TWI478527B - Energy efficiency ethernet with asymmetric low power idle - Google Patents

Energy efficiency ethernet with asymmetric low power idle Download PDF

Info

Publication number
TWI478527B
TWI478527B TW101121122A TW101121122A TWI478527B TW I478527 B TWI478527 B TW I478527B TW 101121122 A TW101121122 A TW 101121122A TW 101121122 A TW101121122 A TW 101121122A TW I478527 B TWI478527 B TW I478527B
Authority
TW
Taiwan
Prior art keywords
link
low power
energy saving
idle mode
power idle
Prior art date
Application number
TW101121122A
Other languages
Chinese (zh)
Other versions
TW201304454A (en
Inventor
Ahmad Chini
Mehmet Tazebay
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW201304454A publication Critical patent/TW201304454A/en
Application granted granted Critical
Publication of TWI478527B publication Critical patent/TWI478527B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40039Details regarding the setting of the power status of a node according to activity on the bus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

具有非對稱低功耗閒置的節能乙太網路及其方法Energy-saving Ethernet network with asymmetric low power idle and method thereof

本發明總的來說係關於一種節能乙太網路(energy efficient Ethernet),更具體地,係關於一種非對稱低功耗閒置(asymmetric low power idle)的節能乙太網路。。The present invention relates generally to an energy efficient Ethernet, and more particularly to an asymmetric low power idle energy efficient Ethernet. .

能量成本持續呈攀升趨勢,而該趨勢近年來已在加速。這種情況下,各種工業受到這些攀升成本的影響已變得日漸敏感。一個引發越來越多關注的方面便是IT基礎設施。許多公司目前正在審視其IT系統的用電量,以確定是否能減小能量成本。為此,已出現聚焦於節能網路的產業,以總體上(即,PC、顯示器、印表機、伺服器、網路設備等)解決IT設備使用的成本上升。Energy costs continue to rise, and this trend has accelerated in recent years. In this case, various industries have become increasingly sensitive to these rising costs. One area that is attracting more and more attention is the IT infrastructure. Many companies are currently reviewing the power usage of their IT systems to determine if they can reduce energy costs. To this end, industries that focus on energy-efficient networks have emerged to address the rising cost of IT equipment in general (ie, PCs, displays, printers, servers, network devices, etc.).

在設計節能解決方案中,一個考慮方面是利用網路鏈路。例如,許多網路鏈路通常處於偶爾的資料突發(burst)之間的閒置狀態。閒置信號在鏈路上的傳送浪費能量且增加輻射位準。因此,對這些頻繁的低鏈路利用週期的識別能夠提供節能機會。One of the considerations in designing energy-efficient solutions is the use of network links. For example, many network links are typically idle between occasional bursts of data. The transmission of idle signals on the link wastes energy and increases the level of radiation. Therefore, the identification of these frequent low link utilization periods can provide opportunities for energy savings.

然而,在其他網路鏈路中,流量剖析(traffic profile)可能包括伴隨高頻寬流量突發的規則或間歇的低頻寬流量。這裡,對低鏈路利用週期的識別更加困難且節能潛力降低了。However, in other network links, the traffic profile may include regular or intermittent low frequency wide traffic with high frequency wide traffic bursts. Here, the identification of the low link utilization period is more difficult and the energy saving potential is lowered.

傳統上,網路裝置中的節能控制策略(energy efficiency control policy)是可操作性地分析鏈路利用,以確定是否進入低功耗閒置模式來節能。由於來自鏈路的兩個不同端的 資料不一定同時出現,所以識別進入低功耗閒置模式的時機可能很困難。因此,所需要的是在考慮鏈路利用的非對稱性時,能夠使節能最大化的機制。Traditionally, an energy efficiency control policy in a network device is an operational analysis of link utilization to determine whether to enter a low power idle mode to conserve power. Due to the two different ends of the link Data does not necessarily appear at the same time, so identifying the timing of entering a low-power idle mode can be difficult. Therefore, what is needed is a mechanism that maximizes energy savings when considering the asymmetry of link utilization.

圖式為描述能夠獲得本發明的上述以及其他優勢和特徵的方式,將參照圖式中示出的具體實施方式對以上簡述的本發明給予更具體的描述。應理解,這些附圖僅示出了本發明的典型實施方式,且因此不作為限制本發明的範圍來考慮,以下將通過圖式以其他特徵和細節來對本發明進行描述和說明。The present invention is described in detail with reference to the particular embodiments illustrated in the drawings. The present invention is to be considered as illustrative and not restrictive

本發明提供了一種方法,包括:在啟動模式下運行網路裝置,在該啟動模式下,網路裝置中,實體層裝置與鏈路夥伴(link partner)經由網路鏈路在兩個通訊方向上以1Gb/s的傳輸速率通訊;通過網路裝置監視經由網路鏈路的對於第一通訊方向的鏈路利用位準;以及回應監視,將實體層裝置從啟動模式轉變為非對稱低功耗閒置模式,其中,非對稱低功耗閒置模式支援實體層裝置的配置,其中,第一通訊方向在週期性刷新信號的傳送之間為未啟動狀態,週期性刷新信號配置為保持第一通訊方向的同步,且與第一通訊方向相反的第二通訊方向繼續以1Gb/s的傳輸速率通訊。The present invention provides a method comprising: operating a network device in an active mode in which a physical layer device and a link partner are in a two communication direction via a network link in a network device Communicate at a transmission rate of 1 Gb/s; monitor the link utilization level of the first communication direction via the network link through the network device; and respond to monitoring to change the physical layer device from the startup mode to the asymmetric low power The idle mode, wherein the asymmetric low power idle mode supports the configuration of the physical layer device, wherein the first communication direction is in an unactivated state between the transmission of the periodic refresh signal, and the periodic refresh signal is configured to maintain the first communication The direction is synchronized, and the second communication direction opposite to the first communication direction continues to communicate at a transmission rate of 1 Gb/s.

本發明還提供了一種方法,包括:在啟動模式下運行網路裝置,在該啟動模式下,網路裝置中,實體層裝置支援與鏈路夥伴經由網路鏈路以已定義的資料傳輸速率雙向通訊;以及回應鏈路利用位準分析,將實體層裝置從啟動 模式轉變為非對稱低功耗閒置模式,其中,非對稱低功耗閒置模式支援實體層裝置的配置,其中,第一通訊方向以已定義資料傳輸速率來運行,且第二通訊方向在週期性刷新信號的傳送之間為未啟動,週期性刷新信號配置為保持第一通訊方向的同步,其中,週期性刷新信號支援具有低於已定義資料傳輸速率的最大資料率的邏輯通道。The present invention also provides a method comprising: operating a network device in a boot mode in which the physical layer device supports and the link partner has a defined data transfer rate via the network link in the network device Two-way communication; and the response link uses level analysis to boot the physical layer device from The mode transitions to an asymmetric low power idle mode, wherein the asymmetric low power idle mode supports configuration of the physical layer device, wherein the first communication direction runs at a defined data transmission rate, and the second communication direction is periodic. The refresh signal is not activated between transmissions, and the periodic refresh signal is configured to maintain synchronization of the first communication direction, wherein the periodic refresh signal supports a logical channel having a maximum data rate lower than the defined data transmission rate.

本發明提供了一種網路裝置,包括:發送器,其配置為經由網路鏈路以1Gb/s的傳輸速率向鏈路夥伴發送;接收器,其配置為經由網路鏈路以1Gb/s的傳輸速率從鏈路夥伴裝置接收;以及節能控制策略,其配置為經由將網路裝置與鏈路夥伴裝置連接的網路鏈路分析第一通訊方向的鏈路利用位準,節能控制策略還配置為回應分析,將網路裝置轉變為非對稱低功耗閒置模式,其中,非對稱低功耗閒置模式支援將發送器在週期性刷新信號的傳送之間配置為未啟動狀態和將接收器配置為以1Gb/s的傳輸速率接收資料,週期性刷新信號配置為保持與鏈路夥伴裝置同步。The present invention provides a network device comprising: a transmitter configured to transmit to a link partner at a transmission rate of 1 Gb/s via a network link; a receiver configured to be 1 Gb/s via a network link The transmission rate is received from the link partner device; and the power saving control strategy is configured to analyze the link utilization level of the first communication direction via the network link connecting the network device and the link partner device, and the energy saving control strategy further Configured to respond to the analysis, transforming the network device into an asymmetric low-power idle mode, wherein the asymmetric low-power idle mode supports configuring the transmitter to be in an inactive state and to receive the receiver between the transmissions of the periodic refresh signal Configured to receive data at a 1 Gb/s transmission rate, the periodic refresh signal is configured to remain synchronized with the link partner device.

以下詳細討論本發明的各種實施方式。儘管討論了具體的實施,但應當理解,這樣做僅是為了說明的目的。相關領域技術人員將會意識到,在不偏離本發明的思想和範圍的情況下可以使用其他組件和配置。Various embodiments of the invention are discussed in detail below. Although specific implementations are discussed, it should be understood that this is done for illustrative purposes only. Those skilled in the relevant art will recognize that other components and configurations can be used without departing from the spirit and scope of the present invention.

當網路的流量利用率不處在其最大容量時,節能乙太網路便試圖節能。這用於在最大化節能的同時使性能影響最小化。節能可非對稱地應用於提供非對稱低功耗閒置模式的鏈路,該低功耗閒置模式支援實體層裝置的配置,其中,通訊的第一方向處於週期性刷新信號傳送之間的未啟 動狀態,而該週期性刷新信號配置為保持所述第一通訊方向同步,並且通訊的第二方向繼續在啟動狀態下通訊。When the traffic utilization of the network is not at its maximum capacity, the energy-saving Ethernet network tries to save energy. This is used to minimize performance impact while maximizing energy savings. Energy saving can be asymmetrically applied to a link providing an asymmetric low power idle mode, which supports configuration of a physical layer device, wherein the first direction of communication is between the periodic refresh signal transmissions a dynamic state, and the periodic refresh signal is configured to keep the first communication direction synchronized, and the second direction of communication continues to communicate in an active state.

非對稱低功耗閒置模式可用於流量剖析(例如,視頻監控攝像鏈路),該流量剖析可以始終產生非對稱的傳送情況,其中,網路鏈路的一個方向始終傳送資料,以及網路鏈路的另一個方向偶爾地傳送有限的資料量(例如,攝像控制命令)。由於實體層裝置進入非對稱低功耗閒置模式不依賴於網路鏈路上兩個方向的流量缺席(absence of traffic),所以非對稱低功耗閒置模式為網路鏈路增加了用於產生節能的機會。Asymmetric low-power idle mode can be used for traffic profiling (for example, video surveillance camera links), which can always generate asymmetric transmission scenarios where the network link always transmits data in one direction and the network chain The other direction of the road occasionally transmits a limited amount of data (for example, camera control commands). Since the physical layer device enters the asymmetric low power idle mode without relying on the traffic of the two directions on the network link, the asymmetric low power idle mode adds energy for the network link to generate energy. chance.

在廣泛的層面上,網路中用於具體鏈路的節能控制策略確定了何時進入節能狀態、進入什麼節能狀態(即,節能位準)、在該節能狀態下保持多長時間、從前一節能狀態轉變為什麼節能狀態等。在一種實施方式中,節能控制策略可以使這些節能決定基於IT管理員建立的設置和鏈路自身流量特性的結合。On a broad level, the energy-saving control strategy for a specific link in the network determines when to enter the energy-saving state, what energy-saving state to enter (ie, the energy-saving level), how long to maintain the energy-saving state, and energy saving from the previous one. State transitions why energy saving states, etc. In one embodiment, the energy saving control strategy may enable these energy saving decisions based on a combination of settings established by the IT administrator and the link's own traffic characteristics.

圖1示出了可應用節能控制策略的一個示例性鏈路。如圖所示,該鏈路支持第一鏈路夥伴110與第二鏈路夥伴120之間的通訊。在各種實施方式中,鏈路夥伴110和120可表示開關、路由器、端點(例如,伺服器、客戶機、VOIP電話、無線接入點等)等。如圖所示,鏈路夥伴110包括實體層裝置(PHY)112、媒體存取控制(MAC)114和主機116,而鏈路夥伴120包括PHY 122、MAC 124和主機126。Figure 1 illustrates an exemplary link to which an energy saving control strategy can be applied. As shown, the link supports communication between the first link partner 110 and the second link partner 120. In various implementations, link partners 110 and 120 can represent switches, routers, endpoints (eg, servers, clients, VOIP phones, wireless access points, etc.), and the like. As shown, link partner 110 includes physical layer device (PHY) 112, media access control (MAC) 114, and host 116, while link partner 120 includes PHY 122, MAC 124, and host 126.

一般地,主機116和126可包括適當的邏輯、電路和/或代碼,其可以啟用用於經由鏈路傳送的資料包的五個最 高功能層的可操作性和/或功能性。由於OSI模型中各層均為直接(immediately)較高的介面層提供服務,所以MAC控制器114和124可分別為主機116和126提供必要服務,以確保包被適當格式化並傳送至PHY 112和122。MAC控制器114和124可包括適當的邏輯、電路和/或代碼,其可以啟用對資料連結層(層2)的可操作性和/或功能性的操控。例如,MAC控制器114和124可配置為執行乙太網路協定,諸如基於IEEE 802.3標準的協定。PHY 112和122可配置為處理實體層需求,其包括但不限於封包、資料傳輸和序列化/反序列化(SERDES)。In general, hosts 116 and 126 may include suitable logic, circuitry, and/or code that may enable the five most recent packets for transmission via a link. The operability and/or functionality of the high functional layer. Since the layers in the OSI model are all served directly by the higher interface layer, the MAC controllers 114 and 124 can provide the necessary services to the hosts 116 and 126, respectively, to ensure that the packets are properly formatted and transmitted to the PHY 112 and 122. The MAC controllers 114 and 124 may include suitable logic, circuitry, and/or code that may enable manipulation of the operability and/or functionality of the data link layer (layer 2). For example, MAC controllers 114 and 124 can be configured to perform an Ethernet protocol, such as an agreement based on the IEEE 802.3 standard. PHYs 112 and 122 may be configured to handle physical layer requirements including, but not limited to, encapsulation, data transfer, and serialization/deserialization (SERDES).

再如圖1所示,鏈路夥伴110和120還分別包括節能控制策略實體118和128。一般地,節能控制策略實體118和128可設計為確定何時進入節能狀態、進入什麼節能狀態(即,節能位準)、在該節能狀態下保持多長時間、從前一節能狀態轉變為什麼節能狀態等。As further shown in FIG. 1, link partners 110 and 120 also include power saving control policy entities 118 and 128, respectively. In general, the energy-saving control policy entities 118 and 128 can be designed to determine when to enter a power-saving state, what energy-saving state to enter (ie, energy-saving level), how long to maintain in the energy-saving state, how to change energy from a previous energy-saving state, etc. .

一般地,節能控制策略實體118和128可包括適當的邏輯、電路和/或代碼,其可被啟用,從而為網路裝置建立和/或實施節能控制策略。在各種實施方式中,節能控制策略實體118和128可以是邏輯和/或功能塊,該邏輯和/或功能塊例如可在一個以上的層(包括PHY或增強型PHY、MAC、開關、控制器或主機中的其他子系統)中實施,從而在一個以上的層中啟用節能控制。In general, energy saving control policy entities 118 and 128 may include appropriate logic, circuitry, and/or code that may be enabled to establish and/or implement an energy saving control strategy for a network device. In various embodiments, energy saving control policy entities 118 and 128 may be logical and/or functional blocks, such as may be in more than one layer (including PHY or enhanced PHY, MAC, switches, controllers) Or implemented in other subsystems in the host to enable power saving control in more than one layer.

本發明的一個特徵是節能乙太網路(諸如由IEEE 802.3az定義的節能乙太網路)可通過非對稱低功耗閒置模式的使用來提供大量節能。在描述非對稱低功耗閒置模式的細節之前,首先提供對一般的低功耗閒置模式的描述。One feature of the present invention is that an energy efficient Ethernet network, such as the energy efficient Ethernet defined by IEEE 802.3az, can provide significant power savings through the use of an asymmetric low power idle mode. Before describing the details of the asymmetric low power idle mode, a description of the general low power idle mode is first provided.

當鏈路兩側的發送器在沒有資料要發送時進入安靜(silence)週期時,可以進入一般的低功耗閒置模式。在該情況下,兩個發送器可進入除了短週期的刷新信令之外兩個發送器均處於安靜狀態的低功耗閒置模式。圖2示出了鏈路兩端對刷新信令的傳送。將低功耗閒置模式的使用與在無數據發送時傳統閒置信號的傳送進行對比。可以理解,傳統閒置信號的傳送將消耗與資料傳送恰好一樣多的功率。When the transmitters on both sides of the link enter a silence period when there is no data to transmit, they can enter the general low-power idle mode. In this case, the two transmitters can enter a low power idle mode in which both transmitters are quiet except for short cycle refresh signaling. Figure 2 shows the transfer of refresh signaling at both ends of the link. The use of the low-power idle mode is compared to the transmission of a conventional idle signal when no data is transmitted. It will be appreciated that the transmission of a conventional idle signal will consume exactly as much power as the data transfer.

對於諸如十億位元乙太網路的鏈路應用,鏈路任一端上的流量出現都將要求喚醒鏈路兩側。這裡,鏈路的一側將開始傳送資料,而鏈路另一側將開始傳送閒置信號。圖3示出了這一情況。可以始終產生這種非對稱傳送情況的一個流量剖析的實例是視頻監控攝像鏈路。在視頻監控攝像鏈路的一個方向上,始終傳送視頻資訊。在視頻監控攝像鏈路的另一方向上,偶爾傳送有限量的資料(例如,攝像控制命令)。對於後一方向,其餘時間內傳送閒置信號。如該情況所示,始終在鏈路一端上的資料出現將阻止鏈路另一端進入低功耗閒置模式。For link applications such as a one-billion-bit Ethernet network, traffic on either end of the link will require wake-up on both sides of the link. Here, one side of the link will start transmitting data, and the other side of the link will start transmitting idle signals. Figure 3 shows this situation. An example of a traffic profile that can always produce such an asymmetric transfer condition is a video surveillance camera link. Video information is always transmitted in one direction of the video surveillance camera link. In the other direction of the video surveillance camera link, a limited amount of data (eg, camera control commands) is occasionally transmitted. For the latter direction, the idle signal is transmitted for the rest of the time. As this is the case, the presence of data on one end of the link will prevent the other end of the link from entering the low power idle mode.

該情況下的低效率源於固有的雙向協議,其中,鏈路任一端上存在資料都將阻止該鏈路進入低功耗閒置模式。如圖4所示,從鏈路任一端發送的資料通常不會同時出現。換句話說,鏈路一端上的資料到達與鏈路另一端上的資料到達之間無關聯。在目前1000BASE-T的規範中,例如,在另一側正在發送資料的週期內發送閒置信號。在本發明中,應意識到,進入以鏈路兩個方向上均無數據傳送為條件的低功耗閒置模式限制了用於節能的機會。The inefficiency in this case stems from the inherent two-way protocol where the presence of data on either end of the link will prevent the link from entering a low power idle mode. As shown in Figure 4, data sent from either end of the link does not usually appear at the same time. In other words, there is no correlation between the arrival of data on one end of the link and the arrival of data on the other end of the link. In the current 1000BASE-T specification, for example, an idle signal is transmitted during a period in which data is being transmitted on the other side. In the present invention, it should be appreciated that entering a low power idle mode conditional on the absence of data transfer in both directions of the link limits opportunities for power savings.

在本發明中,應意識到,非對稱低功耗閒置模式可產生重要的用於額外節能的機會。採用非對稱低功耗閒置模式,可以在一個方向上有流量,而另一個傳送方向僅發送刷新週期且其間處於安靜。圖5示出了將非對稱低功耗閒置模式應用於類似圖4所示的資料模式。如圖所示,即使在流量均勻分佈時,也可以節能,因為一個方向上的資料可能出現在與另一個方向不同的時間間隔內。現在,這些僅一個方向傳送閒置信號的週期在非對稱低功耗閒置模式中可被刷新信號取代。在未啟動週期之後,用週期性發送的刷新信號取代正常的閒置信號代表了網路鏈路上的額外節能。In the present invention, it should be appreciated that the asymmetric low power idle mode can create important opportunities for additional power savings. With the asymmetric low-power idle mode, there is traffic in one direction, while the other transmission direction only sends a refresh cycle with quiet periods in between. Figure 5 illustrates the application of an asymmetric low power idle mode to a data pattern similar to that shown in Figure 4. As shown in the figure, energy can be saved even when the flow rate is evenly distributed, because data in one direction may appear in a time interval different from the other direction. Now, these periods in which the idle signal is transmitted in only one direction can be replaced by the refresh signal in the asymmetric low power idle mode. Subsequent to the uninitiated period, replacing the normal idle signal with a periodically transmitted refresh signal represents additional power savings on the network link.

如所理解的那樣,非對稱低功耗閒置模式所提供的額外益處在這些流量主要在一個方向上出現的情況下更為顯著。圖6示出了這種表示非對稱流量模式(諸如視頻監控鏈路)的流量剖析的情況。如圖所示,在另一方向傳送連續資料流程的同時,能夠僅在一個方向上進入低功耗閒置模式。這又與圖3所示實例中正常閒置信號的傳送不同。As will be appreciated, the additional benefit provided by the asymmetric low power idle mode is more pronounced where these flows occur primarily in one direction. Figure 6 illustrates this flow representation of an asymmetric traffic pattern, such as a video surveillance link. As shown in the figure, while the continuous data flow is being transmitted in the other direction, the low power idle mode can be entered in only one direction. This is in turn different from the transmission of the normal idle signal in the example shown in FIG.

在非對稱低功耗閒置模式中,可定義兩個額外的低功耗閒置狀態。在第一低功耗閒置狀態中,發送器啟動且接收器處於低功耗閒置模式,而在第二低功耗閒置狀態中,接收器啟動且發送器處於低功耗閒置模式。這與傳統的發送器和接收器兩者均為啟動狀態或發送器和接收器兩者均處於低功耗閒置模式的低功耗閒置模式不同。In the asymmetric low power idle mode, two additional low power idle states can be defined. In the first low power idle state, the transmitter is enabled and the receiver is in a low power idle mode, while in the second low power idle state, the receiver is enabled and the transmitter is in a low power idle mode. This is in contrast to the traditional low-power idle mode where both the transmitter and receiver are active or both the transmitter and receiver are in a low power idle mode.

在本發明中,應意識到,對於數位信號處理(DSP)塊,存在啟用這兩種新的非對稱低功耗閒置模式狀態的新挑戰。例如,考慮接收器啟動且發送器處於低功耗閒置模式 的非對稱低功耗閒置狀態。這裡,當資料被接收時,關閉發送器將會影響回聲/下一回應。因此,在一種實施方式中,發送器可配置為發送零,直到回聲/下一取消緩衝器(canceller buffer)在關閉前被所有零填充。在喚醒發送器期間發送零還可用於避免發送器的初始不穩定轉狀態。In the present invention, it will be appreciated that for digital signal processing (DSP) blocks, there are new challenges to enabling these two new asymmetric low power idle mode states. For example, consider that the receiver is started and the transmitter is in low power idle mode. Asymmetric low power idle state. Here, when the data is received, turning off the sender will affect the echo/next response. Thus, in one embodiment, the transmitter can be configured to transmit zero until the echo/canceler buffer is filled with all zeros before being turned off. Sending zeros during wake-up of the transmitter can also be used to avoid the initial unstable transition state of the transmitter.

在另一實例中,考慮發送器啟動且接收器處於低功耗閒置模式的非對稱低功耗閒置狀態。這裡,當發送器啟動時,接收到的回聲可能足夠大以致觸發類比信號檢測器。因此,在一種實施方式中,可在用於接收信號檢測的回聲/下一取消後檢查信號位準。因此,可能需要根據啟動和穩定週期中的回應來管理DSP自我調整。In another example, consider an asymmetric low power idle state where the transmitter is enabled and the receiver is in a low power idle mode. Here, when the transmitter is activated, the received echo may be large enough to trigger the analog signal detector. Thus, in one embodiment, the signal level can be checked after the echo/next cancellation for receiving signal detection. Therefore, it may be necessary to manage DSP self-tuning based on responses in the startup and stabilization cycles.

儘管圖中未示出,但存在當PHY轉變為低功耗閒置模式時的睡眠週期。該睡眠週期可能近似為200 μs。對於千兆乙太網路,即使需要發送非常短的資料包,啟動週期也超過216 μs(即,睡眠時間(Ts)加喚醒時間(Tw)。為此,喚醒一個方向的便於少量資料的傳送意味著顯著的低效。對於包括有限量資料在不頻繁間隔內傳送的流量剖析,該可能因素可能顯著影響了網路鏈路可獲得的節能位準。Although not shown in the figure, there is a sleep cycle when the PHY transitions to the low power idle mode. This sleep cycle may be approximately 200 μs. For Gigabit Ethernet, even if a very short packet needs to be sent, the boot cycle exceeds 216 μs (ie, sleep time (Ts) plus wake-up time (Tw). To this end, wake up one direction for easy transfer of small amounts of data. This means significant inefficiency. For traffic profiles that include a limited amount of data being transmitted in infrequent intervals, this possible factor can significantly affect the level of energy savings available to the network link.

在一種實施方式中,非對稱低功耗閒置模式中的刷新週期可用於有限量資料的傳輸。在一種實施方式中,PHY可發送信號至MAC(例如,使用MAC介面定義的RX_ER、RX_DV和RXD信號的組合)告知PHY處於刷新週期並準備發送資料。MAC隨後可針對不能延遲敏感性的資料類型而選擇使用該刷新週期。在各種實例中,可利用刷新週期的資料類型可以是較高層網路管理資訊包、控制指令(例如,視頻攝像指令)、網際網路瀏覽期間的上行鏈路數據 等。如所理解的那樣,刷新週期可傳送有限量資料的具體機制可依附實施。例如,刷新週期可傳送能用單個刷新週期序列或兩個以上的刷新週期序列來識別的有限量資料。In one embodiment, the refresh period in the asymmetric low power idle mode can be used for the transmission of a limited amount of data. In one embodiment, the PHY may send a signal to the MAC (eg, using a combination of RX_ER, RX_DV, and RXD signals defined by the MAC interface) to inform the PHY that it is in a refresh cycle and is ready to transmit data. The MAC can then choose to use this refresh cycle for data types that cannot be delayed in sensitivity. In various examples, the data types that may utilize the refresh cycle may be higher layer network management information packets, control commands (eg, video camera commands), uplink data during internet browsing, Wait. As will be appreciated, the specific mechanism by which the refresh period can transfer a limited amount of data can be implemented by attachment. For example, the refresh cycle can convey a finite amount of data that can be identified with a single refresh cycle sequence or more than two refresh cycle sequences.

一般地,刷新週期能夠在使用PHY刷新週期的MAC處建立固定的較低資料率的邏輯通道。在千兆乙太網路的實例中,刷新週期可利用刷新週期大概提供高達10 Mbps的較慢邏輯鏈路。顯著地,建立較慢的資料連結則無需喚醒PHY。這通過啟用一個方向的傳送以保持在低功耗閒置模式而有利於更高節能。In general, the refresh cycle is capable of establishing a fixed lower data rate logical channel at the MAC using the PHY refresh cycle. In the case of a Gigabit Ethernet network, the refresh cycle can provide a slower logical link of up to 10 Mbps with a refresh cycle. Significantly, building a slower data link eliminates the need to wake up the PHY. This facilitates higher power savings by enabling transmission in one direction to remain in a low power idle mode.

在一種實施方式中,PHY可包括緩衝器,該緩衝器可在利用用於發送資料的刷新週期的同時,在MAC啟用連續的較慢鏈路。當處於該模式時,PHY與MAC之間的時鐘可能較慢。In one embodiment, the PHY may include a buffer that enables continuous slower links at the MAC while utilizing a refresh cycle for transmitting data. When in this mode, the clock between the PHY and the MAC may be slower.

一般地,非對稱低功耗閒置可在應用於非對稱或其他無關聯資料流量模式時降低功耗和輻射。非對稱低功耗閒置的優勢是增加發送器或接收器中降低功耗的機會。In general, asymmetric low power idle can reduce power consumption and emissions when applied to asymmetric or other uncorrelated data flow modes. The advantage of asymmetric low-power idle is to increase the chance of reducing power consumption in the transmitter or receiver.

上文已描述了非對稱低功耗閒置模式,現參照圖7的流程圖,它示出了使用非對稱低功耗閒置模式的過程流程圖。如圖所示,該過程始於步驟702,其中,網路裝置開始在啟動模式下工作,在啟動模式下,網路鏈路上兩個方向的傳送以所定義的資料傳輸速率來運行。例如,1000BASE-T PHY兩個方向上均以1 Gb/s的資料傳輸速率來工作。The asymmetric low power idle mode has been described above, and now with reference to the flow chart of Figure 7, it shows a process flow diagram using an asymmetric low power idle mode. As shown, the process begins in step 702 where the network device begins to operate in an active mode in which transmissions in both directions on the network link operate at a defined data transmission rate. For example, the 1000BASE-T PHY operates at a data transfer rate of 1 Gb/s in both directions.

步驟704中,在網路裝置繼續在啟動模式下工作的同時,網路裝置隨後將監視第一通訊方向的鏈路利用位準。在一種實施方式中,通過在網路裝置中實施的節能控制策 略來執行監視。如所理解的那樣,節能控制策略可在網路裝置的一個以上的層中實施。這裡,應當注意,圖7示出的第一通訊方向的監視並不意味著排除對第二通訊方向的監視。相反,提供圖7的實例是要說明非對稱過程。In step 704, while the network device continues to operate in the startup mode, the network device will then monitor the link utilization level of the first communication direction. In one embodiment, the energy saving control policy implemented in the network device Perform monitoring a little. As can be appreciated, the energy saving control strategy can be implemented in more than one layer of the network device. Here, it should be noted that the monitoring of the first communication direction shown in FIG. 7 does not mean that the monitoring of the second communication direction is excluded. Instead, the example of Figure 7 is provided to illustrate the asymmetric process.

在步驟706中,隨後確定鏈路利用位準是否降至閾值以下。如所理解的那樣,閾值的具體類型將取決於用於確定鏈路利用位準的指示器的類型。在一種實例中,鏈路利用位準可基於流量序列或緩衝位準、一個以上的裝置或子系統狀態、應用程式的活動(application activity)等來確定。不管所使用的指示器類型,與閾值位準相關的鏈路利用的監視可用於確定網路裝置是否可進入非對稱低功耗閒置模式。In step 706, it is then determined if the link utilization level falls below a threshold. As will be appreciated, the particular type of threshold will depend on the type of indicator used to determine the link utilization level. In one example, the link utilization level can be determined based on a traffic sequence or buffer level, more than one device or subsystem state, an application activity, and the like. Regardless of the type of indicator used, monitoring of the link utilization associated with the threshold level can be used to determine if the network device can enter the asymmetric low power idle mode.

具體地,若步驟706中確定所監視的第一通訊方向上的鏈路利用位準未降至閾值以下,則過程將繼續在啟動狀態下運行且步驟704中將繼續監視。另一方面,若步驟706中確定所監視的第一通訊方向上的鏈路利用位準確已降至閾值位準以下,則過程將進入步驟708,其中,第一通訊方向可轉變為低功耗閒置模式。Specifically, if it is determined in step 706 that the monitored link utilization level in the first communication direction has not fallen below the threshold, the process will continue to operate in the startup state and monitoring will continue in step 704. On the other hand, if it is determined in step 706 that the monitored link utilization bit in the first communication direction has been accurately below the threshold level, the process proceeds to step 708, in which the first communication direction can be converted to low power consumption. Idle mode.

在該過程中,節能控制策略可產生控制信號,該信號將指示在一個傳送方向上的組件進入低功耗閒置模式。例如,節能控制策略可產生指示傳輸子系統進入低功耗閒置模式的控制信號,或者可產生指示接收子系統進入低功耗閒置模式的控制信號。在一種實施方式中,用於轉變為非對稱低功耗閒置模式的控制信號可由MAC產生。在另一實施方式中,用於轉變為非對稱低功耗閒置模式的控制信號可在PHY內產生,該PHY分析從MAC接收的流量。In this process, the energy saving control strategy can generate a control signal that will indicate that the component in one direction of transmission enters a low power idle mode. For example, the power saving control strategy may generate a control signal indicating that the transmitting subsystem enters a low power idle mode, or may generate a control signal indicating that the receiving subsystem enters a low power idle mode. In one embodiment, the control signal for transitioning to an asymmetric low power idle mode may be generated by the MAC. In another embodiment, a control signal for transitioning to an asymmetric low power idle mode can be generated within the PHY that analyzes the traffic received from the MAC.

如上文所述,非對稱低功耗閒置模式可通過消除由於對兩個通訊方向上的未啟動的要求而存在的進入低功耗閒置模式的障礙來增強節能。As described above, the asymmetric low power idle mode can enhance power savings by eliminating the barrier to entry into the low power idle mode due to un-started requirements in both communication directions.

本發明的另一實施方式可提供機器和/或電腦可讀取的記憶體和/或媒體,其上存儲了具有至少一個由機器和/或電腦可執行的代碼部分的機器代碼和/或電腦程式,從而能引導機器和/或電腦執行本文所述步驟。Another embodiment of the present invention may provide machine and/or computer readable memory and/or media having stored thereon machine code and/or computer having at least one portion of code executable by a machine and/or computer. Program to boot the machine and/or computer to perform the steps described herein.

對於本領域技術人員而言,通過閱讀之前的詳細描述,本發明的這些和其他方面將變得顯而易見。儘管上文已描述了本發明的一些顯著特徵,但本發明也可以具有其他實施方式,並且可以對於本領域一般技術人員在閱讀了所公開的本發明之後是顯而易見的各種方式來實施和執行,因此,以上描述不應被考慮為排除了那些其他實施方式。而且,需要理解,本文所採用的措辭和術語是出於描述的目的且不應被當作限定。These and other aspects of the invention will be apparent to those skilled in the < Although a few features of the invention have been described above, the invention may be embodied and carried out in various ways that are apparent to those of ordinary skill in the art after reading the invention. Therefore, the above description should not be considered as excluding those other embodiments. Further, it is to be understood that the phraseology and terminology used herein are for the purpose of description

110‧‧‧第一鏈路夥伴110‧‧‧First Link Partner

112‧‧‧PHY112‧‧‧PHY

114‧‧‧MAC114‧‧‧MAC

116‧‧‧主機116‧‧‧Host

118‧‧‧節能控制策略實體118‧‧‧Energy Conservation Control Strategy Entity

120‧‧‧第二鏈路夥伴120‧‧‧second link partner

122‧‧‧PHY122‧‧‧PHY

124‧‧‧MAC124‧‧‧MAC

126‧‧‧主機126‧‧‧Host

128‧‧‧節能控制策略實體128‧‧‧Energy Conservation Control Strategy Entity

702~708‧‧‧步驟702~708‧‧‧Steps

圖1示出了鏈路夥伴之間的乙太網路鏈路。Figure 1 shows an Ethernet link between link partners.

圖2示出了在低功耗閒置模式中鏈路夥伴之間的刷新信令。Figure 2 shows the refresh signaling between link partners in a low power idle mode.

圖3示出了鏈路夥伴之間具有單向資料(one-way data)的信令。Figure 3 shows signaling with one-way data between link partners.

圖4示出了非對稱資料流量的非對稱低功耗閒置的使用。Figure 4 illustrates the use of asymmetric low power idle for asymmetric data traffic.

圖5和圖6示出了非對稱資料流量的非對稱低功耗閒置的使用。Figures 5 and 6 illustrate the use of asymmetric low power idle for asymmetric data traffic.

圖7示出了本發明的過程流程圖。Figure 7 shows a process flow diagram of the present invention.

110‧‧‧第一鏈路夥伴110‧‧‧First Link Partner

112‧‧‧PHY112‧‧‧PHY

114‧‧‧MAC114‧‧‧MAC

116‧‧‧主機116‧‧‧Host

118‧‧‧節能控制策略實體118‧‧‧Energy Conservation Control Strategy Entity

120‧‧‧第二鏈路夥伴120‧‧‧second link partner

122‧‧‧PHY122‧‧‧PHY

124‧‧‧MAC124‧‧‧MAC

126‧‧‧主機126‧‧‧Host

128‧‧‧節能控制策略實體128‧‧‧Energy Conservation Control Strategy Entity

Claims (15)

一種節能方法,包括:在啟動模式下運行網路裝置,在所述啟動模式下,所述網路裝置中的實體層裝置與鏈路夥伴經由網路鏈路在雙方通訊方向上以1Gb/s的傳輸速率通訊;通過網路裝置監視經由所述網路鏈路的關於第一通訊方向的鏈路利用位準;以及回應所述監視,將所述實體層裝置從所述啟動模式轉變為非對稱低功耗閒置模式,其中,所述非對稱低功耗閒置模式支援所述實體層裝置的配置,其中,所述第一通訊方向在被配置為保持所述第一通訊方向的同步的週期性刷新信號的傳送之間為未啟動狀態,且與所述第一通訊方向相反的所述第二通訊方向繼續以所述1Gb/s的傳輸速率通訊;其中,所述第一通訊方向使用所述週期性刷新信號在所述非對稱低功耗閒置模式下啟動資料通訊以建立固定資料率邏輯通道,所述固定資料率邏輯通道具有低於1Gb/s的資料傳輸速率。 An energy saving method comprising: operating a network device in a startup mode, in which the physical layer device and the link partner in the network device are in a communication direction of 1 Gb/s via a network link Transmission rate communication; monitoring, by the network device, a link utilization level with respect to the first communication direction via the network link; and in response to the monitoring, changing the physical layer device from the startup mode to the non-transmission mode a symmetric low power idle mode, wherein the asymmetric low power idle mode supports configuration of the physical layer device, wherein the first communication direction is configured to maintain a synchronization period of the first communication direction The transmission of the sexual refresh signal is in an unactivated state, and the second communication direction opposite to the first communication direction continues to communicate at the transmission rate of 1 Gb/s; wherein the first communication direction is used The periodic refresh signal initiates data communication in the asymmetric low power idle mode to establish a fixed data rate logical channel, the fixed data rate logical channel having data below 1 Gb/s Transmission rate. 如申請專利範圍第1項所述的節能方法,其中,所述第一傳送方向是從所述網路裝置向所述鏈路夥伴傳送。 The energy saving method of claim 1, wherein the first transmission direction is transmitted from the network device to the link partner. 如申請專利範圍第1項所述的節能方法,其中,所述第一傳送方向是從所述鏈路夥伴向所述網路裝置傳送。 The energy saving method of claim 1, wherein the first transmission direction is transmitted from the link partner to the network device. 如申請專利範圍第1項所述的節能方法,其中,所述實體層裝置是1000BASE-T實體層裝置。 The energy saving method according to claim 1, wherein the physical layer device is a 1000BASE-T physical layer device. 如申請專利範圍第1項所述的節能方法,其中,所述網路鏈路是視頻監控攝像鏈路。 The energy saving method of claim 1, wherein the network link is a video surveillance camera link. 如申請專利範圍第1項所述的節能方法,其中,所述固定 資料率邏輯通道具有10Mb/s的資料率。 The energy saving method according to claim 1, wherein the fixing The data rate logic channel has a data rate of 10 Mb/s. 一種節能方法,包括:在啟動模式下運行網路裝置,在所述啟動模式下,所述網路裝置中的實體層裝置支援與鏈路夥伴經由網路鏈路以已定義的資料傳輸速率雙向通訊;以及回應鏈路利用位準分析,將所述實體層裝置從所述啟動模式轉變為非對稱低功耗閒置模式,其中,所述非對稱低功耗閒置模式支援所述實體層裝置的配置,其中,第一通訊方向以所述已定義資料傳輸速率來運行,且第二通訊方向在被配置為保持所述第一通訊方向的同步的週期性刷新信號的傳送之間為未啟動,其中,所述第一通訊方向使用所述週期性刷新信號在所述非對稱低功耗閒置模式下啟動資料通訊以建立固定資料率邏輯通道建立具有低於所述已定義資料傳輸速率的最大資料率的固定資料率邏輯通道。 An energy saving method comprising: operating a network device in an active mode, in which the physical layer device in the network device supports and the link partner is bidirectional at a defined data transmission rate via a network link Communicating; and responding to the link utilizing level analysis to transition the physical layer device from the boot mode to an asymmetric low power idle mode, wherein the asymmetric low power idle mode supports the physical layer device Configuration, wherein the first communication direction operates at the defined data transmission rate, and the second communication direction is not activated between transmissions of the periodic refresh signal configured to maintain synchronization of the first communication direction, The first communication direction uses the periodic refresh signal to initiate data communication in the asymmetric low power idle mode to establish a fixed data rate logical channel to establish a maximum data having a lower than the defined data transmission rate. Rate of fixed data rate logic channels. 如申請專利範圍第7項所述的節能方法,其中,所述第一傳送方向是從所述網路裝置向所述鏈路夥伴傳輸。 The energy saving method of claim 7, wherein the first transmission direction is transmitted from the network device to the link partner. 如申請專利範圍第7項所述的節能方法,其中,所述第一傳送方向是從所述鏈路夥伴向所述網路裝置傳輸。 The energy saving method of claim 7, wherein the first transmission direction is transmitted from the link partner to the network device. 如申請專利範圍第7項所述的節能方法,其中,所述實體層裝置是1000BASE-T實體層裝置。 The energy saving method according to claim 7, wherein the physical layer device is a 1000BASE-T physical layer device. 如申請專利範圍第7項所述的節能方法,其中,所述網路鏈路是視頻監控攝像鏈路。 The energy saving method of claim 7, wherein the network link is a video surveillance camera link. 如申請專利範圍第7項所述的節能方法,其中,所述邏輯通道是具有10Mb/s的資料率的固定資料率邏輯通道。 The energy saving method according to claim 7, wherein the logical channel is a fixed data rate logical channel having a data rate of 10 Mb/s. 一種網路裝置,包括: 發送器,被配置為經由網路鏈路以1Gb/s的傳輸速率向鏈路夥伴發送;接收器,被配置為經由所述網路鏈路以所述1Gb/s的傳輸速率從所述鏈路夥伴裝置接收;以及節能控制策略模組,被配置為經由將網路裝置與所述鏈路夥伴裝置連接的網路鏈路分析第一通訊方向的鏈路利用位準,所述節能控制策略模組還被配置為回應所述分析,將所述網路裝置轉變為非對稱低功耗閒置模式,其中,所述非對稱低功耗閒置模式支援將所述發送器在週期性刷新信號的傳送之間配置為未啟動狀態和將所述接收器配置為以所述1Gb/s的傳輸速率接收資料,所述週期性刷新信號被配置為保持與所述鏈路夥伴裝置同步;其中,所述發送器透過使用所述週期性刷新信號在所述非對稱低功耗閒置模式下啟動資料通訊以建立固定資料率邏輯通道,所述固定資料率邏輯通道具有低於1Gb/s的資料傳輸速率。 A network device comprising: a transmitter configured to transmit to the link partner at a transmission rate of 1 Gb/s via a network link; a receiver configured to transmit from the chain at the transmission rate of the 1 Gb/s via the network link And the energy saving control strategy module is configured to analyze a link utilization level of the first communication direction via a network link connecting the network device and the link partner device, the energy saving control strategy The module is further configured to, in response to the analyzing, transition the network device to an asymmetric low power idle mode, wherein the asymmetric low power idle mode supports the transmitter to periodically refresh the signal Configuring between the transmissions as an inactive state and configuring the receiver to receive data at the 1 Gb/s transmission rate, the periodic refresh signal being configured to remain synchronized with the link partner device; The transmitter initiates data communication in the asymmetric low power idle mode by using the periodic refresh signal to establish a fixed data rate logical channel, and the fixed data rate logical channel has a resource lower than 1 Gb/s. Transmission rate. 如申請專利範圍第13項所述的網路裝置,其中,所述發送器和所述接收器是1000BASE-T實體層裝置的一部分。 The network device of claim 13, wherein the transmitter and the receiver are part of a 1000BASE-T physical layer device. 如申請專利範圍第13項所述的網路裝置,其中,所述固定資料率邏輯通道具有10Mb/s的資料率。 The network device of claim 13, wherein the fixed data rate logical channel has a data rate of 10 Mb/s.
TW101121122A 2011-06-14 2012-06-13 Energy efficiency ethernet with asymmetric low power idle TWI478527B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161496607P 2011-06-14 2011-06-14
US13/478,228 US8885506B2 (en) 2011-06-14 2012-05-23 Energy efficiency ethernet with assymetric low power idle

Publications (2)

Publication Number Publication Date
TW201304454A TW201304454A (en) 2013-01-16
TWI478527B true TWI478527B (en) 2015-03-21

Family

ID=46614272

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101121122A TWI478527B (en) 2011-06-14 2012-06-13 Energy efficiency ethernet with asymmetric low power idle

Country Status (5)

Country Link
US (1) US8885506B2 (en)
EP (1) EP2536064B1 (en)
CN (1) CN102833127B (en)
HK (1) HK1178340A1 (en)
TW (1) TWI478527B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892880B1 (en) * 2011-10-07 2021-01-12 Marvell Asia Pte., LTD Method and apparatus for asymmetric ethernet
JP5969056B2 (en) 2012-03-05 2016-08-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated Low power idle signaling for gigabit media independent interface operating in legacy mode
US20130268783A1 (en) * 2012-04-04 2013-10-10 Broadcom Corporation System and Method for Using Energy Efficiency Network Refresh Signals for Exchanging Link Partner and Device Information
US20140010541A1 (en) * 2012-07-06 2014-01-09 Broadcom Corporation Energy Efficient Ethernet Power Management Via SIEPON Protocol
US9026820B2 (en) 2012-12-29 2015-05-05 Intel Corporation Communication link and network connectivity management in low power mode
CN103401793B (en) * 2013-07-12 2017-06-20 华为技术有限公司 A kind of method, the device of adjustment equipment bandwidth
US9425856B2 (en) * 2014-01-17 2016-08-23 Broadcom Corporation System and method for multi-dimensional modulation schemes with high noise immunity and low emission idle signaling for automotive area networks
US10320678B2 (en) * 2014-03-21 2019-06-11 Avago Technologies International Sales Pte. Limited Mapping control protocol time onto a physical layer
US9678550B2 (en) * 2014-07-22 2017-06-13 Empire Technology Development Llc Dynamic router power control in multi-core processors
US20160034219A1 (en) * 2014-08-04 2016-02-04 Apple Inc. System and method of calibration of memory interface during low power operation
US9577787B2 (en) 2015-01-08 2017-02-21 Broadcom Corporation Robust low rate data channel in LPI mode for energy-efficient ethernet applications
KR102639081B1 (en) * 2018-10-11 2024-02-22 현대자동차주식회사 Method and apparatus for reducing ethernet power consumption of vehicle
CN111162927B (en) * 2018-11-08 2021-12-03 华为技术有限公司 Communication method, device and equipment of Ethernet
US11714478B1 (en) * 2019-01-28 2023-08-01 Ethernovia Inc. Asymmetric data transmission using energy-efficient ethernet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499412B2 (en) * 2005-07-01 2009-03-03 Net Optics, Inc. Active packet content analyzer for communications network
US20090204836A1 (en) * 2008-02-13 2009-08-13 Broadcom Corporation System and method for using a link energy signal in a physical layer device having a silent channel/interface in energy efficient ethernet
US20090225779A1 (en) * 2008-03-04 2009-09-10 Broadcom Corporation System and method for dynamically swapping master and slave phys to allow asymmetry in energy efficient ethernet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019250A2 (en) 2008-08-11 2010-02-18 Solarflare Communications, Inc. Method of synchronization for low power idle
US8493843B2 (en) * 2008-09-12 2013-07-23 Broadcom Corporation System and method for using an alternative wire pair for communication on initial wire pair failure
US8234510B2 (en) * 2009-02-26 2012-07-31 Broadcom Corporation System and method for energy savings through emulation of wake on LAN in energy efficient ethernet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499412B2 (en) * 2005-07-01 2009-03-03 Net Optics, Inc. Active packet content analyzer for communications network
US20090204836A1 (en) * 2008-02-13 2009-08-13 Broadcom Corporation System and method for using a link energy signal in a physical layer device having a silent channel/interface in energy efficient ethernet
US20090225779A1 (en) * 2008-03-04 2009-09-10 Broadcom Corporation System and method for dynamically swapping master and slave phys to allow asymmetry in energy efficient ethernet

Also Published As

Publication number Publication date
EP2536064A1 (en) 2012-12-19
US8885506B2 (en) 2014-11-11
HK1178340A1 (en) 2013-09-06
EP2536064B1 (en) 2014-08-13
US20120320771A1 (en) 2012-12-20
CN102833127B (en) 2016-08-03
CN102833127A (en) 2012-12-19
TW201304454A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
TWI478527B (en) Energy efficiency ethernet with asymmetric low power idle
US11656671B2 (en) Negotiating a transmit wake time
TWI474640B (en) Energy efficiency ethernet with low power active idle transmission mode
US8300655B2 (en) System and method for dynamic power control for energy efficient physical layer communication devices
US8839015B2 (en) Systems and methods for reducing power consumption of a communication device
EP2224311B1 (en) System and method for energy savings through emulation of wake on lan in energy efficient ethernet
TWI513228B (en) System and method for energy efficient ethernet with asymmetric traffic profiles
US9014018B2 (en) Auto-aware dynamic control policy for energy efficiency
US20150078404A1 (en) System, Method and Apparatus for Time-Sensitive Energy Efficient Networks
US20130268783A1 (en) System and Method for Using Energy Efficiency Network Refresh Signals for Exchanging Link Partner and Device Information
US20130308941A1 (en) Energy Efficient Ethernet Network Capability and Feature Exchange in Optical Network Links
TWI521342B (en) System and method for managing network devices that deliver an application service using energy savings information
TW201330671A (en) Control of energy efficiency above PMD interface
US9425984B2 (en) System and method for using energy efficient ethernet to control energy efficiencies in lower layers