TWI468546B - 奈米級白金之製備方法 - Google Patents

奈米級白金之製備方法 Download PDF

Info

Publication number
TWI468546B
TWI468546B TW101125466A TW101125466A TWI468546B TW I468546 B TWI468546 B TW I468546B TW 101125466 A TW101125466 A TW 101125466A TW 101125466 A TW101125466 A TW 101125466A TW I468546 B TWI468546 B TW I468546B
Authority
TW
Taiwan
Prior art keywords
platinum
nano
scale
grade
vapor
Prior art date
Application number
TW101125466A
Other languages
English (en)
Other versions
TW201402861A (zh
Inventor
Fan Gang Tseng
Yi Shiuan Wu
Shin Mei Gong
Chun Hsien Wang
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW101125466A priority Critical patent/TWI468546B/zh
Priority to US13/683,294 priority patent/US8703640B2/en
Publication of TW201402861A publication Critical patent/TW201402861A/zh
Application granted granted Critical
Publication of TWI468546B publication Critical patent/TWI468546B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/81Of specified metal or metal alloy composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Description

奈米級白金之製備方法
本發明是有關於一種奈米級白金之製備方法,特別是有關於一種利用加熱逐漸排除水份,以提高前驅物溶液濃度,藉以加速白金還原反應速率,進而取得較佳電催化晶格面向、粒徑小且均勻分散以及具有較佳電化學性質之奈米級白金之製備方法。
目前,資源耗竭及環境保護的問題刻不容緩,因此如何發展低污染、高轉換效率的替代能源成為各國致力前進的方向。其中,燃料電池的原理是將燃料及氧氣利用氧化還原反應由化學能直接轉換為電能。與其他環保能源相比,燃料電池具有轉換效率高、機動性強、無污染及燃料多樣化等優點。
近年奈米材料的顆粒尺寸小、比表面積大、表面能高且表面原子比例大,使奈米金屬具有表面效應、小尺寸效應及穿隧效應等特性,而使奈米科技可廣泛利用於各領域層面。因此,如何有效率地製作出均質、高表面積的奈米材料也成為科學界努力的方向。在燃料電池中,主要是利用白金作為電化學反應的觸媒,習知技術中,主要是採用封閉式回流系統來製備奈米級白金。如第1圖所示,封閉式回流系統1包含容置槽11、冷凝管12及壓力調節裝置13。容置槽11中可容置金屬鉑鹽類、還原劑及去離子水組成的 前驅物溶液,利用160℃的預定溫度加熱容置槽11中上述的前驅物溶液而使前驅物溶液中的水分因加熱沸騰而蒸發,而蒸發後的蒸氣將通入冷凝管12的內管中,並透過輸入冷卻物質,以隔著內管冷卻蒸氣,進而使其凝結為液體。此蒸發過程所產生的壓力可藉由系統上方之壓力調節裝置13進行控制。此後,冷凝管12中的液體會再回流至原本的容置槽11中用以維持容置槽11中前驅物溶液的含水量。同時,容置槽11中的前驅物溶液逐漸進行還原奈米級白金的過程。
然而,利用習知的封閉回流系統製備奈米級白金往往需要4小時左右,並且需要為一密閉且可調節壓力的系統,目前所製備的奈米級白金應用於燃料電池中觸媒電極之電化學性質,如質量活性為100~360AgPt -1及電荷轉移阻抗40~80Ω-cm2,皆仍有需要改善的空間。因此,有必要提出一種可以縮減奈米級白金的製備時間,並製備具有尺寸小、高均勻分散度、高電催化晶格方向以及良好電化學性質的奈米級白金之製備方法,改善習知技術中白金製備時間久、還原系統設置複雜與白金觸媒電極之電化學性質不佳等問題。
有鑑於上述習知技藝之問題,本發明之目的就是在提供一種奈米級白金之製備方法,以解決習知技術製備奈米級白金需要較長時間,且需要一密閉且可調節壓力功能之複雜系統以及製作成白金觸媒電極之電化學性質較差等問題。
根據本發明之目的,提出一種奈米級白金之製備方法。奈米級白金之製備方法包含下列步驟:設置一奈米碳管(載體)、一金屬鉑 鹽類(前驅物)、一還原劑以及一去離子水於一容置槽中;使容置槽以一預定溫度進行加熱,此過程中以藉由還原劑將金屬鉑鹽類還原成奈米級白金並沉積於奈米碳管上,同時容置槽中水份因加熱沸騰蒸發而產生蒸氣,此蒸氣經由連接管體將蒸氣導通至冷凝管;以及利用冷凝管使蒸氣遇冷凝結為一液體,最後再經由冷凝管之輸出開口將液體流出收集。
較佳地,冷凝管具有一內管、一第一(下)開口以及一第二(上)開口,且本方法更包含使蒸氣經由內管流通,並藉由第一開口注入冷卻物質,再經由第二開口將冷卻蒸氣後的冷卻物質輸出,即藉由冷卻物質降低內管中之蒸氣溫度,使蒸氣遇冷凝結為液體。
較佳地,預定溫度可為110~160℃。
較佳地,金屬鉑鹽類的奈米級白金之還原時間可小於1.5小時。
較佳地,奈米級白金之質量活性(mass activity,MA)可為435AgPt -1
較佳地,奈米級白金觸媒電極之電荷轉移阻抗(charge transfer resistance,Rct)可小於30Ω-cm2
較佳地,奈米級白金為顆粒狀且其平均粒徑與粒徑均勻性可為3.6±0.4nm。
較佳地,奈米級白金之質量密度可小於0.2mg cm-2
較佳地,奈米級白金之粒徑分布範圍可為2.5~5.0nm。
較佳地,還原劑可包含甲醛、多聚甲醛、硼氫化鈉、硫帶硫酸納、亞硫酸納、乙醇、乙二醇、檸檬酸或葡萄糖。
承上所述,依本發明之奈米級白金之製備方法,其可具有一或多個下述優點:
(1)此奈米級白金之製備方法可以利用加熱沸騰蒸發容置槽中前驅物溶液(金屬鉑鹽類、還原劑及去離子水)的水分,以達到逐漸提升槽中前驅物之濃度,進而加快奈米級白金的還原速度,利用本方法的奈米級白金製備時間較佳可以小於1.5小時,與習知技術相比,可減少至少50%的製備時間。
(2)此奈米級白金之製備方法透過緩升前驅物之濃度來還原奈米級白金之製程,可以製備出尺寸均勻性高且分散性佳的奈米級顆粒。
(3)此奈米級白金之製備方法於預定溫度130℃所製備之奈米級白金,與其他溫度相比具有較多的最佳晶格方向(111)之比例,且與其他預定溫度之燃料氧化反應下相比具有最高的質量活性及最低電荷轉移阻抗值,當應用於燃料電池中時,可以具備較佳的電化學反應能力。
茲為使 貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
1‧‧‧封閉式回流系統
2‧‧‧開放式還原系統
11‧‧‧容置槽
12‧‧‧冷凝管
13‧‧‧壓力調節裝置
121‧‧‧內管
122‧‧‧第一開口
123‧‧‧第二開口
124‧‧‧輸出開口
14‧‧‧連接管體
S11~S14‧‧‧奈米級白金製備流程
第1圖係為本發明之習知技術之示意圖。
第2圖係為本發明之奈米級白金之製備方法實施例之第一示意圖。
第3圖係為本發明之奈米級白金之製備方法之實施例流程圖。
第4圖係為本發明之奈米級白金之製備方法實施例之第二示意圖。
第5圖係為本發明之奈米級白金之製備方法實施例之第三示意圖。
第6圖係為本發明之奈米級白金之製備方法實施例之第四示意圖。
第7圖係為本發明之奈米級白金之製備方法實施例之第五示意圖。
為利 貴審查員瞭解本發明之發明特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。
以下將參照相關圖式,說明依本發明之奈米級白金之製備方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
請參閱第2圖,其係為本發明之奈米級白金之製備方法實施例之第一示意圖。本發明之奈米級白金的製備是使用一種開放式還原系統2來完成,此開放式還原系統2包含容置槽11、冷凝管12以及 連接管體14。容置槽11中可以設置奈米碳管(載體)、金屬鉑鹽類(前驅物)、還原劑及去離子水。在本實施例中,金屬鉑鹽類可以是氯鉑酸,但不以此為限。還原劑可以是甲醛、多聚甲醛、硼氫化鈉、硫帶硫酸納、亞硫酸納、乙醇、乙二醇、檸檬酸或葡萄糖其中之一,但不以此為限,在本實施例中,還原劑較佳地可以是乙二醇。冷凝管12可以是空氣冷凝管、直型冷凝管、球型冷凝管或蛇型冷凝管,但不以此為限,在本實施例中,較佳地是使用直型冷凝管。冷凝管12具有內管121、第一開口122、第二開口123及輸出開口124。連接管體14的一端可連接容置槽11,且相對於容置槽11的另一端可以與冷凝管12相連接。
容置槽11中所容置的氯鉑酸、乙二醇及去離子水在110~160℃熱後,其前驅物混合溶液中的水分會開始沸騰蒸發,而蒸發後的蒸氣會藉由連接管體14導通至冷凝管12的內管121中。冷凝管12的第一開口122可以輸入冷卻物質,且冷卻物質通入冷凝管12後可以藉由第二開口123流出。在本實施例中,冷卻物質較佳地可以是水,但不以此為限。藉由環繞於內管121外壁的冷卻物質,來降低內管121中蒸氣的溫度,以使蒸氣因為受冷而凝結為液體,其所凝結成的液體可經由冷凝管12的輸出開口124流出,而不回流於容置槽11中。當容置槽11中的水分逐漸因加熱而沸騰蒸發時,容置槽11中的前驅物濃度則會隨之緩升,而將白金還原並沉積於奈米碳管上,以達成快速製備奈米級白金的目的。在本實施例中,奈米級白金的製備時間較佳地可小於1.5小時。
請參閱第3圖,其係為本發明之奈米級白金之製備方法實施例之流程圖。圖中,奈米級白金之製備方法包含步驟S11,其係為設 置一奈米碳管、一金屬鉑鹽類、一還原劑以及一去離子水於一容置槽中。在本實施例中,金屬鉑鹽類較佳地可以是氯鉑酸,但不以此為限。還原劑可以是甲醛、多聚甲醛、硼氫化鈉、硫帶硫酸納、亞硫酸納、乙醇、乙二醇、檸檬酸或葡萄糖其中之一,但不以此為限,在本實施例中,較佳是以乙二醇做為還原劑。接著,步驟S12為使容置槽以一預定溫度進行加熱,以藉由還原劑還原金屬鉑鹽類中的奈米級白金並沉積於奈米碳管之上,且因加熱沸騰而蒸發出金屬鉑鹽類、還原劑及去離子水組成物之水份,並產生一蒸氣。其中,預定溫度為110~160℃。在這之後,步驟S13為經由一連接管體將蒸氣導通至一冷凝管。最後,步驟S14為利用冷凝管使蒸氣遇冷凝結為一液體,並經由冷凝管之一輸出開口將液體流出。其中,前驅物的濃度可以隨著容置槽中水分的蒸發而逐漸提升,進而縮短製備奈米級白金的時間,在本實施例中,奈米級白金的製備時間較佳可少於1.5小時。
請參閱第4圖,其係為本發明之奈米級白金之製備方法之實施例第二示意圖,係對於不同預定溫度下所沉積於奈米碳管上的奈米級白金以掃描式電子顯微鏡(scanning electron microscope,SEM)進行拍照。圖中,(a)為純奈米碳管表面型態,由(b)至(f)分別為在110、120、130、140及160℃之預定溫度下所製備的奈米級白金在奈米碳管上的分佈情形與奈米尺寸結構,以得知在製備溫度越高(即製備時間越長)的情況下,所沉積的奈米級白金質量密度越高。此外,請參閱第5圖,其係為本發明之奈米級白金之製備方法之實施例第三示意圖。圖中,由(a)至(e)可分別表示本方法於預定溫度110、120、130、140及160℃時所製備之奈米 級白金尺寸與均勻性分布圖。由圖中可知,利用本方法所製備之奈米級白金顆粒尺寸範圍為2.0~5.5nm,且顆粒之平均尺寸為3.6±0.4nm,可證明透過本方法所製備之奈米級白金具有顆粒小且高均勻性的優點。
此外,對於應用於燃料電池中的奈米級白金觸媒電極而言,如何促進燃料電化學反應的進行及電催化的活性,晶格方向是主要的決定指標,由於奈米級白金的晶格在(111)方向時具有較佳地燃料氧化效果,因此對本發明於不同預定溫度下所製備的奈米級白金以X光繞射儀(x-ray diffraction,XRD)進行分析。如第6圖所示,其係為本發明之奈米級白金之製備方法之實施例第四示意圖。其中,(a)及(b)係分別表示在130及160℃之預定溫度下所製備之奈米級白金之XRD圖。圖中可得知在130℃之預定溫度下所製備的奈米級白金與預定溫度160℃(此溫度為習知技術之密閉式回流系統使用溫度)所製備的奈米級白金條件相比之下,預定溫度130℃製備的奈米級白金具有較多的(111)晶格方向,因此,與160℃之預定溫度相比,在130℃條件下製備的奈米級白金具有較佳的晶格方向,因而使用130℃預定溫度下製備的奈米級白金觸媒電極在燃料電池中可具有較佳的燃料氧化效果。
另一方面,當本方法所製備沉積於奈米碳管上之奈米級白金應用於燃料電池之觸媒電極使用時,可以利用循環伏安法(cyclic voltammetry,CV)及電化學阻抗分析法(electrochemical impedance spectrum,EIS)對各預定溫度下所製備出的奈米級白金觸媒電極進行測試,以得到奈米級白金的質量活性(mass activity,MA)及電荷轉移阻抗(charge transfer resistance, Rct),如第7圖所示,其係為本發明之奈米級白金之製備方法之實施例第五示意圖。圖中,可以顯示利用本方法所製備之奈米級白金觸媒電極之較佳質量活性可以達到435AgPt -1,相較於習知技術之100~360AgPt -1為高。另外,本方法製備之奈米級白金觸媒電極之電荷轉移阻抗小於30Ω-cm2,相較於習知技術之40~80Ω-cm2為低。更特別的是,圖中所示奈米級白金觸媒電極之最高質量活性及最低電荷轉移阻抗皆為預定溫度為130℃之製備條件,因此,可得知本方法之預定溫度較佳為130℃。
綜上所述,本發明所述之奈米級白金之製備方法,主要是利用預定溫度加熱容置槽中由奈米碳管、金屬鉑鹽類、還原劑及去離子水組成之前驅物溶液,使此混合溶液中的水分沸騰蒸發,並且不回流至原本容置槽中,以逐漸提升容置槽中前驅物的濃度,進而提高白金還原的反應速率,減少奈米級白金製備的時間。此方法所製成之奈米級白金與習知技術相比具有粒徑均勻性佳、高電催化晶格方向以及電化學性質較佳等特性。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
S11~S14‧‧‧奈米級白金製備流程

Claims (10)

  1. 一種奈米級白金之製備方法,其包含下列步驟:設置一奈米碳管、一金屬鉑鹽類、一還原劑以及一去離子水於一容置槽中;使該容置槽以一預定溫度進行加熱,以藉由該還原劑還原該金屬鉑鹽類中的奈米級白金並沉積於該奈米碳管上,且沸騰蒸發該金屬鉑鹽類、該還原劑及該去離子水組成物之水份,並產生一蒸氣;經由一連接管體將該蒸氣導通至一冷凝管;以及利用該冷凝管使該蒸氣遇冷凝結為一液體,並經由該冷凝管之一輸出開口將該液體流出,而不回流於該容置槽中。
  2. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中該冷凝管係具有一內管、一第一開口以及一第二開口,且該方法更包含下列步驟:使該蒸氣經由該內管流通,並藉由該第一開口注入冷卻物質,再經由該第二開口將冷卻物質輸出,以藉由冷卻物質降低該內管中之該蒸氣之溫度,使該蒸氣遇冷凝結為該液體。
  3. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中該預定溫度係為110~160℃。
  4. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中該金屬鉑鹽類的奈米級白金之還原時間係小於1.5小時。
  5. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中奈米級白金之質量活性(mass activity,MA)係為435AgPt -1
  6. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中奈米級白金之電荷轉移阻抗(charge transfer resistance,Rct)係小於30Ω-cm2
  7. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中奈米級白金之平均粒徑係為3.6±0.4nm。
  8. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中奈米級白金之質量密度係小於0.2mg cm-2
  9. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中奈米級白金之粒徑分布範圍係為2.0~5.5nm。
  10. 如申請專利範圍第1項所述之奈米級白金之製備方法,其中該還原劑係包含甲醛、多聚甲醛、硼氫化鈉、硫帶硫酸納、亞硫酸納、乙醇、乙二醇、檸檬酸或葡萄糖。
TW101125466A 2012-07-13 2012-07-13 奈米級白金之製備方法 TWI468546B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101125466A TWI468546B (zh) 2012-07-13 2012-07-13 奈米級白金之製備方法
US13/683,294 US8703640B2 (en) 2012-07-13 2012-11-21 Method for preparing nano-scale platinum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101125466A TWI468546B (zh) 2012-07-13 2012-07-13 奈米級白金之製備方法

Publications (2)

Publication Number Publication Date
TW201402861A TW201402861A (zh) 2014-01-16
TWI468546B true TWI468546B (zh) 2015-01-11

Family

ID=49914468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101125466A TWI468546B (zh) 2012-07-13 2012-07-13 奈米級白金之製備方法

Country Status (2)

Country Link
US (1) US8703640B2 (zh)
TW (1) TWI468546B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872410A (zh) * 2020-07-07 2020-11-03 开贝纳米科技(苏州)有限公司 一种纳米铂金制备方法
CN114931938B (zh) * 2022-06-15 2023-04-07 南京工业大学 一种碳纳米管外壁负载铂纳米粒子催化剂用于环戊酮催化加氢制备环戊醇的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078815A1 (en) * 2007-12-14 2009-06-25 Nanyang Technological University A nanostructured material loaded with noble metal particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蕭高軒, 楊明長, "以混和碳材作為直接甲醇燃料電池觸媒擔體之研究", 國立成功大學, 化學工程學系, 95.7, page:全文 *

Also Published As

Publication number Publication date
US8703640B2 (en) 2014-04-22
TW201402861A (zh) 2014-01-16
US20140018233A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
Yang et al. A universal strategy for intimately coupled carbon nanosheets/MoM nanocrystals (M= P, S, C, and O) hierarchical hollow nanospheres for hydrogen evolution catalysis and sodium‐ion storage
Zhu et al. Ultrafine cobalt phosphide nanoparticles embedded in nitrogen‐doped carbon matrix as a superior anode material for lithium ion batteries
Wang et al. Core–shell Ge@ graphene@ TiO2 nanofibers as a high‐capacity and cycle‐stable anode for lithium and sodium ion battery
Nagaraju et al. Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material
Won et al. Electrochemical properties of yolk-shell structured ZnFe2O4 powders prepared by a simple spray drying process as anode material for lithium-ion battery
Mu et al. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior
CN102264639B (zh) 复合型碳及其制造方法
Zhang et al. Highly efficient bio-based porous carbon hybridized with tungsten carbide as counter electrode for dye-sensitized solar cell
Lin et al. Coral-like Co3O4 decorated N-doped carbon particles as active materials for oxygen reduction reaction and supercapacitor
Wang et al. Porous flexible nitrogen-rich carbon membranes derived from chitosan as free-standing anodes for potassium-ion and sodium-ion batteries
Ahmad et al. Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells
Kim et al. Synthesis of porous NiO materials with preferentially oriented crystalline structures with enhanced stability as lithium ion battery anodes
Zhao et al. Rapid and large-scale synthesis of Cu nanowires via a continuous flow solvothermal process and its application in dye-sensitized solar cells (DSSCs)
Gao et al. TiO2@ Porous carbon nanotubes modified separator as polysulfide barrier for lithium-sulfur batteries
Sheng et al. A high capacity porous Co3O4@ graphene composite as lithium battery anode
Zhang et al. NiCo-MOF directed NiCoP and coconut shell derived porous carbon as high-performance supercapacitor electrodes
Zhou et al. Cobalt and nitrogen codoped carbon nanosheets templated from NaCl as efficient oxygen reduction electrocatalysts
Hsieh et al. Preparation of Pt–Co nanocatalysts on carbon nanotube electrodes for direct methanol fuel cells
Liu et al. Interface‐Induced Self‐Assembly Strategy Toward 2D Ordered Mesoporous Carbon/MXene Heterostructures for High‐Performance Supercapacitors
Hassan et al. In-situ fabrication of ZnO thin film electrode using spent Zn–C battery and its electrochemical performance for supercapacitance
Yuan et al. Preparation of cellulose-based carbon nanofibers/NiCo2S4 composites for high-performance all-solid-state symmetric supercapacitors
Li et al. A 3D nanocomposite of NiCo2S4/CuCo2S4 heterostructure synthesized by chemical precipitation for asymmetric supercapacitors
Liu et al. Binary self-assembly of ordered Bi4Se3/Bi2O2Se lamellar architecture embedded into CNTs@ Graphene as a binder-free electrode for superb Na-Ion storage
Li et al. Construction of nitrogen-doped graphene quantum dot embedded NiGa layered double hydroxide for high-performance asymmetric supercapacitors
Wang et al. Enhanced electrocatalytic performance in dye-sensitized solar cell via coupling CoSe 2@ N-doped carbon and carbon nanotubes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees