TWI473077B - Blind source separation system - Google Patents

Blind source separation system Download PDF

Info

Publication number
TWI473077B
TWI473077B TW101117252A TW101117252A TWI473077B TW I473077 B TWI473077 B TW I473077B TW 101117252 A TW101117252 A TW 101117252A TW 101117252 A TW101117252 A TW 101117252A TW I473077 B TWI473077 B TW I473077B
Authority
TW
Taiwan
Prior art keywords
signal
output
adaptive filters
message
adder
Prior art date
Application number
TW101117252A
Other languages
Chinese (zh)
Other versions
TW201346887A (en
Inventor
Jiaching Wang
Shaojie Huang
Original Assignee
Univ Nat Central
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Central filed Critical Univ Nat Central
Priority to TW101117252A priority Critical patent/TWI473077B/en
Publication of TW201346887A publication Critical patent/TW201346887A/en
Application granted granted Critical
Publication of TWI473077B publication Critical patent/TWI473077B/en

Links

Description

盲訊號分離系統Blind signal separation system

本發明係有關於一種系統,且特別是有關於一種盲訊號分離系統。The present invention relates to a system and, more particularly, to a blind signal separation system.

盲訊號分離是用於分析混合信號源,以取得原始信號源,舉例而言,在語音辨識系統中,其所蒐集到的混合信號源,包含了不同的原始信號源,習知技術通常利用軟體演算法來將混合信號源分離,以取得原始信號源,然而,此種方式在訓練係數的過程中需要大量的運算,而延遲取得原始信號源之時間。The blind signal separation is used to analyze the mixed signal source to obtain the original signal source. For example, in the speech recognition system, the mixed signal source collected by the voice recognition system includes different original signal sources, and the conventional technology usually uses software. The algorithm separates the mixed signal sources to obtain the original signal source. However, this method requires a large number of operations in the process of training coefficients, and delays the time to obtain the original signal source.

由此可見,上述現有的方式,顯然仍存在不便與缺陷,而有待改進。為了解決上述問題,相關領域莫不費盡心思來謀求解決之道,但長久以來仍未發展出適當的解決方案。因此,如何能改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間,實屬當前重要研發課題之一,亦成為當前相關領域亟需改進的目標。It can be seen that the above existing methods obviously have inconveniences and defects, and need to be improved. In order to solve the above problems, the relevant fields have not tried their best to find a solution, but for a long time, no suitable solution has been developed. Therefore, how to improve the way that the conventional technology adopts the software algorithm requires a large number of operations, and delaying the acquisition of the original signal source is one of the current important research and development topics, and has become an urgent need for improvement in related fields.

本發明內容之一目的是在提供一種盲訊號分離系統,藉以改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間。It is an object of the present invention to provide a blind signal separation system for improving the manner in which the prior art uses a software algorithm, requiring a large number of operations and delaying the acquisition of the original signal source.

為達上述目的,本發明內容之一技術態樣係關於一種盲訊號分離系統,其包含複數個適應性濾波器、複數個加法器及複數個訊息最大化元件。於配置上,前述些適應性濾波器排列成一矩陣,前述些加法器中的每一者設置於矩陣的其中一列,而前述些訊息最大化元件中的每一者設置於矩陣的其中一列。To achieve the above object, a technical aspect of the present invention relates to a blind signal separation system including a plurality of adaptive filters, a plurality of adders, and a plurality of message maximizing elements. In the configuration, the foregoing adaptive filters are arranged in a matrix, and each of the foregoing adders is disposed in one of the columns of the matrix, and each of the foregoing message maximizing elements is disposed in one of the columns of the matrix.

於操作上,前述些適應性濾波器之各列的第一排者用以接收第一輸入源,並對前述第一輸入源進行處理後輸出第一中間信號,而前述些適應性濾波器之各列的第二排者用以接收第二輸入源,並對前述第二輸入源進行處理後輸出第二中間信號。前述些加法器分別用以接收排列於相應列之前述些適應性濾波器所輸出的前述第一及前述第二中間信號,並將相應的前述第一及前述第二輸入信號相加,以輸出複數個輸出信號。前述些訊息最大化元件分別用以接收排列於相應列之前述加法器所輸出的相應之輸出信號,並根據前述相應之輸出信號向一表單進行查表,以輸出複數個訊息最大化信號。In operation, the first row of each of the foregoing adaptive filters is configured to receive the first input source, and process the first input source to output a first intermediate signal, and the foregoing adaptive filters are The second row of each column is for receiving the second input source and processing the second input source to output a second intermediate signal. Each of the adders is configured to receive the first and second intermediate signals outputted by the adaptive filters arranged in the corresponding columns, and add the corresponding first and second input signals to output A plurality of output signals. The message maximizing components are respectively configured to receive corresponding output signals output by the adders arranged in the corresponding columns, and perform a lookup table according to the corresponding output signals to output a plurality of message maximization signals.

再者,前述些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對前述第一輸入源及前述相應之訊息最大化信號進行處理後輸出前述第一中間信號,而前述些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對前述第二輸入源及前述相應之訊息最大化信號進行處理後輸出前述第二中間信號。Furthermore, the first row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the first input source and the corresponding message maximization signal to output the first An intermediate signal, wherein the second row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the second input source and the corresponding message maximization signal to output the foregoing Two intermediate signals.

根據本發明一實施例,前述些適應性濾波器之各列的 第三排者用以接收第三輸入源及相應之訊息最大化信號,並對前述第三輸入源及前述相應之訊息最大化信號進行處理後輸出第三中間信號。According to an embodiment of the present invention, each of the foregoing adaptive filters The third row is configured to receive the third input source and the corresponding message maximization signal, and process the third input source and the corresponding message maximization signal to output a third intermediate signal.

根據本發明另一實施例,前述些適應性濾波器排列於第一列中用以接收前述第一輸入源者、前述些適應性濾波器排列於第二列中用以接收前述第二輸入源者、及前述些適應性濾波器排列於第三列中用以接收前述第三輸入源者係予以省略。According to another embodiment of the present invention, the foregoing adaptive filters are arranged in the first column for receiving the first input source, and the adaptive filters are arranged in the second column for receiving the second input source. And the foregoing adaptive filters are arranged in the third column for receiving the third input source and are omitted.

根據本發明再一實施例,前述些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器的每一者包含複數個運算單元、複數個第二加法器及減法器,進一步而言,前述些運算單元的每一者包含第一乘法器、第一加法器及第二乘法器。於配置上,第一加法器電性耦接於第一乘法器,而第二乘法器電性耦接於第一加法器。前述些第二加法器係電性串接成一列,且前述些第二加法器中的每一者電性耦接於相應之前述些運算單元的每一者之第二乘法器。According to still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), each of the foregoing adaptive filters includes a plurality of arithmetic units, a plurality of second adders, and a subtractor, and further, each of the foregoing operational units One includes a first multiplier, a first adder, and a second multiplier. The first adder is electrically coupled to the first multiplier, and the second multiplier is electrically coupled to the first adder. The second adders are electrically connected in series, and each of the second adders is electrically coupled to a second multiplier of each of the corresponding arithmetic units.

於操作上,在前述運算單元中,第一乘法器用以將μe (n )及X (n )進行相乘,第一加法器用以將W (n)及μe (n )X (n )進行相加,而第二乘法器用以將X (n )及W (n )進行內積。前述些第二加法器用以依序將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier is used to multiply μe ( n ) and X ( n ), and the first adder is used to phase W (n) and μe ( n ) X ( n ) Plus, and the second multiplier is used to inner product X ( n ) and W ( n ). The second adders are used to sequentially add the aforementioned X ( n ) W ( n ) to generate X T ( n ) W ( n ). The subtractor is used to subtract d(n) from X T ( n ) W ( n ).

根據本發明又一實施例,前述些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器的每一者包含複數個運算單元、進位儲存加法器(Carry Save Adder,CSA)及減法器,進一步而言,前述些運算單元的每一者包含第一乘法器、第一加法器及第二乘法器。於配置上,第一加法器電性耦接於第一乘法器,而第二乘法器電性耦接於第一加法器。進位儲存加法器電性耦接於前述些運算單元的每一者之前述第二乘法器。減法器電性耦接於前述進位儲存加法器。According to still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), each of the aforementioned adaptive filters includes a plurality of arithmetic units, a Carry Save Adder (CSA), and a subtractor, and further, the foregoing Each of the arithmetic units includes a first multiplier, a first adder, and a second multiplier. The first adder is electrically coupled to the first multiplier, and the second multiplier is electrically coupled to the first adder. The carry storage adder is electrically coupled to the aforementioned second multiplier of each of the foregoing arithmetic units. The subtractor is electrically coupled to the aforementioned carry storage adder.

於操作上,在前述運算單元中,第一乘法器用以將μe (n )及X (n )進行相乘,第一加法器用以將W (n)及μe (n )X (n )進行相加,而第二乘法器用以將X (n )及W (n )進行內積。前述進位儲存加法器用以將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier is used to multiply μe ( n ) and X ( n ), and the first adder is used to phase W (n) and μe ( n ) X ( n ) Plus, and the second multiplier is used to inner product X ( n ) and W ( n ). The carry storage adder is used to add the aforementioned X ( n ) W ( n ) to generate X T ( n ) W ( n ). The subtractor is used to subtract d(n) from X T ( n ) W ( n ).

為達上述目的,本發明內容之另一技術態樣係關於一種盲訊號分離系統,其包含複數個適應性濾波器、複數個加法器及複數個訊息最大化元件。於配置上,前述些適應性濾波器排列成一矩陣,前述些加法器中的每一者設置於矩陣的其中一列,而前述些訊息最大化元件中的每一者設置於矩陣的其中一列。In order to achieve the above object, another aspect of the present invention is directed to a blind signal separation system including a plurality of adaptive filters, a plurality of adders, and a plurality of message maximizing elements. In the configuration, the foregoing adaptive filters are arranged in a matrix, and each of the foregoing adders is disposed in one of the columns of the matrix, and each of the foregoing message maximizing elements is disposed in one of the columns of the matrix.

於操作上,前述些適應性濾波器之各列的第一排者用以接收第一輸出信號,並對前述第一輸出信號進行處理後 輸出第一中間信號,而前述些適應性濾波器之各列的第二排者用以接收第二輸出信號,並對前述第二輸出信號進行處理後輸出第二中間信號。前述些加法器分別用以接收排列於相應列之前述些適應性濾波器所輸出的前述第一及前述第二中間信號與相應的第一輸入源或第二輸入源,並將相應的前述第一及前述第二中間信號與相應的前述第一或前述第二輸入源相加,以分別輸出前述第一輸出信號及前述第二輸出信號。前述些訊息最大化元件係分別用以接收排列於相應列之前述加法器所輸出的相應之前述第一及前述第二輸出信號,並分別根據前述相應之前述第一及前述第二輸出信號向一表單進行查表,以輸出複數個訊息最大化信號。In operation, the first row of each of the foregoing adaptive filters is configured to receive the first output signal and process the first output signal. The first intermediate signal is output, and the second row of each of the foregoing adaptive filters is configured to receive the second output signal and process the second output signal to output a second intermediate signal. The foregoing adders are respectively configured to receive the first and second intermediate signals outputted by the foregoing adaptive filters arranged in the corresponding columns and the corresponding first input source or second input source, and corresponding to the foregoing And the second intermediate signal is added to the corresponding first or the second input source to output the first output signal and the second output signal, respectively. The message maximizing components are respectively configured to receive the respective first and second output signals outputted by the adders arranged in the corresponding columns, and respectively according to the foregoing first and second output signals A form is used to look up the table to output a plurality of messages to maximize the signal.

再者,前述些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對前述第一輸出信號及前述相應之訊息最大化信號進行處理後輸出前述第一中間信號,而前述些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對前述第二輸出信號及前述相應之訊息最大化信號進行處理後輸出前述第二中間信號。Furthermore, the first row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the first output signal and the corresponding message maximization signal to output the first An intermediate signal, wherein the second row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the second output signal and the corresponding message maximization signal to output the foregoing Two intermediate signals.

根據本發明一實施例,前述些適應性濾波器之各列的第三排者用以接收第三輸出信號及相應之訊息最大化信號,並對第三輸出信號及相應之訊息最大化信號進行處理後輸出第三中間信號。前述些加法器中設置於矩陣的第三列者係用以接收排列於第三列之前述些適應性濾波器所輸出的第一、第二及第三中間信號與第三輸入源,並將第一、 第二及第三中間信號與第三輸入源相加,以輸出第三輸出信號。According to an embodiment of the invention, the third row of each of the foregoing adaptive filters is configured to receive the third output signal and the corresponding message maximization signal, and perform the third output signal and the corresponding message maximization signal. After processing, the third intermediate signal is output. The third column of the adders disposed in the matrix is configured to receive the first, second, and third intermediate signals and the third input source output by the foregoing adaptive filters arranged in the third column, and the first, The second and third intermediate signals are added to the third input source to output a third output signal.

根據本發明另一實施例,前述些適應性濾波器排列於第一列中用以接收第一輸出信號者、前述些適應性濾波器排列於第二列中用以接收第二輸出信號者及前述些適應性濾波器排列於第三列中用以接收第三輸出信號者係予以省略。According to another embodiment of the present invention, the foregoing adaptive filters are arranged in the first column for receiving the first output signal, and the adaptive filters are arranged in the second column for receiving the second output signal. The foregoing adaptive filters are arranged in the third column for receiving the third output signal and are omitted.

根據本發明再一實施例,前述些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器的每一者包含複數個運算單元、複數個第二加法器及減法器,進一步而言,前述些運算單元的每一者包含第一乘法器、第一加法器及第二乘法器。於配置上,第一加法器電性耦接於第一乘法器,而第二乘法器電性耦接於第一加法器。前述些第二加法器係電性串接成一列,且前述些第二加法器中的每一者電性耦接於相應之前述些運算單元的每一者之第二乘法器。According to still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), each of the foregoing adaptive filters includes a plurality of arithmetic units, a plurality of second adders, and a subtractor, and further, each of the foregoing operational units One includes a first multiplier, a first adder, and a second multiplier. The first adder is electrically coupled to the first multiplier, and the second multiplier is electrically coupled to the first adder. The second adders are electrically connected in series, and each of the second adders is electrically coupled to a second multiplier of each of the corresponding arithmetic units.

於操作上,在前述運算單元中,第一乘法器用以將μe (n )及X (n )進行相乘,第一加法器用以將W (n)及μe (n )X (n )進行相加,而第二乘法器用以將X (n )及W (n )進行內積。前述些第二加法器用以依序將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier is used to multiply μe ( n ) and X ( n ), and the first adder is used to phase W (n) and μe ( n ) X ( n ) Plus, and the second multiplier is used to inner product X ( n ) and W ( n ). The second adders are used to sequentially add the aforementioned X ( n ) W ( n ) to generate X T ( n ) W ( n ). The subtractor is used to subtract d(n) from X T ( n ) W ( n ).

根據本發明又一實施例,前述些適應性濾波器的每一 者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器的每一者包含複數個運算單元、進位儲存加法器及減法器,進一步而言,前述些運算單元的每一者包含第一乘法器、第一加法器及第二乘法器。於配置上,第一加法器電性耦接於第一乘法器,而第二乘法器電性耦接於第一加法器。進位儲存加法器電性耦接於前述些運算單元的每一者之前述第二乘法器。減法器電性耦接於前述進位儲存加法器。According to still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), each of the foregoing adaptive filters includes a plurality of arithmetic units, a carry storage adder, and a subtractor, and further, each of the foregoing operational units A first multiplier, a first adder, and a second multiplier are included. The first adder is electrically coupled to the first multiplier, and the second multiplier is electrically coupled to the first adder. The carry storage adder is electrically coupled to the aforementioned second multiplier of each of the foregoing arithmetic units. The subtractor is electrically coupled to the aforementioned carry storage adder.

於操作上,在前述運算單元中,第一乘法器用以將μe (n )及X (n )進行相乘,第一加法器用以將W (n)及μe (n )X (n )進行相加,而第二乘法器用以將X (n )及W (n )進行內積。前述進位儲存加法器用以將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier is used to multiply μe ( n ) and X ( n ), and the first adder is used to phase W (n) and μe ( n ) X ( n ) Plus, and the second multiplier is used to inner product X ( n ) and W ( n ). The carry storage adder is used to add the aforementioned X ( n ) W ( n ) to generate X T ( n ) W ( n ). The subtractor is used to subtract d(n) from X T ( n ) W ( n ).

因此,根據本發明之技術內容,本發明實施例藉由提供一種盲訊號分離系統,並以超大積體電路來實現盲訊號分離系統,藉以改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間。Therefore, according to the technical content of the present invention, an embodiment of the present invention provides a blind signal separation system and implements a blind signal separation system by using an oversized integrated circuit, thereby improving a conventional technique using a software algorithm, which requires a large number of The operation, while delaying the time to get the original source.

此外,本發明實施例可進一步將對角項適應性濾波器省略,如此一來,除可降低盲訊號分離系統之成本外,尚可增進盲訊號分離系統之運算速度,提升盲訊號分離系統之效率。In addition, the embodiment of the present invention can further omit the diagonal term adaptive filter, so that in addition to reducing the cost of the blind signal separation system, the operation speed of the blind signal separation system can be improved, and the blind signal separation system can be improved. effectiveness.

再者,本發明實施例之適應性濾波器可進一步以進位 儲存加法器來取代原本適應性濾波器中電性串接成一列的複數個加法器,如此一來,可增進適應性濾波器之運算速度,提升適應性濾波器之效率。Furthermore, the adaptive filter of the embodiment of the present invention can further carry The adder is stored to replace the plurality of adders in the adaptive filter in which the adaptive filter is electrically connected in a row, thereby improving the operation speed of the adaptive filter and improving the efficiency of the adaptive filter.

為了使本揭示內容之敘述更加詳盡與完備,可參照所附之圖式及以下所述各種實施例,圖式中相同之號碼代表相同或相似之元件。但所提供之實施例並非用以限制本發明所涵蓋的範圍,而結構運作之描述非用以限制其執行之順序,任何由元件重新組合之結構,所產生具有均等功效的裝置,皆為本發明所涵蓋的範圍。In order to make the description of the present disclosure more complete and complete, reference is made to the accompanying drawings and the accompanying drawings. However, the embodiments provided are not intended to limit the scope of the invention, and the description of the operation of the structure is not intended to limit the order of its execution, and any device that is recombined by the components produces equal devices. The scope covered by the invention.

其中圖式僅以說明為目的,並未依照原尺寸作圖。另一方面,眾所週知的元件與步驟並未描述於實施例中,以避免對本發明造成不必要的限制。The drawings are for illustrative purposes only and are not drawn to the original dimensions. On the other hand, well-known elements and steps are not described in the embodiments to avoid unnecessarily limiting the invention.

本發明內容之一技術態樣提供一種盲訊號分離系統,其包含複數個適應性濾波器、複數個加法器及複數個訊息最大化元件。於配置上,前述些適應性濾波器排列成一矩陣,前述些加法器中的每一者設置於矩陣的其中一列,而前述些訊息最大化元件中的每一者設置於矩陣的其中一列。One aspect of the present invention provides a blind signal separation system including a plurality of adaptive filters, a plurality of adders, and a plurality of message maximizing elements. In the configuration, the foregoing adaptive filters are arranged in a matrix, and each of the foregoing adders is disposed in one of the columns of the matrix, and each of the foregoing message maximizing elements is disposed in one of the columns of the matrix.

於操作上,前述些適應性濾波器之各列的第一排者用以接收第一輸入源,並對前述第一輸入源進行處理後輸出第一中間信號,而前述些適應性濾波器之各列的第二排者用以接收第二輸入源,並對前述第二輸入源進行處理後輸 出第二中間信號。前述些加法器分別用以接收排列於相應列之前述些適應性濾波器所輸出的前述第一及前述第二中間信號,並將相應的前述第一及前述第二輸入信號相加,以輸出複數個輸出信號。前述些訊息最大化元件分別用以接收排列於相應列之前述加法器所輸出的相應之輸出信號,並根據前述相應之輸出信號向一表單進行查表,以輸出複數個訊息最大化信號。In operation, the first row of each of the foregoing adaptive filters is configured to receive the first input source, and process the first input source to output a first intermediate signal, and the foregoing adaptive filters are The second row of each column is for receiving the second input source, and processing the second input source A second intermediate signal is output. Each of the adders is configured to receive the first and second intermediate signals outputted by the adaptive filters arranged in the corresponding columns, and add the corresponding first and second input signals to output A plurality of output signals. The message maximizing components are respectively configured to receive corresponding output signals output by the adders arranged in the corresponding columns, and perform a lookup table according to the corresponding output signals to output a plurality of message maximization signals.

再者,前述些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對前述第一輸入源及前述相應之訊息最大化信號進行處理後輸出前述第一中間信號,而前述些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對前述第二輸入源及前述相應之訊息最大化信號進行處理後輸出前述第二中間信號。本發明實施例之盲訊號分離系統的實現方式將於以下第1圖中闡釋。Furthermore, the first row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the first input source and the corresponding message maximization signal to output the first An intermediate signal, wherein the second row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the second input source and the corresponding message maximization signal to output the foregoing Two intermediate signals. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in FIG. 1 below.

第1圖係依照本發明一實施例繪示一種盲訊號分離系統100的示意圖。如第1圖所示,盲訊號分離系統100包含第1×1階適應性濾波器W11、第1×2階適應性濾波器W12、第2×1階適應性濾波器W21、第2×2階適應性濾波器W22、第一加法器110、第二加法器150、第一訊息最大化元件120及第二訊息最大化元件160等超大積體電路(Very Large Scale Integration,VLSI)架構。FIG. 1 is a schematic diagram of a blind signal separation system 100 according to an embodiment of the invention. As shown in FIG. 1, the blind signal separation system 100 includes a 1×1 order adaptive filter W11, a 1×2 order adaptive filter W12, a 2×1 order adaptive filter W21, and a 2×2. A Very Large Scale Integration (VLSI) architecture such as the adaptive filter W22, the first adder 110, the second adder 150, the first message maximizing component 120, and the second message maximizing component 160.

於操作上,第1×1階適應性濾波器W11用以接收第一輸入源X1,並對第一輸入源X1進行處理後輸出第一中間 信號;第1×2階適應性濾波器W12用以接收第二輸入源X2,並對第二輸入源X2進行處理後輸出第二中間信號。隨後,第一加法器110用以將第一中間信號及第二中間信號相加,並輸出第一輸出信號。再由第一訊息最大化元件120用以接收第一輸出信號,並根據第一輸出信號以向一表單進行查表而輸出第一訊息最大化信號1-2y1,並將第一訊息最大化信號1-2y1迴授至第1×1階及第1×2階適應性濾波器W11及W12。In operation, the 1×1 order adaptive filter W11 is configured to receive the first input source X1, and process the first input source X1 to output the first intermediate The first 1×2 adaptive filter W12 is configured to receive the second input source X2 and process the second input source X2 to output a second intermediate signal. Subsequently, the first adder 110 is configured to add the first intermediate signal and the second intermediate signal, and output the first output signal. The first message maximizing component 120 is configured to receive the first output signal, and output a first message maximization signal 1-2y1 according to the first output signal to perform a lookup to a form, and maximize the first message. 1-2y1 is fed back to the 1×1th order and the 1×2th order adaptive filters W11 and W12.

再者,第1×1階及第1×2階適應性濾波器W11及W12更用以接收第一訊息最大化信號1-2y1,第1×1階適應性濾波器W11更用以對第一輸入源X1與第一訊息最大化信號1-2y1進行處理後輸出第一中間信號,而第1×2階適應性濾波器W12更用以對第二輸入源X2與第一訊息最大化信號1-2y1進行處理後輸出第二中間信號。然後,第一加法器110再用以將第一中間信號及第二中間信號相加,並輸出第一輸出信號,如此持續訓練係數,最終可求得第一輸出信號。Furthermore, the 1×1th order and the 1×2th order adaptive filters W11 and W12 are further configured to receive the first message maximization signal 1-2y1, and the 1×1st order adaptive filter W11 is further used to An input source X1 is processed by the first message maximization signal 1-2y1 to output a first intermediate signal, and the 1×2th order adaptive filter W12 is further used to maximize the second input source X2 and the first message. After the processing of 1-2y1, the second intermediate signal is output. Then, the first adder 110 is further used to add the first intermediate signal and the second intermediate signal, and output the first output signal, so that the training coefficient is continued, and finally the first output signal can be obtained.

此外,於操作上,第2×1階適應性濾波器W21用以接收第一輸入源X1,並對第一輸入源X1進行處理後輸出第一中間信號;第2×2階適應性濾波器W22用以接收第二輸入源X2,並對第二輸入源X2進行處理後輸出第二中間信號。隨後,第二加法器150用以將第一中間信號及第二中間信號相加,並輸出第二輸出信號。再由第二訊息最大化元件160用以接收第二輸出信號,並根據第二輸出信號以 向表單進行查表而輸出第二訊息最大化信號1-2y2,並將第二訊息最大化信號1-2y2迴授至第2×1階及第2×2階適應性濾波器W21及W22。In addition, in operation, the 2×1 order adaptive filter W21 is configured to receive the first input source X1, and process the first input source X1 to output the first intermediate signal; the 2×2th order adaptive filter The W22 is configured to receive the second input source X2 and process the second input source X2 to output a second intermediate signal. Subsequently, the second adder 150 is configured to add the first intermediate signal and the second intermediate signal, and output the second output signal. The second message maximizing component 160 is further configured to receive the second output signal, and according to the second output signal The table is looked up to output a second message maximization signal 1-2y2, and the second message maximization signal 1-2y2 is fed back to the 2x1st order and 2x2st order adaptive filters W21 and W22.

其次,第2×1階及第2×2階適應性濾波器W21及W22更用以接收第二訊息最大化信號1-2y2,第2×1階適應性濾波器W21更用以對第一輸入源X1與第二訊息最大化信號1-2y2進行處理後輸出第一中間信號,而第2×2階適應性濾波器W22更用以對第二輸入源X2與第二訊息最大化信號1-2y2進行處理後輸出第二中間信號。然後,第二加法器2再用以將第一中間信號及第二中間信號相加,並輸出第二輸出信號,如此持續訓練係數,最終可求得第二輸出信號。Next, the 2×1th order and the 2×2th order adaptive filters W21 and W22 are further configured to receive the second message maximization signal 1-2y2, and the 2×1 order adaptive filter W21 is further used to The input source X1 and the second message maximization signal 1-2y2 are processed to output a first intermediate signal, and the 2×2 order adaptive filter W22 is further configured to use the second input source X2 and the second message to maximize the signal 1 -2y2 is processed to output a second intermediate signal. Then, the second adder 2 is further used to add the first intermediate signal and the second intermediate signal, and output the second output signal, so that the training coefficient is continued, and finally the second output signal can be obtained.

如此一來,本發明實施例藉由提供一種盲訊號分離系統100,並以超大積體電路來實現盲訊號分離系統100,藉以改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間。In this way, the embodiment of the present invention provides a blind signal separation system 100 and implements the blind signal separation system 100 by using a large integrated circuit, so as to improve the conventional technique using a software algorithm, which requires a large number of operations. Delay in getting the original source.

在本發明的一實施例中,盲訊號分離系統之前述些適應性濾波器之各列的第三排者用以接收第三輸入源及相應之訊息最大化信號,並對前述第三輸入源及前述相應之訊息最大化信號進行處理後輸出第三中間信號。上開本發明實施例之盲訊號分離系統的實現方式將於以下第2圖中闡釋。In an embodiment of the present invention, the third row of each of the foregoing adaptive filters of the blind signal separation system is configured to receive the third input source and the corresponding message maximization signal, and to the third input source. And the corresponding message maximization signal is processed to output a third intermediate signal. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in FIG. 2 below.

第2圖係依照本發明另一實施例繪示一種盲訊號分離系統200的示意圖。相較於第1圖所示之盲訊號分離系統100,盲訊號分離系統200更包含第1×3階適應性濾波器 W13、第2×3階適應性濾波器W23、第3×1階適應性濾波器W31、第3×2階適應性濾波器W32、第3×3階適應性濾波器W33、第三加法器270及第三訊息最大化元件280。2 is a schematic diagram of a blind signal separation system 200 in accordance with another embodiment of the present invention. Compared with the blind signal separation system 100 shown in FIG. 1, the blind signal separation system 200 further includes a 1×3 order adaptive filter. W13, 2×3 order adaptive filter W23, 3×1 order adaptive filter W31, 3×2 order adaptive filter W32, 3×3 order adaptive filter W33, and third adder 270 and a third message maximizing element 280.

於操作上,第1×3階適應性濾波器W13用以接收第三輸入源X3,並對第三輸入源X3進行處理後輸出第三中間信號,第一加法器210用以將第一、第二及第三中間信號相加,並輸出第一輸出信號。再由第一訊息最大化元件220用以接收第一輸出信號,並根據第一輸出信號以向表單進行查表而輸出第一訊息最大化信號1-2y1,並將第一訊息最大化信號1-2y1迴授至第1×1階、第1×2階及第1×3階適應性濾波器W11、W12及W13。In operation, the 1×3th adaptive filter W13 is configured to receive the third input source X3, and process the third input source X3 to output a third intermediate signal, where the first adder 210 is configured to The second and third intermediate signals are added, and the first output signal is output. The first message maximizing component 220 is configured to receive the first output signal, and output a first message maximization signal 1-2y1 according to the first output signal to perform lookup on the form, and maximize the first message 1 -2y1 is fed back to the 1st to 1st order, the 1st to 2nd order, and the 1st to 3rd order adaptive filters W11, W12, and W13.

再者,第1×1階、第1×2階及第1×3階適應性濾波器W11、W12及W13更用以接收第一訊息最大化信號1-2y1,第1×1階適應性濾波器W11更用以對第一輸入源X1與第一訊息最大化信號1-2y1進行處理後輸出第一中間信號,第1×2階適應性濾波器W12更用以對第二輸入源X2與第一訊息最大化信號1-2y1進行處理後輸出第二中間信號,而第1×3階適應性濾波器W13更用以對第三輸入源X3與第一訊息最大化信號1-2y1進行處理後輸出第三中間信號。然後,第一加法器210再用以將第一、第二及第三中間信號相加,並輸出第一輸出信號,如此持續訓練係數,最終可求得第一輸出信號。Furthermore, the 1×1th order, the 1×2th order, and the 1×3th order adaptive filters W11, W12, and W13 are further configured to receive the first message maximization signal 1-2y1, the 1×1st order adaptability. The filter W11 is further configured to process the first input source X1 and the first message maximization signal 1-2y1 to output a first intermediate signal, and the 1×2 order adaptive filter W12 is further used to the second input source X2. The second intermediate signal is output after being processed by the first message maximization signal 1-2y1, and the 1×3th adaptive filter W13 is further configured to perform the third input source X3 and the first message maximization signal 1-2y1. After processing, the third intermediate signal is output. Then, the first adder 210 is further used to add the first, second and third intermediate signals, and output the first output signal, so that the training coefficient is continued, and finally the first output signal can be obtained.

此外,於操作上,第2×3階適應性濾波器W23用以接收第三輸入源X3,並對第三輸入源X3進行處理後輸出第 三中間信號,第二加法器240用以將第一、第二及第三中間信號相加,並輸出第二輸出信號。再由第二訊息最大化元件250用以接收第二輸出信號,並根據第二輸出信號以向表單進行查表而輸出第二訊息最大化信號1-2y2,並將第二訊息最大化信號1-2y2迴授至第2×1階、第2×2階及第2×3階適應性濾波器W21、W22及W23。In addition, in operation, the 2×3th adaptive filter W23 is configured to receive the third input source X3, and process the third input source X3 to output the third The third intermediate signal 240 is used to add the first, second and third intermediate signals and output the second output signal. The second message maximizing component 250 is further configured to receive the second output signal, and output a second message maximization signal 1-2y2 according to the second output signal to look up the form, and maximize the second message signal 1 -2y2 is fed back to the 2x1st order, the 2x2th order, and the 2x3th order adaptive filters W21, W22, and W23.

其次,第2×1階、第2×2階及第2×3階適應性濾波器W21、W22及W23更用以接收第二訊息最大化信號1-2y2,第2×1階適應性濾波器W21更用以對第一輸入源X1與第二訊息最大化信號1-2y2進行處理後輸出第一中間信號,第2×2階適應性濾波器W22更用以對第二輸入源X2與第二訊息最大化信號1-2y2進行處理後輸出第二中間信號,而第2×3階適應性濾波器W23更用以對第三輸入源X3與第二訊息最大化信號1-2y2進行處理後輸出第三中間信號。然後,第二加法器240再用以將第一、第二及第三中間信號相加,並輸出第二輸出信號,如此持續訓練係數,最終可求得第二輸出信號。Secondly, the 2×1th order, the 2×2th order and the 2×3th order adaptive filters W21, W22 and W23 are further used for receiving the second message maximization signal 1-2y2, the 2×1 order adaptive filtering. The W21 is further configured to process the first input source X1 and the second message maximization signal 1-2y2 to output a first intermediate signal, and the 2×2 order adaptive filter W22 is further configured to use the second input source X2 and The second message maximization signal 1-2y2 is processed to output a second intermediate signal, and the 2×3th order adaptive filter W23 is further configured to process the third input source X3 and the second message maximization signal 1-2y2. The third intermediate signal is output afterwards. Then, the second adder 240 is further used to add the first, second and third intermediate signals, and output the second output signal, so that the training coefficient is continued, and finally the second output signal can be obtained.

另外,於操作上,第3×1階適應性濾波器W31用以接收第一輸入源X1,並對第一輸入源X1進行處理後輸出第一中間信號,第3×2階適應性濾波器W32用以接收第二輸入源X2,並對第二輸入源X2進行處理後輸出第二中間信號,而第3×3階適應性濾波器W33用以接收第三輸入源X3,並對第三輸入源X3進行處理後輸出第三中間信號。隨後,第三加法器270用以將第一、第二及第三中間信號 相加,並輸出第三輸出信號。再由第三訊息最大化元件280用以接收第三輸出信號,並根據第三輸出信號以向表單進行查表而輸出第三訊息最大化信號1-2y3,並將第三訊息最大化信號1-2y3迴授至第3×1階、第3×2階及第3×3階適應性濾波器W31、W32及W33。In addition, in operation, the 3×1 order adaptive filter W31 is configured to receive the first input source X1, and process the first input source X1 to output the first intermediate signal, and the 3×2th order adaptive filter. The W32 is configured to receive the second input source X2, and process the second input source X2 to output a second intermediate signal, and the 3×3th order adaptive filter W33 is configured to receive the third input source X3 and The input source X3 performs processing to output a third intermediate signal. Subsequently, the third adder 270 is configured to use the first, second, and third intermediate signals Add and output a third output signal. The third message maximizing component 280 is configured to receive the third output signal, and output a third message maximization signal 1-2y3 according to the third output signal to perform lookup to the form, and maximize the third message signal 1 -2y3 is fed back to the 3x1st order, the 3x2th order, and the 3x3th order adaptive filters W31, W32, and W33.

其次,第3×1階、第3×2階及第3×3階適應性濾波器W31、W32及W33更用以接收第三訊息最大化信號1-2y3,第3×1階適應性濾波器W31更用以對第一輸入源X1與第三訊息最大化信號1-2y3進行處理後輸出第一中間信號,第3×2階適應性濾波器W32更用以對第二輸入源X2與第三訊息最大化信號1-2y3進行處理後輸出第二中間信號,而第3×3階適應性濾波器W33更用以對第三輸入源X3與第三訊息最大化信號1-2y3進行處理後輸出第三中間信號。然後,第三加法器270再用以將第一、第二及第三中間信號相加,並輸出第三輸出信號,如此持續訓練係數,最終可求得第三輸出信號。Secondly, the 3×1st order, the 3×2th order and the 3×3th order adaptive filters W31, W32 and W33 are further used for receiving the third message maximization signal 1-2y3, the 3×1 order adaptive filtering. The W31 is further configured to process the first input source X1 and the third message maximization signal 1-2y3 to output a first intermediate signal, and the 3×2 order adaptive filter W32 is further used to the second input source X2. The third message maximizing signal 1-2y3 is processed to output a second intermediate signal, and the 3×3th order adaptive filter W33 is further configured to process the third input source X3 and the third message maximizing signal 1-2y3. The third intermediate signal is output afterwards. Then, the third adder 270 is further configured to add the first, second, and third intermediate signals, and output a third output signal, so that the training coefficient is continued, and finally the third output signal can be obtained.

在本發明的另一實施例中,盲訊號分離系統之前述些適應性濾波器排列於第一列中用以接收前述第一輸入源者、前述些適應性濾波器排列於第二列中用以接收前述第二輸入源者及前述些適應性濾波器排列於第三列中用以接收前述第三輸入源者係予以省略。上開本發明實施例之盲訊號分離系統的實現方式將於以下第3圖中闡釋。In another embodiment of the present invention, the adaptive filters of the blind signal separation system are arranged in the first column for receiving the first input source, and the foregoing adaptive filters are arranged in the second column. The system for receiving the second input source and the aforementioned adaptive filters arranged in the third column for receiving the third input source is omitted. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in FIG. 3 below.

第3A圖係依照本發明再一實施例繪示一種盲訊號分離系統300的示意圖。相較於第2圖所示之盲訊號分離系 統200,盲訊號分離系統300將前述些適應性濾波器排列於第一列中用以接收前述第一輸入源者(例如:第1×1階適應性濾波器W11)、前述些適應性濾波器排列於第二列中用以接收前述第二輸入源者(例如:第2×2階適應性濾波器W22)及前述些適應性濾波器排列於第三列中用以接收前述第三輸入源者(例如:第3×3階適應性濾波器W33)係予以省略。FIG. 3A is a schematic diagram of a blind signal separation system 300 according to still another embodiment of the present invention. Compared to the blind signal separation system shown in Figure 2 The blind signal separation system 300 arranges the aforementioned adaptive filters in the first column for receiving the first input source (for example, the 1×1 order adaptive filter W11), and the aforementioned adaptive filtering. Arranging in the second column for receiving the second input source (for example, the 2×2th adaptive filter W22) and the foregoing adaptive filters are arranged in the third column for receiving the third input The source (for example, the 3×3th adaptive filter W33) is omitted.

換言之,傳送到上述矩陣之第一列的第一輸入源不會經過例如第1×1階適應性濾波器W11對其進行處理,傳送到上述矩陣之第二列的第二輸入源不會經過例如第2×2階適應性濾波器W2對其進行處理,而傳送到上述矩陣之第三列的第三輸入源不會經過例如第3×3階適應性濾波器W33對其進行處理,這是基於對角項適應性濾波器,諸如第1×1階適應性濾波器W11、第2×2階適應性濾波器W22及第3×3階適應性濾波器W33僅被用以縮放(scaling)矩陣,對盲訊號分離系統300的解沒有影響,因此可將對角項適應性濾波器省略,如此一來,除可降低盲訊號分離系統300之成本外,尚可增進盲訊號分離系統300之運算速度,提升盲訊號分離系統300之效率。In other words, the first input source transmitted to the first column of the matrix is not processed by, for example, the 1×1 order adaptive filter W11, and the second input source transmitted to the second column of the matrix does not pass. For example, the 2×2th adaptive filter W2 processes it, and the third input source transmitted to the third column of the matrix is not processed by, for example, the 3×3th adaptive filter W33. It is based on a diagonal term adaptive filter, such as the 1×1th adaptive filter W11, the 2×2th adaptive filter W22, and the 3×3th adaptive filter W33 are only used for scaling (scaling) The matrix has no effect on the solution of the blind signal separation system 300, so the diagonal term adaptive filter can be omitted, so that in addition to reducing the cost of the blind signal separation system 300, the blind signal separation system 300 can be enhanced. The speed of operation increases the efficiency of the blind signal separation system 300.

此外,第3B圖係依照本發明再一實施例繪示一種盲訊號分離系統300的示意圖,其係將第3A圖中的盲訊號分離系統300重新設置,以使電子元件間之線路走線更加簡潔,提升盲訊號分離系統300之製作效率。In addition, FIG. 3B is a schematic diagram of a blind signal separation system 300 according to another embodiment of the present invention, which is to reset the blind signal separation system 300 in FIG. 3A to make the line trace between electronic components more. Concisely, the production efficiency of the blind signal separation system 300 is improved.

於本發明再一實施例,前述些適應性濾波器的每一者 符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器400的每一者之架構係繪示如第4圖所示,其包含複數個運算單元410、複數個第二加法器420及減法器430,進一步而言,前述些運算單元410的每一者包含第一乘法器412、第一加法器414及第二乘法器416。於配置上,第一加法器414電性耦接於第一乘法器412,而第二乘法器416電性耦接於第一加法器414。前述些第二加法器420係電性串接成一列,且前述些第二加法器420中的每一者電性耦接於相應之前述些運算單元410的每一者之第二乘法器416。In still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), the architecture of each of the aforementioned adaptive filters 400 is shown in FIG. 4, which includes a plurality of arithmetic units 410 and a plurality of second additions The 420 and the subtractor 430, further, each of the foregoing arithmetic units 410 includes a first multiplier 412, a first adder 414, and a second multiplier 416. In the configuration, the first adder 414 is electrically coupled to the first multiplier 412 , and the second multiplier 416 is electrically coupled to the first adder 414 . The second adders 420 are electrically connected in series, and each of the second adders 420 is electrically coupled to the second multiplier 416 of each of the corresponding arithmetic units 410. .

於操作上,在前述運算單元中,第一乘法器412用以將μe (n )及X (n )進行相乘,第一加法器414用以將W (n)及μe (n )X (n )進行相加,而第二乘法器416用以將X (n )及W (n )進行內積。前述些第二加法器420用以依序將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器430用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier 412 is used to multiply μe ( n ) and X ( n ), and the first adder 414 is used to use W (n) and μe ( n ) X ( n ) is added, and the second multiplier 416 is used to inner product X ( n ) and W ( n ). The second adder 420 is configured to sequentially add the foregoing X ( n ) W ( n ) to generate X T ( n ) W ( n ). Subtractor 430 is used to subtract d(n) from X T ( n ) W ( n ).

於本發明又一實施例,前述些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),前述些適應性濾波器500的每一者之架構係繪示如第5圖所示,其包含複數個運算單元510、進位儲存加法器520及減法器530,進一步而言,前述些運算單元的每一者 包含第一乘法器512、第一加法器514及第二乘法器516。於配置上,第一加法器514電性耦接於第一乘法器512,而第二乘法器516電性耦接於第一加法器514。進位儲存加法器520電性耦接於前述些運算單元的每一者之前述第二乘法器516。減法器530電性耦接於前述進位儲存加法器520。In still another embodiment of the present invention, each of the foregoing adaptive filters conforms to the following formula: W ( n +1)= W (n)+ μe ( n ) X ( n ), e( n )=d (n)- X T ( n ) W ( n ), the architecture of each of the aforementioned adaptive filters 500 is shown in FIG. 5, which includes a plurality of arithmetic units 510 and a carry storage adder 520. And a subtractor 530. Further, each of the foregoing arithmetic units includes a first multiplier 512, a first adder 514, and a second multiplier 516. The first adder 514 is electrically coupled to the first multiplier 512 , and the second multiplier 516 is electrically coupled to the first adder 514 . The carry storage adder 520 is electrically coupled to the second multiplier 516 of each of the foregoing arithmetic units. The subtractor 530 is electrically coupled to the carry storage adder 520 described above.

於操作上,在前述運算單元中,第一乘法器512用以將μe (n )及X (n )進行相乘,第一加法器514用以將W (n)及μe (n )X (n )進行相加,而第二乘法器516用以將X (n )及W (n )進行內積。前述進位儲存加法器520用以將前述些X (n )W (n )進行相加以產生X T (n )W (n )。減法器530用以將d(n)減去X T (n )W (n )。Operationally, in the foregoing operation unit, the first multiplier 512 is used to multiply μe ( n ) and X ( n ), and the first adder 514 is used to use W (n) and μe ( n ) X ( n ) is added, and the second multiplier 516 is used to inner product X ( n ) and W ( n ). The carry storage adder 520 is configured to add the aforementioned X ( n ) W ( n ) to generate X T ( n ) W ( n ). Subtractor 530 is used to subtract d(n) from X T ( n ) W ( n ).

在此需說明的是,相較於第4圖所示之適應性濾波器400,第5圖所示之適應性濾波器500將運算路徑中經過最多邏輯元件者簡化,詳細而言,適應性濾波器500以進位儲存加法器520來取代適應性濾波器400中電性串接成一列的複數個第二加法器420,如此一來,可增進適應性濾波器500之運算速度,提升適應性濾波器500之效率。It should be noted that, compared with the adaptive filter 400 shown in FIG. 4, the adaptive filter 500 shown in FIG. 5 simplifies the most logical elements in the computation path, and in detail, the adaptability The filter 500 replaces the plurality of second adders 420 electrically connected in a row in the adaptive filter 400 by the carry storage adder 520, so that the operation speed of the adaptive filter 500 can be improved and the adaptability can be improved. The efficiency of filter 500.

第6圖係依照本發明再一實施例繪示一種盲訊號分離系統之訊息最大化元件的示意圖。如圖所示,訊息最大化元件可設計為唯讀記憶體ROM(Read-Only Memory,ROM),以使盲訊號分離系統可藉由訊息最大化元件進行查表,當輸入u 藉由查表單元LUT經過查表後,可取得y ,舉例而言,查表單元用以查詢輸入u 經由sigmoid function計算後的值,隨後再藉由取補數暨左移單元Complement-two and a left shift對y 進行運算而輸出訊息最大化信號1-2y,換言之,經過量化與定點化後,將值存入唯讀記憶體ROM以利後續計算。然其並非用以限定本發明,僅例式性地闡釋訊息最大化元件的實現方式之一。FIG. 6 is a schematic diagram showing a message maximizing component of a blind signal separation system according to still another embodiment of the present invention. As shown in the figure, the message maximizing component can be designed as a read-only memory (ROM) so that the blind signal separation system can perform table lookup by the message maximizing component, when the input u is checked by the table. After the unit LUT has looked up the table, it can obtain y . For example, the table lookup unit is used to query the value calculated by the input u via the sigmoid function, and then by the complement and the left shift unit Complement-two and a left shift y performs an operation to output a message maximization signal 1-2y, in other words, after quantization and binning, the value is stored in a read-only memory ROM for subsequent calculation. It is not intended to limit the invention, but merely illustrates one of the implementations of the message maximizing element.

上開圖式中的第一加法器、第二加法器及第三加法器可採用進位儲存加法器(Carry Save Adder,CSA)來實現,而上開圖式中的適應性濾波器可利用最小均方(Least Mean Square,LMS)演算法來實現其更新行為,然其並非用以限定本發明,熟習此技藝者當可根據實際需求選擇性地採用適當之電子元件或合適之演算法來實現。The first adder, the second adder and the third adder in the upper open graph can be implemented by a Carry Save Adder (CSA), and the adaptive filter in the upper open graph can be minimized. The Least Mean Square (LMS) algorithm is used to implement its update behavior, but it is not intended to limit the present invention. Those skilled in the art can selectively implement appropriate electronic components or suitable algorithms according to actual needs. .

本發明內容之一技術態樣提供一種盲訊號分離系統,其包含複數個適應性濾波器、複數個加法器及複數個訊息最大化元件。於配置上,前述些適應性濾波器排列成一矩陣,前述些加法器中的每一者設置於矩陣的其中一列,而前述些訊息最大化元件中的每一者設置於矩陣的其中一列。One aspect of the present invention provides a blind signal separation system including a plurality of adaptive filters, a plurality of adders, and a plurality of message maximizing elements. In the configuration, the foregoing adaptive filters are arranged in a matrix, and each of the foregoing adders is disposed in one of the columns of the matrix, and each of the foregoing message maximizing elements is disposed in one of the columns of the matrix.

於操作上,前述些適應性濾波器之各列的第一排者用以接收第一輸出信號,並對前述第一輸出信號進行處理後輸出第一中間信號,而前述些適應性濾波器之各列的第二排者用以接收第二輸出信號,並對前述第二輸出信號進行處理後輸出第二中間信號。前述些加法器分別用以接收排列於相應列之前述些適應性濾波器所輸出的前述第一及前述第二中間信號與相應的第一輸入源或第二輸入源,並將相應的前述第一及前述第二中間信號與相應的前述第一或 前述第二輸入源相加,以分別輸出前述第一輸出信號及前述第二輸出信號。前述些訊息最大化元件係分別用以接收排列於相應列之前述加法器所輸出的相應之前述第一及前述第二輸出信號,並分別根據前述相應之前述第一及前述第二輸出信號向一表單進行查表,以輸出複數個訊息最大化信號。In operation, the first row of each of the foregoing adaptive filters is configured to receive the first output signal, and process the first output signal to output a first intermediate signal, and the foregoing adaptive filters are The second row of each column is for receiving the second output signal and processing the second output signal to output a second intermediate signal. The foregoing adders are respectively configured to receive the first and second intermediate signals outputted by the foregoing adaptive filters arranged in the corresponding columns and the corresponding first input source or second input source, and corresponding to the foregoing And the foregoing second intermediate signal and the corresponding aforementioned first or The second input sources are added to output the first output signal and the second output signal, respectively. The message maximizing components are respectively configured to receive the respective first and second output signals outputted by the adders arranged in the corresponding columns, and respectively according to the foregoing first and second output signals A form is used to look up the table to output a plurality of messages to maximize the signal.

再者,前述些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對前述第一輸出信號及前述相應之訊息最大化信號進行處理後輸出前述第一中間信號,而前述些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對前述第二輸出信號及前述相應之訊息最大化信號進行處理後輸出前述第二中間信號。本發明實施例之盲訊號分離系統的實現方式將於以下第7圖中闡釋。Furthermore, the first row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the first output signal and the corresponding message maximization signal to output the first An intermediate signal, wherein the second row of each of the foregoing adaptive filters is further configured to receive a corresponding message maximization signal, and process the second output signal and the corresponding message maximization signal to output the foregoing Two intermediate signals. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in FIG. 7 below.

第7圖係依照本發明又一實施例繪示一種盲訊號分離系統700的示意圖。如第7圖所示,盲訊號分離系統700包含第1×1階適應性濾波器W11、第1×2階適應性濾波器W12、第2×1階適應性濾波器W21、第2×2階適應性濾波器W22、第一加法器710、第二加法器750、第一訊息最大化元件720及第二訊息最大化元件760等超大積體電路(Very Large Scale Integration,VLSI)架構。FIG. 7 is a schematic diagram of a blind signal separation system 700 according to another embodiment of the present invention. As shown in FIG. 7, the blind signal separation system 700 includes a 1×1 order adaptive filter W11, a 1×2 order adaptive filter W12, a 2×1 order adaptive filter W21, and a 2×2. A Very Large Scale Integration (VLSI) architecture such as the adaptive filter W22, the first adder 710, the second adder 750, the first message maximizing component 720, and the second message maximizing component 760.

於操作上,第1×1階適應性濾波器W11用以接收第一輸出信號u1,並對第一輸出信號u1進行處理後輸出第一中間信號,而第1×2階適應性濾波器W12用以接收第二輸 出信號u2,並對第二輸出信號u2進行處理後輸出第二中間信號。第一加法器710用以接收第1×1階及第1×2階適應性濾波器W11及W12所輸出的第一及第二中間信號與第一輸入源X1,並將第一及第二中間信號與第一輸入源X1相加,以輸出第一輸出信號u1。第一訊息最大化元件720用以接收第一加法器710所輸出的第一輸出信號u1,並根據第一輸出信號u1向一表單進行查表,以輸出第一訊息最大化信號1-2y1,並將第一訊息最大化信號1-2y1迴授至第1×1階及第1×2階適應性濾波器W11及W12。In operation, the 1×1 order adaptive filter W11 is configured to receive the first output signal u1, and process the first output signal u1 to output a first intermediate signal, and the 1×2th order adaptive filter W12 Used to receive the second loss The signal u2 is output, and the second intermediate signal is processed and the second intermediate signal is output. The first adder 710 is configured to receive the first and second intermediate signals outputted by the 1×1st order and the 1×2th order adaptive filters W11 and W12 and the first input source X1, and the first and second The intermediate signal is added to the first input source X1 to output a first output signal u1. The first message maximizing component 720 is configured to receive the first output signal u1 output by the first adder 710, and perform a lookup table according to the first output signal u1 to output a first message maximization signal 1-2y1. The first message maximization signal 1-2y1 is fed back to the 1×1th order and the 1×2th order adaptive filters W11 and W12.

再者,第1×1階及第1×2階適應性濾波器W11及W12更用以接收第一訊息最大化信號1-2y1,第1×1階適應性濾波器W11更用以對第一輸出信號u1及第一訊息最大化信號1-2y1進行處理後輸出第一中間信號,而第1×2階適應性濾波器W12更用以對第二輸出信號u2及第一訊息最大化信號1-2y1進行處理後輸出第二中間信號。然後,第一加法器710再用以將第一及第二中間信號與第一輸入源X1相加,如此持續訓練係數,最終可求得第一輸出信號u1。Furthermore, the 1×1th order and the 1×2th order adaptive filters W11 and W12 are further configured to receive the first message maximization signal 1-2y1, and the 1×1st order adaptive filter W11 is further used to An output signal u1 and the first message maximization signal 1-2y1 are processed to output a first intermediate signal, and the 1×2 order adaptive filter W12 is further used to maximize the second output signal u2 and the first message. After the processing of 1-2y1, the second intermediate signal is output. Then, the first adder 710 is further configured to add the first and second intermediate signals to the first input source X1, so that the training coefficient is continued, and finally the first output signal u1 can be obtained.

此外,於操作上,第2×1階適應性濾波器W21用以接收第一輸出信號u1,並對第一輸出信號u1進行處理後輸出第一中間信號,而第2×2階適應性濾波器W22用以接收第二輸出信號u2,並對第二輸出信號u2進行處理後輸出第二中間信號。第二加法器750用以接收第2×1階及第2×2階適應性濾波器W21及W22所輸出的第一及第二中間信號與第二輸入源X2,並將第一及第二中間信號與第二輸入 源X2相加,以輸出前述第二輸出信號u2。第二訊息最大化元件760用以接收第二加法器750所輸出的第二輸出信號u2,並根據第二輸出信號u2向一表單進行查表,以輸出第二訊息最大化信號1-2y2,並將第二訊息最大化信號1-2y2迴授至第2×1階及第2×2階適應性濾波器W21及W22。In addition, in operation, the 2×1 order adaptive filter W21 is configured to receive the first output signal u1, and process the first output signal u1 to output the first intermediate signal, and the 2×2th order adaptive filter. The device W22 is configured to receive the second output signal u2 and process the second output signal u2 to output a second intermediate signal. The second adder 750 is configured to receive the first and second intermediate signals and the second input source X2 output by the 2×1st and 2×2th adaptive filters W21 and W22, and the first and second Intermediate signal and second input The source X2 is added to output the aforementioned second output signal u2. The second message maximizing component 760 is configured to receive the second output signal u2 output by the second adder 750, and perform a lookup table according to the second output signal u2 to output the second message maximization signal 1-2y2. The second message maximization signal 1-2y2 is fed back to the 2×1th order and 2×2th order adaptive filters W21 and W22.

再者,第2×1階及第2×2階適應性濾波器W21及W22更用以接收第二訊息最大化信號1-2y2,第2×1階適應性濾波器W11更用以對第一輸出信號u1及第二訊息最大化信號1-2y2進行處理後輸出第一中間信號,而第2×2階適應性濾波器W22更用以對第二輸出信號u2及第二訊息最大化信號1-2y2進行處理後輸出第二中間信號。然後,第二加法器750再用以將第一及第二中間信號與第二輸入源X2相加,如此持續訓練係數,最終可求得第二輸出信號u2。Furthermore, the 2×1th order and the 2×2th order adaptive filters W21 and W22 are further configured to receive the second message maximization signal 1-2y2, and the 2×1 order adaptive filter W11 is further used to An output signal u1 and a second message maximization signal 1-2y2 are processed to output a first intermediate signal, and a 2×2 order adaptive filter W22 is further used to maximize the second output signal u2 and the second message. After the processing of 1-2y2, the second intermediate signal is output. Then, the second adder 750 is further configured to add the first and second intermediate signals to the second input source X2, thus continuing the training coefficient, and finally obtaining the second output signal u2.

如此一來,本發明實施例藉由提供一種盲訊號分離系統700,並以超大積體電路來實現盲訊號分離系統700,藉以改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間。In this way, the embodiment of the present invention provides a blind signal separation system 700 and implements the blind signal separation system 700 by using a large integrated circuit, so as to improve the manner in which the conventional technology adopts a software algorithm, which requires a large number of operations. Delay in getting the original source.

在本發明的一實施例中,盲訊號分離系統之前述些適應性濾波器之各列的第三排者用以接收第三輸出信號及相應之訊息最大化信號,並對第三輸出信號及相應之訊息最大化信號進行處理後輸出第三中間信號。前述些加法器中設置於矩陣的第三列者係用以接收排列於第三列之前述些適應性濾波器所輸出的第一、第二及第三中間信號與第三 輸入源,並將第一、第二及第三中間信號與第三輸入源相加,以輸出第三輸出信號。上開本發明實施例之盲訊號分離系統的實現方式將於以下第8圖中闡釋。In an embodiment of the present invention, the third row of each of the foregoing adaptive filters of the blind signal separation system is configured to receive the third output signal and the corresponding message maximization signal, and to the third output signal and The corresponding message maximization signal is processed to output a third intermediate signal. The third column of the adders disposed in the matrix is configured to receive the first, second, and third intermediate signals and the third output by the foregoing adaptive filters arranged in the third column. The input source adds the first, second and third intermediate signals to the third input source to output a third output signal. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in FIG. 8 below.

第8圖係依照本發明再一實施例繪示一種盲訊號分離系統800的示意圖。相較於第7圖所示之盲訊號分離系統700,盲訊號分離系統800更包含第1×3階適應性濾波器W13、第2×3階適應性濾波器W23、第3×1階適應性濾波器W31、第3×2階適應性濾波器W32、第3×3階適應性濾波器W33、第三加法器870及第三訊息最大化元件880。FIG. 8 is a schematic diagram of a blind signal separation system 800 in accordance with still another embodiment of the present invention. Compared with the blind signal separation system 700 shown in FIG. 7, the blind signal separation system 800 further includes a 1×3 order adaptive filter W13, a 2×3 order adaptive filter W23, and a 3×1 order adaptation. The filter W31, the 3x2th adaptive filter W32, the 3x3th adaptive filter W33, the third adder 870, and the third message maximizing element 880.

於操作上,第1×3階適應性濾波器W13用以接收第三輸出信號u3及第一訊息最大化信號1-2y1,並對第三輸出信號u3及第一訊息最大化信號1-2y1進行處理後輸出第三中間信號。第一加法器810用以將第一、第二及第三中間信號與第一輸入源X1相加,並輸出第一輸出信號u1。再由第一訊息最大化元件820用以接收第一輸出信號u1,並根據第一輸出信號u1以向表單進行查表而輸出第一訊息最大化信號1-2y1,並將第一訊息最大化信號1-2y1迴授至第1×1階、第1×2階及第1×3階適應性濾波器W11、W12及W13。In operation, the 1×3th adaptive filter W13 is configured to receive the third output signal u3 and the first message maximization signal 1-2y1, and to the third output signal u3 and the first message maximization signal 1-2y1. After processing, a third intermediate signal is output. The first adder 810 is configured to add the first, second, and third intermediate signals to the first input source X1, and output the first output signal u1. The first message maximizing component 820 is further configured to receive the first output signal u1, and output a first message maximization signal 1-2y1 according to the first output signal u1 to perform lookup to the form, and maximize the first message. The signal 1-2y1 is fed back to the 1×1th order, the 1×2th order, and the 1×3th order adaptive filters W11, W12, and W13.

再者,第1×1階、第1×2階及第1×3階適應性濾波器W11、W12及W13更用以接收第一訊息最大化信號1-2y1,第1×1階適應性濾波器W11更用以對第一輸出信號u1及第一訊息最大化信號1-2y1進行處理後輸出第一中間信號,第1×2階適應性濾波器W12更用以對第二輸出信號u2 及第一訊息最大化信號1-2y1進行處理後輸出第二中間信號,而第1×3階適應性濾波器W13更用以對第三輸出信號u3及第一訊息最大化信號1-2y1進行處理後輸出第三中間信號。然後,第一加法器810再用以將第一、第二及第三中間信號相加,如此持續訓練係數,最終可求得第一輸出信號u1。Furthermore, the 1×1th order, the 1×2th order, and the 1×3th order adaptive filters W11, W12, and W13 are further configured to receive the first message maximization signal 1-2y1, the 1×1st order adaptability. The filter W11 is further configured to process the first output signal u1 and the first message maximization signal 1-2y1 to output a first intermediate signal, and the 1×2th order adaptive filter W12 is further used to the second output signal u2. And processing the first message maximization signal 1-2y1 to output the second intermediate signal, and the 1×3th order adaptive filter W13 is further configured to perform the third output signal u3 and the first message maximization signal 1-2y1. After processing, the third intermediate signal is output. Then, the first adder 810 is further used to add the first, second and third intermediate signals, so that the training coefficient is continued, and finally the first output signal u1 can be obtained.

此外,於操作上,第2×3階適應性濾波器W23用以接收第三輸出信號u3及第二訊息最大化信號1-2y2,並對第三輸出信號u3及第二訊息最大化信號1-2y2進行處理後輸出第三中間信號。第二加法器840用以將第一、第二及第三中間信號與第二輸入源X2相加,並輸出第二輸出信號u2。再由第二訊息最大化元件850用以接收第二輸出信號u2,並根據第二輸出信號u2以向表單進行查表而輸出第二訊息最大化信號1-2y2,並將第二訊息最大化信號1-2y2迴授至第2×1階、第2×2階及第2×3階適應性濾波器W21、W22及W23。In addition, in operation, the 2×3th adaptive filter W23 is configured to receive the third output signal u3 and the second message maximization signal 1-2y2, and maximize the signal 1 for the third output signal u3 and the second message. -2y2 is processed to output a third intermediate signal. The second adder 840 is configured to add the first, second, and third intermediate signals to the second input source X2, and output the second output signal u2. The second message maximizing component 850 is further configured to receive the second output signal u2, and output a second message maximization signal 1-2y2 according to the second output signal u2 to perform lookup to the form, and maximize the second message. The signal 1-2y2 is fed back to the 2×1th order, the 2×2th order, and the 2×3th order adaptive filters W21, W22, and W23.

再者,第2×1階、第2×2階及第2×3階適應性濾波器W21、W22及W23更用以接收第二訊息最大化信號1-2y2,第2×1階適應性濾波器W21更用以對第一輸出信號u1及第二訊息最大化信號1-2y2進行處理後輸出第一中間信號,第2×2階適應性濾波器W22更用以對第二輸出信號u2及第二訊息最大化信號1-2y2進行處理後輸出第二中間信號,而第2×3階適應性濾波器W23更用以對第三輸出信號u3及第二訊息最大化信號1-2y2進行處理後輸出第三中間 信號。然後,第二加法器840再用以將第一、第二及第三中間信號相加,如此持續訓練係數,最終可求得第二輸出信號u2。Furthermore, the 2×1th order, the 2×2th order, and the 2×3th order adaptive filters W21, W22, and W23 are further configured to receive the second message maximization signal 1-2y2, and the 2×1 order adaptive The filter W21 is further configured to process the first output signal u1 and the second message maximization signal 1-2y2 to output a first intermediate signal, and the second×2 order adaptive filter W22 is further configured to use the second output signal u2. And the second message maximization signal 1-2y2 is processed to output the second intermediate signal, and the 2×3th order adaptive filter W23 is further configured to perform the third output signal u3 and the second message maximization signal 1-2y2. After processing, output the third intermediate signal. Then, the second adder 840 is further used to add the first, second and third intermediate signals, so that the training coefficient is continued, and finally the second output signal u2 can be obtained.

另外,於操作上,第3×1階適應性濾波器W31用以接收第一輸出信號u1及第三訊息最大化信號1-2y3,並對第一輸出信號u1及第三訊息最大化信號1-2y3進行處理後輸出第一中間信號,第3×2階適應性濾波器W32用以接收第二輸出信號u2及第三訊息最大化信號1-2y3,並對第二輸出信號u2及第三訊息最大化信號1-2y3進行處理後輸出第二中間信號,而第3×3階適應性濾波器W33用以接收第三輸出信號u3及第三訊息最大化信號1-2y3,並對第三輸出信號u3及第三訊息最大化信號1-2y3進行處理後輸出第三中間信號。第三加法器870用以將第一、第二及第三中間信號與第三輸入源X3相加,並輸出第三輸出信號u3。再由第三訊息最大化元件880用以接收第三輸出信號u3,並根據第三輸出信號u3以向表單進行查表而輸出第三訊息最大化信號1-2y3,並將第三訊息最大化信號1-2y3迴授至第3×1階、第3×2階及第3×3階適應性濾波器W31、W32及W33。In addition, in operation, the 3×1 order adaptive filter W31 is configured to receive the first output signal u1 and the third message maximization signal 1-2y3, and maximize the signal 1 for the first output signal u1 and the third message. -2y3 is processed to output a first intermediate signal, and the 3x2th adaptive filter W32 is configured to receive the second output signal u2 and the third message maximization signal 1-2y3, and to the second output signal u2 and the third The message maximization signal 1-2y3 is processed to output a second intermediate signal, and the 3×3th order adaptive filter W33 is configured to receive the third output signal u3 and the third message maximization signal 1-2y3, and to the third The output signal u3 and the third message maximization signal 1-2y3 are processed to output a third intermediate signal. The third adder 870 is configured to add the first, second, and third intermediate signals to the third input source X3, and output the third output signal u3. The third message maximizing component 880 is further configured to receive the third output signal u3, and output a third message maximization signal 1-2y3 according to the third output signal u3 to perform lookup to the form, and maximize the third message. The signal 1-2y3 is fed back to the 3×1st order, the 3×2th order, and the 3×3th order adaptive filters W31, W32, and W33.

再者,第3×1階、第3×2階及第3×3階適應性濾波器W31、W32及W33更用以接收第三訊息最大化信號1-2y3,第3×1階適應性濾波器W31更用以對第一輸出信號u1及第三訊息最大化信號1-2y3進行處理後輸出第一中間信號,第3×2階適應性濾波器W32更用以對第二輸出信號u2 及第三訊息最大化信號1-2y3進行處理後輸出第二中間信號,而第3×3階適應性濾波器W33更用以對第三輸出信號u3及第三訊息最大化信號1-2y3進行處理後輸出第三中間信號。然後,第三加法器870再用以將第一、第二及第三中間信號相加,如此持續訓練係數,最終可求得第三輸出信號u3。Furthermore, the 3×1st order, the 3×2th order, and the 3×3th order adaptive filters W31, W32, and W33 are further configured to receive the third message maximization signal 1-2y3, and the 3×1st order adaptability. The filter W31 is further configured to process the first output signal u1 and the third message maximization signal 1-2y3 to output a first intermediate signal, and the 3×2 order adaptive filter W32 is further configured to use the second output signal u2. And the third message maximization signal 1-2y3 is processed to output the second intermediate signal, and the 3×3th order adaptive filter W33 is further configured to perform the third output signal u3 and the third message maximization signal 1-2y3. After processing, the third intermediate signal is output. Then, the third adder 870 is further used to add the first, second and third intermediate signals, so that the training coefficient is continued, and finally the third output signal u3 can be obtained.

在本發明的另一實施例中,盲訊號分離系統之前述些適應性濾波器排列於第一列中用以接收第一輸出信號者、前述些適應性濾波器排列於第二列中用以接收第二輸出信號者及前述些適應性濾波器排列於第三列中用以接收第三輸出信號者係予以省略。上開本發明實施例之盲訊號分離系統的實現方式將於以下第9A圖中闡釋。In another embodiment of the present invention, the foregoing adaptive filters of the blind signal separation system are arranged in the first column for receiving the first output signal, and the foregoing adaptive filters are arranged in the second column for The person receiving the second output signal and the aforementioned adaptive filters arranged in the third column for receiving the third output signal are omitted. The implementation of the blind signal separation system of the embodiment of the present invention will be explained in the following FIG. 9A.

第9A圖係依照本發明另一實施例繪示一種盲訊號分離系統900的示意圖。相較於第8圖所示之盲訊號分離系統800,盲訊號分離系統900將前述些適應性濾波器排列於第一列中用以接收前述第一輸出信號者(例如:第1×1階適應性濾波器W11)、前述些適應性濾波器排列於第二列中用以接收前述第二輸出信號者(例如:第2×2階適應性濾波器W22)及前述些適應性濾波器排列於第三列中用以接收前述第三輸出信號者(例如:第3×3階適應性濾波器W33)係予以省略。FIG. 9A is a schematic diagram of a blind signal separation system 900 according to another embodiment of the invention. Compared with the blind signal separation system 800 shown in FIG. 8, the blind signal separation system 900 arranges the aforementioned adaptive filters in the first column for receiving the first output signal (for example, the 1st to 1st order). The adaptive filter W11), the foregoing adaptive filters are arranged in the second column for receiving the second output signal (for example, the 2×2th adaptive filter W22) and the foregoing adaptive filter arrangement The third column for receiving the aforementioned third output signal (for example, the 3×3th order adaptive filter W33) is omitted.

換言之,傳送到上述矩陣之第一列的第一輸出信號不會經過例如第1×1階適應性濾波器W11對其進行處理,傳送到上述矩陣之第二列的第二輸出信號不會經過例如第2× 2階適應性濾波器W2對其進行處理,而傳送到上述矩陣之第三列的第三輸出信號不會經過例如第3×3階適應性濾波器W33對其進行處理,這是基於對角項適應性濾波器,諸如第1×1階適應性濾波器W11、第2×2階適應性濾波器W22及第3×3階適應性濾波器W33僅會縮放(sacling)矩陣,對盲訊號分離系統900的解沒有影響,因此可將對角項適應性濾波器省略,如此一來,除可降低盲訊號分離系統900之成本外,尚可增進盲訊號分離系統900之運算速度,提升盲訊號分離系統900之效率。In other words, the first output signal transmitted to the first column of the matrix is not processed by, for example, the 1×1st order adaptive filter W11, and the second output signal transmitted to the second column of the matrix does not pass. For example, the second 2× The second-order adaptive filter W2 processes it, and the third output signal transmitted to the third column of the above matrix is not processed by, for example, the 3×3th adaptive filter W33, which is based on the diagonal The item adaptive filter, such as the 1×1th adaptive filter W11, the 2×2th adaptive filter W22, and the 3×3th adaptive filter W33, only sacling the matrix, and the blind signal The solution of the separation system 900 has no effect, so the diagonal term adaptive filter can be omitted. In addition, the cost of the blind signal separation system 900 can be improved, and the operation speed of the blind signal separation system 900 can be improved, and the blindness can be improved. The efficiency of the signal separation system 900.

此外,第9B圖係依照本發明再一實施例繪示一種盲訊號分離系統900的示意圖,其係將第9A圖中的盲訊號分離系統900重新設置,以使電子元件間之線路走線更加簡潔,提升盲訊號分離系統900之製作效率。In addition, FIG. 9B is a schematic diagram of a blind signal separation system 900 according to another embodiment of the present invention, which is to reset the blind signal separation system 900 in FIG. 9A to make the line trace between the electronic components more. Concisely, the production efficiency of the blind signal separation system 900 is improved.

於本發明再一實施例,前述些適應性濾波器的每一者所符合之式子及其架構已於第4圖及第5圖的說明中闡釋,在此不作贅述。另外,在本發明任選的一實施例中,盲訊號分離系統之訊息最大化元件的實現方式已於上開第6圖的說明中闡釋,在此不作贅述。In still another embodiment of the present invention, the equations and structures of each of the foregoing adaptive filters have been explained in the descriptions of FIGS. 4 and 5, and are not described herein. In addition, in an optional embodiment of the present invention, the implementation of the message maximization component of the blind signal separation system has been explained in the description of FIG. 6 above, and will not be described herein.

上開圖式中的第一加法器、第二加法器及第三加法器可以進位儲存加法器(Carry Save Adder,CSA)來實現,而上開圖式中的適應性濾波器可利用LMS演算法來實現其更新行為,然其並非用以限定本發明,熟習此技藝者當可根據實際需求選擇性地採用適當之電子元件或合適之演算法來實現。The first adder, the second adder and the third adder in the upper open graph can be implemented by a Carry Save Adder (CSA), and the adaptive filter in the upper open graph can be calculated by using LMS. The method is implemented to achieve the update behavior, which is not intended to limit the present invention. Those skilled in the art can selectively implement appropriate electronic components or suitable algorithms according to actual needs.

由上述本發明實施方式可知,應用本發明具有下列優點。本發明實施例藉由提供一種盲訊號分離系統,並以超大積體電路來實現盲訊號分離系統,藉以改善習知技術採用軟體演算法的方式,需要大量的運算,而延遲取得原始信號源之時間。It will be apparent from the above-described embodiments of the present invention that the application of the present invention has the following advantages. The embodiment of the present invention provides a blind signal separation system and implements a blind signal separation system by using an oversized integrated circuit, thereby improving the conventional technique using a software algorithm, requiring a large number of operations, and delaying the acquisition of the original signal source. time.

此外,本發明實施例可進一步將對角項適應性濾波器省略,如此一來,除可降低盲訊號分離系統之成本外,尚可增進盲訊號分離系統之運算速度,提升盲訊號分離系統之效率。In addition, the embodiment of the present invention can further omit the diagonal term adaptive filter, so that in addition to reducing the cost of the blind signal separation system, the operation speed of the blind signal separation system can be improved, and the blind signal separation system can be improved. effectiveness.

再者,本發明實施例之適應性濾波器可進一步以進位儲存加法器來取代原本適應性濾波器中電性串接成一列的複數個加法器,如此一來,可增進適應性濾波器之運算速度,提升適應性濾波器之效率。Furthermore, the adaptive filter of the embodiment of the present invention may further replace the plurality of adders electrically connected in a column in the adaptive filter with a carry storage adder, thereby improving the adaptive filter. The speed of operation increases the efficiency of the adaptive filter.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

Complement-two and a left shift‧‧‧取補數暨左移單元Complement-two and a left shift‧‧‧take complement and left shift unit

Carry Save Adder‧‧‧進位儲存加法器Carry Save Adder‧‧‧ Carry Storage Adder

LUT‧‧‧查表單元LUT‧‧‧Checklist unit

W11‧‧‧第1×1階適應性濾波器W11‧‧‧1×1 order adaptive filter

W12‧‧‧第1×2階適應性濾波器W12‧‧‧1×2 order adaptive filter

W13‧‧‧第1×3階適應性濾波器W13‧‧‧1×3 order adaptive filter

W21‧‧‧第2×1階適應性濾波器W21‧‧‧2×1 order adaptive filter

W22‧‧‧第2×2階適應性濾波器W22‧‧‧2×2 order adaptive filter

W23‧‧‧第2×3階適應性濾波器W23‧‧‧2×3 order adaptive filter

W31‧‧‧第3×1階適應性濾波器W31‧‧‧3×1 order adaptive filter

W32‧‧‧第3×2階適應性濾波器W32‧‧‧3×2 order adaptive filter

W33‧‧‧第3×3階適應性濾波器W33‧‧‧3×3 order adaptive filter

100‧‧‧盲訊號分離系統100‧‧‧Blind signal separation system

110‧‧‧第一加法器110‧‧‧First Adder

120‧‧‧第一訊息最大化元件120‧‧‧First message maximizing component

150‧‧‧第二加法器150‧‧‧second adder

160‧‧‧第二訊息最大化元件160‧‧‧Second message maximizing component

200‧‧‧盲訊號分離系統200‧‧‧Blind signal separation system

210‧‧‧第一加法器210‧‧‧First Adder

220‧‧‧第一訊息最大化元件220‧‧‧First Message Maximization Element

240‧‧‧第二加法器240‧‧‧second adder

250‧‧‧第二訊息最大化元件250‧‧‧Second message maximizing component

270‧‧‧第三加法器270‧‧‧ third adder

280‧‧‧第三訊息最大化元件280‧‧‧ Third Message Maximization Element

300‧‧‧盲訊號分離系統300‧‧‧Blind Signal Separation System

310‧‧‧第一加法器310‧‧‧First Adder

320‧‧‧第一訊息最大化元件320‧‧‧First message maximizing component

340‧‧‧第二加法器340‧‧‧second adder

350‧‧‧第二訊息最大化元件350‧‧‧Second Message Maximization Element

370‧‧‧第三加法器370‧‧‧ third adder

380‧‧‧第三訊息最大化元件380‧‧‧ Third Message Maximization Element

400‧‧‧適應性濾波器400‧‧‧Adaptive filter

410‧‧‧運算單元410‧‧‧ arithmetic unit

412‧‧‧第一乘法器412‧‧‧first multiplier

414‧‧‧第一加法器414‧‧‧First Adder

416‧‧‧第二乘法器416‧‧‧Second multiplier

420‧‧‧第二加法器420‧‧‧second adder

430‧‧‧減法器430‧‧‧Subtractor

500‧‧‧適應性濾波器500‧‧‧Adaptive filter

510‧‧‧運算單元510‧‧‧ arithmetic unit

512‧‧‧第一乘法器512‧‧‧ first multiplier

514‧‧‧第一加法器514‧‧‧First Adder

516‧‧‧第二乘法器516‧‧‧Second multiplier

520‧‧‧進位儲存加法器520‧‧‧ Carry Storage Adder

530‧‧‧減法器530‧‧‧Subtractor

700‧‧‧盲訊號分離系統700‧‧‧Blind signal separation system

710‧‧‧第一加法器710‧‧‧First Adder

720‧‧‧第一訊息最大化元件720‧‧‧First Message Maximization Element

750‧‧‧第二加法器750‧‧‧second adder

760‧‧‧第二訊息最大化元件760‧‧‧Second message maximizing component

800‧‧‧盲訊號分離系統800‧‧‧Blind signal separation system

810‧‧‧第一加法器810‧‧‧First Adder

820‧‧‧第一訊息最大化元件820‧‧‧First message maximizing component

840‧‧‧第二加法器840‧‧‧second adder

850‧‧‧第二訊息最大化元件850‧‧‧Second message maximizing component

870‧‧‧第三加法器870‧‧‧ third adder

880‧‧‧第三訊息最大化元件880‧‧‧ Third Message Maximization Element

900‧‧‧盲訊號分離系統900‧‧‧Blind signal separation system

910‧‧‧第一加法器910‧‧‧First Adder

920‧‧‧第一訊息最大化元件920‧‧‧First Message Maximization Element

940‧‧‧第二加法器940‧‧‧second adder

950‧‧‧第二訊息最大化元件950‧‧‧Second message maximizing component

970‧‧‧第三加法器970‧‧‧ third adder

980‧‧‧第三訊息最大化元件980‧‧‧ Third Message Maximization Element

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係依照本發明一實施例繪示一種盲訊號分離系統的示意圖。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

第2圖係依照本發明另一實施例繪示一種盲訊號分離 系統的示意圖。Figure 2 is a diagram showing a blind signal separation according to another embodiment of the present invention. Schematic diagram of the system.

第3A圖係依照本發明再一實施例繪示一種盲訊號分離系統的示意圖;第3B圖係依照本發明再一實施例繪示一種盲訊號分離系統的示意圖。FIG. 3A is a schematic diagram showing a blind signal separation system according to another embodiment of the present invention; FIG. 3B is a schematic diagram showing a blind signal separation system according to another embodiment of the present invention.

第4圖係依照本發明又一實施例繪示一種適應性濾波器的示意圖。FIG. 4 is a schematic diagram showing an adaptive filter according to still another embodiment of the present invention.

第5圖係依照本發明再一實施例繪示一種適應性濾波器的示意圖。FIG. 5 is a schematic diagram showing an adaptive filter according to still another embodiment of the present invention.

第6圖係依照本發明另一實施例繪示一種盲訊號分離系統之訊息最大化元件的示意圖。FIG. 6 is a schematic diagram showing a message maximizing component of a blind signal separation system according to another embodiment of the invention.

第7圖係依照本發明又一實施例繪示一種盲訊號分離系統的示意圖。FIG. 7 is a schematic diagram showing a blind signal separation system according to still another embodiment of the present invention.

第8圖係依照本發明再一實施例繪示一種盲訊號分離系統的示意圖。FIG. 8 is a schematic diagram showing a blind signal separation system according to still another embodiment of the present invention.

第9A圖係依照本發明另一實施例繪示一種盲訊號分離系統的示意圖;第9B圖係依照本發明另一實施例繪示一種盲訊號分離系統的示意圖。FIG. 9A is a schematic diagram showing a blind signal separation system according to another embodiment of the present invention; FIG. 9B is a schematic diagram showing a blind signal separation system according to another embodiment of the present invention.

W11‧‧‧第1×1階適應性濾波器W11‧‧‧1×1 order adaptive filter

W12‧‧‧第1×2階適應性濾波器W12‧‧‧1×2 order adaptive filter

W21‧‧‧第2×1階適應性濾波器W21‧‧‧2×1 order adaptive filter

W22‧‧‧第2×2階適應性濾波器W22‧‧‧2×2 order adaptive filter

100‧‧‧盲訊號分離系統100‧‧‧Blind signal separation system

110‧‧‧第一加法器110‧‧‧First Adder

120‧‧‧第一訊息最大化元件120‧‧‧First message maximizing component

150‧‧‧第二加法器150‧‧‧second adder

160‧‧‧第二訊息最大化元件160‧‧‧Second message maximizing component

Claims (10)

一種盲訊號分離系統,包含:複數個適應性濾波器,係排列成一矩陣,其中該些適應性濾波器之各列的第一排者用以接收一第一輸入源,並對該第一輸入源進行處理後輸出一第一中間信號,而該些適應性濾波器之各列的第二排者用以接收一第二輸入源,並對該第二輸入源進行處理後輸出一第二中間信號;複數個加法器,該些加法器中的每一者設置於該矩陣的其中一列,係分別用以接收排列於相應列之該些適應性濾波器所輸出的該第一及該第二中間信號,並將相應的該第一及該第二輸入信號相加,以輸出複數個輸出信號;以及複數個訊息最大化元件,該些訊息最大化元件中的每一者設置於該矩陣的其中一列,係分別用以接收排列於相應列之該加法器所輸出的相應之輸出信號,並根據該相應之輸出信號向一表單進行查表,以輸出複數個訊息最大化信號,其中該些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對該第一輸入源及該相應之訊息最大化信號進行處理後輸出該第一中間信號,而該些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對該第二輸入源及該相應之訊息最大化信號進行處理後輸出該第二中間信號。 A blind signal separation system includes: a plurality of adaptive filters arranged in a matrix, wherein a first row of each column of the adaptive filters is configured to receive a first input source and to the first input The source is processed to output a first intermediate signal, and the second row of the columns of the adaptive filters is configured to receive a second input source, and process the second input source to output a second intermediate a plurality of adders, each of the adders being disposed in one of the arrays for receiving the first and second outputs of the adaptive filters arranged in the respective columns An intermediate signal, and adding the corresponding first and second input signals to output a plurality of output signals; and a plurality of message maximizing elements, each of the message maximizing elements being disposed in the matrix One of the columns is configured to receive corresponding output signals output by the adder arranged in the corresponding column, and perform a table lookup according to the corresponding output signal to output a plurality of message maximization signals. The first row of the columns of the adaptive filters is further configured to receive a corresponding message maximization signal, and process the first input source and the corresponding message maximization signal to output the first intermediate signal. And the second row of the columns of the adaptive filters is further configured to receive a corresponding message maximization signal, and process the second input source and the corresponding message maximization signal to output the second intermediate signal. 如請求項1所述之盲訊號分離系統,其中該些適應性濾波器之各列的第三排者用以接收一第三輸入源及相應之訊息最大化信號,並對該第三輸入源及該相應之訊息最大化信號進行處理後輸出一第三中間信號。 The blind signal separation system of claim 1, wherein the third row of each of the adaptive filters is configured to receive a third input source and a corresponding message maximization signal, and to the third input source And the corresponding message maximization signal is processed to output a third intermediate signal. 如請求項2所述之盲訊號分離系統,其中該些適應性濾波器排列於第一列中用以接收該第一輸入源者、該些適應性濾波器排列於第二列中用以接收該第二輸入源者及該些適應性濾波器排列於第三列中用以接收該第三輸入源者係予以省略。 The blind signal separation system of claim 2, wherein the adaptive filters are arranged in the first column for receiving the first input source, and the adaptive filters are arranged in the second column for receiving The second input source and the adaptive filters are arranged in the third column for receiving the third input source and are omitted. 如請求項1所述之盲訊號分離系統,其中該些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),其中該些適應性濾波器的每一者包含:複數個運算單元,該些運算單元的每一者包含一第一乘法器,用以將μe (n )及X (n )進行相乘;一第一加法器,電性耦接於該第一乘法器,並用以將W (n )及μe (n )X (n )進行相加;以及一第二乘法器,電性耦接於該第一加法器,並用以將X (n )及W (n )進行內積;複數個第二加法器,該些第二加法器係電性串接成一 列,且該些第二加法器中的每一者電性耦接於相應之該些運算單元的每一者之該第二乘法器,並用以依序將該些X (n )W (n )進行相加以產生X T (n )W (n );以及一減法器,電性耦接於該些第二加法器所串接成列的最後一者,並用以將d(n)減去X T (n )W (n )。The blind signal separation system of claim 1, wherein each of the adaptive filters conforms to the following formula: W ( n +1) = W (n) + μe ( n ) X ( n ), e ( n )=d(n)− X T ( n ) W ( n ), wherein each of the adaptive filters comprises: a plurality of arithmetic units, each of the arithmetic units including a first multiplication For multiplying μe ( n ) and X ( n ); a first adder electrically coupled to the first multiplier and for using W ( n ) and μe ( n ) X ( n And performing a summation; and a second multiplier electrically coupled to the first adder for inner product of X ( n ) and W ( n ); a plurality of second adders, the second The adder is electrically connected in series, and each of the second adders is electrically coupled to the second multiplier of each of the corresponding arithmetic units, and is used to sequentially X ( n ) W ( n ) is added to generate X T ( n ) W ( n ); and a subtractor is electrically coupled to the last one of the second adders in series and used To subtract d(n) from X T ( n ) W ( n ). 如請求項1所述之盲訊號分離系統,其中該些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),其中該些適應性濾波器的每一者包含:複數個運算單元,該些運算單元的每一者包含一第一乘法器,用以將μe (n )及X (n )進行相乘;一第一加法器,電性耦接於該第一乘法器,並用以將W (n)及μe (n )X (n )進行相加;以及一第二乘法器,電性耦接於該加法器,並用以將X (n )及W (n )進行內積;一進位儲存加法器,電性耦接於該些運算單元的每一者之該第二乘法器,並用以將該些X (n )W (n )進行相加以產生X T (n )W (n );以及一減法器,電性耦接於該進位儲存加法器,並用以將d(n)減去X T (n )W (n )。The blind signal separation system of claim 1, wherein each of the adaptive filters conforms to the following formula: W ( n +1) = W (n) + μe ( n ) X ( n ), e ( n )=d(n)− X T ( n ) W ( n ), wherein each of the adaptive filters comprises: a plurality of arithmetic units, each of the arithmetic units including a first multiplication For multiplying μe ( n ) and X ( n ); a first adder electrically coupled to the first multiplier and for using W (n) and μe ( n ) X ( n And performing a summation; and a second multiplier electrically coupled to the adder for inner product of X ( n ) and W ( n ); a carry storage adder electrically coupled to the The second multiplier of each of the arithmetic units, and used to add the X ( n ) W ( n ) to generate X T ( n ) W ( n ); and a subtractor electrically coupled to The carry stores the adder and is used to subtract d(n) from X T ( n ) W ( n ). 一種盲訊號分離系統,包含: 複數個適應性濾波器,係排列成一矩陣,其中該些適應性濾波器之各列的第一排者用以接收一第一輸出信號,並對該第一輸出信號進行處理後輸出一第一中間信號,而該些適應性濾波器之各列的第二排者用以接收一第二輸出信號,並對該第二輸出信號進行處理後輸出一第二中間信號;複數個加法器,該些加法器中的每一者設置於該矩陣的其中一列,係分別用以接收排列於相應列之該些適應性濾波器所輸出的該第一及該第二中間信號與相應的一第一輸入源或一第二輸入源,並將相應的該第一及該第二中間信號與相應的該第一或該第二輸入源相加,以分別輸出該第一輸出信號及該第二輸出信號;以及複數個訊息最大化元件,該些訊息最大化元件中的每一者設置於該矩陣的其中一列,係分別用以接收排列於相應列之該加法器所輸出的相應之該第一及該第二輸出信號,並分別根據該相應之該第一及該第二輸出信號向一表單進行查表,以輸出複數個訊息最大化信號,其中該些適應性濾波器之各列的第一排者更用以接收相應之訊息最大化信號,並對該第一輸出信號及該相應之訊息最大化信號進行處理後輸出該第一中間信號,而該些適應性濾波器之各列的第二排者更用以接收相應之訊息最大化信號,並對該第二輸出信號及該相應之訊息最大化信號進行處理後輸出該第二中間信號。 A blind signal separation system comprising: The plurality of adaptive filters are arranged in a matrix, wherein the first row of the columns of the adaptive filters is configured to receive a first output signal, and process the first output signal to output a first An intermediate signal, wherein the second row of the columns of the adaptive filters is configured to receive a second output signal, and process the second output signal to output a second intermediate signal; a plurality of adders, Each of the adders is disposed in one of the columns of the matrix, and is configured to receive the first and second intermediate signals outputted by the adaptive filters arranged in the corresponding columns and the corresponding first Input source or a second input source, and adding the corresponding first and second intermediate signals to the corresponding first or second input source to respectively output the first output signal and the second output And a plurality of message maximizing elements, each of the message maximizing elements being disposed in one of the columns of the matrix for respectively receiving the corresponding first output of the adder arranged in the corresponding column And the first Outputting a signal, and respectively performing a lookup table according to the corresponding first and second output signals to output a plurality of message maximization signals, wherein the first row of the columns of the adaptive filters is further And receiving the corresponding message maximization signal, and processing the first output signal and the corresponding message maximization signal to output the first intermediate signal, and the second row of each of the adaptive filter columns The method further receives the corresponding message maximization signal, and processes the second output signal and the corresponding message maximization signal to output the second intermediate signal. 如請求項1所述之盲訊號分離系統,其中該些適應性濾波器之各列的第三排者用以接收一第三輸出信號及相應之訊息最大化信號,並對該第三輸出信號及該相應之訊息最大化信號進行處理後輸出一第三中間信號,其中該些加法器中設置於該矩陣的第三列者,係用以接收排列於第三列之該些適應性濾波器所輸出的該第一、該第二及該第三中間信號與一第三輸入源,並將該第一、該第二及該第三中間信號與該第三輸入源相加,以輸出該第三輸出信號。 The blind signal separation system of claim 1, wherein the third row of each of the adaptive filters is configured to receive a third output signal and a corresponding message maximization signal, and to the third output signal And processing the corresponding signal maximization signal to output a third intermediate signal, wherein the third column of the adders is configured to receive the adaptive filters arranged in the third column Outputting the first, the second, and the third intermediate signals and a third input source, and adding the first, the second, and the third intermediate signals to the third input source to output the The third output signal. 如請求項7所述之盲訊號分離系統,其中該些適應性濾波器排列於第一列中用以接收該第一輸出信號者、該些適應性濾波器排列於第二列中用以接收該第二輸出信號者及該些適應性濾波器排列於第三列中用以接收該第三輸出信號者係予以省略。 The blind signal separation system of claim 7, wherein the adaptive filters are arranged in the first column for receiving the first output signal, and the adaptive filters are arranged in the second column for receiving The second output signal and the adaptive filters arranged in the third column for receiving the third output signal are omitted. 如請求項6所述之盲訊號分離系統,其中該些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),其中該些適應性濾波器的每一者包含:複數個運算單元,該些運算單元的每一者包含一第一乘法器,用以將μe (n )及X (n )進行相乘;一第一加法器,電性耦接於該第一乘法器,並用 以將W (n)及μe (n )X (n )進行相加;以及一第二乘法器,電性耦接於該加法器,並用以將X (n )及W (n )進行內積;複數個第二加法器,該些第二加法器係電性串接成一列,且該些第二加法器中的每一者電性耦接於相應之該些運算單元的每一者之該第二乘法器,並用以依序將該些X (n )W (n )進行相加以產生X T (n )W (n );以及一減法器,電性耦接於該些第二加法器所串接成列的最後一者,並用以將d(n)減去X T (n )W (n )。The blind signal separation system of claim 6, wherein each of the adaptive filters conforms to the following formula: W ( n +1) = W (n) + μe ( n ) X ( n ), e ( n )=d(n)− X T ( n ) W ( n ), wherein each of the adaptive filters comprises: a plurality of arithmetic units, each of the arithmetic units including a first multiplication For multiplying μe ( n ) and X ( n ); a first adder electrically coupled to the first multiplier and for using W (n) and μe ( n ) X ( n And performing a summation; and a second multiplier electrically coupled to the adder for inner product of X ( n ) and W ( n ); a plurality of second adders, the second adders Electrically connected in series, and each of the second adders is electrically coupled to the second multiplier of each of the corresponding computing units, and is used to sequentially perform the X ( n ) W ( n ) is added to generate X T ( n ) W ( n ); and a subtractor is electrically coupled to the last one of the second adders in series and used to d(n) minus X T ( n ) W ( n ). 如請求項6所述之盲訊號分離系統,其中該些適應性濾波器的每一者符合以下式子:W (n +1)=W (n)+μe (n )X (n ),e(n )=d(n)-X T (n )W (n ),其中該些適應性濾波器的每一者包含:複數個運算單元,該些運算單元的每一者包含一第一乘法器,用以將μe (n )及X (n )進行相乘;一第一加法器,電性耦接於該第一乘法器,並用以將W (n)及μe (n )X (n )進行相加;以及一第二乘法器,電性耦接於該加法器,並用以將X (n )及W (n )進行內積;一進位儲存加法器,電性耦接於該些運算單元的每一者之該第二乘法器,並用以將該些X (n )W (n )進行相加以產生X T (n )W (n );以及 一減法器,電性耦接於該進位儲存加法器,並用以將d(n)減去X T (n )W (n )。The blind signal separation system of claim 6, wherein each of the adaptive filters conforms to the following formula: W ( n +1) = W (n) + μe ( n ) X ( n ), e ( n )=d(n)− X T ( n ) W ( n ), wherein each of the adaptive filters comprises: a plurality of arithmetic units, each of the arithmetic units including a first multiplication For multiplying μe ( n ) and X ( n ); a first adder electrically coupled to the first multiplier and for using W (n) and μe ( n ) X ( n And performing a summation; and a second multiplier electrically coupled to the adder for inner product of X ( n ) and W ( n ); a carry storage adder electrically coupled to the The second multiplier of each of the arithmetic units, and used to add the X ( n ) W ( n ) to generate X T ( n ) W ( n ); and a subtractor electrically coupled to The carry stores the adder and is used to subtract d(n) from X T ( n ) W ( n ).
TW101117252A 2012-05-15 2012-05-15 Blind source separation system TWI473077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101117252A TWI473077B (en) 2012-05-15 2012-05-15 Blind source separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101117252A TWI473077B (en) 2012-05-15 2012-05-15 Blind source separation system

Publications (2)

Publication Number Publication Date
TW201346887A TW201346887A (en) 2013-11-16
TWI473077B true TWI473077B (en) 2015-02-11

Family

ID=49990743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101117252A TWI473077B (en) 2012-05-15 2012-05-15 Blind source separation system

Country Status (1)

Country Link
TW (1) TWI473077B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11741343B2 (en) 2019-11-07 2023-08-29 National Central University Source separation method, apparatus, and non-transitory computer-readable medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812808B (en) * 2014-03-11 2016-08-24 集美大学 A kind of it is applicable to plural blind source separation method and the system that source number dynamically changes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043588A1 (en) * 2007-08-09 2009-02-12 Honda Motor Co., Ltd. Sound-source separation system
US20090190774A1 (en) * 2008-01-29 2009-07-30 Qualcomm Incorporated Enhanced blind source separation algorithm for highly correlated mixtures
TW201106344A (en) * 2009-08-03 2011-02-16 Univ Nat Chiao Tung Audio-separating apparatus and operation method thereof
US20110064242A1 (en) * 2009-09-11 2011-03-17 Devangi Nikunj Parikh Method and System for Interference Suppression Using Blind Source Separation
TW201117193A (en) * 2009-11-12 2011-05-16 Nat Cheng Kong University Speech enhancement technique based on blind source separation for far-field noisy speech recognition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090043588A1 (en) * 2007-08-09 2009-02-12 Honda Motor Co., Ltd. Sound-source separation system
US20090190774A1 (en) * 2008-01-29 2009-07-30 Qualcomm Incorporated Enhanced blind source separation algorithm for highly correlated mixtures
TW201106344A (en) * 2009-08-03 2011-02-16 Univ Nat Chiao Tung Audio-separating apparatus and operation method thereof
US20110064242A1 (en) * 2009-09-11 2011-03-17 Devangi Nikunj Parikh Method and System for Interference Suppression Using Blind Source Separation
TW201117193A (en) * 2009-11-12 2011-05-16 Nat Cheng Kong University Speech enhancement technique based on blind source separation for far-field noisy speech recognition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Torkkola, K. "Blind separation of convolved sources based on information maximization," Proceedings of the 1996 IEEE Signal Processing Society Workshop, Neural Networks for Signal Processing, 1996, pp. 423 - 432 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11741343B2 (en) 2019-11-07 2023-08-29 National Central University Source separation method, apparatus, and non-transitory computer-readable medium

Also Published As

Publication number Publication date
TW201346887A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
Mohanty et al. A high-performance FIR filter architecture for fixed and reconfigurable applications
US20140317163A1 (en) Vector Processor Having Instruction Set With Sliding Window Non-Linear Convolutional Function
TWI473077B (en) Blind source separation system
CN106936406A (en) A kind of realization of 5 parallel rapid finite impact response filter
Haridas et al. Area efficient low power modified booth multiplier for FIR filter
US11556614B2 (en) Apparatus and method for convolution operation
Liu et al. Stability and Hopf bifurcation of a delayed reaction–diffusion predator–prey model with anti-predator behaviour
Rani et al. FPGA based partial reconfigurable FIR filter design
Kumar et al. Performance analysis of FIR filter using booth multiplier
Mukherjee et al. Fast hardware architecture for 2-d separable convolution operations
Mohindroo et al. Fpga based faster implementation of mac unit in residual number system
Pasuluri et al. Design of Vedic multiplierbased FIR filter for signal processing applications
Basiri et al. An efficient VLSI architecture for discrete Hadamard transform
Das et al. Hardware implementation of parallel FIR filter using modified distributed arithmetic
Meher et al. A novel DA-based architecture for efficient computation of inner-product of variable vectors
JP5752431B2 (en) Digital filter, signal processing method and program
Tiwari et al. High throughput adaptive block FIR filter using distributed arithmetic
Meghana et al. High speed multiplier implementation based on Vedic Mathematics
Kishore et al. Implementation of braun and baugh-wooley multipliers using qca
Ghosh et al. FPGA implementation of RNS adder based MAC unit in ternary value logic domain for signal processing algorithm and its performance analysis
JP5428481B2 (en) Band splitting filter and program
Subathradevi et al. Modified architecture for distributed arithmetic with optimized delay using parallel processing
Shanmugakumar et al. Energy Efficient Hardware Architecture for Matrix Multiplication
Nair et al. Optimized FIR filter using distributed arithmetic architecture
Qiu et al. The design of FIR band-pass filter with improved distributed algorithm based on FPGA