TWI467523B - Simultaneous light collection and illumination on an active display - Google Patents

Simultaneous light collection and illumination on an active display Download PDF

Info

Publication number
TWI467523B
TWI467523B TW97144259A TW97144259A TWI467523B TW I467523 B TWI467523 B TW I467523B TW 97144259 A TW97144259 A TW 97144259A TW 97144259 A TW97144259 A TW 97144259A TW I467523 B TWI467523 B TW I467523B
Authority
TW
Taiwan
Prior art keywords
light
display
film
collection
display device
Prior art date
Application number
TW97144259A
Other languages
Chinese (zh)
Other versions
TW200929117A (en
Inventor
Kasra Khazeni
Manish Kothari
Original Assignee
Qualcomm Mems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/941,851 external-priority patent/US20090126792A1/en
Application filed by Qualcomm Mems Technologies Inc filed Critical Qualcomm Mems Technologies Inc
Publication of TW200929117A publication Critical patent/TW200929117A/en
Application granted granted Critical
Publication of TWI467523B publication Critical patent/TWI467523B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13324Circuits comprising solar cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Description

同時集光與照明在一主動式顯示器Simultaneous collection and illumination in an active display

本發明係關於微機電系統(MEMS)。This invention relates to microelectromechanical systems (MEMS).

本申請案主張2008年9月2日申請之美國臨時申請案第61/093,686號及2007年11月16日申請之美國專利申請案第11/941,851號之權利。本申請案與2008年9月9日申請之美國專利申請案第12/207,270號有關。The present application claims the benefit of US Provisional Application No. 61/093,686, filed on Sep. 2, 2008, and U.S. Patent Application Serial No. 11/941,851, filed on Nov. 16, 2007. This application is related to U.S. Patent Application Serial No. 12/207,270, filed on Sep. 9, 2008.

微機電系統(MEMS)包括微機械元件、致動器及電子設備。微機械元件可使用沈積、蝕刻,及/或蝕刻掉基板及/或所沈積材料層之部分或添加層之其他微加工製程以形成電氣及機電裝置來形成。一類型之MEMS裝置稱為干涉調變器("IMOD")。如本文中所使用,術語"干涉調變器"、"干涉光調變器"或"IMOD"係指使用光干涉原理有選擇地吸收及/或反射光之裝置。在某些實施例中,干涉調變器可包含一對傳導板,其中一或兩者可為完全或部分透明及/或反射的且能夠在施加適當電信號後即相對運動。在特定實施例中,一板可包含沈積於基板上之固定層且另一板可包含藉由氣隙與固定層隔開的金屬膜。如本文中更詳細地描述,一板相對於另一板之位置可改變入射於干涉調變器上之光的光干涉。Microelectromechanical systems (MEMS) include micromechanical components, actuators, and electronics. The micromechanical elements can be formed using deposition, etching, and/or other micromachining processes that etch away portions of the substrate and/or deposited material layers or add layers to form electrical and electromechanical devices. One type of MEMS device is called an Interferometric Modulator ("IMOD"). As used herein, the terms "interference modulator", "interferometric modulator" or "IMOD" refer to a device that selectively absorbs and/or reflects light using the principle of optical interference. In some embodiments, the interference modulator can include a pair of conductive plates, one or both of which can be fully or partially transparent and/or reflective and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a fixed layer deposited on the substrate and the other plate may comprise a metal film separated from the fixed layer by an air gap. As described in more detail herein, the position of one plate relative to the other can change the optical interference of light incident on the interferometric modulator.

IMOD可以可定址陣列排列以形成主動式顯示器。類似地,諸如液晶顯示器(LCD)、發光二極體(LED)(包括有機LED(OLED))、電泳及場致發射顯示器(FED)之其他MEMS及非MEMS技術均用作用於電視、電腦監視器、蜂巢式電話或個人數位助理(PDA)螢幕等之主動式顯示器。此等裝置具有廣泛範圍之應用,且在此項技術中利用及/或修改此等類型之裝置的特性以使得其特徵可在改良現有產品及形成尚未開發之新產品的過程中採用將為有益的。The IMODs can be arranged in an addressable array to form an active display. Similarly, other MEMS and non-MEMS technologies such as liquid crystal displays (LCDs), light-emitting diodes (LEDs) (including organic LEDs (OLEDs)), electrophoresis, and field emission displays (FED) are used for television and computer monitoring. Active display such as a cellular, cellular phone or personal digital assistant (PDA) screen. Such devices have a wide range of applications, and it is beneficial to utilize and/or modify the characteristics of such devices in the art such that their features can be improved in the process of improving existing products and forming new products that have not yet been developed. of.

在一實施例中,一種顯示裝置包括:一主動顯示像素陣列,其具有一面向觀察者之前顯示表面及一後顯示表面;至少一收集膜,其鄰近於前顯示表面或後顯示表面中之一者,該收集膜具有前收集膜表面、後收集膜表面、至少一邊緣及複數個光轉向特徵,其中光轉向特徵經組態以將在前收集膜表面或後收集膜表面與收集膜之一邊緣之間的光重定向;及一光伏打裝置,其安置於收集膜之邊緣上且經導向以接收自光轉向特徵橫向透射穿過收集膜之光。In one embodiment, a display device includes: an active display pixel array having a front display surface facing the viewer and a rear display surface; at least one collection film adjacent to one of the front display surface or the rear display surface The collecting film has a front collecting film surface, a rear collecting film surface, at least one edge, and a plurality of light turning features, wherein the light turning feature is configured to collect the front or back collecting film surface and the collecting film surface Light redirecting between the edges; and a photovoltaic device disposed on the edge of the collection film and guided to receive light that is transmitted laterally through the collection film from the light turning feature.

在另一實施例中,一種顯示裝置包括一顯示像素陣列。至少一收集膜接近顯示像素陣列而安置。收集膜具有複數個光轉向特徵,其中光轉向特徵經組態以將在前收集膜表面或後收集膜表面與收集膜之邊緣之間的光重定向。至少一光伏打裝置安置於收集膜之一邊緣上,其中光伏打裝置經導向以接收自光轉向特徵橫向透射穿過收集膜之光。至少一光源安置於一邊緣上,其中光源發射橫向穿過收集膜的光以待由光轉向特徵朝向顯示像素陣列轉向。In another embodiment, a display device includes a display pixel array. At least one collection film is disposed adjacent to the array of display pixels. The collection film has a plurality of light turning features, wherein the light turning features are configured to redirect light between the front collection film surface or the rear collection film surface and the edge of the collection film. At least one photovoltaic device is disposed on an edge of the collection film, wherein the photovoltaic device is directed to receive light that is transmitted laterally through the collection film from the light turning feature. At least one light source is disposed on an edge, wherein the light source emits light that traverses the collection film to be diverted by the light turning feature toward the array of display pixels.

在另一實施例中,一種顯示裝置包括一用於在顯示像素陣列上顯示影像之構件、一用於將光能轉換成替代形式之能量的構件,及一用於將光自入射於顯示表面上之方向轉向至沿顯示表面朝向將光能轉換成替代形式之能量的構件的橫向方向的構件。In another embodiment, a display device includes a member for displaying an image on a display pixel array, a member for converting light energy into an alternative form of energy, and a member for self-injecting light onto the display surface. The upper direction turns to a member along the display surface facing the lateral direction of the member that converts the light energy into an alternative form of energy.

在另一實施例中,一種集光及影像顯示方法包括在影像區域中主動地顯示影像,收集來自影像區域之光,將光自影像區域轉向至影像區域之至少一邊緣,及將光轉換成電流。In another embodiment, a method of collecting light and displaying images includes actively displaying an image in an image area, collecting light from the image area, diverting light from the image area to at least one edge of the image area, and converting the light into Current.

在另一實施例中,一種製造顯示裝置之方法包括將收集膜可操作地耦合至主動顯示像素陣列之前顯示表面或後顯示表面。收集膜具有前收集膜表面、後收集膜表面、至少一邊緣,及複數個光轉向特徵。該方法亦包括使光伏打裝置與收集膜之邊緣對準,以使得光轉向特徵將環境光自前收集膜表面重定向至收集膜之邊緣處的光伏打裝置以轉換成電能。In another embodiment, a method of fabricating a display device includes operatively coupling a collection film to a display surface or a rear display surface prior to an active display pixel array. The collection membrane has a front collection membrane surface, a rear collection membrane surface, at least one edge, and a plurality of light turning features. The method also includes aligning the photovoltaic device with the edge of the collection film such that the light turning feature redirects ambient light from the front collection film surface to the photovoltaic device at the edge of the collection film for conversion to electrical energy.

以下實施方式係針對本發明之某些特定實施例。然而,本發明可以眾多不同方式具體化。在此描述中,參看圖式,其中貫穿全文以相似數字指定相似部分。如自以下描述顯而易見,實施例可實施於經組態以可程式化地顯示影像之任何裝置中,無論該影像為運動影像(例如,視訊)還是固定影像(例如,靜止影像),且無論其為文字影像還是圖形影像。更特定言之,預期實施例可實施於諸如(但不限於)以下各者的多種電子裝置中或與其相關聯:行動電話、無線裝置、個人資料助理(PDA)、手持式或攜帶型電腦、GPS接收器/導航器、相機、MP3播放器、可攜式攝像機、遊戲控制台、腕錶、時鐘、計算器、電視監視器、平板顯示器、電腦監視器、汽車顯示器(例如,里程錶顯示器等)、座艙控制器及/或顯示器、相機視域顯示器(例如,運載工具中之後視相機之顯示器)、電子照片、電子廣告牌或標牌、投影儀、建築結構、封裝及美學結構(例如,一件珠寶上之影像顯示)。The following embodiments are directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings, in which like reference As will be apparent from the description below, embodiments can be implemented in any device configured to programmatically display an image, whether the image is a moving image (eg, video) or a fixed image (eg, a still image), and regardless of Whether it is a text image or a graphic image. More particularly, contemplated embodiments can be implemented in or associated with a variety of electronic devices, such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs), handheld or portable computers, GPS receiver/navigator, camera, MP3 player, camcorder, game console, watch, clock, calculator, TV monitor, flat panel display, computer monitor, car display (eg, odometer display, etc.) ), a cockpit controller and/or display, a camera field of view display (eg, a rear view camera display in a vehicle), an electronic photo, an electronic billboard or signage, a projector, a building structure, a package, and an aesthetic structure (eg, one The image on the piece of jewelry shows)).

本發明之某些實施例係針對與光伏打裝置耦合之收集膜,其用於採集穿過主動式顯示區域之光且將光轉換成電能。置放於顯示像素陣列上方或下方的收集膜具有光轉向特徵,其將接收於主動式顯示區域上之光中的一些重定向且使光分路至收集膜之定位有至少一光伏打裝置的邊緣。在一些實施例中,諸如LED之光源亦置放於同一膜之邊緣處且發射由光轉向特徵重定向以照明顯示器的光。Certain embodiments of the present invention are directed to a collection film coupled to a photovoltaic device for collecting light passing through an active display area and converting the light into electrical energy. A collection film disposed above or below the array of display pixels has a light turning feature that redirects some of the light received on the active display area and directs the light to the collection film with at least one photovoltaic device positioned edge. In some embodiments, a light source, such as an LED, is also placed at the edge of the same film and emits light that is redirected by the light turning features to illuminate the display.

儘管圖8至圖20之實施例可結合多種顯示技術使用收集膜與光伏打裝置,但圖1至圖7E說明對圖8至圖20之實施例有用的干涉調變器(IMOD)顯示技術。Although the embodiment of Figures 8-20 can use a collection film and photovoltaic device in conjunction with a variety of display techniques, Figures 1 through 7E illustrate an interference modulator (IMOD) display technique useful with the embodiments of Figures 8-20.

圖1中說明一包含干涉MEMS顯示元件之干涉調變器顯示器實施例。在此等裝置中,像素處於亮或暗狀態。在亮("接通"或"開啟")狀態中,顯示元件將大部分入射可見光反射至使用者。在處於暗("關斷"或"關閉")狀態中時,顯示元件將極少入射可見光反射至使用者。視實施例而定,可逆轉"接通"及"關斷"狀態之光反射性質。MEMS像素可經組態以主要反射選定色彩,從而允許除黑及白之外的色彩顯示。An embodiment of an interference modulator display including an interferometric MEMS display element is illustrated in FIG. In such devices, the pixels are in a bright or dark state. In the bright ("on" or "on" state), the display element reflects most of the incident visible light to the user. When in a dark ("off" or "off" state), the display element reflects very little incident visible light to the user. Depending on the embodiment, the light reflection properties of the "on" and "off" states can be reversed. MEMS pixels can be configured to primarily reflect selected colors, allowing for color display in addition to black and white.

圖1為描繪視覺顯示器之一系列像素中之兩個鄰近像素的等角視圖,其中每一像素包含MEMS干涉調變器。在一些實施例中,干涉調變器顯示器包含此等干涉調變器之列/行陣列。每一干涉調變器包括彼此以可變及可控距離定位以形成具有至少一可變尺寸之共振光學間隙的一對反射層。在一實施例中,反射層中之一者可在兩個位置之間移動。在本文中稱為鬆弛位置之第一位置中,活動反射層定位於距固定部分反射層之相對大距離處。在本文中稱為致動位置之第二位置中,活動反射層更緊密地鄰近於部分反射層而定位。視活動反射層之位置而定,自兩個層反射之入射光相長或相消地干涉,從而產生每一像素之全反射或非反射狀態。1 is an isometric view depicting two adjacent pixels in a series of pixels of a visual display, where each pixel includes a MEMS interferometric modulator. In some embodiments, the interference modulator display includes a column/row array of such interference modulators. Each of the interference modulators includes a pair of reflective layers that are positioned at a variable and controllable distance from each other to form a resonant optical gap having at least one variable size. In an embodiment, one of the reflective layers is moveable between two positions. In a first position, referred to herein as a relaxed position, the active reflective layer is positioned at a relatively large distance from the fixed partially reflective layer. In a second position, referred to herein as the actuated position, the active reflective layer is positioned more closely adjacent to the partially reflective layer. Depending on the position of the active reflective layer, the incident light reflected from the two layers interferes constructively or destructively, resulting in a fully reflective or non-reflective state for each pixel.

圖1中之像素陣列之所描繪部分包括兩個鄰近干涉調變器12a及12b。在左方之干涉調變器12a中,活動反射層14a經說明為處於距包括部分反射層之光學堆疊16a預定距離處的鬆弛位置中。在右方之干涉調變器12b中,活動反射層14b經說明為處於鄰近於光學堆疊16b之致動位置中。The depicted portion of the pixel array of Figure 1 includes two adjacent interferometric modulators 12a and 12b. In the left interfering modulator 12a, the active reflective layer 14a is illustrated in a relaxed position at a predetermined distance from the optical stack 16a comprising the partially reflective layer. In the right interfering modulator 12b, the active reflective layer 14b is illustrated as being in an actuated position adjacent to the optical stack 16b.

如本文中提及之光學堆疊16a及16b(共同稱為光學堆疊16)通常包含若干融合層,該等融合層可包括諸如氧化銦錫(ITO)之電極層、諸如鉻之部分反射層及透明介電質。光學堆疊16由此為導電的、部分透明的及部分反射的,且可(例如)藉由將以上層中之一或多者沈積於透明基板20上而製造。部分反射層可由部分反射之多種材料(諸如,各種金屬、半導體及介電質)形成。部分反射層可由一或多層材料形成,且層中之每一者可由單一材料或材料組合形成。Optical stacks 16a and 16b (collectively referred to as optical stacks 16) as referred to herein typically comprise a plurality of fused layers, which may include electrode layers such as indium tin oxide (ITO), partially reflective layers such as chrome, and transparent Dielectric. The optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and can be fabricated, for example, by depositing one or more of the above layers on a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed from one or more layers of material, and each of the layers can be formed from a single material or combination of materials.

在一些實施例中,光學堆疊16之層經圖案化成平行條帶,且可形成如下文進一步描述之顯示裝置中之列電極。活動反射層14a、14b可形成為沈積於柱18及在柱18之間沈積的介入犧牲材料之頂部上之一或多個沈積金屬層的一系列平行條帶(與16a、16b之列電極正交)。在蝕刻掉犧牲材料時,活動反射層14a、14b藉由經界定之間隙19與光學堆疊16a、16b分隔。諸如鋁之高導電及反射材料可用於反射層14,且此等條帶可形成顯示裝置中之行電極。In some embodiments, the layers of optical stack 16 are patterned into parallel strips and may form column electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips deposited on the pillars 18 and deposited on the top of the intervening sacrificial material between the pillars 18 or a plurality of deposited metal layers (with the electrodes of the columns 16a, 16b being positive) cross). When the sacrificial material is etched away, the active reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by defined gaps 19. Highly conductive and reflective materials such as aluminum can be used for the reflective layer 14, and such strips can form row electrodes in display devices.

如圖1中之像素12a所說明,在無外加電壓的情況下,間隙19保留在活動反射層14a與光學堆疊16a之間,活動反射層14a處於機械鬆弛狀態中。然而,在將電位差施加至選定列及行時,在相應像素處在列及行電極之交點處形成的電容器變得帶電,且靜電力將電極牽拉在一起。若電壓為足夠高的,則活動反射層14變形且經迫使抵靠光學堆疊16。光學堆疊16內之介電層(此圖中未說明)可防止短路且控制層14與16之間的間距,如由圖1中右方之像素12b所說明。不管外加電位差之極性,該行為為相同的。以此方式,可控制反射對非反射像素狀態之列/行致動在許多方面與習知LCD及其他顯示技術中使用之列/行致動類似。As illustrated by pixel 12a in Figure 1, in the absence of an applied voltage, gap 19 remains between active reflective layer 14a and optical stack 16a, and active reflective layer 14a is in a mechanically relaxed state. However, when a potential difference is applied to the selected column and row, the capacitor formed at the intersection of the column and the row electrode at the corresponding pixel becomes charged, and the electrostatic force pulls the electrodes together. If the voltage is sufficiently high, the active reflective layer 14 deforms and is forced against the optical stack 16. A dielectric layer (not illustrated in this figure) within optical stack 16 prevents shorting and controls the spacing between layers 14 and 16, as illustrated by pixel 12b to the right in FIG. This behavior is the same regardless of the polarity of the applied potential difference. In this manner, the column/row actuation of the controllable reflection versus non-reflective pixel state is similar in many respects to the column/row actuation used in conventional LCD and other display technologies.

圖2至圖5B說明一用於在顯示應用中使用干涉調變器之陣列的例示性過程及系統。2 through 5B illustrate an exemplary process and system for using an array of interferometric modulators in a display application.

圖2為說明可併有本發明之態樣的電子裝置之一實施例的系統方塊圖。在例示性實施例中,電子裝置包括處理器21,其可為任何通用單或多晶片微處理器,諸如ARM、Pro、8051、;或任何專用微處理器,諸如數位信號處理器、微控制器或可程式化閘陣列。如在此項技術中習知,處理器21可經組態以執行一或多個軟體模組。除執行作業系統之外,處理器可經組態以執行一或多個軟體應用程式,包括網路瀏覽器、電話應用程式、電子郵件程式或任何其他軟體應用程式。2 is a system block diagram illustrating one embodiment of an electronic device in accordance with aspects of the present invention. In an exemplary embodiment, the electronic device includes a processor 21, which can be any general purpose single or multi-chip microprocessor, such as an ARM, , , , , Pro, 8051 , , Or any dedicated microprocessor, such as a digital signal processor, microcontroller, or programmable gate array. As is known in the art, processor 21 can be configured to execute one or more software modules. In addition to executing the operating system, the processor can be configured to execute one or more software applications, including a web browser, a phone application, an email program, or any other software application.

在一實施例中,處理器21亦經組態以與陣列驅動器22通信。在一實施例中,陣列驅動器22包括向顯示陣列或面板30提供信號之列驅動電路24及行驅動電路26。圖1中說明之陣列之橫截面藉由圖2中之線1-1展示。對於MEMS干涉調變器而言,列/行致動協定可利用圖3中說明之此等裝置之滯後性質。可能需要(例如)10伏特電位差以使活動層自鬆弛狀態變形至致動狀態。然而,在電壓自彼值減小時,活動層隨著電壓降低回至10伏特以下而維持其狀態。在圖3之例示性實施例中,活動層直至電壓降低至2伏特以下時才完全鬆弛。因此,在圖3中說明之實例中存在約3V至7V之外加電壓窗,在該窗內,裝置在鬆弛或致動狀態下為穩定的。此在本文中稱為"滯後窗"或"穩定窗"。對於具有圖3之滯後特性的顯示陣列而言,可設計列/行致動協定以使得在列選通期間,選通列中待致動之像素暴露於約10伏特之電壓差,且待鬆弛之像素暴露於接近於零伏特之電壓差。在選通之後,像素暴露於約5伏特之穩態電壓差,以使得其保持於列選通使其處於之任何狀態中。在寫入之後,每一像素經歷此實例中3至7伏特之"穩定窗"內的電位差。此特徵使得圖1中說明之像素設計在相同外加電壓條件下穩定於致動或鬆弛之預先存在之狀態中。因為干涉調變器之每一像素(無論處於致動還是鬆弛狀態中)本質上為由固定及移動反射層形成之電容器,所以此穩定狀態可在幾乎無功率耗散的情況下保持於滯後窗內之電壓下。若外加電位固定,則本質上無電流流入至像素中。In an embodiment, processor 21 is also configured to communicate with array driver 22. In one embodiment, array driver 22 includes a column drive circuit 24 and a row drive circuit 26 that provide signals to display array or panel 30. The cross section of the array illustrated in Figure 1 is illustrated by line 1-1 in Figure 2. For MEMS interferometric modulators, the column/row actuation protocol can utilize the hysteresis properties of such devices illustrated in FIG. A potential difference of, for example, 10 volts may be required to deform the active layer from a relaxed state to an actuated state. However, as the voltage decreases from the value, the active layer maintains its state as the voltage drops back below 10 volts. In the exemplary embodiment of FIG. 3, the active layer is completely relaxed until the voltage drops below 2 volts. Thus, in the example illustrated in Figure 3 there is a voltage window of about 3V to 7V, in which the device is stable in the relaxed or actuated state. This is referred to herein as a "hysteresis window" or "stability window." For a display array having the hysteresis characteristic of FIG. 3, a column/row actuation protocol can be designed such that during column gating, the pixel to be actuated in the gating column is exposed to a voltage difference of about 10 volts and is to be relaxed. The pixels are exposed to a voltage difference close to zero volts. After gating, the pixel is exposed to a steady state voltage difference of about 5 volts such that it remains in the column gating to be in any state. After writing, each pixel experiences a potential difference within a "stability window" of 3 to 7 volts in this example. This feature allows the pixel design illustrated in Figure 1 to be stable in a pre-existing state of actuation or relaxation under the same applied voltage conditions. Since each pixel of the interferometric modulator (whether in an actuated or relaxed state) is essentially a capacitor formed by a fixed and moving reflective layer, this steady state can be maintained in the hysteresis window with little power dissipation. Under the voltage inside. If the applied potential is fixed, essentially no current flows into the pixel.

在典型應用中,可藉由根據第一列中之致動像素之所需集合來斷定行電極集合而形成顯示圖框。接著將列脈衝施加至第1列電極,從而致動與所斷定行線對應之像素。接著將行電極之所斷定集合改變為與第二列中之致動像素之所需集合對應。接著將脈衝施加至第2列電極,從而根據所斷定行電極致動第2列中之適當像素。第1列像素不受第2列脈衝影響,且保持在其在第1列脈衝期間所設定之狀態中。此可以順序型式對於全部系列之列重複以產生圖框。大體而言,藉由在每秒某一所需數目之圖框下連續地重複此過程來以新顯示資料再新及/或更新圖框。用於驅動像素陣列之列及行電極以產生顯示圖框之廣泛多種協定亦為熟知的且可結合本發明使用。In a typical application, a display frame can be formed by ascertaining a set of row electrodes based on a desired set of actuated pixels in the first column. A column pulse is then applied to the first column of electrodes to actuate the pixels corresponding to the determined row line. The asserted set of row electrodes is then changed to correspond to the desired set of actuated pixels in the second column. A pulse is then applied to the second column of electrodes to actuate the appropriate pixels in column 2 in accordance with the determined row electrodes. The first column of pixels is unaffected by the second column of pulses and remains in the state it was set during the first column of pulses. This can be repeated for the entire series to generate a frame. In general, the new display data is renewed and/or updated by continuously repeating the process under a desired number of frames per second. A wide variety of protocols for driving columns and row electrodes of pixel arrays to produce display frames are also well known and can be used in conjunction with the present invention.

圖4、圖5A及圖5B說明一用於在圖2之3×3陣列上形成顯示圖框之可能致動協定。圖4說明可用於展現圖3之滯後曲線之像素的行及列電壓位準之可能集合。在圖4實施例中,致動像素涉及將適當行設定成-Vbias ,且適當列設定成+ΔV,-Vbias 及+ΔV可分別與-5伏特及+5伏特對應。使像素鬆弛係藉由將適當行設定成+Vbias ,且將適當列設定成相同+ΔV,從而產生跨越像素之零伏特電位差來實現。在列電壓保持於零伏特下之彼等列中,無論行處於+Vbias 還是-Vbias ,像素穩定於其最初所處之任何狀態中。亦如圖4中說明,應瞭解,可使用具有與如上所述彼等電壓相反之極性的電壓,例如致動像素可涉及將適當行設定成+Vbias ,且適當列設定成-ΔV。在此實施例中,釋放像素係藉由將適當行設定成-Vbias ,且適當列設定成相同-ΔV,從而產生跨越像素之零伏特電位差來實現。4, 5A and 5B illustrate a possible actuation protocol for forming a display frame on the 3x3 array of FIG. 4 illustrates a possible set of row and column voltage levels that can be used to represent the pixels of the hysteresis curve of FIG. In the embodiment of Figure 4, actuating the pixels involves setting the appropriate row to -Vbias , and the appropriate column is set to +ΔV, -Vbias and +ΔV may correspond to -5 volts and +5 volts, respectively. Pixel relaxation is achieved by setting the appropriate row to + Vbias and setting the appropriate column to the same +ΔV, resulting in a zero volt potential difference across the pixel. In the columns where the column voltage is maintained at zero volts, the pixel is stable in any state it was originally in, regardless of whether the row is at +V bias or -V bias . As also illustrated in FIG. 4, it will be appreciated that voltages having polarities opposite to their voltages as described above may be used, for example, actuating a pixel may involve setting the appropriate row to + Vbias and the appropriate column to -ΔV. In this embodiment, the release of the pixel is achieved by setting the appropriate row to -Vbias and the appropriate column to the same -[Delta]V, resulting in a zero volt potential difference across the pixel.

圖5B為展示施加至圖2之3×3陣列的將產生圖5A中說明之顯示配置的一系列列及行信號的時序圖,其中致動像素為非反射的。在寫入圖5A中說明之圖框之前,像素可處於任何狀態,且在此實例中,所有列處於0伏特,且所有行處於+5伏特。在此等外加電壓下,所有像素穩定於其現有致動或鬆弛狀態中。5B is a timing diagram showing a series of column and row signals applied to the 3x3 array of FIG. 2 that will result in the display configuration illustrated in FIG. 5A, wherein the actuated pixels are non-reflective. Prior to writing the frame illustrated in Figure 5A, the pixels can be in any state, and in this example, all columns are at 0 volts and all rows are at +5 volts. At these applied voltages, all of the pixels are stable in their existing actuated or relaxed state.

在圖5A圖框中,致動像素(1,1)、(1,2)、(2,2)、(3,2)及(3,3)。為實現此,在第1列之"線時間"期間,將第1及2行設定成-5伏特,且第3行設定成+5伏特。此不改變任何像素之狀態,因為所有像素保持在3至7伏特穩定窗中。接著第1列以自0伏特開始達至5伏特且返回至零的脈衝來選通。此致動(1,1)及(1,2)像素且使(1,3)像素鬆弛。不影響陣列中之其他像素。為按需要設定第2列,將第2行設定成-5伏特,且將第1及3行設定成+5伏特。施加至第2列之相同選通將接著致動像素(2,2)且使像素(2,1)及(2,3)鬆弛。又,不影響陣列之其他像素。第3列係藉由將第2及3行設定成-5伏特,且第1行設定成+5伏特來類似地設定。如圖5A中所示,第3列選通設定第3列像素。在寫入圖框之後,列電位為零,且行電位可保持在+5或-5伏特下,且接著顯示器穩定於圖5A之配置中。應瞭解,同一程序可用於幾十或幾百列及行之陣列。亦應瞭解,用於執行列及行致動之電壓的時序、序列及位準可在以上概述之一般原理內廣泛變化,且以上實例僅為例示性的,且任何致動電壓方法可與本文中描述之系統及方法一起使用。In the frame of Figure 5A, the pixels (1, 1), (1, 2), (2, 2), (3, 2) and (3, 3) are actuated. To achieve this, during the "line time" of column 1, the first and second rows are set to -5 volts, and the third row is set to +5 volts. This does not change the state of any of the pixels because all pixels remain in the 3 to 7 volt stabilization window. The first column is then gated with a pulse starting at 0 volts up to 5 volts and returning to zero. This activates (1, 1) and (1, 2) pixels and relaxes the (1, 3) pixels. Does not affect other pixels in the array. To set the second column as needed, set the second line to -5 volts and set the first and third lines to +5 volts. The same strobe applied to the second column will then actuate the pixel (2, 2) and relax the pixels (2, 1) and (2, 3). Also, it does not affect other pixels of the array. The third column is similarly set by setting the second and third rows to -5 volts and the first row to be set to +5 volts. As shown in FIG. 5A, the third column strobe sets the third column of pixels. After writing the frame, the column potential is zero and the row potential can be maintained at +5 or -5 volts, and then the display is stabilized in the configuration of Figure 5A. It should be understood that the same program can be used for arrays of tens or hundreds of columns and rows. It should also be appreciated that the timing, sequence, and level of voltages used to perform the column and row actuations can vary widely within the general principles outlined above, and the above examples are merely illustrative, and any actuation voltage method can be used herein. The systems and methods described are used together.

圖6A及圖6B為說明顯示裝置40之一實施例的系統方塊圖。顯示裝置40可為(例如)蜂巢式或行動電話。然而,顯示裝置40之相同組件或其輕微變化亦說明諸如電視及攜帶型媒體播放器之各種類型的顯示裝置。6A and 6B are system block diagrams illustrating one embodiment of a display device 40. Display device 40 can be, for example, a cellular or mobile phone. However, the same components of display device 40 or slight variations thereof also illustrate various types of display devices such as televisions and portable media players.

顯示裝置40包括外殼41、顯示器30、天線43、揚聲器45、輸入裝置48及麥克風46。外殼41大體由熟習此項技術者所熟知之多種製造過程中之任一者(包括射出成形及真空成型)形成。另外,外殼41可由包括(但不限於)塑膠、金屬、玻璃、橡膠及陶瓷或其組合之多種材料中之任一者製成。在一實施例中,外殼41包括可與具有不同色彩或含有不同標誌、圖片或符號的其他可移除部分互換的可移除部分(未圖示)。The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The outer casing 41 is generally formed from any of a variety of manufacturing processes well known to those skilled in the art, including injection molding and vacuum forming. Additionally, the outer casing 41 can be made from any of a variety of materials including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof. In an embodiment, the housing 41 includes a removable portion (not shown) that is interchangeable with other removable portions having different colors or containing different logos, pictures or symbols.

例示性顯示裝置40之顯示器30可為包括雙穩顯示器之多種顯示器中之任一者,如本文中描述。在其他實施例中,顯示器30包括如上所述之平板顯示器,諸如電漿顯示器、EL、OLED、STN LCD或TFT LCD;或熟習此項技術者所熟知之非平板顯示器,諸如CRT或其他管裝置。然而,出於描述本實施例的目的,顯示器30包括如本文中描述之干涉調變器顯示器。Display 30 of exemplary display device 40 can be any of a variety of displays including a bistable display, as described herein. In other embodiments, display 30 includes a flat panel display such as a plasma display, EL, OLED, STN LCD or TFT LCD as described above; or a non-flat panel display well known to those skilled in the art, such as a CRT or other tube device . However, for the purposes of describing the present embodiment, display 30 includes an interferometric modulator display as described herein.

例示性顯示裝置40之一實施例的組件示意性地說明於圖6B中。所說明之例示性顯示裝置40包括外殼41且可包括至少部分封閉於其中之額外組件。舉例而言,在一實施例中,例示性顯示裝置40包括網路介面27,其包括耦接至收發器47之天線43。收發器47連接至處理器21,該處理器21連接至調節硬體52。調節硬體52可經組態以調節信號(例如,濾波信號)。調節硬體52連接至揚聲器45及麥克風46。處理器21亦連接至輸入裝置48及驅動控制器29。驅動控制器29耦接至圖框緩衝器28及陣列驅動器22,該陣列驅動器22又耦接至顯示陣列30。如特定例示性顯示裝置40設計所需要,電源50向所有組件提供電力。The components of one embodiment of an exemplary display device 40 are schematically illustrated in Figure 6B. The illustrated exemplary display device 40 includes a housing 41 and can include additional components that are at least partially enclosed therein. For example, in one embodiment, the exemplary display device 40 includes a network interface 27 that includes an antenna 43 coupled to the transceiver 47. The transceiver 47 is coupled to a processor 21 that is coupled to the conditioning hardware 52. The conditioning hardware 52 can be configured to condition a signal (eg, a filtered signal). The adjustment hardware 52 is connected to the speaker 45 and the microphone 46. Processor 21 is also coupled to input device 48 and drive controller 29. The drive controller 29 is coupled to the frame buffer 28 and the array driver 22 , which in turn is coupled to the display array 30 . Power supply 50 provides power to all components as required by a particular exemplary display device 40 design.

網路介面27包括天線43及收發器47,以使得例示性顯示裝置40可經由網路與一或多個裝置通信。在一實施例中,網路介面27亦可具有減輕處理器21之需求之一些處理能力。天線43為熟習此項技術者已知用於傳輸及接收信號之任何天線。在一實施例中,天線根據IEEE 802.11標準(包括IEEE 802.11(a)、(b)或(g))傳輸及接收RF信號。在另一實施例中,天線根據BLUETOOTH(藍芽)標準傳輸及接收RF信號。在蜂巢式電話之情況下,天線經設計以接收用來在無線行動電話網路內通信之CDMA、GSM、AMPS或其他已知信號。收發器47預處理自天線43接收之信號,以使得其可由處理器21接收且進一步操縱。收發器47亦處理自處理器21接收之信號,以使得其可自例示性顯示裝置40經由天線43傳輸。The network interface 27 includes an antenna 43 and a transceiver 47 to enable the exemplary display device 40 to communicate with one or more devices via a network. In an embodiment, the network interface 27 may also have some processing power to alleviate the needs of the processor 21. Antenna 43 is any antenna known to those skilled in the art for transmitting and receiving signals. In an embodiment, the antenna transmits and receives RF signals in accordance with the IEEE 802.11 standard, including IEEE 802.11 (a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals in accordance with the BLUETOOTH (Bluetooth) standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals for communication within the wireless mobile telephone network. Transceiver 47 preprocesses the signals received from antenna 43 such that it can be received by processor 21 and further manipulated. Transceiver 47 also processes the signals received from processor 21 such that it can be transmitted from exemplary display device 40 via antenna 43.

在替代性實施例中,收發器47可由接收器替換。在又一替代性實施例中,網路介面27可由影像源替換,該影像源可儲存或產生待發送至處理器21之影像資料。舉例而言,影像源可為含有影像資料之數位視訊光碟(DVD)或硬碟驅動器,或產生影像資料之軟體模組。In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, the network interface 27 can be replaced by an image source that can store or generate image material to be sent to the processor 21. For example, the image source may be a digital video disc (DVD) or a hard disc drive containing image data, or a software module for generating image data.

處理器21大體控制例示性顯示裝置40之總操作。處理器21接收來自網路介面27或影像源之諸如壓縮影像資料之資料,且將資料處理成原始影像資料或容易處理成原始影像資料之格式。處理器21接著將經處理資料發送至驅動控制器29或圖框緩衝器28以用於儲存。原始資料通常係指識別影像內之每一位置處之影像特性的資訊。舉例而言,此等影像特性可包括色彩、飽和度及灰度級。Processor 21 generally controls the overall operation of exemplary display device 40. The processor 21 receives data such as compressed image data from the network interface 27 or the image source, and processes the data into original image data or a format that is easily processed into the original image data. Processor 21 then sends the processed data to drive controller 29 or frame buffer 28 for storage. Raw material is usually information that identifies the image characteristics at each location within the image. For example, such image characteristics may include color, saturation, and gray levels.

在一實施例中,處理器21包括微控制器、CPU或邏輯單元以控制例示性顯示裝置40之操作。調節硬體52大體包括用於將信號傳輸至揚聲器45及用於接收來自麥克風46之信號的放大器及濾波器。調節硬體52可為例示性顯示裝置40內之離散組件,或可併入於處理器21或其他組件內。In an embodiment, processor 21 includes a microcontroller, CPU or logic unit to control the operation of exemplary display device 40. The conditioning hardware 52 generally includes an amplifier and a filter for transmitting signals to the speaker 45 and for receiving signals from the microphone 46. The conditioning hardware 52 can be a discrete component within the exemplary display device 40 or can be incorporated into the processor 21 or other components.

驅動控制器29直接自處理器21或自圖框緩衝器28取得由處理器21產生之原始影像資料,且適當地將原始影像資料重新格式化以用於高速傳輸至陣列驅動器22。特定言之,驅動控制器29將原始影像資料重新格式化成具有光柵樣格式之資料流,以使得其具有適合於跨越顯示陣列30掃描的時間次序。接著,驅動控制器29將經格式化的資訊發送至陣列驅動器22。儘管諸如LCD控制器之驅動控制器29常常與作為獨立積體電路(IC)之系統處理器21相關聯,但是此等控制器可以許多方式實施。其可作為硬體嵌入於處理器21中,作為軟體嵌入於處理器21中,或與陣列驅動器22一起完全整合於硬體中。The drive controller 29 retrieves the raw image material generated by the processor 21 directly from the processor 21 or from the frame buffer 28 and reformats the original image data for high speed transmission to the array driver 22. In particular, drive controller 29 reformats the raw image data into a stream of data in a raster-like format such that it has a temporal order suitable for scanning across display array 30. Drive controller 29 then sends the formatted information to array driver 22. Although the drive controller 29, such as an LCD controller, is often associated with a system processor 21 that is a separate integrated circuit (IC), such controllers can be implemented in a number of ways. It can be embedded in the processor 21 as a hardware, embedded in the processor 21 as a software, or fully integrated with the array driver 22 in the hardware.

通常,陣列驅動器22接收來自驅動控制器29之經格式化的資訊且將視訊資料重新格式化成每秒多次施加至來自顯示器之x-y像素矩陣之數百及有時數千個引線的平行波形集合。Typically, array driver 22 receives the formatted information from drive controller 29 and reformats the video data into parallel waveform sets that are applied multiple times per second to the xy pixel matrix from the display, hundreds and sometimes thousands of leads. .

在一實施例中,驅動控制器29、陣列驅動器22及顯示陣列30適於本文中描述之顯示器類型中之任一者。舉例而言,在一實施例中,驅動控制器29為習知顯示控制器或雙穩顯示控制器(例如,干涉調變器控制器)。在另一實施例中,陣列驅動器22為習知驅動器或雙穩顯示驅動器(例如,干涉調變器顯示器)。在一實施例中,驅動控制器29與陣列驅動器22整合。此實施例在諸如蜂巢式電話、腕錶及其他小面積顯示器之高整合系統中為常見的。在又一實施例中,顯示陣列30為典型顯示陣列或雙穩顯示陣列(例如,包括干涉調變器之陣列的顯示器)。In an embodiment, drive controller 29, array driver 22, and display array 30 are suitable for any of the types of displays described herein. For example, in one embodiment, drive controller 29 is a conventional display controller or a bi-stable display controller (eg, an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bistable display driver (eg, an interferometric modulator display). In an embodiment, drive controller 29 is integrated with array driver 22. This embodiment is common in highly integrated systems such as cellular phones, wristwatches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bistable display array (eg, a display including an array of interferometric modulators).

輸入裝置48允許使用者控制例示性顯示裝置40之操作。在一實施例中,輸入裝置48包括諸如QWERTY鍵盤或電話小鍵盤之小鍵盤、按鈕、開關、觸敏螢幕,或壓敏或熱敏膜。在一實施例中,麥克風46為例示性顯示裝置40之輸入裝置。在使用麥克風46將資料輸入至裝置時,可由使用者提供語音命令以用於控制例示性顯示裝置40之操作。Input device 48 allows the user to control the operation of exemplary display device 40. In an embodiment, input device 48 includes a keypad such as a QWERTY keyboard or telephone keypad, buttons, switches, touch sensitive screens, or a pressure sensitive or temperature sensitive film. In an embodiment, the microphone 46 is an input device of the illustrative display device 40. When data is input to the device using the microphone 46, a voice command can be provided by the user for controlling the operation of the exemplary display device 40.

電源50可包括如在此項技術中熟知之多種能量儲存裝置。舉例而言,在一實施例中,電源50為可再充電電池,諸如鎳鎘電池或鋰離子電池。在另一實施例中,電源50為可再生能源、電容器,或包括塑膠太陽能電池及太陽能電池漆之太陽能電池。在另一實施例中,電源50經組態以接收來自壁式插座之電力。Power source 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, the power source 50 is a rechargeable battery, such as a nickel cadmium battery or a lithium ion battery. In another embodiment, the power source 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell and a solar cell lacquer. In another embodiment, the power source 50 is configured to receive power from a wall outlet.

在一些實施例中,如上所述,控制可程式化性駐留於可位於電子顯示系統之若干位置中之驅動控制器中。在一些實施例中,控制可程式化性駐留於陣列驅動器22中。熟習此項技術者將認識到,以上描述之最佳化可於任何數目之硬體及/或軟體組件中且以各種組態實施。In some embodiments, as described above, control programmability resides in a drive controller that can be located in several locations of the electronic display system. In some embodiments, control programmability resides in array driver 22. Those skilled in the art will recognize that the above described optimizations can be implemented in any number of hardware and/or software components and in a variety of configurations.

根據以上闡述之原理操作之干涉調變器的結構之細節可廣泛地變化。舉例而言,圖7A至圖7E說明活動反射層14及其支撐結構的五個不同實施例。圖7A為圖1之實施例之橫截面,其中金屬材料條帶14沈積於正交延伸之支撐物18上。在圖7B中,活動反射層14僅在轉角處在繫拴32上附著至支撐物。在圖7C中,活動反射層14自可包含可撓性金屬之可變形層34懸置。可變形層34圍繞可變形層34之周邊直接或間接地連接至基板20。此等連接在本文中稱為支撐物18,其可採取柱、支柱、軌或壁的形式。圖7D中說明之實施例具有可變形層34擱置於上面之支撐柱塞42。如在圖7A至圖7C中,活動反射層14保持懸置於間隙上,但是可變形層34並未藉由填充可變形層34與光學堆疊16之間的孔而形成支撐柱。而是,支撐物18由用來形成支撐柱塞42之平坦化材料形成。圖7E中說明之實施例基於圖7D中展示之實施例,但是亦可經調適以與圖7A至圖7C中說明之實施例中之任一者,以及未圖示之額外實施例一起工作。在圖7E中展示之實施例中,額外金屬或其他導電材料層已用來形成匯流排結構44。此允許沿干涉調變器之背部之信號投送,從而消除可能另外必須在基板20上形成之多個電極。The details of the structure of the interference modulator operating in accordance with the principles set forth above may vary widely. For example, Figures 7A-7E illustrate five different embodiments of the active reflective layer 14 and its support structure. Figure 7A is a cross section of the embodiment of Figure 1 with strips of metal material 14 deposited on orthogonally extending supports 18. In FIG. 7B, the movable reflective layer 14 is attached to the support only on the tie 32 at the corners. In FIG. 7C, the active reflective layer 14 is suspended from a deformable layer 34 that may comprise a flexible metal. The deformable layer 34 is connected to the substrate 20 directly or indirectly around the perimeter of the deformable layer 34. Such connections are referred to herein as supports 18, which may take the form of columns, struts, rails or walls. The embodiment illustrated in Figure 7D has a support plunger 42 on which the deformable layer 34 rests. As in Figures 7A-7C, the active reflective layer 14 remains suspended over the gap, but the deformable layer 34 does not form a support post by filling the aperture between the deformable layer 34 and the optical stack 16. Rather, the support 18 is formed from a planarizing material used to form the support plunger 42. The embodiment illustrated in Figure 7E is based on the embodiment shown in Figure 7D, but can also be adapted to work with any of the embodiments illustrated in Figures 7A-7C, as well as additional embodiments not shown. In the embodiment shown in FIG. 7E, additional layers of metal or other conductive material have been used to form the bus bar structure 44. This allows signal delivery along the back of the interferometric modulator, thereby eliminating multiple electrodes that may otherwise have to be formed on the substrate 20.

在諸如圖7A至圖7E中展示之彼等實施例的實施例中,干涉調變器充當直觀式裝置,其中自透明基板20之前側(與上面排列有調變器之側相對之側)檢視影像。在此等實施例中,反射層14光學上屏蔽反射層之與基板20相對之側上的干涉調變器之部分,包括可變形層34。此允許在不負面影響影像品質的情況下組態及操作屏蔽區域。此屏蔽允許圖7E中之匯流排結構44,其提供將調變器之光學性質與調變器之機電性質(諸如,定址及由彼定址引起之移動)分離的能力。此可分離的調變器架構允許用於調變器之機電態樣及光學態樣之結構設計及材料彼此獨立地選擇及起作用。此外,圖7C至圖7E中展示之實施例具有由反射層14之光學性質與其由可變形層34執行之機械性質的去耦所導出之額外益處。此允許用於反射層14之結構設計及材料關於光學性質經最佳化,且用於可變形層34之結構設計及材料關於所需機械性質經最佳化。In an embodiment such as the embodiments shown in Figures 7A-7E, the interference modulator acts as an intuitive device, with the front side of the transparent substrate 20 (the side opposite the side on which the modulator is arranged) viewed image. In such embodiments, the reflective layer 14 optically shields portions of the interfering modulator on the side of the reflective layer opposite the substrate 20, including the deformable layer 34. This allows the mask area to be configured and operated without adversely affecting image quality. This shielding allows the busbar structure 44 of Figure 7E to provide the ability to separate the optical properties of the modulator from the electromechanical properties of the modulator, such as addressing and movement caused by its addressing. This separable modulator architecture allows the structural design and materials used for the electromechanical and optical aspects of the modulator to be selected and function independently of each other. Moreover, the embodiment shown in Figures 7C-7E has the added benefit of being derived from the decoupling of the optical properties of the reflective layer 14 from the mechanical properties performed by the deformable layer 34. This allows the structural design and materials for the reflective layer 14 to be optimized with respect to optical properties, and the structural design and materials for the deformable layer 34 are optimized with respect to the desired mechanical properties.

在如圖8及圖9中所示之一些實施例中,前收集膜80安置於顯示像素陣列82之前側之上或安置於顯示像素陣列82之前側上。後收集膜84安置於顯示像素陣列82之後側之下或安置於顯示像素陣列82之後側上。顯示像素陣列82可為反射的且採取LCD、MEMS裝置(例如,干涉調變器或IMOD顯示器)、電泳裝置或反射來自前側或檢視側之光之任何其他類型之顯示技術的形式。顯示像素陣列82可為發射的且採取液晶顯示器(LCD)、發光二極體(LED)、有機發光二極體(OLED)、場發射顯示器(FED)、背光微機電系統(MEMS)裝置(例如,透射反射及背光干涉調變器顯示器(IMOD)),或內部產生及發射光之任何其他類型之顯示技術的形式。如本文中所使用,"發射"顯示技術包括背光技術。In some embodiments as shown in FIGS. 8 and 9, the front collection film 80 is disposed on the front side of the display pixel array 82 or on the front side of the display pixel array 82. The rear collection film 84 is disposed below the rear side of the display pixel array 82 or on the rear side of the display pixel array 82. Display pixel array 82 can be reflective and take the form of an LCD, MEMS device (eg, an interferometric modulator or IMOD display), an electrophoretic device, or any other type of display technology that reflects light from the front side or view side. Display pixel array 82 can be emitted and employs a liquid crystal display (LCD), a light emitting diode (LED), an organic light emitting diode (OLED), a field emission display (FED), a backlit microelectromechanical system (MEMS) device (eg, , Transflective and Backlight Interferometer Display (IMOD), or any other type of display technology that internally generates and emits light. As used herein, "emission" display technology includes backlighting techniques.

在某些實施例中,顯示裝置85可經形成為僅具有前收集膜80。在其他實施例中,顯示裝置85可經形成為僅具有後收集膜84。圖8說明前收集膜80及後收集膜84各自具有安置在收集膜80、84之邊緣88上之光伏打(PV)裝置86的一實施例。圖8為示意性的且大體傳達收集膜、PV裝置及主動式顯示器之相對位置,以使得亦將由顯示器或影像區域接收之光的部分分路至PV裝置。In some embodiments, display device 85 can be formed to have only front collection film 80. In other embodiments, display device 85 can be formed to have only rear collection film 84. FIG. 8 illustrates an embodiment of a front photovoltaic film 80 and a rear collection film 84 each having a photovoltaic (PV) device 86 disposed on an edge 88 of the collection films 80, 84. Figure 8 is a schematic and generally communicated relative position of the collection film, PV device, and active display such that portions of the light received by the display or image area are also shunted to the PV device.

圖9說明光伏打裝置86及光源90均安置在收集膜80、84之邊緣88上之另一實施例。在一些實施例中,光伏打裝置86及光源90可彼此接近安置。在其他實施例中,光伏打(PV)裝置86及光源90安置在收集膜80、84之邊緣88上之不同位置中。如同圖8一樣,該裝置可包括前側收集膜80、後側收集膜84,或如所示包括兩者。類似於圖8,將來自或至主動式顯示器之影像區域的光之部分分路至影像區域邊緣上之PV裝置;另外,收集膜將來自邊緣處之光源的光中之一些轉向顯示陣列82之影像區域。注意,PV裝置86及光源90無需處於收集膜80、84之同一邊緣或邊緣88之同一側。FIG. 9 illustrates another embodiment in which photovoltaic device 86 and light source 90 are disposed on edges 88 of collection films 80, 84. In some embodiments, photovoltaic device 86 and light source 90 can be placed proximate to each other. In other embodiments, photovoltaic (PV) device 86 and light source 90 are disposed in different locations on edge 88 of collection membranes 80, 84. As with Figure 8, the device can include a front side collection film 80, a back side collection film 84, or both as shown. Similar to Figure 8, the portion of the light from or to the image area of the active display is shunted to the PV device on the edge of the image area; in addition, the collection film diverts some of the light from the source at the edge to the display array 82 Image area. Note that the PV device 86 and the light source 90 need not be on the same side of the collection film 80, 84 or on the same side of the edge 88.

在由圖9表示之實施例中,收集膜80、84可具有與圖8之彼等結構類似之結構。然而,就來自光源90之光在與到達光伏打裝置86之光相反的方向上行進而言,此等膜80、84亦可充當照明膜。如將自以下論述之圖11A至圖13B更好地理解,收集膜80、84包括光轉向特徵。該光源可包含(例如)發光二極體(LED)。In the embodiment illustrated by Figure 9, the collection films 80, 84 can have structures similar to those of Figure 8. However, such films 80, 84 may also serve as an illumination film as far as light from source 90 travels in the opposite direction as light reaching photovoltaic device 86. As will be better understood from Figures 11A-13B, discussed below, the collection films 80, 84 include light turning features. The light source can comprise, for example, a light emitting diode (LED).

收集膜80、84各自包含兩個表面。上表面經組態以接收環境光。底表面安置於上表面下。收集膜80、84在周圍由邊緣88定界。通常,收集膜80、84之長度及寬度實質上大於收集膜80、84之厚度。收集膜80、84之厚度可自(例如)0.5mm變化至10mm。收集膜80、84之主表面之面積可自0.01cm2 變化至10,000cm2 。在一些實施例中,構成收集膜80、84之材料的折射率可顯著高於周圍介質,以便在收集膜80、84內藉由全內反射(TIR)導引大部分環境光。The collection membranes 80, 84 each comprise two surfaces. The upper surface is configured to receive ambient light. The bottom surface is disposed below the upper surface. The collection membranes 80, 84 are bounded by edges 88 around. Generally, the length and width of the collecting films 80, 84 are substantially greater than the thickness of the collecting films 80, 84. The thickness of the collection films 80, 84 can vary from, for example, 0.5 mm to 10 mm. The area of the major surfaces of the collection membranes 80, 84 can vary from 0.01 cm 2 to 10,000 cm 2 . In some embodiments, the refractive index of the materials comprising the collection films 80, 84 can be significantly higher than the surrounding medium to direct most of the ambient light by total internal reflection (TIR) within the collection membranes 80, 84.

圖10A至圖10C說明將光伏打裝置86及光源90兩者置放於收集膜80、84之邊緣88上之各種組態。在一些實施例中,可省略光源90。在如圖10A所示之實施例中,光伏打裝置86及光源90並排安置於收集膜80、84之一轉角92處。收集膜80、84包含光轉向特徵94,其由收集膜80、84之表面上之弧示意性地說明。光轉向特徵可為稜鏡特徵、繞射特徵、全息特徵,或用於將光自入射至收集膜80、84之上或下表面上之方向轉向至橫向朝向收集膜80、84之邊緣88之方向的任何其他機構。在一些實施例中,光伏打裝置86及/或光源90可沿邊緣88之一側中央安置,而非收集膜80、84之轉角92。儘管圖10A論證彼此接近置放之光伏打裝置86及光源90,但是如在圖10B及圖10C中所見,光伏打裝置86及光源90亦可為同心的或重疊的,或可排列在收集膜80、84之邊緣88上之不同位置處,例如彼此對置。在一些實施例中,收集膜80、84具有置放在收集膜80、84之邊緣88上之各個位置中的複數個光伏打裝置86及/或光源90。10A-10C illustrate various configurations of placing both photovoltaic device 86 and light source 90 on the edge 88 of collection films 80,84. In some embodiments, the light source 90 can be omitted. In the embodiment shown in FIG. 10A, photovoltaic device 86 and light source 90 are disposed side by side at one of the corners 92 of collection films 80, 84. The collection membranes 80, 84 include light turning features 94 that are schematically illustrated by arcs on the surface of the collection membranes 80, 84. The light turning features can be neodymium features, diffractive features, holographic features, or used to divert light from the direction incident on the upper or lower surface of the collection films 80, 84 to the edges 88 of the laterally facing collection films 80, 84. Any other direction of direction. In some embodiments, photovoltaic device 86 and/or light source 90 can be disposed along the center of one side of edge 88 rather than the corners 92 of collection films 80, 84. Although FIG. 10A demonstrates a photovoltaic device 86 and a light source 90 that are placed close to each other, as seen in FIGS. 10B and 10C, the photovoltaic device 86 and the light source 90 may be concentric or overlapping, or may be arranged in a collection film. The different locations on the edges 88 of the 80, 84 are, for example, opposite each other. In some embodiments, the collection membranes 80, 84 have a plurality of photovoltaic devices 86 and/or light sources 90 disposed in various locations on the edges 88 of the collection membranes 80, 84.

圖11A至圖13B說明具有可用於顯示裝置85之集光及光電轉換或集光及照明兩者之光轉向特徵的收集膜之實例。11A-13B illustrate an example of a collection film having light redirecting features that can be used for both light collection and photoelectric conversion or collection and illumination of display device 85.

圖11A中展示用於將環境光可操作地耦合至光伏打裝置中之稜鏡收集膜之一實施例。稜鏡光導收集器基於互反原理。換言之,光可沿稜鏡收集膜之表面與邊緣之間的路徑在前向及反向方向上行進。圖11A說明包含相對於光伏打裝置100安置之收集膜104之實施例的側視圖。在一些實施例中,收集膜104包含基板105及形成於其上或其中之複數個稜鏡特徵108。收集膜104可包含頂表面130及底表面140,及位於其間的複數個邊緣110。入射於收集膜104上之光112可由複數個稜鏡特徵108重定向至收集膜104中且由頂及底表面處之多次全內反射在收集膜104內橫向導引。收集膜104可包含對在光伏打裝置敏感的一或多個波長下之輻射為可穿透的光學透射材料。舉例而言,在一實施例中,收集膜104對可見及近紅外區域中之波長可為可穿透的。在其他實施例中,收集膜104對紫外或紅外區域中之波長可為可穿透的。收集膜104可由諸如玻璃或丙烯酸系物之剛性或半剛性材料形成,以便向實施例提供結構穩定性。或者,收集膜104可由諸如可撓性聚合物之可撓性材料形成。One embodiment of a ruthenium collection membrane for operatively coupling ambient light into a photovoltaic device is shown in Figure 11A. The 稜鏡 light guide collector is based on the reciprocal principle. In other words, light can travel in the forward and reverse directions along the path between the surface and the edge of the ruthenium collection film. FIG. 11A illustrates a side view of an embodiment including a collection film 104 disposed relative to photovoltaic device 100. In some embodiments, the collection film 104 includes a substrate 105 and a plurality of tantalum features 108 formed thereon or therein. The collection film 104 can include a top surface 130 and a bottom surface 140, and a plurality of edges 110 therebetween. Light 112 incident on the collection film 104 can be redirected into the collection film 104 by a plurality of turns features 108 and laterally guided within the collection film 104 by multiple total internal reflections at the top and bottom surfaces. The collection film 104 can comprise an optically transmissive material that is permeable to radiation at one or more wavelengths that are sensitive to the photovoltaic device. For example, in one embodiment, the collection film 104 can be permeable to wavelengths in the visible and near infrared regions. In other embodiments, the collection film 104 can be permeable to wavelengths in the ultraviolet or infrared region. The collection film 104 may be formed of a rigid or semi-rigid material such as glass or acrylic to provide structural stability to the embodiment. Alternatively, the collection film 104 can be formed from a flexible material such as a flexible polymer.

在一實施例中,如圖11A中所示,呈稜鏡特徵108形式之光轉向特徵位於基板105之底表面140上或遠離光源。稜鏡特徵108大體為形成於基板105之底表面140上之狹長凹槽。凹槽可填充有光學透射材料。稜鏡特徵108可藉由模製、壓印、蝕刻或其他替代技術形成於基板105之底表面上。或者,稜鏡特徵108可安置於可層疊於基板105之底表面上之膜上。在包含稜鏡膜之一些實施例中,光可單獨在稜鏡膜內經導引。在此等實施例中,基板105可單獨提供結構穩定性。稜鏡特徵108可包含多種形狀。舉例而言,稜鏡特徵108可為線性v型凹槽或裂隙。或者,稜鏡特徵108可包含曲線凹槽或非線性形狀。In one embodiment, as shown in FIG. 11A, the light turning features in the form of a meandering feature 108 are located on or away from the bottom surface 140 of the substrate 105. The crucible feature 108 is generally an elongated recess formed in the bottom surface 140 of the substrate 105. The grooves can be filled with an optically transmissive material. The germanium feature 108 can be formed on the bottom surface of the substrate 105 by molding, stamping, etching, or other alternative techniques. Alternatively, the tantalum feature 108 can be disposed on a film that can be laminated on the bottom surface of the substrate 105. In some embodiments comprising a ruthenium film, light can be individually guided within the ruthenium film. In such embodiments, the substrate 105 can provide structural stability alone. The haptic feature 108 can comprise a variety of shapes. For example, the haptic feature 108 can be a linear v-shaped groove or crevice. Alternatively, the haptic feature 108 can comprise a curved groove or a non-linear shape.

圖11B展示呈線性v型凹槽116形式之稜鏡特徵之放大圖。如圖11B中所示,v型凹槽116包含兩個平坦小面F1及F2,在其間配置有α角度。小面之間的角距α可視收集膜104或周圍介質之折射率而定且可自15度變化至120度。在一些實施例中,小面F1及F2可具有相等長度。在所說明之不對稱實施例中,小面中之一者的長度大於另一者。兩個連續v型凹槽之間的距離'a'可在0.01mm至0.5mm之間變化。由'b'指示之v型凹槽寬度可在0.001mm至0.100mm之間變化,而由'd'指示之v型凹槽深度可在0.001mm至0..5mm之間變化。FIG. 11B shows an enlarged view of the 稜鏡 feature in the form of a linear v-shaped groove 116. As shown in FIG. 11B, the v-shaped groove 116 includes two flat facets F1 and F2 with an angle α disposed therebetween. The angular distance a between the facets may depend on the refractive index of the collection film 104 or the surrounding medium and may vary from 15 degrees to 120 degrees. In some embodiments, facets F1 and F2 can have equal lengths. In the illustrated asymmetric embodiment, one of the facets has a length greater than the other. The distance 'a' between two consecutive v-shaped grooves can vary from 0.01 mm to 0.5 mm. The v-groove width indicated by 'b' may vary between 0.001 mm and 0.100 mm, while the v-groove depth indicated by 'd' may vary between 0.001 mm and 0..5 mm.

圖11C展示呈不對稱裂隙108形式之稜鏡特徵的放大圖。裂隙108包含與收集膜表面成β角度配置之兩個實質上平行的平坦小面F3及F4。收集膜表面與裂隙之間的角度β可視收集膜104或周圍介質之折射率而定且可自5度變化至70度。平坦小面F3藉由前收集膜表面130及後收集膜表面140處之多次內反射將來自前收集膜表面130之光橫向朝向收集膜104之一邊緣110重定向。平坦小面F4藉由前收集膜表面130及後收集膜表面140上之多次內反射將來自後收集膜表面140之光112重定向至收集膜104之相對邊緣110。Figure 11C shows an enlarged view of the 稜鏡 feature in the form of an asymmetric slit 108. The slit 108 includes two substantially parallel flat facets F3 and F4 disposed at a beta angle to the surface of the collection film. The angle β between the collection membrane surface and the fracture may depend on the refractive index of the collection membrane 104 or the surrounding medium and may vary from 5 degrees to 70 degrees. The flat facet F3 redirects light from the front collecting film surface 130 laterally toward one of the edges 110 of the collecting film 104 by multiple internal reflections at the front collecting film surface 130 and the rear collecting film surface 140. The flat facet F4 redirects light 112 from the rear collection film surface 140 to the opposite edge 110 of the collection film 104 by multiple internal reflections on the front collection film surface 130 and the rear collection film surface 140.

參看圖11A及圖11C,光伏打裝置100相對於收集膜104橫向地、與膜104之邊緣110鄰近而安置。光伏打裝置100經組態且經導向以接收藉由稜鏡特徵108穿過收集膜104重定向之光。光伏打裝置100可包含單或多層p-n接合且可由矽、非晶矽或諸如碲化鎘之其他半導體材料形成。在一些實施例中,光伏打裝置100可基於光電化學電池、聚合物或奈米技術。光伏打裝置100亦可包含薄多光譜層。多光譜層可進一步包含分散於聚合物中之奈米晶體。若干多光譜層可經堆疊以增加光伏打裝置100之效率。圖11A及圖11B展示光伏打裝置100沿收集膜104之一邊緣110(例如,在收集膜104之左側)安置之實施例。然而,另一光伏打裝置亦可安置於收集膜104之另一邊緣處(例如,在收集膜104之右側)。如圖11C中所示,多個光伏打裝置可安置於收集膜104之相對邊緣處(例如,收集膜104之左側及右側)。光伏打裝置100相對於收集膜104定位的其他組態亦為可能的。Referring to Figures 11A and 11C, photovoltaic device 100 is disposed laterally adjacent to collection film 104, adjacent edge 110 of film 104. The photovoltaic device 100 is configured and directed to receive light redirected through the collection film 104 by the crucible feature 108. Photovoltaic device 100 can comprise single or multiple layers of p-n bonding and can be formed of germanium, amorphous germanium or other semiconductor materials such as cadmium telluride. In some embodiments, photovoltaic device 100 can be based on photoelectrochemical cells, polymers, or nanotechnology. Photovoltaic device 100 can also include a thin multi-spectral layer. The multispectral layer may further comprise nanocrystals dispersed in the polymer. Several multi-spectral layers can be stacked to increase the efficiency of the photovoltaic device 100. 11A and 11B illustrate an embodiment in which photovoltaic device 100 is disposed along one edge 110 of collection film 104 (e.g., to the left of collection film 104). However, another photovoltaic device can also be disposed at the other edge of the collection film 104 (eg, to the right of the collection film 104). As shown in FIG. 11C, a plurality of photovoltaic devices can be disposed at opposite edges of the collection film 104 (eg, to the left and right of the collection film 104). Other configurations of the photovoltaic device 100 relative to the collection film 104 are also possible.

入射於收集膜104之上表面上之光如光路徑112指示而透射穿過收集膜104。在觸碰稜鏡特徵108之小面後,光即藉由來自收集膜104之上表面130及底表面140之多次反射而全部內反射。在觸碰收集膜104之邊緣110之後,光線出射於收集膜104且光學耦合至光伏打裝置100。透鏡或光管可用以將來自收集膜104之光光學耦合至光伏打裝置100。在一實施例中,舉例而言,在朝向較接近光伏打裝置100之末端處,收集膜104可無稜鏡特徵108。無任何稜鏡特徵之收集膜104部分可充當光管。可收集且導引穿過收集膜之光之量將視稜鏡特徵之幾何形狀、類型及密度而定。所收集之光之量亦將視光導材料之判定數值孔徑之折射率而定。Light incident on the upper surface of the collection film 104 is transmitted through the collection film 104 as indicated by the light path 112. After touching the facets of the haptic feature 108, the light is totally internally reflected by multiple reflections from the upper surface 130 and the bottom surface 140 of the collecting film 104. After touching the edge 110 of the collection film 104, the light exits the collection film 104 and is optically coupled to the photovoltaic device 100. A lens or light pipe can be used to optically couple light from the collection film 104 to the photovoltaic device 100. In an embodiment, for example, the collection film 104 may have an innocent feature 108 at an end that is closer to the photovoltaic device 100. The portion of the collecting film 104 without any ruthenium characteristics can serve as a light pipe. The amount of light that can be collected and directed through the collection film will depend on the geometry, type, and density of the features. The amount of light collected will also depend on the refractive index of the determined numerical aperture of the photoconductive material.

光由此藉由全內反射(TIR)導引穿過收集膜104。儘管任何特定射線可以相對於上或下表面之角度而導向,但是最終重定向(net redirection)係自入射於膜之主要(頂或底)表面之方向至朝向膜104之邊緣110、大體與光入射於上面之表面平行的橫向方向。所導引之光可能歸因於收集膜中之吸收及自其他小面散射而遭受損失。為減少所導引之光中之此損失,需要將收集膜104之橫向長度限制至數十吋或更小以便減少反射的次數。然而,限制收集膜104之長度可能減小於上面收集光之面積。因此,在一些實施例中,收集膜104之長度可增加至大於數十吋。在一些其他實施例中,可將光學塗層沈積在收集膜104之表面上以減少費涅(Fresnel)損失。Light is thereby directed through the collection film 104 by total internal reflection (TIR). Although any particular ray may be directed at an angle relative to the upper or lower surface, the net redirection is from the direction of the primary (top or bottom) surface incident on the film to the edge 110 of the film 104, generally and light. A transverse direction parallel to the surface incident on the top surface. The guided light may be attributable to absorption in the collection film and loss from scattering from other facets. In order to reduce this loss in the guided light, it is necessary to limit the lateral length of the collecting film 104 to several tens of mils or less in order to reduce the number of reflections. However, limiting the length of the collection film 104 may be reduced to the area of light collected above. Thus, in some embodiments, the length of the collection membrane 104 can be increased to greater than a few tens of inches. In some other embodiments, an optical coating can be deposited on the surface of the collection film 104 to reduce Fresnel losses.

在光線觸碰無稜鏡特徵108之收集膜104部分(其通常將占膜表面之大多數)時,其可透射穿過收集膜且不轉向至收集膜中。在以下所述之需要允許大部分之入射光穿過膜的實施例中,透射光可照明主動式顯示器。然而,可能需要調諧經轉向之光之量以增加光伏打裝置100的收集。為增加朝向光伏打裝置100分路之光之量,堆疊包含稜鏡特徵之若干收集膜層可能為有利的,其中如圖11D中說明,稜鏡特徵相對於彼此偏移。圖11D說明包含具有稜鏡特徵208之第一收集膜層204及具有稜鏡特徵216之第二收集膜層212的實施例。光伏打裝置200相對於兩個收集膜層204及212橫向安置。稜鏡特徵208及216經設計成相對於彼此偏移或經隨機化以具有光轉向特徵未對準之高可能性。如上所述將光線220轉向且導引穿過第一收集膜204。將在A點處穿過第一收集膜204之光線224轉向且導引穿過第二收集膜212。以此方式使稜鏡特徵208及216偏移減小特徵之間的間隔且增加稜鏡特徵之密度。使特徵偏移可增加光學耦合至光伏打裝置之光之量,藉此增加光伏打裝置之電輸出(以透射光為代價)。因為收集膜層204、212可為薄的,所以堆疊多個收集膜層且增加耦合至PV電池的光之量係可能的。可堆疊在一起之層的數目除針對所需應用(例如,透過層來檢視顯示裝置)之透射光之可容許損失之外,視每一層之大小及/或厚度及每一層之界面處的費涅損失而定。在一些實施例中,兩個至十個收集膜層可堆疊在一起。When the light touches the portion of the collection film 104 of the innocent feature 108 (which will typically occupy a majority of the film surface), it can be transmitted through the collection film and not into the collection film. In embodiments described below where it is desirable to allow most of the incident light to pass through the film, the transmitted light can illuminate the active display. However, it may be desirable to tune the amount of steered light to increase the collection of photovoltaic device 100. To increase the amount of light that is split towards the photovoltaic device 100, it may be advantageous to stack several collection film layers comprising germanium features, wherein the germanium features are offset relative to one another as illustrated in Figure 11D. FIG. 11D illustrates an embodiment comprising a first acquisition film layer 204 having a ruthenium feature 208 and a second acquisition film layer 212 having a ruthenium feature 216. The photovoltaic device 200 is disposed laterally relative to the two collection film layers 204 and 212. The haptic features 208 and 216 are designed to be offset or randomized relative to each other to have a high probability of misalignment of the light turning features. Light 220 is diverted and directed through first collection film 204 as described above. Light ray 224 passing through first collection film 204 at point A is diverted and directed through second collection film 212. Shifting the haptic features 208 and 216 in this manner reduces the spacing between features and increases the density of the 稜鏡 features. Offsetting the feature increases the amount of light that is optically coupled to the photovoltaic device, thereby increasing the electrical output of the photovoltaic device (at the expense of transmitted light). Because the collection film layers 204, 212 can be thin, it is possible to stack multiple collection film layers and increase the amount of light coupled to the PV cells. The number of layers that can be stacked together, in addition to the allowable loss of transmitted light for the desired application (eg, through the layer to view the display device), depending on the size and/or thickness of each layer and the cost at the interface of each layer It depends on the loss of Nie. In some embodiments, two to ten acquisition membrane layers can be stacked together.

使用稜鏡光導板、片或膜以收集、集中光且將其向光伏打裝置導引之優點為可能需要較少的光伏打裝置來達成所需電輸出。因此,此技術有可能會減少以光伏打裝置產生能量的成本。另一優點為收集光以用於產生電力而光至反射式顯示器或自任何類型之顯示器之透射不會過度減少的能力。The advantage of using a calendering guide, sheet or film to collect, concentrate, and direct light to the photovoltaic device is that fewer photovoltaic devices may be required to achieve the desired electrical output. Therefore, this technology has the potential to reduce the cost of generating energy from photovoltaic devices. Another advantage is the ability to collect light for generating electrical power to a reflective display or to transmit from any type of display without excessive reduction.

圖12說明另一收集膜,其中轉向特徵包含繞射特徵308而非稜鏡特徵。在各種較佳實施例中,繞射特徵308經組態以成某一角度將入射於收集膜104上之光(例如,射線312)重定向,光經由該角度在收集膜104內傳播離開收集膜104之邊緣110且進入光伏打裝置100中。光可(例如)經由全內反射以(例如)約40°或更大之掠角(如自收集膜104之表面之法線量測)沿收集膜104的長度傳播。此角度可為藉由斯奈爾定律建立之臨界角或大於藉由斯奈爾定律建立之臨界角。經繞射之射線312經重定向接近與收集膜104之長度正交。繞射特徵308可包含表面或體積繞射特徵。繞射特徵308可包括於收集膜104之第一側130上之繞射轉向膜上。繞射特徵可包含全息特徵。同樣,在一些實施例中,繞射轉向膜可包含全息圖或全息膜。視材料之相對折射率或反射率而定,繞射微結構可處於收集膜104之頂部、底部或側面上。Figure 12 illustrates another collection membrane in which the turning features include a diffractive feature 308 rather than a crucible feature. In various preferred embodiments, the diffractive features 308 are configured to redirect light incident on the collection film 104 (e.g., rays 312) at an angle through which light travels within the collection film 104 to collect The edge 110 of the film 104 enters the photovoltaic device 100. Light may propagate along the length of the collection film 104, for example, via total internal reflection at a sweep angle of, for example, about 40[deg.] or greater (as measured from the normal to the surface of the collection film 104). This angle may be a critical angle established by Snell's law or greater than a critical angle established by Snell's law. The diffracted ray 312 is redirected to be orthogonal to the length of the collection film 104. The diffractive features 308 can include surface or volume diffractive features. The diffractive feature 308 can be included on the diffractive turning film on the first side 130 of the collection film 104. The diffractive features can include holographic features. Also, in some embodiments, the diffractive turning film can comprise a hologram or a holographic film. The diffractive microstructures can be on the top, bottom or sides of the collection film 104 depending on the relative refractive index or reflectivity of the material.

圖13A及圖13B說明包含另一類型之光轉向元件242之收集膜240的實施例。光轉向元件242可為微結構化薄膜。在一些實施例中,光轉向元件242可包含體積或表面繞射特徵或全息圖。光轉向元件242可為薄板、片或膜。在一些實施例中,光轉向元件242之厚度可在約1μm至約100μm之範圍內,但是可更大或更小。在一些實施例中,光轉向元件或層242之厚度可在5μm與50μm之間。在一些其他實施例中,光轉向元件或層242之厚度可在1μm與10μm之間。光轉向元件242可藉由黏著劑而附著至收集膜240之基板244上的層。黏著劑可與構成基板244之材料折射率匹配。在一些實施例中,黏著劑可與構成光轉向元件242之材料折射率匹配。在一些實施例中,光轉向元件242可層疊於基板244上以形成收集膜240。在某些其他實施例中,體積或表面繞射特徵或全息圖可藉由沈積或其他製程形成於基板244之上或下表面上。13A and 13B illustrate an embodiment of a collection film 240 that includes another type of light redirecting element 242. Light turning element 242 can be a microstructured film. In some embodiments, light redirecting element 242 can comprise a volume or surface diffraction feature or hologram. Light turning element 242 can be a thin plate, sheet or film. In some embodiments, the thickness of the light turning element 242 can range from about 1 [mu]m to about 100 [mu]m, but can be larger or smaller. In some embodiments, the thickness of the light turning element or layer 242 can be between 5 μm and 50 μm. In some other embodiments, the thickness of the light turning element or layer 242 can be between 1 μm and 10 μm. The light turning element 242 can be attached to the layer on the substrate 244 of the collection film 240 by an adhesive. The adhesive can be index matched to the material constituting the substrate 244. In some embodiments, the adhesive can be index matched to the materials that make up the light turning element 242. In some embodiments, light turning element 242 can be stacked on substrate 244 to form collection film 240. In certain other embodiments, volume or surface diffraction features or holograms may be formed on or under the substrate 244 by deposition or other processes.

體積或表面繞射元件或全息圖可以透射或反射模式操作。透射繞射元件或全息圖大體包含光學透射材料且使穿過其之光繞射。反射繞射元件及全息圖大體包含反射材料且使自彼反射之光繞射。在某些實施例中,體積或表面繞射元件/全息圖可為透射及反射結構之混合。繞射元件/全息圖可包括彩虹全息圖、電腦產生之繞射元件或全息圖,或其他類型之全息圖或繞射光學元件。在一些實施例中(例如,在顯示器之後側上),在應將高比例之入射光分路至光伏打裝置(及在一些實施例中,來自光源)時,反射全息圖可較優於透射全息圖,因為反射全息圖可能能夠比透射全息圖更好地收集及導引白光。在需要較高透明度之彼等實施例中(例如,在顯示器之前側上),可使用透射全息圖。在包含多個層之實施例中,透射全息圖可較優於反射全息圖。在以下所述之某些實施例中,透射層之堆疊對於增加光學效能尤其有用。如所提,透射層對於收集膜覆蓋顯示器前側之實施例亦可為有用的,以使得高比例之入射光可穿過收集膜向及自位於收集膜下方之顯示器傳遞。The volume or surface diffractive element or hologram can be operated in a transmissive or reflective mode. The transmission diffractive element or hologram generally comprises an optically transmissive material and diffracts light passing therethrough. The reflective diffractive elements and holograms generally comprise a reflective material and diffract light reflected therefrom. In some embodiments, the volume or surface diffractive element/hologram can be a mixture of transmissive and reflective structures. The diffractive element/hologram may comprise a rainbow hologram, a computer generated diffractive element or hologram, or other type of hologram or diffractive optical element. In some embodiments (eg, on the back side of the display), the reflection hologram may be superior to the transmission when a high proportion of incident light should be shunted to the photovoltaic device (and in some embodiments, from the source) Holograms, because reflection holograms may be able to collect and direct white light better than transmission holograms. In embodiments where higher transparency is desired (e.g., on the front side of the display), a transmission hologram can be used. In embodiments comprising multiple layers, the transmission hologram may be superior to the reflection hologram. In certain embodiments described below, the stack of transmissive layers is particularly useful for increasing optical performance. As mentioned, the transmissive layer can also be useful for embodiments in which the collection film covers the front side of the display such that a high proportion of incident light can pass through the collection film to and from the display located beneath the collection film.

以下參看圖13A及圖13B解釋光轉向元件242之一可能優點。圖13A展示光轉向元件242包含透射全息圖且安置於基板244之上表面上以形成收集膜240的實施例。環境光線246i以入射角θ1 入射於光轉向元件242之頂表面上。光轉向元件242使入射光線246轉向或繞射。繞射光線246r入射於基板244上,以使得在基板244中之射線246r之傳播角度為θ"1 ,其大於θTIR 。因此,在無光轉向元件242的情況下會自收集膜240中透射出且不會在基板244內橫向導引的光線246i現在在存在光轉向元件242的情況下得以收集且在收集膜240內橫向導引。因此,光轉向元件242可增加收集膜240之收集效率。相反,來自膜240之邊緣處之光源的光更可能轉向上表面。One of the possible advantages of light redirecting element 242 is explained below with reference to Figures 13A and 13B. FIG. 13A shows an embodiment in which light redirecting element 242 includes a transmission hologram and is disposed on an upper surface of substrate 244 to form collection film 240. Ambient light 246i is incident on the top surface of light redirecting element 242 at an angle of incidence θ 1 . Light turning element 242 diverts or diffracts incident light 246. The diffracted ray 246r is incident on the substrate 244 such that the angle of propagation of the ray 246r in the substrate 244 is θ" 1 which is greater than θ TIR . Thus, in the case of the light-free turning element 242, it is transmitted from the collecting film 240. Light 246i that is not laterally guided within substrate 244 is now collected in the presence of light redirecting element 242 and laterally guided within collection film 240. Thus, light redirecting element 242 can increase the collection efficiency of collection film 240 Conversely, light from a source at the edge of film 240 is more likely to turn to the upper surface.

圖13B說明光轉向元件242包含反射全息圖且安置於基板244之底表面上的實施例。射線248以角度θ1 入射於收集膜240之上表面上,以使得射線248之折射角為θ1 ′。在經折射之射線248r觸碰光轉向元件242後,其由光轉向元件242以大於基板244之臨界角θTIR 的角度θ1 "反射成射線248b。因為角度θ1 "大於臨界角θTIR ,所以射線248b隨後經由多次全內反射在收集膜240內導引。因此,原本不會由基板244導引之光線248i現在由於存在光轉向元件242而在收集膜240內導引。相反,來自膜240之邊緣處之光源的光更可能轉向上表面。FIG. 13B illustrates an embodiment in which light redirecting element 242 includes a reflective hologram and is disposed on a bottom surface of substrate 244. The ray 248 is incident on the upper surface of the collecting film 240 at an angle θ 1 such that the refracting angle of the ray 248 is θ 1 '. After the refracted beam 248r touches the light turning element 242, it is reflected by the light turning element 242 at an angle θ 1 greater than the critical angle θ TIR of the substrate 244 into the ray 248b. Because the angle θ 1 "is greater than the critical angle θ TIR , The ray 248b is then directed within the collection film 240 via multiple total internal reflections. Thus, the light 248i that would otherwise not be guided by the substrate 244 is now guided within the collection film 240 due to the presence of the light turning element 242. Conversely, light from a source at the edge of film 240 is more likely to turn to the upper surface.

圖14說明顯示裝置85之一實施例,其中收集膜80安置於反射式顯示器82之主動像素陣列之前顯示表面上。在所說明之實施例中,反射式顯示器82包含主動MEMS陣列,且更特定言之如以上關於圖1至圖7E所揭示之具有以陣列排列之可個別定址之像素的主動干涉調變器(IMOD)。在其他實施例中,反射式顯示器82可包含LCD、DLP或電泳主動式顯示技術。圖14中展示之反射式顯示器82包括上面附有收集膜80之前顯示表面。前顯示表面藉由間隔物300及/或圍繞顯示像素陣列82之支承玻璃料(seating frit)連接至背板87。陣列82包括基板20、包括固定(透明)電極之光學堆疊16,及藉由支撐物18連接至基板20之活動電極或鏡14。出於說明之目的,圖14及圖15中之IMOD陣列藉由單一IMOD示意性地表示。14 illustrates an embodiment of display device 85 in which collection film 80 is disposed on a display surface prior to an active pixel array of reflective display 82. In the illustrated embodiment, reflective display 82 includes an active MEMS array, and more particularly an active interference modulator having individually addressable pixels arranged in an array as disclosed above with respect to Figures 1-7E ( IMOD). In other embodiments, reflective display 82 can include an LCD, DLP, or electrophoretic active display technology. The reflective display 82 shown in Figure 14 includes a display surface with a collection film 80 attached thereto. The front display surface is coupled to the backing plate 87 by spacers 300 and/or a supporting frit surrounding the display pixel array 82. The array 82 includes a substrate 20, an optical stack 16 including fixed (transparent) electrodes, and a movable electrode or mirror 14 connected to the substrate 20 by a support 18. For purposes of illustration, the IMOD arrays of Figures 14 and 15 are schematically represented by a single IMOD.

在圖14之實施例中,前收集膜80具有前收集膜表面80a及後收集膜表面80b及至少一邊緣88。光伏打裝置86安置在收集膜80之邊緣88上且光源90接近光伏打裝置86或在另一邊緣位置處定位。前收集膜表面80a接收環境光95。收集膜80之光轉向特徵94將環境光95定向朝向膜80之邊緣88以藉由光伏打裝置86接收及轉化為電能。光源90發射藉由光轉向特徵94轉向反射式顯示器82之光以在無充足環境光95的情況下照明顯示器82,或結合環境光95使反射式顯示器82變亮。在一些實施例中,可省略光源90。In the embodiment of FIG. 14, the front acquisition membrane 80 has a front collection membrane surface 80a and a rear collection membrane surface 80b and at least one edge 88. Photovoltaic device 86 is disposed on edge 88 of collection film 80 and source 90 is positioned adjacent to photovoltaic device 86 or at another edge location. The front collection film surface 80a receives ambient light 95. The light turning features 94 of the collection film 80 direct the ambient light 95 toward the edge 88 of the film 80 for receipt and conversion to electrical energy by the photovoltaic device 86. Light source 90 emits light that is diverted to reflective display 82 by light turning feature 94 to illuminate display 82 without sufficient ambient light 95, or to illuminate reflective display 82 in conjunction with ambient light 95. In some embodiments, the light source 90 can be omitted.

圖15說明反射式顯示裝置85之另一實施例,其中相似元件藉由相似參考數字指示,其中具有前收集膜表面84a及後收集膜表面84b之收集膜84安置於顯示器82之主動像素陣列的後側上。環境光95穿過支撐物18或顯示器82之主動區域之間的其他透明、非主動區域以由後收集膜84之前收集膜表面84a接收。收集膜84之光轉向特徵94將光95朝向收集膜84之邊緣88重定向以藉由光伏打裝置86轉換成電能。15 illustrates another embodiment of a reflective display device 85 in which like elements are indicated by like reference numerals, wherein a collection film 84 having a front collection film surface 84a and a rear collection film surface 84b is disposed on an active pixel array of display 82. On the back side. Ambient light 95 passes through other transparent, inactive regions between the support 18 or the active regions of display 82 to be received by collection film surface 84a prior to rear collection film 84. The light turning feature 94 of the collection film 84 redirects the light 95 toward the edge 88 of the collection film 84 for conversion to electrical energy by the photovoltaic device 86.

圖16說明反射式顯示器82之像素161之陣列的平面圖。顯示像素161以列162及行163排列。列162及行163之間的區域,或非主動區域包括支撐物18及間隙164。通常,諸如支撐物18及間隙164之非主動區域以黑色遮罩遮蔽以便最小化來自此等區域之反射、最小化顯示像素161之對比率,及改良效能。在顯示像素161為反射像素之本發明之一些實施例中,光可經由反射式顯示器82之列162及行163之間的柱18及間隙164穿過至後收集膜84。轉向特徵可與非主動區域對準以便最大化光之收集或照明,無論收集膜在顯示器82之前側還是後側上。因此可消除黑色遮罩,此係因為通常由黑色遮罩吸收之光替代地分路至收集膜80、84之邊緣上之光伏打裝置86。由此減少自此等區域之反射及對比度損失,同時在此等區域中接收之光可用於產生電力。藉由消除黑色遮罩材料、黑色遮罩沈積及圖案化步驟,可減少製造顯示裝置85之總成本。在收集膜84在後側上時(圖15),可在列或行之間的間隙164中之電極條帶中形成開口165,以增加光的透射。因為圖16說明列電極162為透明之IMOD實例,所以僅反射行電極163在行電極163跨越列162之間的間隙164的位置中需要具有開口165。圖16之行電極163與圖14及圖15之活動電極或鏡14對應,同時圖16之列電極162與圖14及圖15之光學堆疊16(併有固定透明電極)對應。16 illustrates a plan view of an array of pixels 161 of reflective display 82. Display pixels 161 are arranged in columns 162 and 163. The area between column 162 and row 163, or the inactive area, includes support 18 and gap 164. Typically, inactive regions such as support 18 and gap 164 are masked with black masks to minimize reflections from such regions, minimize the contrast ratio of display pixels 161, and improve performance. In some embodiments of the invention in which display pixel 161 is a reflective pixel, light may pass through post 18 and gap 164 between column 162 and row 163 of reflective display 82 to rear collection film 84. The turning feature can be aligned with the inactive area to maximize light collection or illumination, whether the collection film is on the front side or the back side of the display 82. The black mask can thus be eliminated, as the light normally absorbed by the black mask is instead shunted to the photovoltaic device 86 on the edge of the collection films 80, 84. This reduces the reflection and contrast losses from such areas, while the light received in such areas can be used to generate electricity. By eliminating the black mask material, black mask deposition, and patterning steps, the overall cost of manufacturing the display device 85 can be reduced. When the collection film 84 is on the back side (Fig. 15), openings 165 may be formed in the electrode strips in the gaps 164 between the columns or rows to increase the transmission of light. Since FIG. 16 illustrates an example of an IMOD in which the column electrode 162 is transparent, only the reflective row electrode 163 needs to have an opening 165 in the position where the row electrode 163 spans the gap 164 between the columns 162. The row electrode 163 of FIG. 16 corresponds to the movable electrode or mirror 14 of FIGS. 14 and 15, and the column electrode 162 of FIG. 16 corresponds to the optical stack 16 of FIG. 14 and FIG. 15 (and has a fixed transparent electrode).

圖17A示意性地說明透射反射顯示器82',其中一些光穿過顯示器82'且一些光在主動更改之影像中自顯示器82'之像素反射。在某些實施例中,穿過主動顯示像素陣列之可見光的百分比在約5%至約50%之範圍內。圖17中說明之顯示器82'為在圖式中藉由包含基板170、吸收層171、光學共振腔172、部分反射層173及光源174之單一IMOD表示之透明干涉調變器(IMOD)的陣列。基板170為至少部分光學透明的。吸收層171定位在基板170下,且吸收層171為部分光學透射的。反射層173定位在基板170下且在吸收層171定位在基板170與反射層173之間的情況下與吸收層171間隔開。根據以上描述之IMOD,部分反射體173可在光學腔172中移動。反射層173亦為部分反射及部分透射的。光源174相對於基板170定位,以使得吸收層171及反射層173位於基板170與光源174之間。儘管未圖示,但是背板可定位在部分反射體173與背光174之間。Figure 17A schematically illustrates a transflective display 82' in which some of the light passes through the display 82' and some of the light is reflected from the pixels of the display 82' in the actively altered image. In some embodiments, the percentage of visible light that passes through the active display pixel array is in the range of from about 5% to about 50%. The display 82' illustrated in Figure 17 is an array of transparent interference modulators (IMODs) represented by a single IMOD comprising a substrate 170, an absorbing layer 171, an optical resonant cavity 172, a partially reflective layer 173, and a light source 174 in the drawings. . The substrate 170 is at least partially optically transparent. The absorber layer 171 is positioned below the substrate 170 and the absorber layer 171 is partially optically transmissive. The reflective layer 173 is positioned below the substrate 170 and spaced apart from the absorber layer 171 with the absorber layer 171 positioned between the substrate 170 and the reflective layer 173. Partial reflector 173 can move within optical cavity 172 in accordance with the IMOD described above. The reflective layer 173 is also partially reflective and partially transmissive. The light source 174 is positioned relative to the substrate 170 such that the absorber layer 171 and the reflective layer 173 are located between the substrate 170 and the light source 174. Although not shown, the backing plate can be positioned between the partial reflector 173 and the backlight 174.

在某些實施例中,在第一方向175上自顯示器82'發射之光包含光之第一部分、光之第二部分,及光之第三部分。在第一方向175上,光之第一部分入射於基板170上透射穿過基板170、透射穿過吸收層171、藉由反射層173反射、透射穿過吸收層171、透射穿過基板170,且自基板170發射。在第一方向175上,光之第二部分入射於基板170上、透射穿過基板170、藉由吸收層171反射、透射穿過基板170,且自基板170發射。在第一方向175上,光之第三部分來自光源174且入射於反射層173上、透射穿過反射層173、透射穿過吸收層171、透射穿過基板170,且自基板170發射。In some embodiments, the light emitted from display 82' in first direction 175 includes a first portion of light, a second portion of light, and a third portion of light. In a first direction 175, a first portion of the light is incident on the substrate 170, transmitted through the substrate 170, transmitted through the absorbing layer 171, reflected by the reflective layer 173, transmitted through the absorbing layer 171, transmitted through the substrate 170, and It is emitted from the substrate 170. In a first direction 175, a second portion of the light is incident on the substrate 170, transmitted through the substrate 170, reflected by the absorbing layer 171, transmitted through the substrate 170, and emitted from the substrate 170. In the first direction 175, a third portion of the light is from the light source 174 and is incident on the reflective layer 173, transmitted through the reflective layer 173, transmitted through the absorbing layer 171, transmitted through the substrate 170, and emitted from the substrate 170.

在某些實施例中,基板170包含玻璃或塑膠材料。在某些實施例中,吸收層171包含鉻。在某些實施例中,反射層173包含金屬層(例如,具有小於300埃之厚度的鋁層)。在某些實施例中,反射層173之透射率視反射層173之厚度而定。In some embodiments, the substrate 170 comprises a glass or plastic material. In certain embodiments, the absorbing layer 171 comprises chromium. In some embodiments, reflective layer 173 comprises a metal layer (eg, an aluminum layer having a thickness of less than 300 angstroms). In some embodiments, the transmittance of the reflective layer 173 depends on the thickness of the reflective layer 173.

對於所說明之透射反射IMOD,吸收層171及反射層173中之至少一者可選擇性地移動以便改變吸收層171與反射層173之間的間距,以使得使用干涉原理選擇性地產生兩種光學狀態。在某些實施例中,顯示裝置85包含顯示系統之可致動元件(例如,像素或子像素)。For the illustrated transflective IMOD, at least one of the absorbing layer 171 and the reflective layer 173 is selectively movable to change the spacing between the absorbing layer 171 and the reflective layer 173 such that two types are selectively generated using the principle of interference. Optical state. In some embodiments, display device 85 includes an actuatable element (eg, a pixel or sub-pixel) of the display system.

在某些實施例中,根據關於圖1至圖7E論述之正常IMOD操作,光之第一部分與光之第二部分干涉以產生具有第一色彩之光。第一色彩視可在至少兩種狀態之間改變之光學腔大小而定。In some embodiments, in accordance with the normal IMOD operation discussed with respect to Figures 1 through 7E, the first portion of light interferes with the second portion of light to produce light having a first color. The first color depends on the size of the optical cavity that can be changed between at least two states.

在某些實施例中,光源174可選擇性地更改光之第一部分與第二部分之干涉總和的色彩。光源174可經接通以形成產生不同色彩之第三狀態。然而,可在無環境光的情況下產生不同色彩。In some embodiments, light source 174 can selectively modify the color of the sum of the interference of the first portion and the second portion of light. Light source 174 can be turned on to form a third state that produces a different color. However, different colors can be produced without ambient light.

在某些實施例中,顯示裝置85可自第一方向175及大體與第一方向相反之第二方向176兩者檢視。舉例而言,某些此等實施例之顯示裝置85可自顯示裝置85之第一側上的第一位置及自顯示裝置85之第二側上的第二位置檢視。在某些實施例中,在第二方向176上自顯示裝置85發射之光包含光之第四部分、光之第五部分,及光之第六部分。在某些實施例中,在第二方向176上,光之第四部分入射於基板170上、透射穿過基板170、透射穿過吸收層171、透射穿過反射層173,且自顯示裝置85發射。在某些實施例中,在第二方向176上,光之第五部分入射於反射層173上、透射穿過反射層173、自吸收層171反射、透射穿過反射層173,且自顯示裝置85發射。在某些實施例中,在第二方向176上,光之第六部分入射於反射層173上、自反射層173反射,且自顯示裝置85發射。在某些實施例中,光之第五部分包含藉由光源174發射之光且光之第六部分包含藉由光源174發射之光。如同前側一樣,視背光174接通還是關斷及是否存在環境光而定,額外色彩狀態自後側或第二方向176可見。In some embodiments, display device 85 can be viewed from both the first direction 175 and the second direction 176 that is generally opposite the first direction. For example, some of the display devices 85 of such embodiments can be viewed from a first location on a first side of the display device 85 and a second location on a second side of the display device 85. In some embodiments, the light emitted from display device 85 in second direction 176 includes a fourth portion of light, a fifth portion of light, and a sixth portion of light. In some embodiments, in a second direction 176, a fourth portion of light is incident on the substrate 170, transmitted through the substrate 170, transmitted through the absorbing layer 171, transmitted through the reflective layer 173, and from the display device 85. emission. In some embodiments, in a second direction 176, a fifth portion of the light is incident on the reflective layer 173, transmitted through the reflective layer 173, reflected from the absorber layer 171, transmitted through the reflective layer 173, and self-displayed 85 launches. In some embodiments, in the second direction 176, a sixth portion of the light is incident on the reflective layer 173, reflected from the reflective layer 173, and emitted from the display device 85. In some embodiments, the fifth portion of the light includes light emitted by the light source 174 and the sixth portion of the light includes light emitted by the light source 174. As with the front side, depending on whether the backlight 174 is turned "on" or "off" and whether ambient light is present, an additional color state is visible from the back side or second direction 176.

參看圖17B,圖17A之背光可由後收集膜84替換,該後收集膜84接收來自光源90之光(例如,沿收集膜84之邊緣88注入)、沿收集膜84導引光,且將光重定向且向透射反射顯示器82'之像素發射,藉此提供後側照明。收集膜84可包括定位在收集膜84內或定位在收集膜84上之轉向特徵,其中斷光在收集膜84內之傳播以跨越後收集膜84之前表面84a向顯示器82'之前表面均一地發射。此外,可藉由自光源90之前向照亮結合透射反射IMOD顯示器82'之前側上的前收集/照明膜80產生額外色彩狀態。可在前側收集膜80或後側收集膜84上提供光伏打裝置86。Referring to Figure 17B, the backlight of Figure 17A can be replaced by a post-collection film 84 that receives light from source 90 (e.g., implanted along edge 88 of collection film 84), directs light along collection film 84, and directs light. The light is redirected and transmitted to the pixels of the transflective display 82', thereby providing rear side illumination. The collection film 84 can include a turning feature positioned within the collection film 84 or positioned on the collection film 84 that interrupts the propagation of light within the collection film 84 to uniformly spread across the surface 84a of the rear collection film 84 to the front surface of the display 82'. . In addition, an additional color state can be produced by illuminating the front collection/illumination film 80 on the front side of the transflective IMOD display 82' from the source 90 prior to illumination. A photovoltaic device 86 can be provided on the front side collection film 80 or the back side collection film 84.

圖18說明具有安置於發射顯示器82"之前顯示表面82a上之前收集膜80的顯示裝置85之一實施例。顯示器82"之像素為發射式的,諸如LCD、LED、OLED、FED技術,或顯示器82"包括背光。在一些實施例中,顯示像素為透射反射式的,諸如圖17A或圖17B之背光式IMOD,其允許一些光穿過顯示器82"之主動像素區域。Figure 18 illustrates one embodiment of a display device 85 having a collection film 80 disposed on a display surface 82a prior to emissive display 82. The pixels of display 82" are emissive, such as LCD, LED, OLED, FED technology, or display 82" includes a backlight. In some embodiments, the display pixels are transflective, such as the backlit IMOD of Figure 17A or Figure 17B, which allows some of the light to pass through the active pixel area of the display 82".

環境光95由前收集膜80之前收集膜表面80a接收且經由光轉向特徵94重定向至收集膜80之邊緣88以藉由光伏打裝置86轉換成電能。來自發射顯示器82"之光發射由前收集膜80之後收集膜表面80b接收之光。光轉向特徵94將光朝向收集膜80之邊緣88重定向以藉由光伏打裝置86轉換成電能。來自發射顯示器82"之光發射穿過轉向特徵84之間的光,其可照明顯示裝置85。The ambient light 95 is received by the collection film surface 80a prior to the front collection film 80 and redirected to the edge 88 of the collection film 80 via the light turning feature 94 for conversion to electrical energy by the photovoltaic device 86. Light from the emission display 82" is collected by the front collection film 80 and collected by the film surface 80b. The light turning feature 94 redirects the light toward the edge 88 of the collection film 80 for conversion to electrical energy by the photovoltaic device 86. From emission Light from display 82" is emitted through light between turning features 84, which illuminates display device 85.

圖19說明顯示裝置85之一實施例,其中後收集膜84安置在發射顯示器82"下。如所說明,與圖17B之透射反射IMOD 82"類似,後收集膜84耦合至光源90且充當集光單元及背光兩者。併有圖19之背光的發射顯示器82"可使用任何背光主動顯示技術,諸如背光LCD。Figure 19 illustrates an embodiment of a display device 85 in which the rear collection film 84 is disposed under the emission display 82". As illustrated, similar to the transflective IMOD 82" of Figure 17B, the rear collection film 84 is coupled to the light source 90 and acts as a set. Both the light unit and the backlight. And the emissive display 82" having the backlight of Figure 19 can use any backlight active display technology, such as a backlit LCD.

如圖19中所見,環境光95穿過顯示器82"且經由光轉向特徵94自後收集膜84之前收集膜表面84a重定向至後收集膜84的邊緣88,以藉由光伏打裝置86轉換成電能。光源90安置在後收集膜84之邊緣88上且發射經由光轉向特徵94朝向顯示器82"重定向之光,以便照明顯示裝置85。As seen in FIG. 19, the ambient light 95 passes through the display 82" and is redirected to the edge 88 of the rear collection film 84 by the collection film surface 84a from the rear collection film 84 via the light turning feature 94 for conversion by the photovoltaic device 86. Electrical energy. Light source 90 is disposed on edge 88 of rear collection film 84 and emits light redirected toward display 82 via light turning feature 94 to illuminate display device 85.

圖20說明安置在發射顯示器82"與發射顯示器82"之背光174之間的後收集膜84。環境光95穿過顯示器82"以由後收集膜84之前收集膜表面84a接收且經由光轉向特徵94重定向至後收集膜84之邊緣88,以藉由光伏打裝置86轉換成電能。背光174發射由後收集膜84之後收集膜表面84b接收之光,其中光亦藉由光轉向特徵94重定向至後收集膜84之邊緣88以藉由光伏打裝置86(或藉由不同邊緣上之不同PV裝置)轉換成電能。背光174亦定向光穿過顯示器82"以照明顯示裝置85。將收集膜84置放在發射顯示器82"與背光174之間且使光轉向特徵與顯示裝置85之非主動區域對準可替換顯示像素161上之黑色遮罩,此係因為環境光95及發射光分路至收集膜84之邊緣處的光伏打裝置86以轉換成電能,從而減少自非主動區域反射或透射至觀察者之光。黑色遮罩減少褪色(亦即,增加主動像素之對比度)的功能可藉由收集膜滿足,同時產生電力,且省略形成黑色遮罩之步驟。如先前所論述,消除黑色遮罩可減少總加工成本及製造時間。FIG. 20 illustrates a post-collection film 84 disposed between the backlight 174 of the emissive display 82" and the emissive display 82". The ambient light 95 passes through the display 82" to be received by the collection film surface 84a prior to the rear collection film 84 and redirected to the edge 88 of the rear collection film 84 via the light turning feature 94 for conversion to electrical energy by the photovoltaic device 86. After the post-collection film 84 is emitted, the light received by the film surface 84b is collected, wherein the light is also redirected by the light turning feature 94 to the edge 88 of the post-collection film 84 for use by the photovoltaic device 86 (or by different edges) The PV device) is converted to electrical energy. The backlight 174 also directs light through the display 82" to illuminate the display device 85. The collection film 84 is placed between the emissive display 82" and the backlight 174 and the light turning features are aligned with the inactive area of the display device 85 to replace the black mask on the display pixel 161 due to ambient light 95 and emission. The light splits to the photovoltaic device 86 at the edge of the collection film 84 for conversion to electrical energy, thereby reducing light that is reflected from or transmitted to the inactive area. The black mask reduces fading (ie, increases the contrast of the active pixels) The function can be satisfied by collecting the film while generating power, and omitting the step of forming a black mask. As previously discussed, eliminating the black mask can reduce the total processing cost and manufacturing time.

圖21說明具有安置於反射式顯示器82上之前收集膜80的實施例。如在此實施例中說明,前收集膜80包含諸如圖11C之彼等光轉向特徵的不對稱光轉向特徵108。環境光95由前收集膜80之前收集膜表面80a接收且藉由光轉向特徵108重定向至該收集膜80之一邊緣88,以藉由光伏打裝置86轉換成電能。光源90位於前收集膜80之另一相對邊緣處且發射藉由光轉向特徵108朝向顯示器82重定向之光,以便照明顯示裝置85。21 illustrates an embodiment of a collection film 80 prior to placement on a reflective display 82. As illustrated in this embodiment, the front acquisition film 80 includes asymmetric light turning features 108 such as the light turning features of FIG. 11C. The ambient light 95 is received by the collection film surface 80a prior to the front collection film 80 and redirected to one edge 88 of the collection film 80 by the light turning feature 108 for conversion to electrical energy by the photovoltaic device 86. Light source 90 is located at the other opposite edge of front collection film 80 and emits light redirected toward display 82 by light turning features 108 to illuminate display device 85.

儘管上述實施方式揭示本發明之若干實施例,但是應理解,此揭示內容僅為說明性的且不限制本發明。應瞭解,所揭示之特定組態及操作可不同於如上所述之組態及操作,且本文中描述之方法可用於除製造半導體裝置以外的情形中。While the above-described embodiments disclose several embodiments of the present invention, it is understood that this disclosure is only illustrative and not limiting. It will be appreciated that the particular configurations and operations disclosed may differ from the configurations and operations described above, and that the methods described herein may be used in situations other than the fabrication of semiconductor devices.

12a...涉調變器/像素12a. . . Transformer/pixel

12b...涉調變器/像素12b. . . Transformer/pixel

14...活動反射層/金屬材料條帶/活動電極/鏡14. . . Active reflective layer / metal strip / movable electrode / mirror

14a...活動反射層14a. . . Active reflective layer

14b...活動反射層14b. . . Active reflective layer

16...光學堆疊16. . . Optical stacking

16a...光學堆疊16a. . . Optical stacking

16b...光學堆疊16b. . . Optical stacking

18...柱/支撐物18. . . Column/support

19...間隙19. . . gap

20...透明基板20. . . Transparent substrate

21...處理器twenty one. . . processor

22...陣列驅動器twenty two. . . Array driver

24...列驅動電路twenty four. . . Column drive circuit

26...行驅動電路26. . . Row driver circuit

27...網路介面27. . . Network interface

28...圖框緩衝器28. . . Frame buffer

29...驅動控制器29. . . Drive controller

30...顯示陣列/面板/顯示器30. . . Display array/panel/display

32...繫拴32. . . System

34...可變形層34. . . Deformable layer

40...顯示裝置40. . . Display device

41...外殼41. . . shell

42...支撐柱塞42. . . Support plunger

43...天線43. . . antenna

44...匯流排結構44. . . Bus structure

45...揚聲器45. . . speaker

46...麥克風46. . . microphone

47...收發器47. . . transceiver

48...輸入裝置48. . . Input device

50...電源50. . . power supply

52...調節硬體52. . . Adjusting hardware

80...前收集膜/前側收集膜80. . . Pre-collection membrane / anterior collection membrane

80a...前收集膜表面80a. . . Precollecting membrane surface

80b...後收集膜表面80b. . . Collecting membrane surface

82...顯示像素陣列/顯示陣列/反射式顯示器82. . . Display pixel array / display array / reflective display

82'...透射反射顯示器82'. . . Transflective display

82"...發射顯示器82"...emission display

82a...前顯示表面82a. . . Front display surface

84...後收集膜/後側收集膜84. . . Post-collection membrane/backside collection membrane

84a...前收集膜表面84a. . . Precollecting membrane surface

84b...後收集膜表面84b. . . Collecting membrane surface

85...顯示裝置85. . . Display device

86...光伏打(PV)裝置86. . . Photovoltaic (PV) device

87...背板87. . . Backplane

88...邊緣88. . . edge

90...光源90. . . light source

92...轉角92. . . Corner

94...光轉向特徵94. . . Light turning feature

95...環境光95. . . Ambient light

100...光伏打裝置100. . . Photovoltaic device

104...收集膜104. . . Collecting membrane

105...基板105. . . Substrate

108...稜鏡特徵/裂隙/光轉向特徵108. . .稜鏡 feature / crack / light turning characteristics

110...邊緣110. . . edge

112...光/光路徑112. . . Light/light path

116...v型凹槽116. . . V-groove

130...頂表面/前收集膜表面/上表面/第一側130. . . Top surface / front collecting film surface / upper surface / first side

140...底表面/後收集膜表面140. . . Bottom surface/post collection membrane surface

161...顯示像素161. . . Display pixel

162...列/列電極162. . . Column/column electrode

163...行/反射行電極163. . . Row/reflection row electrode

164...間隙164. . . gap

165...開口165. . . Opening

170...基板170. . . Substrate

171...吸收層171. . . Absorbing layer

172...光學共振腔/光學腔172. . . Optical cavity / optical cavity

173...部分反射層/部分反射體173. . . Partially reflective layer / partial reflector

174...光源/背光174. . . Light source/backlight

175...第一方向175. . . First direction

176...第二方向176. . . Second direction

200...光伏打裝置200. . . Photovoltaic device

204...第一收集膜層/第一收集膜204. . . First collecting film layer / first collecting film

208...稜鏡特徵208. . .稜鏡 characteristics

212...第二收集膜層/第二收集膜212. . . Second collecting film layer / second collecting film

216...稜鏡特徵216. . .稜鏡 characteristics

220...光線220. . . Light

224...光線224. . . Light

240...收集膜240. . . Collecting membrane

242...光轉向元件或層242. . . Light turning element or layer

244...基板244. . . Substrate

246...入射光線246. . . Incident light

246i...環境光線/光線246i. . . Ambient light/light

246r...繞射光線/射線246r. . . Diffraction light/ray

248...射線248. . . Rays

248b...射線248b. . . Rays

248i...光線248i. . . Light

248r...射線248r. . . Rays

300...間隔物300. . . Spacer

308...繞射特徵308. . . Diffractive feature

312...射線312. . . Rays

F1...小面F1. . . Facet

F2...小面F2. . . Facet

F3...小面F3. . . Facet

F4...小面F4. . . Facet

圖1為描繪干涉調變器顯示器之一實施例之一部分的等角視圖,其中第一干涉調變器之活動反射層處於鬆弛位置中且第二干涉調變器之活動反射層處於致動位置中。1 is an isometric view of a portion of one embodiment of an interference modulator display in which the active reflective layer of the first interferometric modulator is in a relaxed position and the active reflective layer of the second interferometric modulator is in an actuated position in.

圖2為說明併有3×3干涉調變器顯示器之電子裝置之一實施例的系統方塊圖。2 is a system block diagram illustrating one embodiment of an electronic device incorporating a 3x3 interferometric modulator display.

圖3為圖1之干涉調變器之一例示性實施例的活動鏡位置對外加電壓之圖。3 is a diagram of the movable mirror position applied voltage of an exemplary embodiment of the interference modulator of FIG. 1.

圖4為可用來驅動干涉調變器顯示器之一組列及行電壓的說明。Figure 4 is an illustration of one of the arrays and row voltages that can be used to drive an interferometric modulator display.

圖5A說明圖2之3×3干涉調變器顯示器中之一例示性顯示資料圖框。Figure 5A illustrates an exemplary display data frame of the 3 x 3 interferometric modulator display of Figure 2.

圖5B說明可用來寫入圖5A之圖框之列及行信號的一例示性時序圖。Figure 5B illustrates an exemplary timing diagram that can be used to write the columns and rows of the frame of Figure 5A.

圖6A及6B為說明包含複數個干涉調變器之視覺顯示裝置之一實施例的系統方塊圖。6A and 6B are system block diagrams illustrating one embodiment of a visual display device including a plurality of interferometric modulators.

圖7A為圖1之裝置的橫截面。Figure 7A is a cross section of the device of Figure 1.

圖7B為干涉調變器之一替代性實施例之橫截面。Figure 7B is a cross section of an alternative embodiment of an interference modulator.

圖7C為干涉調變器之另一替代性實施例之橫截面。Figure 7C is a cross section of another alternative embodiment of an interference modulator.

圖7D為干涉調變器之又一替代性實施例之橫截面。Figure 7D is a cross section of yet another alternative embodiment of an interference modulator.

圖7E為干涉調變器之額外替代性實施例之橫截面。Figure 7E is a cross section of an additional alternative embodiment of an interference modulator.

圖8為上覆於顯示像素陣列之收集膜及相關聯光伏打裝置以及下伏於顯示像素陣列的另一此收集膜之橫截面的示意性說明。Figure 8 is a schematic illustration of a cross section of a collection film overlying a display pixel array and associated photovoltaic device and another such collection film underlying the display pixel array.

圖9為上覆於顯示像素陣列之收集膜及相關聯光伏打裝置及光源以及下伏於顯示像素陣列的另一此收集膜之橫截面的示意性說明。9 is a schematic illustration of a cross section of a collection film overlying a display pixel array and associated photovoltaic device and light source, and another such collection film underlying the display pixel array.

圖10A為具有光轉向特徵之收集膜的俯視平面圖,其中光伏打裝置及光源在收集膜之一轉角處彼此接近安置。Figure 10A is a top plan view of a collection film having light turning features in which photovoltaic devices and light sources are placed in close proximity to each other at one corner of the collection film.

圖10B為具有光伏打裝置及光源之收集膜之一實施例的轉角之示意性說明。Figure 10B is a schematic illustration of the corners of one embodiment of a collection membrane having a photovoltaic device and a light source.

圖10C為展示光伏打裝置及光源組態之額外實施例的示意性說明。Figure 10C is a schematic illustration showing an additional embodiment of a photovoltaic device and light source configuration.

圖11A為包含複數個稜鏡特徵以收集光及將其導引至光伏打裝置之稜鏡收集膜的示意性橫截面側視圖。Figure 11A is a schematic cross-sectional side view of a ruthenium collection film comprising a plurality of ruthenium features to collect light and direct it to a photovoltaic device.

圖11B為包含複數個稜鏡特徵以收集光及將其導引至光伏打裝置之稜鏡收集膜的另一示意性截面圖。Figure 11B is another schematic cross-sectional view of a ruthenium collection film comprising a plurality of ruthenium features to collect light and direct it to a photovoltaic device.

圖11C為包含複數個稜鏡裂隙以收集光及將其導引至光伏打裝置之稜鏡收集膜的另一示意性截面圖。Figure 11C is another schematic cross-sectional view of a ruthenium collection film comprising a plurality of ruthenium fractures to collect light and direct it to a photovoltaic device.

圖11D說明包含兩層具有交錯特徵之堆疊稜鏡收集膜以在更大的效率下收集光及將其導引至光伏打裝置的實施例。Figure 11D illustrates an embodiment comprising two layers of stacked tantalum collection films with staggered features to collect light and direct it to the photovoltaic device at greater efficiency.

圖12為包括繞射轉向特徵之收集膜之示意性說明。Figure 12 is a schematic illustration of a collection film including a diffractive turning feature.

圖13A示意性地說明安置於收集膜之上表面上之包含透射全息圖的光轉向特徵。Figure 13A schematically illustrates a light turning feature comprising a transmission hologram disposed on an upper surface of a collecting film.

圖13B示意性地說明安置於收集膜之下表面上之包含反射全息圖的光轉向特徵。Figure 13B schematically illustrates a light turning feature comprising a reflection hologram disposed on a lower surface of the collection film.

圖14為在前側上具有收集膜之反射干涉調變器顯示器之一實施例的示意性橫截面。14 is a schematic cross section of one embodiment of a reflective interference modulator display having a collection film on the front side.

圖15為在後側上具有收集膜之反射干涉調變器顯示器之另一實施例的示意性橫截面。Figure 15 is a schematic cross section of another embodiment of a reflective interference modulator display having a collection film on the back side.

圖16為以列及行排列之主動式顯示像素陣列的示意性平面圖。Figure 16 is a schematic plan view of an active display pixel array arranged in columns and rows.

圖17A為併有背光之透射反射干涉調變(IMOD)顯示器的示意性橫截面。Figure 17A is a schematic cross section of a transflective intermodulation modulation (IMOD) display with backlight.

圖17B為背光由具有轉向特徵之收集/照明膜提供之透射反射IMOD顯示器的示意性橫截面。Figure 17B is a schematic cross section of a transflective IMOD display with backlight provided by a collection/illumination film having turning features.

圖18為在前側上具有收集膜之發射式顯示裝置之一實施例的示意性橫截面。Figure 18 is a schematic cross section of one embodiment of an emissive display device having a collection film on the front side.

圖19為在後側上具有收集膜之發射式顯示裝置之另一實施例的示意性橫截面。Figure 19 is a schematic cross section of another embodiment of an emissive display device having a collection film on the back side.

圖20為在主動式顯示像素與背光之間具有收集膜之發射式顯示裝置之另一實施例的示意性橫截面。20 is a schematic cross section of another embodiment of an emissive display device having a collection film between an active display pixel and a backlight.

圖21為具有具不對稱轉向特徵之收集膜的發射式顯示裝置之另一實施例的示意性橫截面。Figure 21 is a schematic cross section of another embodiment of an emissive display device having a collection film having asymmetric steering characteristics.

14...活動反射層/金屬材料條帶/活動電極/鏡14. . . Active reflective layer / metal strip / movable electrode / mirror

16...光學堆疊16. . . Optical stacking

18...柱/支撐物18. . . Column/support

20...前收集膜/前側收集膜20. . . Pre-collection membrane / anterior collection membrane

80a...前收集膜表面80a. . . Precollecting membrane surface

80b...後收集膜表面80b. . . Collecting membrane surface

82...顯示像素陣列/顯示陣列/反射式顯示器82. . . Display pixel array / display array / reflective display

85...顯示裝置85. . . Display device

86...光伏打(PV)裝置86. . . Photovoltaic (PV) device

87...背板87. . . Backplane

88...邊緣88. . . edge

90...光源90. . . light source

94...光轉向特徵94. . . Light turning feature

95...環境光95. . . Ambient light

300...間隔物300. . . Spacer

Claims (30)

一種顯示裝置,其包含:一主動干涉調變器(IMOD)顯示像素陣列,其具有一前顯示表面及一後顯示表面;至少一收集膜,其鄰近於該前顯示表面或該後顯示表面中之一者,該收集膜具有一前收集膜表面、一後收集膜表面、至少一邊緣,及複數個光轉向特徵,其中該等光轉向特徵經組態以將在該前收集膜表面或該後收集膜表面與該收集膜之一邊緣之間的光重定向;及一光伏打裝置,其用於產生耦合至該收集膜之該邊緣上之電力且經導向以接收自該等光轉向特徵橫向透射穿過該收集膜表面之光。 A display device comprising: an active interference modulator (IMOD) display pixel array having a front display surface and a rear display surface; at least one collection film adjacent to the front display surface or the rear display surface In one aspect, the collection film has a front collection film surface, a rear collection film surface, at least one edge, and a plurality of light turning features, wherein the light turning features are configured to be used on the front collection film surface or Light redirection between the surface of the collection film and one of the edges of the collection film; and a photovoltaic device for generating electrical power coupled to the edge of the collection film and directed to receive light deflection characteristics from the light Light transmitted transversely through the surface of the collection film. 如請求項1之顯示裝置,其進一步包含一耦合至該收集膜之一邊緣上之光源。 The display device of claim 1, further comprising a light source coupled to an edge of one of the collection films. 如請求項2之顯示裝置,其中該光源包含一發光二極體(LED)。 The display device of claim 2, wherein the light source comprises a light emitting diode (LED). 如請求項1之顯示裝置,其中該光源耦合至與該光伏打裝置相同之邊緣上。 The display device of claim 1, wherein the light source is coupled to the same edge as the photovoltaic device. 如請求項1之顯示裝置,其中該光源安置於與該光伏打裝置不同之位置處。 The display device of claim 1, wherein the light source is disposed at a different location from the photovoltaic device. 如請求項1之顯示裝置,其中該收集膜包含一具有一在約0.5mm至10mm之間的厚度之薄膜。 The display device of claim 1, wherein the collecting film comprises a film having a thickness of between about 0.5 mm and 10 mm. 如請求項1之顯示裝置,其進一步包含於一堆疊結構中之複數個收集膜,每一收集膜具有一前收集膜表面、一 後收集膜表面、至少一邊緣及複數個光轉向特徵,其中該等光轉向特徵經組態以將在該前收集膜表面或該後收集膜表面與該收集膜之一邊緣之間的光重定向。 The display device of claim 1, further comprising a plurality of collecting films in a stacked structure, each collecting film having a front collecting film surface, Collecting a film surface, at least one edge, and a plurality of light turning features, wherein the light turning features are configured to light light between the front collecting film surface or the back collecting film surface and one of the collecting film edges Orientation. 如請求項1之顯示裝置,其中該收集膜之該等光轉向特徵包含若干稜鏡特徵。 The display device of claim 1, wherein the light turning features of the collecting film comprise a plurality of 稜鏡 features. 如請求項8之顯示裝置,其中該等稜鏡特徵為對稱的。 The display device of claim 8, wherein the features are symmetrical. 如請求項8之顯示裝置,其中該等稜鏡特徵為不對稱的。 The display device of claim 8, wherein the features are asymmetrical. 如請求項10之顯示裝置,其中該等稜鏡特徵包含若干裂隙。 The display device of claim 10, wherein the haptic features comprise a plurality of crevices. 如請求項10之顯示裝置,其中該光伏打裝置及一光源耦合至該收集膜之相對邊緣上且該收集膜之該等不對稱稜鏡特徵經組態以將來自該前收集膜表面之環境光重定向至該光伏打裝置且將自該光源發射之光重定向至該後收集膜表面。 The display device of claim 10, wherein the photovoltaic device and a light source are coupled to opposite edges of the collection film and the asymmetrical features of the collection film are configured to provide an environment from the front collection film surface Light is redirected to the photovoltaic device and light emitted from the source is redirected to the surface of the post collection film. 如請求項1之顯示裝置,其中該等光轉向特徵包含若干繞射特徵。 The display device of claim 1, wherein the light turning features comprise a plurality of diffractive features. 如請求項1之顯示裝置,其中該等光轉向特徵包含若干全息特徵。 The display device of claim 1, wherein the light turning features comprise a plurality of holographic features. 如請求項1之顯示裝置,其中該收集膜安置於該主動顯示像素陣列之該前顯示表面上。 The display device of claim 1, wherein the collection film is disposed on the front display surface of the active display pixel array. 如請求項1之顯示裝置,其中該收集膜安置於該主動顯示像素陣列之該後顯示表面上。 The display device of claim 1, wherein the collection film is disposed on the rear display surface of the active display pixel array. 如請求項16之顯示裝置,其中一第二收集膜安置於該主 動顯示像素陣列之該前顯示表面上。 The display device of claim 16, wherein a second collection film is disposed on the main Dynamically displaying the front display surface of the pixel array. 如請求項16之顯示裝置,其中環境光可穿過在該陣列之主動像素區域之間的至少一非主動區域。 The display device of claim 16, wherein the ambient light is permeable to at least one inactive region between the active pixel regions of the array. 如請求項18之顯示裝置,其中該主動顯示像素陣列之該等像素為透射反射式的,其中一部分環境光穿過主動像素區域以到達該收集膜。 The display device of claim 18, wherein the pixels of the active display pixel array are transflective, wherein a portion of ambient light passes through the active pixel region to reach the collection film. 如請求項18之顯示裝置,其中該非主動區域包含在若干像素之間的若干區域。 The display device of claim 18, wherein the inactive area comprises a plurality of regions between the plurality of pixels. 如請求項18之顯示裝置,其中一約5%至約50%之百分比之可見光被允許穿過該主動顯示像素陣列。 A display device according to claim 18, wherein from about 5% to about 50% of the visible light is allowed to pass through the active display pixel array. 一種顯示裝置,其包含:一顯示像素陣列;至少一收集膜,其安置於該顯示像素陣列的一前表面上,該收集膜具有複數個光轉向特徵,其中該等光轉向特徵經組態以將在一前收集膜表面與該收集膜之若干邊緣之間的光重定向;至少一光伏打裝置,其用於產生耦合至該收集膜之一第一邊緣處之電力,其中該光伏打裝置經導向以接收自該等光轉向特徵穿過該收集膜橫向透射之光;及至少一光源,其安置於一第二邊緣處,其中該光源發射橫向穿過該收集膜的光以待由該等光轉向特徵朝向該顯示像素陣列轉向。 A display device comprising: a display pixel array; at least one collection film disposed on a front surface of the display pixel array, the collection film having a plurality of light turning features, wherein the light turning features are configured Redirecting light between a front collection membrane surface and edges of the collection membrane; at least one photovoltaic device for generating electrical power coupled to a first edge of the collection membrane, wherein the photovoltaic device Directed to receive light transmitted laterally through the collection film from the light redirecting features; and at least one light source disposed at a second edge, wherein the light source emits light transversely through the collection film to be The iso-optical turning feature is turned toward the array of display pixels. 一種顯示裝置,其包含:一用於顯示及更改一反射干涉調變器(IMOD)的影像之 構件,該用於顯示及更改影像之構件具有一前顯示表面及一後顯示表面;一用於藉由將光能轉換為電能而產生電力的構件;及一收集膜,其鄰近於該前顯示表面或該後顯示表面中之一者,該收集膜具有一前收集膜表面、一後收集膜表面,及複數個光轉向特徵,其中該等光轉向特徵經組態以將入射在該前收集膜表面或該後收集膜表面的光重定向至一安置於該收集膜之一邊緣之用於將光能轉換為電能之構件。 A display device includes: an image for displaying and modifying a reflection interference modulator (IMOD) a member for displaying and changing an image having a front display surface and a rear display surface; a member for generating electric power by converting light energy into electric energy; and a collecting film adjacent to the front display One of a surface or a rear display surface, the collection film having a front acquisition membrane surface, a rear collection membrane surface, and a plurality of light turning features, wherein the light turning features are configured to collect incidents prior to the collection Light from the surface of the membrane or the surface of the collection membrane is redirected to a member disposed at one of the edges of the collection membrane for converting light energy into electrical energy. 如請求項23之顯示裝置,其進一步包含一用於發射光之構件。 The display device of claim 23, further comprising a member for emitting light. 如請求項23之顯示裝置,其中該用於顯示影像之構件包含一主動顯示像素陣列。 The display device of claim 23, wherein the means for displaying the image comprises an active display pixel array. 如請求項23之顯示裝置,其中該用於將光能轉換為一替代形式之能量的構件包含一光伏打裝置。 The display device of claim 23, wherein the means for converting light energy into an alternative form of energy comprises a photovoltaic device. 一種集光及影像顯示方法,其包含:在一影像區域中主動顯示影像,其中主動顯示包含移動一微機電系統(MEMS)鏡且其中該影像區域包含顯示像素陣列,其操作地耦合至至少一收集膜;藉由一收集膜收集來自該影像區域之光,該收集膜具有複數個光轉向特徵以將來自該影像區域之該光重定向至安置於該影像區域之一邊緣上之一光伏打裝置;及藉由將該重定向之光轉換為一電流以產生電力。 A method of collecting light and displaying images, comprising: actively displaying an image in an image region, wherein the active display comprises a mobile-micro electro mechanical system (MEMS) mirror and wherein the image region comprises an array of display pixels operatively coupled to at least one Collecting a film; collecting light from the image area by a collection film having a plurality of light turning features to redirect the light from the image area to one of the edges disposed on one of the image areas And generating the power by converting the redirected light into a current. 如請求項27之方法,其進一步包含自該影像區域之一邊 緣發射光及將該光轉向至該影像區域。 The method of claim 27, further comprising one side of the image area The edge emits light and diverts the light to the image area. 一種製造一顯示裝置之方法,其包含:將一收集膜可操作地耦合至一主動顯示像素陣列之一前顯示表面,該收集膜具有一前收集膜表面、一後收集膜表面、至少一邊緣,及複數個光轉向特徵;及使用於產生電力之一光伏打裝置與該收集膜之該邊緣對準,以使得該等光轉向特徵將環境光自該前收集膜表面重定向至該收集膜之該邊緣處的該光伏打裝置以轉換成電能。 A method of fabricating a display device, comprising: operatively coupling a collection film to a front display surface of an active display pixel array, the collection film having a front acquisition film surface, a rear collection film surface, at least one edge And a plurality of light turning features; and a photovoltaic device for generating electricity is aligned with the edge of the collecting film such that the light turning features redirect ambient light from the front collecting film surface to the collecting film The photovoltaic device at the edge is converted to electrical energy. 如請求項29之方法,其進一步包含在該收集膜之一邊緣上安置一光源以發射光。The method of claim 29, further comprising placing a light source on one of the edges of the collection film to emit light.
TW97144259A 2007-11-16 2008-11-14 Simultaneous light collection and illumination on an active display TWI467523B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/941,851 US20090126792A1 (en) 2007-11-16 2007-11-16 Thin film solar concentrator/collector
US9368608P 2008-09-02 2008-09-02

Publications (2)

Publication Number Publication Date
TW200929117A TW200929117A (en) 2009-07-01
TWI467523B true TWI467523B (en) 2015-01-01

Family

ID=40429878

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97144259A TWI467523B (en) 2007-11-16 2008-11-14 Simultaneous light collection and illumination on an active display

Country Status (6)

Country Link
EP (1) EP2210282A1 (en)
JP (1) JP5314039B2 (en)
KR (1) KR20100094511A (en)
CN (1) CN101861658B (en)
TW (1) TWI467523B (en)
WO (1) WO2009065069A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
EP1943551A2 (en) 2006-10-06 2008-07-16 Qualcomm Mems Technologies, Inc. Light guide
EP1943555B1 (en) 2006-10-06 2012-05-02 QUALCOMM MEMS Technologies, Inc. Optical loss structure integrated in an illumination apparatus of a display
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
JP5561582B2 (en) * 2009-11-17 2014-07-30 大日本印刷株式会社 Organic EL display device
KR101101417B1 (en) * 2010-02-11 2012-01-02 경북대학교 산학협력단 Planar solar collection apparatus and photoelectric conversion apparatus
EP2545544A1 (en) 2010-03-11 2013-01-16 Pixtronix, Inc. Reflective and transflective operation modes for a display device
US8735791B2 (en) 2010-07-13 2014-05-27 Svv Technology Innovations, Inc. Light harvesting system employing microstructures for efficient light trapping
CN102346329A (en) * 2010-08-04 2012-02-08 鸿富锦精密工业(深圳)有限公司 Electronic device with charging function and electronic book device
US20120069232A1 (en) * 2010-09-16 2012-03-22 Qualcomm Mems Technologies, Inc. Curvilinear camera lens as monitor cover plate
US20120081406A1 (en) * 2010-09-30 2012-04-05 Qualcomm Mems Technologies, Inc. Integrated backlit frontlight for reflective display elements
US20120120081A1 (en) * 2010-11-16 2012-05-17 Qualcomm Mems Technologies, Inc. Illumination device with passivation layer
EP2671115B1 (en) 2011-01-31 2020-03-04 Garmin Switzerland GmbH Display device with integrated photovoltaic cells and improved brightness
US8970767B2 (en) 2011-06-21 2015-03-03 Qualcomm Mems Technologies, Inc. Imaging method and system with angle-discrimination layer
US9097826B2 (en) 2011-10-08 2015-08-04 Svv Technology Innovations, Inc. Collimating illumination systems employing a waveguide
FR3010831B1 (en) 2013-07-29 2019-06-28 Sunpartner Technologies RETROTECTIVE DISPLAY DEVICE WITH INTEGRATED PHOTOVOLTAIC CELLS
FR3020473B1 (en) 2014-04-25 2018-01-12 Sunpartner Technologies INTEGRATED PHOTOVOLTAIC CELL DISPLAY DEVICE WITH IMPROVED BRIGHTNESS AND REFLECTIVITY
WO2016057561A1 (en) * 2014-10-06 2016-04-14 Nitto Denko Corporation Electronic device comprising a holographic solar concentrator integrated in its display
WO2016183201A1 (en) * 2015-05-12 2016-11-17 Nitto Denko Corporation Solar energy collection systems utilizing holographic optical elements useful for building integrated photovoltaics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065360A (en) * 2005-11-16 2006-03-09 Omron Corp Light guide and display apparatus
TW200624864A (en) * 2004-09-27 2006-07-16 Idc Llc Interferometric modulators having charge persistence
TW200626927A (en) * 2004-09-27 2006-08-01 Idc Llc System and method of providing a regenerating protective coating in a MEMS device
US20060262562A1 (en) * 2005-05-10 2006-11-23 Citizen Electronics Co. Ltd Multifunctional-type backlight unit and information device using said backlight unit
US20070196040A1 (en) * 2006-02-17 2007-08-23 Chun-Ming Wang Method and apparatus for providing back-lighting in an interferometric modulator display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761733B2 (en) * 1988-08-18 1998-06-04 旭光学工業株式会社 LCD lighting device for camera
JPH0647928U (en) * 1992-11-30 1994-06-28 株式会社コパル Surface emitting device
US5877874A (en) * 1995-08-24 1999-03-02 Terrasun L.L.C. Device for concentrating optical radiation
US6123431A (en) * 1997-03-19 2000-09-26 Sanyo Electric Co., Ltd Backlight apparatus and light guide plate
US7369735B2 (en) * 2002-02-15 2008-05-06 Biosynergetics, Inc. Apparatus for the collection and transmission of electromagnetic radiation
JP2004103411A (en) * 2002-09-10 2004-04-02 Alps Electric Co Ltd Surface light emitting device and liquid crystal display
US7417782B2 (en) * 2005-02-23 2008-08-26 Pixtronix, Incorporated Methods and apparatus for spatial light modulation
JP4442151B2 (en) * 2003-07-25 2010-03-31 セイコーエプソン株式会社 LIGHT EMITTING DEVICE, LIGHTING DEVICE, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP2005292546A (en) * 2004-04-01 2005-10-20 Mitsubishi Electric Corp Liquid crystal display device of low power consumption
TWI401655B (en) * 2004-05-17 2013-07-11 Thomson Licensing Sa Colour display device with backlighting unit using organic light-emitting diodes and method of implementation
US7911428B2 (en) * 2004-09-27 2011-03-22 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US20060066586A1 (en) * 2004-09-27 2006-03-30 Gally Brian J Touchscreens for displays
US7750886B2 (en) * 2004-09-27 2010-07-06 Qualcomm Mems Technologies, Inc. Methods and devices for lighting displays
WO2006091860A2 (en) * 2005-02-23 2006-08-31 Pixtronix, Inc. Display apparatus and methods for manufature thereof
JP2006309408A (en) * 2005-04-27 2006-11-09 Honda Motor Co Ltd Abnormality monitoring system, abnormality monitoring server, abnormality monitoring method, and abnormality monitoring program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200624864A (en) * 2004-09-27 2006-07-16 Idc Llc Interferometric modulators having charge persistence
TW200626927A (en) * 2004-09-27 2006-08-01 Idc Llc System and method of providing a regenerating protective coating in a MEMS device
US20060262562A1 (en) * 2005-05-10 2006-11-23 Citizen Electronics Co. Ltd Multifunctional-type backlight unit and information device using said backlight unit
JP2006065360A (en) * 2005-11-16 2006-03-09 Omron Corp Light guide and display apparatus
US20070196040A1 (en) * 2006-02-17 2007-08-23 Chun-Ming Wang Method and apparatus for providing back-lighting in an interferometric modulator display device

Also Published As

Publication number Publication date
JP2011505587A (en) 2011-02-24
EP2210282A1 (en) 2010-07-28
WO2009065069A8 (en) 2009-07-09
CN101861658A (en) 2010-10-13
WO2009065069A1 (en) 2009-05-22
KR20100094511A (en) 2010-08-26
CN101861658B (en) 2014-06-04
JP5314039B2 (en) 2013-10-16
TW200929117A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
TWI467523B (en) Simultaneous light collection and illumination on an active display
US8941631B2 (en) Simultaneous light collection and illumination on an active display
JP5259728B2 (en) Light illumination of display unit having front light guide and coupling element
JP5404404B2 (en) Thin light bar and manufacturing method thereof
TWI595293B (en) Dual film light guide for illuminating displays
US8300304B2 (en) Integrated front light diffuser for reflective displays
US8068710B2 (en) Decoupled holographic film and diffuser
US8040589B2 (en) Devices and methods for enhancing brightness of displays using angle conversion layers
TWI480637B (en) An electronic device and method making a photovoltaic black mask
US20090323144A1 (en) Illumination device with holographic light guide
US20110032214A1 (en) Front light based optical touch screen
JP2010503017A (en) Angular sweep holographic illuminator
JP2012501556A (en) Light collection device having prismatic light turning features
KR20100116568A (en) System and method of illuminating interferometric modulators using backlighting
KR20060085159A (en) System and method of reducing color shift in a display
TW201604638A (en) Optical loss structure integrated in an illumination apparatus
US20130135255A1 (en) Display systems including optical touchscreen
US20130135359A1 (en) Display systems including illumination and optical touchscreen
US20100309412A1 (en) Ambient light backlight for transmissive displays

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees