問題,造成目前鑭元素之靶材尚未進入實用化。
另一方面,提出有並非以鑭(氧化鑭)作為起始材料,而是以鋁酸鑭(LaAlO3
)的形態來加以利用(參照非專利文獻2)。於此文獻中,暗示相較於新一代所提出之High-k絕緣膜之HfO2
、HfSiO,為更加優異之材料。
此時,成膜之製程將會是個問題。根據此文獻,係認為與室溫成膜相較之下,高溫成膜(於700℃之成膜)的漏電流較少,並說明其原因在於高溫成膜會使膜中之缺陷消失且會去除存在於LaAlO3
的殘餘氧。於此文獻中,雖然沒有明示成膜製程,但是由於有高溫(700℃)成膜的說明,因此可預料為使用反應性氣體之製程。
此文獻,為了形成良好之High-k絕緣膜,故以成膜製程為高溫作為前提,因此問題並未獲得解決。
非專利文獻1:德光永輔及另外2人著,「High-k閘絕緣膜用氧化物材料之研究」電氣學會電子材料研究會資料,Vol.6-13,Page.37-41,2001年9月21日發行。
非專利文獻2:鈴木正道及另外2人著,「鋁酸鑭直接接合閘絕緣膜」,TOSHIBA REVIEW,Vol.62,No.2(2007年)37~41頁。
本發明,提供一種由鑭(La)與鋁(Al)之氧化物所構成之燒結體濺鍍靶,其課題在於提供一種可有效率且穩定地提供High-k閘絕緣膜用氧化物之技術。
如上述先前技術所記載,鑭係一種易於與氧結合,難以去除氧之材料,本發明並非以鑭(氧化鑭)作為起始材料,而是作為中心成分,以鋁酸鑭之燒結體的形態來加以利用。此意指雖然與上述文獻2相近,但卻不存在該文獻所示之問題。又,係利用作為濺鍍靶,並且成分組成相當於新穎物質。
本發明提供:
1)一種氧化物燒結體濺鍍靶,係由鑭(La)與鋁(Al)之氧化物所構成,其特徵在於,該氧化物之成分組成為LaAl(1.01-2)
O3
。
2)如上述1)所記載之氧化物燒結體濺鍍靶,其中,氧化物之成分組成為LaAl(1.05-1.2)
O3
。
3)如上述1)或2)所記載之氧化物燒結體濺鍍靶,其相對密度在98%以上,最大粒徑在10μm以下。
本發明進一步提供:
4)一種成分組成為LaAl(1.01-2)
O3
之氧化物燒結體濺鍍靶之製造方法,其特徵在於,使用La2
(CO3
)3
粉末與Al2
O3
粉末作為原料粉末,配合成使Al與La之莫耳比為1.01~2並加以混合後,於大氣中對此混合粉末進行加熱合成,接著將此合成材料加以粉碎製成粉末後,對此合成粉末進行熱壓而製成燒結體。
5)如上述4)所記載之氧化物燒結體濺鍍靶之製造方法,其中,係使用La2
(CO3
)3
粉末與Al2
O3
粉末,配合成使Al與La之莫耳比為1.05~1.2,然後進行燒結。
6)如上述4)或5)所記載之氧化物燒結體濺鍍靶之製造方法,其中,係藉由濕式球磨機進行混合,並於大氣中以1350~1550℃加熱5~25小時進行合成。
7)如上述4)至6)中任一項所記載之氧化物燒結體濺鍍靶之製造方法,其中,係以1300~1500℃、真空中、1~5小時進行熱壓。
並提供:
8)一種閘絕緣膜,係由成分組成為LaAl(1.01-2)
O3
之鑭與鋁的氧化物所構成。
9)如上述8)所記載之閘絕緣膜,其成分組成為LaAl(1.05-1.2)
O3
。
10)一種閘絕緣膜之熱處理方法,其特徵在於,於形成由成分組成為LaAl(1.01-2)
O3
之鑭與鋁的氧化物所構成之閘絕緣膜後,以50~300℃進行加熱處理。
11)如上述10)所記載之閘絕緣膜之熱處理方法,其中,該絕緣膜係由成分組成為LaAl(1.05-1.2)
O3
之鑭與鋁的氧化物所構成。
若將以往之鑭(氧化鑭)濺鍍靶長時間放置於空氣中,則會與空氣中之水分發生反應而變成為被氫氧化物之白色粉末覆蓋的狀態,而發生無法進行正常濺鍍的問題,但是本發明之由鑭與鋁之氧化物所構成之靶,並不會發生此種問題。
又,相較於化學計量之成分組成之LaAlO3
,Al量為過量,因此,藉此可具有下述之大效果:藉由氧化力強之Al將鑭與鋁之氧化物所含有之遊離氧或殘餘氧加以固定,可防止游離之氧移動於濺鍍成膜之LaAlO3
之膜中而在與Si之界面發生反應形成有害之SiO2
。
本發明之氧化物燒結體濺鍍靶,係由鑭(La)與鋁(Al)之氧化物所構成之燒結體濺鍍靶,該氧化物之成分組成為LaAl(1.01-2)
O3
,更佳為LaAl(1.05-1.2)
O3
。
由此組成比清楚可知,相較於化學計量之組成比,Al為過量。亦即,Al與La之莫耳比為1.01~2。Al與La之莫耳比若小於1.01,則將無法藉由Al來捕捉氧,而無法達到效果。又,Al與La之莫耳比若超過2,則會無法維持作為LaAlO3
之特性,尤其是作為High-k閘絕緣膜用氧化物材料之優異特性,因此使上述Al與La之莫耳比的上限值為2。進一步推薦之條件,係Al與La之莫耳比為1.05~1.2。
於製造此氧化物燒結體靶時,可藉由使用La2
(CO3
)3
粉末與Al2
O3
粉末作為原料粉末,配合成使Al與La之莫耳比為1.01~2或Al與La之莫耳比為1.05~1.2,將其混合後,於大氣中進行加熱合成,接著將此合成材料加以粉碎製成粉末,然後進一步對此合成粉末進行熱壓而製成燒結體,來進行製造。
混合係藉由濕式球磨機來進行,而於大氣中、1350~1550℃、5~25小時左右加熱進行合成為推薦之製造條件。又,以1300~1500℃、真空中、1~5小時進行熱壓亦是推薦作為燒結條件之製造條件。以上係能有效進行合成及燒結之條件。因此,應理解當然可為除此以外之條件及附加其他條件。
藉此,可得到相對密度98%以上、最大粒徑在10μm以下之氧化物燒結體濺鍍靶。提升密度與將結晶粒徑微細化,為可抑制結球及粒子的發生且可進行均勻之成膜的較佳條件。
又,一般於鑭所含有之稀土元素,除了鑭(La)以外,係有Sc、Y、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,由於特性相似,故難以從La加以分離純化。尤其是Ce與La近似,故Ce之減少化並不容易。
然而,此等之稀土元素由於性質近似,因此只要稀土元素合計未達1000wtppm,則在作為電子零件材料使用時,並不會特別造成問題。因此,本發明之鑭之使用,係容許此程度之稀土元素。
除此以外,亦存在不可避免所混入之雜質。分析值示於表1。尤其,雖然含有大量(4200wtppm)的Zr,但是即使存在此種雜質,依然適用作為由LaAl(1.05-1.2)
O3
之鑭與鋁之氧化物所構成之閘絕緣膜。然而,為了活用鑭元素之特性,更加減少為較佳之條件。本發明係包含此等。
一般,C、N、O、S、H係以氣體成分之形態存在。如上述,可將為有害成分之氧加以固定,而除此以外之氣體成分,並不會特別造成問題。此等有時會以單獨的元素存在,但大多數有時亦以化合物(CO、CO2
、SO2
等)或與構成元素之化合物的形態存在。此等之氣體成分元素由於原子量及原子半徑較小,因此只要是不含有大量,即使以雜質的形態存在,對材料之特性造成重大影響的情形並不多。因此,本發明之鑭的純度,較佳為不計稀土類、Zr、氣體成分之純度在3N以上。
藉由使用上述靶進行濺鍍,可形成由成分組成為LaAl(1.01-2)
O3
(進一步為LaAl(1.05-1.2)
O3
)之鑭與鋁的氧化物所構成之閘絕緣膜。靶之成分組成,係直接反映在成膜。並且在以此方式來形成由成分組成為LaAl(1.01-2)
O3
或成分組成為LaAl(1.05-1.2)
O3
之鑭與鋁的氧化物所構成之閘絕緣膜後,可以50~300℃進行加熱處理。
此係欲進一步固定膜中所存在之游離之氧,而可附加實施之條件。應理解此並非是必要之條件。尤其是新一代MOSFET等之製造條件,於避免此種加熱之製造條件中,為不必要之條件。
實施例
接著,說明實施例。另,此實施例僅為便於理解者,而非用以限制本發明。亦即,於本發明之技術思想範圍內之其他的實施例及變形,係包含於本發明。
(實施例1)
使用La2
(CO3
)3
粉末與Al2
O3
粉末作為原料粉末,配合成使Al與La之莫耳比為1.07,然後藉由濕式球磨機將其加以混合。於大氣中以1450℃加熱此混合粉末20小時,進行合成。藉由球磨機對此合成材料進行濕式粉碎16小時,製成粉末。於真空中以1400℃對此合成粉末進行2小時之熱壓,製成燒結體。燒結體之尺寸為ψ 190mm,加壓壓力係以300kg/cm2
來實施。
藉此,得到成分組成為LaAl(1.07)
O3
之氧化物燒結體。對其進行機械加工製成濺鍍靶。機械加工後之靶尺寸為ψ 164mm×6mmt。又,靶之相對密度為98.9%(6.436g/cm3
:理論密度為6.51g/cm3
)。
並且於大氣中將其接合至Cu製之支持板。經接合至Cu製之支持板之靶示於圖1。又,靶之組織觀察結果示於圖2。此圖2,係隨機選取靶表面5處地方,顯示其結果者。如此圖2所示,平均粒徑為0.885~1.64μm,最大粒徑為2.33~4.4μm,最小粒徑為0.2μm,孔隙之面積率係在0.053~0.66的範圍,可確認為高密度且微細之組織。
以上述方式所製作之成分組成為LaAl(1.07)
O3
之氧化物燒結體之端材的浸水測試之結果示於圖3。圖3,左邊係浸水測試前,右邊則是浸水測試24小時後之結果。如此圖3所示,即使於24小時之浸水測試後,亦完全沒有氧化或氫氧化所造成之腐蝕的痕跡。
通常,鑭(氧化鑭)即使是僅放置在大氣中1小時,由氧化或氫氧化所造成之腐蝕亦會急速進行,最初是白色,進一步則是變色成黑色,但是此LaAl(1.07)
O3
之氧化物燒結體並未觀察到腐蝕。
並且,為了對其進行評價,係測量上述浸水測試前與浸水測試24小時後之端材的X光繞射(XRD)之2θ的強度(CPS)。此結果示於圖4。如圖4所示,浸水測試前與浸水測試24小時後之端材,2θ的強度並無改變。藉此,亦可確認並無發生氧化或氫氧化所造成之腐蝕。
並且,使用此靶進行高頻濺鍍,於Si基板上形成LaAl(1.07)
O3
氧化物之薄膜。結果,於Si與LaAl(1.07)
O3
氧化物薄膜的界面,完全沒有觀察到Si氧化膜層。此表示可適用作為閘絕緣膜之材料。
(實施例2~實施例8)
使用La2
(CO3
)3
粉末與Al2
O3
粉末作為原料粉末,配合成使Al與La之莫耳比為1.01、1.02、1.05、1.1、1.2、1.25、2.0,然後藉由濕式球磨機將其加以混合。使製造條件與實施例1相同。結果,得到與實施例同樣的組織及浸水測試結果。
Al與La的莫耳比,最小限之Al與La的莫耳比若維持1.01,則不會特別受到腐蝕的影響,而含有大量的Al,由於有降低La所具有之特性的傾向,因此Al與La之莫耳比的上限值必須要為2.0。
(比較例1)
使用La2
(CO3
)3
粉末與Al2
O3
粉末作為原料粉末,配合成使Al與La之莫耳比為1.00,然後藉由濕式球磨機將其加以混合。以下之步驟與實施例1相同。亦即,於大氣中以1450℃加熱此混合粉末20小時,進行合成。藉由球磨機對此合成材料進行濕式粉碎16小時,製成粉末。
於真空中以1400℃對此合成粉末進行2小時之熱壓,製成燒結體。燒結體之尺寸為ψ 190mm,加壓壓力係以300kg/cm2
來實施。藉此,得到氧化物燒結體。然後亦使用此氧化物燒結體,藉由與實施例1相同之步驟製作靶,且使用氧化物燒結體靶之端材進行浸水測試。
於此比較例1,一部分產生富La之化合物。結果,雖然為些微,但若將所製得之靶放置於空氣中,則會發生粉化,且浸水測試亦同樣發生粉化。
因此,可確認使Al量相較於化學計量之成分組成之LaAlO3
為過剩,具有可捕捉遊離氧、殘餘氧之效果,且在抑制粉化現象上亦有效。
產業上之可利用性
若將以往之鑭(氧化鑭)濺鍍靶長時間放置於空氣中,則會與空氣中之水分發生反應而變成為被氫氧化物之白色粉末覆蓋的狀態,而發生無法進行正常濺鍍的問題,但是本發明之由鑭與鋁之氧化物所構成之靶,並不會發生此種問題。
又,由於相較於化學計量之成分組成之LaAlO3
,Al量為過量,因此,藉此可具有下述之大效果:藉由氧化力強之Al將鑭與鋁之氧化物所含有之遊離氧或殘餘氧加以固定,可防止游離之氧移動於濺鍍成膜之LaAlO3
之膜中而在與Si之界面發生反應形成有害之SiO2
。因此,使用此靶進行成膜,在形成均勻之膜上具有大效果,且所形成之薄膜特別適用作為接近矽基板所配置之電子材料,可在不降低或擾亂電子機器之功能下,作為閘絕緣膜之材料。
圖1,係顯示將LaAl(1.07)
O3
之氧化物燒結體接合於Cu製支持板而成之靶的外觀圖(照片)。
圖2,係顯示LaAl(1.07)
O3
之氧化物燒結體靶之組織觀察結果之顯微鏡照片。
圖3,係顯示LaAl(1.07)
O3
之氧化物燒結體之端材之浸水測試結果之外觀圖(照片)。
圖4,係顯示LaAl(1.07)
O3
之氧化物燒結體之浸水測試前與浸水測試24小時後之端材的X光繞射(XRD)之2θ之強度(CPS)測定結果之圖。
Claims (6)
- 一種氧化物燒結體濺鍍靶,係由鑭(La)與鋁(Al)之氧化物所構成,其特徵在於:相對密度在98%以上,最大粒徑在10μm以下,該氧化物之成分組成為LaAl(1.01-2) O3 。
- 如申請專利範圍第1項之氧化物燒結體濺鍍靶,其中,氧化物之成分組成為LaAl(1.05-1.2) O3 。
- 一種成分組成為LaAl(1.01-2) O3 之氧化物燒結體濺鍍靶之製造方法,其特徵在於:使用La2 (CO3 )3 粉末與Al2 O3 粉末作為原料粉末,配合成使Al與La之莫耳比為1.01~2並加以混合後,於大氣中對此混合粉末進行加熱合成,接著將此合成材料加以粉碎製成粉末後,對此合成粉末進行熱壓而製成燒結體。
- 如申請專利範圍第3項之氧化物燒結體濺鍍靶之製造方法,其中,係使用La2 (CO3 )3 粉末與Al2 O3 粉末,配合成使Al與La之莫耳比為1.05~1.2,然後進行燒結。
- 如申請專利範圍第3或4項之氧化物燒結體濺鍍靶之製造方法,其中,係藉由濕式球磨機進行混合,並於大氣中以1350~1550℃加熱5~25小時進行合成。
- 如申請專利範圍第3或4項之氣化物燒結體濺鍍靶之製造方法,其中,係以1300~1500℃、真空中、1~5小時進行熱壓。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009112629 | 2009-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201042068A TW201042068A (en) | 2010-12-01 |
TWI480402B true TWI480402B (zh) | 2015-04-11 |
Family
ID=43050131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099114618A TWI480402B (zh) | 2009-05-07 | 2010-05-07 | An oxide sintered body sputtering target, a method for manufacturing the target, a gate insulating film made of an oxide, and a heat treatment method of the gate insulating film |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5234861B2 (zh) |
TW (1) | TWI480402B (zh) |
WO (1) | WO2010128629A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6670996B2 (ja) * | 2014-09-26 | 2020-03-25 | パナソニックIpマネジメント株式会社 | 表示装置及び表示方法 |
CN116497324A (zh) * | 2023-06-09 | 2023-07-28 | 深圳市汉嵙新材料技术有限公司 | 复合钙钛矿靶材及其制备方法、钙钛矿太阳电池的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008243996A (ja) * | 2007-03-26 | 2008-10-09 | Toshiba Corp | 半導体装置およびその製造方法 |
JP2008277319A (ja) * | 2007-04-25 | 2008-11-13 | Toshiba Corp | ランタノイドアルミネート膜の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920009654B1 (ko) * | 1990-07-12 | 1992-10-22 | 재단법인 한국전자통신연구소 | 란탄늄 알루미네이트 박막 제조용 스퍼터링타켓의 제조방법 |
JP5178152B2 (ja) * | 2007-11-05 | 2013-04-10 | 株式会社東芝 | 相補型半導体装置及びその製造方法 |
-
2010
- 2010-04-23 WO PCT/JP2010/057231 patent/WO2010128629A1/ja active Application Filing
- 2010-04-23 JP JP2011512326A patent/JP5234861B2/ja not_active Expired - Fee Related
- 2010-05-07 TW TW099114618A patent/TWI480402B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008243996A (ja) * | 2007-03-26 | 2008-10-09 | Toshiba Corp | 半導体装置およびその製造方法 |
JP2008277319A (ja) * | 2007-04-25 | 2008-11-13 | Toshiba Corp | ランタノイドアルミネート膜の製造方法 |
Non-Patent Citations (1)
Title |
---|
Masamichi SUZUKI, Takeshi YAMAGUCHI, Noburu FUKUSHIMA, Masato KOYAMA, "LaAlO3 gate dielectric with ultrathin equivalent oxide thickness and ultralow leakage current directly deposited on Si substrate", J. Appl. Phys., 1 February 2008, vol. 103, no. 3, page 034118 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010128629A1 (ja) | 2010-11-11 |
JP5234861B2 (ja) | 2013-07-10 |
JPWO2010128629A1 (ja) | 2012-11-01 |
TW201042068A (en) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7915533B2 (en) | Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module | |
KR101222789B1 (ko) | 산화란탄기 소결체, 동 소결체로 이루어지는 스퍼터링 타겟, 산화란탄기 소결체의 제조 방법 및 동 제조 방법에 의한 스퍼터링 타겟의 제조 방법 | |
TWI452029B (zh) | An oxide sintered body, a sputtering target composed of the sintered body, a method for producing the sintered body, and a method for producing the sintered body sputtering target | |
Liu et al. | Temperature stability of dielectric properties for xBiAlO3–(1− x) BaTiO3 ceramics | |
WO2016117553A1 (ja) | 高熱伝導性窒化珪素焼結体、それを用いた窒化珪素基板および窒化珪素回路基板並びに半導体装置 | |
EP2708521B1 (en) | Method for producing conductive mayenite compound | |
Chou et al. | The effects of MgO doping and sintering temperature on the microstructure of the lead-free piezoelectric ceramic of Bi0. 5Na0. 5TiO3 | |
Wu et al. | Ferroelectric properties and large electric field-induced strain of Eu3+-doped Na0. 5Bi0. 5TiO3–BaTiO3 lead-free ceramics | |
Lin et al. | Effects of SmF3 addition on aluminum nitride ceramics via pressureless sintering | |
CA2801857C (en) | Aluminium nitride substrate for circuit board and production method thereof | |
TWI480402B (zh) | An oxide sintered body sputtering target, a method for manufacturing the target, a gate insulating film made of an oxide, and a heat treatment method of the gate insulating film | |
Najafzadehkhoee et al. | Liquid phase sintering of yttrium oxide: The effect of Al2O3 and SiO2 additives | |
Sim et al. | Layer structured calcium bismuth titanate by mechanical activation | |
Thiele et al. | B6O materials with Al2O3/Y2O3 additives densified by FAST/SPS and HIP | |
Fang et al. | Effect of cerium additives on structure and electrical properties of Aurivillius oxides (K0. 16Na0. 84) 0.5 Bi4. 5Ti4O15 | |
Katsuyama et al. | Synthesis of NaxCo2O4 by the hydrothermal hot-pressing and its thermoelectric properties | |
Chan et al. | Filled oxygen‐deficient strontium barium niobates | |
Naga et al. | Fabrication, microstructure and properties of hot-pressed Nd: YAG ceramics | |
Orlov et al. | Effect of mechanical activation on the thermoelectric properties of Sr1-xSmxTiO3 ceramics | |
Han et al. | Sintering behavior and thermoelectric properties of LaCoO 3 ceramics with Bi 2 O 3–B 2 O 3–SiO 2 as a sintering aid | |
Liu et al. | Coprecipitation synthesis and sintering property of (YbxSm1-x) 2Zr2O7 ceramic powders | |
Pakawanit et al. | Characterization of 0.93 Pb (Zn1/3Nb2/3) O3–0.07 BaTiO3 ceramics derived from a novel Zn3Nb2O8 B-site precursor | |
Sudha et al. | Study of structural and microstructural contributions to the optical and dielectric properties of NBBT binary relaxor composites substituted with trivalent and non-magnetic ions | |
Zheng et al. | Enhanced Storage Energy Density with Excellent Temperature-Stable Dielectric Properties of (1-X)(Bi0. 5na0. 5) 0.94 ba0. 06tio3-Xagnbo3 Lead-Free Ceramics | |
JP2003238232A (ja) | 熱膨張制御材料及びその製造方法 |