TWI467167B - Electromagnetic coupling measurement device of self-excited oscillation type - Google Patents

Electromagnetic coupling measurement device of self-excited oscillation type Download PDF

Info

Publication number
TWI467167B
TWI467167B TW100149589A TW100149589A TWI467167B TW I467167 B TWI467167 B TW I467167B TW 100149589 A TW100149589 A TW 100149589A TW 100149589 A TW100149589 A TW 100149589A TW I467167 B TWI467167 B TW I467167B
Authority
TW
Taiwan
Prior art keywords
voltage
sensing module
self
measuring device
electromagnetic coupling
Prior art date
Application number
TW100149589A
Other languages
Chinese (zh)
Other versions
TW201326801A (en
Inventor
Chien Wen Chen
Woo Yang Liu
Yen Lin Pan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100149589A priority Critical patent/TWI467167B/en
Publication of TW201326801A publication Critical patent/TW201326801A/en
Application granted granted Critical
Publication of TWI467167B publication Critical patent/TWI467167B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Description

自激振盪電磁耦合量測裝置Self-oscillating electromagnetic coupling measuring device

本發明是有關於一種非接觸式量測裝置,且特別是有關於一種自激振盪電磁耦合量測裝置。The present invention relates to a non-contact measuring device, and more particularly to a self-oscillating electromagnetic coupling measuring device.

利用捲對捲(roll to roll,R2R)製程來製作電子產品的技術越來越蓬勃,例如:軟性印刷電路板、導電薄膜...等。其中,導電薄膜會在基材上被沉積,針對沉積後所形成之導電薄膜的阻抗進行量測。針對導電薄膜進行量測的裝置可以被區分成多種類型,其中非接觸式量測裝置可在不破壞待測樣品的情況下,檢測出待測樣品的特性與缺陷,因此廣泛地應用在現今的工業界。The use of roll to roll (R2R) processes to make electronic products is growing, such as flexible printed circuit boards, conductive films, and the like. Among them, a conductive film is deposited on the substrate, and the impedance of the conductive film formed after deposition is measured. The device for measuring the conductive film can be divided into various types, wherein the non-contact measuring device can detect the characteristics and defects of the sample to be tested without damaging the sample to be tested, and thus is widely used in today's industry.

目前已有一些習知技術相繼提出非接觸式量測裝置,例如:美國專利第5,559,428號、美國專利第5,731,697號以及美國專利第4,000,458號。其中,美國專利第5,559,428號、第5,731,697號與第5,731,697號主要是利用LCR進行頻率掃描,之後再進行頻率與複阻抗的特性分析,以藉此量測待測樣品的特性變化。然而,上述方法往往需進行掃頻的操作。而量測結果之非線性度與量測的可信度相關。Non-contact measuring devices have been proposed in the prior art, for example, U.S. Patent No. 5,559,428, U.S. Patent No. 5,731,697, and U.S. Patent No. 4,000,458. Among them, U.S. Patent Nos. 5,559,428, 5,731,697 and 5,731,697 mainly use LCR for frequency scanning, and then perform characteristic analysis of frequency and complex impedance to thereby measure the characteristic change of the sample to be tested. However, the above methods often require a frequency sweep operation. The non-linearity of the measurement results is related to the reliability of the measurement.

再者,在美國專利第4,000,458號中,其是將感測模組當作振盪電路的諧振元件,以利用自回授共振的方式振盪出驅動電壓。感測模組為振盪電路的諧振元件。以下提出一可針對不同的待測樣品進行量測的裝置。Furthermore, in U.S. Patent No. 4,000,458, the sensing module is used as a resonant element of the oscillating circuit to oscillate the driving voltage by self-returning resonance. The sensing module is a resonant component of the oscillating circuit. A device for measuring different samples to be tested is proposed below.

本發明提供一種自激振盪電磁耦合量測裝置,利用可調頻率振盪器調整驅動電壓的相位,以致使感測模組持續地操作在諧振頻率下,並將驅動電壓的振幅維持固定。藉此,在諧振頻率下所產生的功率耗損將反應在功率放大器所提供的驅動電流上。如此一來,將有助於提升感測模組的量測範圍以及量測的速度與線性度。The invention provides a self-oscillating electromagnetic coupling measuring device, which uses an adjustable frequency oscillator to adjust the phase of the driving voltage so that the sensing module continuously operates at the resonant frequency and maintains the amplitude of the driving voltage constant. Thereby, the power loss generated at the resonant frequency will be reflected in the drive current provided by the power amplifier. In this way, it will help to improve the measurement range of the sensing module and the speed and linearity of the measurement.

本發明提出一種自激振盪電磁耦合量測裝置,包括第一感測模組、可調頻率振盪器、振幅控制單元、功率放大器以及電流感測器。第一感測模組利用驅動電壓幅射出交變磁場以感測待測樣品,並因應其等效阻抗的變化產生回授訊號。可調頻率振盪器產生振盪電壓,並致使振盪電壓的頻率相等於第一感測模組的諧振頻率。振幅控制單元依據驅動電壓迴授產生控制資訊。功率放大器依據一增益值放大振盪電壓,以產生驅動電壓。此外,功率放大器更依據控制資訊調整增益值,以致使驅動電壓的振幅維持固定。電流感測器檢測功率放大器所產生的驅動電流,並產生與待測樣品之特性相關的檢出訊號。The invention provides a self-oscillating electromagnetic coupling measuring device, which comprises a first sensing module, an adjustable frequency oscillator, an amplitude control unit, a power amplifier and a current sensor. The first sensing module uses the driving voltage to emit an alternating magnetic field to sense the sample to be tested, and generates a feedback signal according to the change of the equivalent impedance. The adjustable frequency oscillator generates an oscillating voltage and causes the oscillating voltage to have a frequency equal to the resonant frequency of the first sensing module. The amplitude control unit generates control information according to the driving voltage feedback. The power amplifier amplifies the oscillating voltage according to a gain value to generate a driving voltage. In addition, the power amplifier adjusts the gain value based on the control information so that the amplitude of the driving voltage is maintained constant. The current sensor detects the drive current generated by the power amplifier and generates a detection signal related to the characteristics of the sample to be tested.

在本發明之一實施例中,上述之可調頻率振盪器由一鎖相迴路所構成。其中,所述鎖相迴路包括壓控振盪器、相位比較器以及低通濾波器。壓控振盪器產生振盪電壓。相位比較器比較振盪電壓與回授訊號之間的相位差,並據以產生相位誤差訊號。低通濾波器濾除相位誤差訊號中的高頻成份,並據以產生調整電壓。其中,壓控振盪器依據調整電壓重新振盪,以調整振盪電壓的頻率。In an embodiment of the invention, the adjustable frequency oscillator is constructed by a phase locked loop. The phase locked loop includes a voltage controlled oscillator, a phase comparator, and a low pass filter. The voltage controlled oscillator generates an oscillating voltage. The phase comparator compares the phase difference between the oscillating voltage and the feedback signal and generates a phase error signal accordingly. The low pass filter filters out high frequency components in the phase error signal and generates an adjusted voltage accordingly. The voltage controlled oscillator re-oscillates according to the adjusted voltage to adjust the frequency of the oscillating voltage.

在本發明之一實施例中,上述之振幅控制單元包括電壓產生器與電壓增益控制器。其中,電壓產生器產生參考電壓。電壓增益控制器將驅動電壓轉換為偵測電壓。此外,電壓增益控制器將偵測電壓與參考電壓進行比較,並依據比較結果產生控制資訊。In an embodiment of the invention, the amplitude control unit includes a voltage generator and a voltage gain controller. Wherein, the voltage generator generates a reference voltage. The voltage gain controller converts the drive voltage to a sense voltage. In addition, the voltage gain controller compares the detected voltage with the reference voltage and generates control information based on the comparison result.

在本發明之一實施例中,上述之第一感測模組包括驅動線圈與電容,且驅動線圈與電容在電性連接上相互並聯。In an embodiment of the invention, the first sensing module includes a driving coil and a capacitor, and the driving coil and the capacitor are electrically connected in parallel with each other.

在本發明之一實施例中,上述之第一感測模組包括第一繞線,且自激振盪電磁耦合量測裝置更包括第二感測模組。其中,第二感測模組包括第二繞線。此外,第一繞線與第二繞線電性相連,以形成用以產生交變磁場的驅動線圈。In an embodiment of the invention, the first sensing module includes a first winding, and the self-oscillating electromagnetic coupling measuring device further includes a second sensing module. The second sensing module includes a second winding. In addition, the first winding is electrically connected to the second winding to form a driving coil for generating an alternating magnetic field.

在本發明之一實施例中,上述之第一感測模組與第二感測模組一同設置在待測樣品的上方,或是上述之第一感測模組與第二感測模組分別設置在待測樣品的上下兩側。In an embodiment of the present invention, the first sensing module and the second sensing module are disposed together with the sample to be tested, or the first sensing module and the second sensing module. Set on the upper and lower sides of the sample to be tested.

在本發明之一實施例中,上述之自激振盪電磁耦合量測裝置更包括磁感測元件。其中,磁感測元件設置在交變磁場的路徑上,並感應交變磁場的變化,以將來自第一感測模組的第二回授訊號回授至振幅控制單元。In an embodiment of the invention, the self-oscillating electromagnetic coupling measuring device further includes a magnetic sensing component. The magnetic sensing component is disposed on the path of the alternating magnetic field and senses a change of the alternating magnetic field to feedback the second feedback signal from the first sensing module to the amplitude control unit.

在本發明之一實施例中,上述之磁感測元件與第一感測模組設置在待測樣品的同側,或是磁感測元件與第一感測模組分別設置在待測樣品的兩側。In an embodiment of the invention, the magnetic sensing component and the first sensing module are disposed on the same side of the sample to be tested, or the magnetic sensing component and the first sensing module are respectively disposed on the sample to be tested. On both sides.

在本發明之一實施例中,上述之待測樣品為一薄膜,且薄膜由不導磁材料所構成。此外,上述之自激振盪電磁耦合量測裝置依據檢出訊號判別薄膜的片電阻值。In an embodiment of the invention, the sample to be tested is a film, and the film is composed of a non-magnetic material. Further, the self-excited oscillation electromagnetic coupling measuring device described above discriminates the sheet resistance value of the film based on the detection signal.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1為依據本發明之一實施例之自激振盪電磁耦合量測裝置的示意圖。如圖1所示,自激振盪電磁耦合量測裝置100包括感測模組110、功率放大器120、可調頻率振盪器130、振幅控制單元140以及電流感測器150。在操作上,功率放大器120會提供一驅動電壓VD 給感測模組110。感測模組110將利用驅動電壓VD 產生一交變磁場。1 is a schematic diagram of a self-excited oscillation electromagnetic coupling measuring device according to an embodiment of the present invention. As shown in FIG. 1 , the self-excited oscillation electromagnetic coupling measuring device 100 includes a sensing module 110 , a power amplifier 120 , an adjustable frequency oscillator 130 , an amplitude control unit 140 , and a current sensor 150 . In operation, the power amplifier 120 provides a driving voltage V D to the sensing module 110. The sensing module 110 will generate an alternating magnetic field using the driving voltage V D .

當交變磁場通過待測樣品101時,將在待測樣品101上感應出一渦電流,且渦電流大小將和待測樣品101的特性,例如:導電率、導磁率、厚度、缺陷及距離...等有關。此外,待測樣品101所感應出的渦電流會輻射出二次磁場,以抵抗感測模組110所產生之交變磁場(亦即一次磁場)的變化。換言之,感測模組110會接收到二次磁場的變化,亦即感測模組110與待測樣品101之間將產生一耦合效應。藉此,感測模組110將可透過磁場的耦合來達成其與待測樣品101之間的能量傳遞。此外,在耦合的過程中,待測樣品101的相關資訊也將透過非接觸的方式耦合至自激振盪電磁耦合量測裝置100。When the alternating magnetic field passes through the sample 101 to be tested, an eddy current will be induced on the sample 101 to be tested, and the magnitude of the eddy current will be the same as the characteristics of the sample 101 to be tested, such as conductivity, permeability, thickness, defect, and distance. ...and so on. In addition, the eddy current induced by the sample 101 to be tested radiates a secondary magnetic field to resist the change of the alternating magnetic field (ie, the primary magnetic field) generated by the sensing module 110. In other words, the sensing module 110 receives a change in the secondary magnetic field, that is, a coupling effect between the sensing module 110 and the sample 101 to be tested. Thereby, the sensing module 110 achieves energy transfer between the sample 101 and the sample 101 to be tested by coupling the magnetic field. In addition, during the coupling process, the relevant information of the sample 101 to be tested will also be coupled to the self-oscillating electromagnetic coupling measuring device 100 in a non-contact manner.

為了致使本領域具有通常知識者能更加了解本實施例,以下將先就感測模組110與待測樣品101之間的耦合效應進行說明。In order to make the present inventors have a better understanding of the present embodiment, the coupling effect between the sensing module 110 and the sample 101 to be tested will be described below.

圖2為依據本發明之一實施例之渦電流的耦合模型的示意圖。參照圖2,耦合模型可簡單的以變壓器的模型來做近似,其中變壓器T2 的主線圈L1 相當於感測模組110中的驅動線圈,而電流I1 則相當於功率放大器120所產生的驅動電流。再者,待測樣品101所產生的渦電流,亦即電流I2 ,則是相當於由變壓器T2 的次線圈L2 所產生,且RL 為待測樣品101的阻抗。其中,變壓器T2 的中間為空氣所隔開,故存在一耦合係數K。此外,耦合係數K介於0到1之間,並與感測模組110與待測樣品101之間的距離、介質以及感測模組110的形狀...有關。2 is a schematic diagram of a coupling model of eddy currents in accordance with an embodiment of the present invention. Referring to FIG. 2, can simply be coupled to the model transformer model do approximation, wherein the primary winding of the transformer T 2 corresponds to the driving coil L 1 of the sensing module 110, the current I 1 is generated by the power amplifier 120 is equivalent to Drive current. Furthermore, the eddy current generated by the sample 101 to be tested, that is, the current I 2 , is equivalent to that generated by the secondary coil L 2 of the transformer T 2 , and R L is the impedance of the sample 101 to be tested. Wherein, the middle of the transformer T 2 is separated by air, so there is a coupling coefficient K. In addition, the coupling coefficient K is between 0 and 1, and is related to the distance between the sensing module 110 and the sample 101 to be tested, the shape of the medium and the sensing module 110.

參照圖2的耦合模型,將可利用式(1)的特性矩陣來表示雙埠變壓器之輸入/輸出端的電壓與電流關係。Referring to the coupling model of Fig. 2, the characteristic matrix of equation (1) can be used to represent the voltage-current relationship at the input/output terminals of the double-turn transformer.

其中,M為兩線圈的互感量,且M =。此外,利用式(1)的特性矩陣以及電壓與電流的關係,將可解出感測模組110的等效阻抗Z=X+jY,並可以圖3的等效電路來表示。其中,圖3為依據本發明之一實施例之感測模組的等效電路圖,且等效阻抗Z的實部X與虛部Y將如式(2)與式(3)所示:Where M is the mutual inductance of the two coils, and M = . In addition, using the characteristic matrix of equation (1) and the relationship between voltage and current, the equivalent impedance Z=X+jY of the sensing module 110 can be solved and can be represented by the equivalent circuit of FIG. 3 is an equivalent circuit diagram of a sensing module according to an embodiment of the present invention, and the real part X and the imaginary part Y of the equivalent impedance Z are as shown in equations (2) and (3):

依據式(2)與式(3)來看,感測模組110之等效阻抗的改變包括待測樣品101之阻抗RL 的變化與耦合係數K。此外,倘若感測模組110與待測樣品101之間的距離為固定,則耦合係數K將為固定值。藉此,感測模組110的等效阻抗將隨著待測樣品101的阻抗RL 產生相應變化,進而達成感測待測樣品101的目的。According to the formulas (2) and (3), the change of the equivalent impedance of the sensing module 110 includes the change of the impedance R L of the sample 101 to be tested and the coupling coefficient K. In addition, if the distance between the sensing module 110 and the sample 101 to be tested is fixed, the coupling coefficient K will be a fixed value. Thereby, the equivalent impedance of the sensing module 110 will change correspondingly with the impedance R L of the sample 101 to be tested, thereby achieving the purpose of sensing the sample 101 to be tested.

另一方面,就待測樣品101的阻抗RL 而言,以電磁波在介面的反射現象來看,電磁波的傳遞阻抗會近似於傳輸線定理,並可透過介面的穿透反射來計算出,傳遞阻抗相等於電場與磁場的比值。據此,假設待測樣品101為一不導磁材料的薄膜,則待測樣品101的阻抗RL 將可以表示為:On the other hand, in terms of the impedance R L of the sample 101 to be tested, the transmission impedance of the electromagnetic wave is approximated by the transmission line theorem, and the transmission impedance of the electromagnetic wave can be approximated by the transmission reflection of the interface. The phase is equal to the ratio of the electric field to the magnetic field. Accordingly, assuming that the sample to be tested 101 is a film of a non-magnetic material, the impedance R L of the sample 101 to be tested will be expressed as:

其中,ZP 為介面阻抗,γ為反射係數,μ0 為導磁係數,σ為材料的電導率,t為材料厚度。在穿透介質時,電磁波會發生損耗衰弱,並以指數速率在遞減。其中,當電磁波的衰減量達到37%時,其穿透材料的深度將定義為材料的穿透深度。此外,如式(5)所示,材料的穿透深度將相關於頻率與材料的導電率σ。Where Z P is the interface impedance, γ is the reflection coefficient, μ 0 is the permeability coefficient, σ is the electrical conductivity of the material, and t is the material thickness. When penetrating the medium, the electromagnetic waves are depleted and decelerated at an exponential rate. Among them, when the attenuation of the electromagnetic wave reaches 37%, the depth of the penetrating material will be defined as the penetration depth of the material. Further, as shown in the formula (5), the penetration depth of the material will be related to the frequency and the conductivity σ of the material.

與穿透深度相較之下,倘若待測樣品101的厚度為相對薄的膜材時,則根據式(4),可以計算出待測樣品101的阻抗RL 近似於薄膜的片電阻值,且如式(6)所示:Compared with the penetration depth, if the thickness of the sample to be tested 101 is a relatively thin film, according to the formula (4), it can be calculated that the impedance R L of the sample 101 to be tested approximates the sheet resistance value of the film. And as shown in equation (6):

換言之,當待測樣品101為不導磁材料的薄膜時,待測樣品101的片電阻值將視為電阻,並透過磁場耦合至感測模組110。據此,感測模組110的阻抗特性將產生相應的變化。以下將以二階電路系統來看,待測樣品101的電阻對感測模組110之阻抗所造成的影響。In other words, when the sample to be tested 101 is a thin film of a non-magnetic material, the sheet resistance value of the sample 101 to be tested will be regarded as a resistance and coupled to the sensing module 110 through the magnetic field. Accordingly, the impedance characteristics of the sensing module 110 will produce corresponding changes. The effect of the resistance of the sample 101 to be tested on the impedance of the sensing module 110 will be described below in terms of a second-order circuit system.

在本實施利中,感測模組110為具有LC特性的元件,亦即感測模組110包括一驅動線圈與一電容,且驅動線圈與電容在電性連接上相互並聯。此外,所述驅動線圈可由一個以上的繞線組合而成,且所述電容主要是用以匹配感測模組110的諧振頻率。據此,感測模組110的等效電路將如圖4所示,其中圖4為依據本發明之另一實施例之感測模組的等效電路圖。In the present embodiment, the sensing module 110 is an element having an LC characteristic, that is, the sensing module 110 includes a driving coil and a capacitor, and the driving coil and the capacitor are electrically connected in parallel with each other. In addition, the driving coil may be combined by more than one winding, and the capacitor is mainly used to match the resonant frequency of the sensing module 110. Accordingly, the equivalent circuit of the sensing module 110 will be as shown in FIG. 4, wherein FIG. 4 is an equivalent circuit diagram of the sensing module according to another embodiment of the present invention.

參照圖4,感測模組110的等效電路包括電容C、電感L與負載RP ,而可控電流源則相當於功率放大器120所提供的驅動電流ID 。再者,從可控電流源的兩端看進去,感測模組110的等效阻抗Z(jω)將如式(7)所示:Referring to FIG. 4, the equivalent circuit of the sensing module 110 includes a capacitor C, an inductor L and a load R P , and the controllable current source is equivalent to the driving current I D provided by the power amplifier 120. Furthermore, looking at the two ends of the controllable current source, the equivalent impedance Z(jω) of the sensing module 110 will be as shown in equation (7):

Z ( )=H ( )‧R P  (7) Z ( )= H ( )‧ R P (7)

其中,H(jω)為推動等效阻抗Z(jω)與負載RP 的轉換函數,且轉換函數H(jω)存在一諧振頻率ω0 =1/。此外,轉換函數H(jω)可以改用品質因數(Quality Factor)Q來表示。據此,將轉換函數對激勵頻率做圖,則可得如圖5所示的頻率響應。參照圖5,在諧振頻率ω0 下,轉換函數H(jω)的等效阻抗將達到最大。這意味著,此時電壓的振盪幅度為最大,進而可將很小的電流寬頻雜訊放大輸出。此外,在諧振頻率ω0 下,驅動電壓VD 與驅動電流ID 將會達到零相位。舉例來說,以元件特性來看,在諧振頻率ω0 下,相位所引起的損耗將不存在。也就是說,儲存於電感L的能量與儲存於電容C的能量將相同。Where H(jω) is a transfer function that drives the equivalent impedance Z(jω) and the load R P , and the transfer function H(jω) has a resonant frequency ω 0 =1/ . Further, the transfer function H(jω) can be represented by a quality factor Q. Accordingly, by plotting the transfer function on the excitation frequency, the frequency response as shown in FIG. 5 can be obtained. Referring to Figure 5, at the resonant frequency ω 0 , the equivalent impedance of the transfer function H(jω) will be maximized. This means that the amplitude of the voltage oscillation is maximum at this time, and then a small current wide-band noise can be amplified and output. Furthermore, at the resonant frequency ω 0 , the drive voltage V D and the drive current I D will reach zero phase. For example, in terms of component characteristics, at the resonant frequency ω 0 , the loss caused by the phase will not exist. That is, the energy stored in the inductor L will be the same as the energy stored in the capacitor C.

換言之,在諧振頻率ω0 下,驅動電壓VD 的幅度為最大,且可控電流源所提供的驅動電流ID 將全部流過純阻抗性的負載RP 。因此,倘若感測模組110能穩定在諧振頻率ω0 上,則負載RP 的損失功率也將最大化。再者,就感測模組110的能量損耗來看,倘若可控電流源所提供的驅動電壓VD 與驅動電流ID 分別為一弦波訊號,則平均功率將如式(8)所示:In other words, at the resonant frequency ω 0 , the magnitude of the drive voltage V D is maximized, and the drive current I D provided by the controllable current source will all flow through the purely resistive load R P . Therefore, if the sensing module 110 can be stabilized at the resonant frequency ω 0 , the power loss of the load R P will also be maximized. Moreover, in terms of the energy loss of the sensing module 110, if the driving voltage V D and the driving current I D provided by the controllable current source are respectively a sine wave signal, the average power will be as shown in equation (8). :

其中,Vm 及Im 分別為驅動電壓VD 與驅動電流ID 的振幅。據此,圖6為依據本發明之一實施例之用以說明感測模組的波形示意圖,其中曲線610~640分別為在諧振頻率ω0 下負載RP 的電壓、電流、功率以及平均功率。如圖6所示,可控電流源所提供的驅動電流ID 將全部提供給負載RP ,以作為能量損耗補償,進而維持振盪。Wherein, V m and I m are amplitudes of the driving voltage V D and the driving current I D , respectively. Accordingly, FIG. 6 is a schematic diagram illustrating waveforms of a sensing module according to an embodiment of the present invention, wherein curves 610-640 are voltage, current, power, and average power of load R P at a resonant frequency ω 0 , respectively. . As shown in Figure 6, the drive current I D provided by the controllable current source will all be supplied to the load R P to compensate for the energy loss, thereby maintaining oscillation.

依據上述概念,反觀圖1實施例。在此,當待測樣品101通過感測模組110所產生的交變磁場時,待測樣品101的電阻將透過磁場耦合至感測模組110。此時,以圖4為例來看,感測模組110之等效阻抗中的負載RP 及電感L將產生相應的變化,進而致使流入感測模組110之驅動電流ID 的相位以及感測模組110的諧振頻率ω0 產生相應的改變。此外,在一實施例電路,傳送驅動電流ID 的金屬配線會貢獻相應的阻抗,例如:圖4中的電阻R’。因此,在設計上,可利用位在節點N4上的電壓作為回授訊號SF ,並藉此利用回授訊號SF 來反應驅動電流ID 的相位變化。換言之,感測模組110會因應其等效阻抗401的變化,而產生與驅動電流ID 相關的回授訊號SF 。值得一提的是,回授訊號SF 主要是用以反應驅動電流ID 的相位變化。因此,在實際應用上,本領域具有通常知識者可依據感測模組110的電路結構,任意更改節點N4的設置位置。換言之,圖4所列舉之節點N4的設置位置僅是一特定實施例,並非用以限定本發明。In accordance with the above concept, the embodiment of Fig. 1 is reversed. Here, when the sample 101 to be tested passes through the alternating magnetic field generated by the sensing module 110, the resistance of the sample 101 to be tested will be coupled to the sensing module 110 through the magnetic field. At this time, taking FIG. 4 as an example, the load R P and the inductance L in the equivalent impedance of the sensing module 110 will be correspondingly changed, thereby causing the phase of the driving current I D flowing into the sensing module 110 and The resonant frequency ω 0 of the sensing module 110 produces a corresponding change. Furthermore, in an embodiment circuit, the metal wiring carrying the drive current I D contributes a corresponding impedance, such as resistor R' in FIG. Therefore, in design, the voltage at the node N4 can be utilized as the feedback signal S F , and thereby the phase change of the drive current I D is reflected by the feedback signal S F . In other words, the sensing module 110 generates a feedback signal S F related to the driving current I D in response to a change in its equivalent impedance 401. It is worth mentioning that the feedback signal S F is mainly used to reflect the phase change of the driving current I D . Therefore, in practical applications, those skilled in the art can arbitrarily change the setting position of the node N4 according to the circuit structure of the sensing module 110. In other words, the location of the node N4 illustrated in FIG. 4 is only a specific embodiment and is not intended to limit the present invention.

為了致使感測模組110能持續地操作在諧振頻率ω0 上,回授訊號SF 將被傳送至可調頻率振盪器130。藉此,可調頻率振盪器130將產生一振盪電壓VO ,並利用回授訊號SF 調整振盪電壓VO 的相位與頻率,以致使振盪電壓VO 與回授訊號SF 的相位與頻率皆相等。且知,回授訊號SF 的頻率即是感測模組110的諧振頻率ω0 。換言之,可調頻率振盪器130會利用回授訊號SF ,將振盪電壓VO 的頻率調整至感測模組110的諧振頻率ω0In order to cause the sensing module 110 to continuously operate at the resonant frequency ω 0 , the feedback signal S F will be transmitted to the adjustable frequency oscillator 130 . Thereby, the adjustable frequency oscillator 130 generates an oscillating voltage V O and adjusts the phase and frequency of the oscillating voltage V O by using the feedback signal S F such that the phase and frequency of the oscillating voltage V O and the feedback signal S F are obtained . All are equal. It is known that the frequency of the feedback signal S F is the resonant frequency ω 0 of the sensing module 110. In other words, the adjustable frequency oscillator 130 adjusts the frequency of the oscillating voltage V O to the resonant frequency ω 0 of the sensing module 110 by using the feedback signal S F .

舉例來說,在一較佳實施例中,可調頻率振盪器130可由一鎖相迴路所構成。圖7為依據本發明之一實施例之鎖相迴路的方塊示意圖。參照圖7,鎖相迴路700包括相位比較器710、低通濾波器720以及壓控振盪器730。其中,壓控振盪器730用以產生振盪電壓VO ,並將振盪電壓VO 回授至相位比較器710。相位比較器710將比較回授訊號SF 與振盪電壓VO 之間的相位差,並據以產生相位誤差訊號。低通濾波器720將濾除相位誤差訊號中的高頻成份,並據以產生相應的調整電壓。壓控振盪器730將依據調整電壓重新振盪,以對振盪電壓VO 的頻率進行調整。如此一來,鎖相迴路700將不斷地調整振盪電壓VO 的頻率,直到回授訊號SF 與振盪電壓VO 之間的相位差驅近於0為止,才會進入鎖定的狀態。For example, in a preferred embodiment, the adjustable frequency oscillator 130 can be constructed of a phase locked loop. 7 is a block diagram of a phase locked loop in accordance with an embodiment of the present invention. Referring to FIG. 7, the phase locked loop 700 includes a phase comparator 710, a low pass filter 720, and a voltage controlled oscillator 730. The voltage controlled oscillator 730 is configured to generate the oscillating voltage V O and return the oscillating voltage V O to the phase comparator 710. The phase comparator 710 compares the phase difference between the feedback signal S F and the oscillating voltage V O and generates a phase error signal accordingly. The low pass filter 720 will filter out the high frequency components in the phase error signal and accordingly generate corresponding adjustment voltages. The voltage controlled oscillator 730 will re-oscillate according to the adjusted voltage to adjust the frequency of the oscillating voltage V O . In this way, the phase-locked loop 700 will continuously adjust the frequency of the oscillating voltage V O until the phase difference between the feedback signal S F and the oscillating voltage V O approaches 0, and then enters the locked state.

換言之,可調頻率振盪器130本身可以振盪出振盪電壓VO 。此外,可調頻率振盪器130還會追蹤回授訊號SF 的相位變化,以致使振盪電壓VO 的頻率相等於感測模組110的諧振頻率ω0 。另一方面,由於功率放大器120是依據振盪電壓VO 來產生驅動電壓VD ,因此隨著可調頻率振盪器130對振盪電壓VO 的調整,功率放大器120所提供之驅動電壓VD 的頻率也將相等於感測模組110的諧振頻率ω0 ,進而確保感測模組110能持續地操作在諧振頻率ω0 上。In other words, the adjustable frequency oscillator 130 itself can oscillate the oscillating voltage V O . In addition, the adjustable frequency oscillator 130 also tracks the phase change of the feedback signal S F such that the frequency of the oscillating voltage V O is equal to the resonant frequency ω 0 of the sensing module 110. Frequency other hand, since the power amplifier 120 is based on the oscillating voltage to generate the driving voltage V O V D, so as to adjust the adjustable frequency oscillator oscillating voltage V O 130 pairs, the amplifier 120 provides the driving voltage of V D It will also be equal to the resonant frequency ω 0 of the sensing module 110, thereby ensuring that the sensing module 110 can continuously operate at the resonant frequency ω 0 .

再者,功率放大器120會依據一增益值放大振盪電壓VO ,並據以產生驅動電壓VD 。此外,振幅控制單元140會依據驅動電壓VD 產生一控制資訊DT。在一較佳實施例中,振幅控制單元140包括電壓增益控制器141與電壓產生器142。其中,電壓增益控制器141會接收驅動電壓VD 。此外,在實際應用上,驅動電壓VD 會透過電壓增益控制器141中的箝位器與低通濾波器,而被轉換成一偵測電壓。此外,電壓產生器142會提供一參考電壓VR 給電壓增益控制器141。藉此,電壓增益控制器141將會比對偵測電壓與參考電壓VR ,進而依據比對結果產生控制資訊DT。Furthermore, the power amplifier 120 amplifies the oscillating voltage V O according to a gain value, and accordingly generates a driving voltage V D . In addition, the amplitude control unit 140 generates a control information DT according to the driving voltage V D . In a preferred embodiment, the amplitude control unit 140 includes a voltage gain controller 141 and a voltage generator 142. The voltage gain controller 141 receives the driving voltage V D . In addition, in practical applications, the driving voltage V D is transmitted through a clamper and a low-pass filter in the voltage gain controller 141 to be converted into a detection voltage. In addition, voltage generator 142 provides a reference voltage V R to voltage gain controller 141. Thereby, the voltage gain controller 141 compares the detection voltage with the reference voltage V R to generate control information DT according to the comparison result.

藉此,功率放大器120將依據控制資訊DT調整其增益值,以致使驅動電壓VD 的振幅大小為固定。由於負載RP 的耗損能量將反應在功率放大器120的輸出功率上,且功率放大器120所提供之驅動電壓VD 的振幅又為固定,因此功率放大器120所提供的驅動電流ID 將隨著感測模組110中負載RP 的變化產生相應的變化。因此,電流感測器150將用以偵測功率放大器120所提供的驅動電流ID ,並據以產生一檢出訊號SD來反應待測樣品101的特性。Thereby, the power amplifier 120 will adjust its gain value in accordance with the control information DT so that the amplitude of the driving voltage V D is fixed. Since the loss energy of the load R P will be reflected on the output power of the power amplifier 120, and the amplitude of the driving voltage V D provided by the power amplifier 120 is fixed again, the driving current I D provided by the power amplifier 120 will vary. The change in the load R P in the test module 110 produces a corresponding change. Therefore, the current sensor 150 is configured to detect the driving current I D provided by the power amplifier 120 and generate a detection signal SD to reflect the characteristics of the sample 101 to be tested.

舉例來說,依據式(2)及式(3)來看,當待測樣品101的阻抗RL 減少時,感測模組110的虛部阻抗Y將減少,且感測模組110的實部阻抗X將增加。此外,虛部阻抗Y的減少將導致感測模組110的諧振頻率上升,進而導致純電阻性負載所損耗的平均功率增加。換言之,當待測樣品101的阻抗RL 減少時,亦即當待測樣品101的片電阻越大時,將導致能量耗損增加。也就是說,所耗損的能量將隨著待測樣品101的片電阻大小呈現嚴格遞增或遞減,並且不具有相位引起的損耗。For example, according to the formulas (2) and (3), when the impedance R L of the sample 101 to be tested is decreased, the imaginary part impedance Y of the sensing module 110 is reduced, and the sensing module 110 is The impedance X will increase. In addition, a decrease in the imaginary impedance Y will cause the resonant frequency of the sensing module 110 to rise, resulting in an increase in the average power loss of the pure resistive load. In other words, when the impedance R L of the sample 101 to be tested is decreased, that is, when the sheet resistance of the sample 101 to be tested is larger, energy loss is increased. That is to say, the energy consumed will appear to be strictly increasing or decreasing with the sheet resistance of the sample 101 to be tested, and has no phase-induced loss.

此外,依據式(2)來看,待測樣品101的阻抗RL 將透過如式(9)所示的轉移函數A耦合到感測模組110。假設待測樣品101為薄膜,且耦合係數K與次線圈L2 為固定不變的情況下,隨著待測樣品101之阻抗RL 的增加,感測模組110的虛部阻抗Y將增加。此外,虛部阻抗Y的增加將導致感測模組110的諧振頻率以接近感抗變化的平方倍增加。藉此,轉換函數A中的變異量/ω 2 L 2 將能夠接近於抵銷,致使轉換函數A維持不變。因此,當感測模組110操作在諧振頻率,且感測模組110之驅動電壓VD 的振幅為固定時,透過驅動電流ID 來反應待測樣品101的方法,將可提高量測的線性度,並改善傳統量測上的非線性現象。Further, according to the formula (2), the impedance R L of the sample 101 to be tested is coupled to the sensing module 110 through the transfer function A as shown in the equation (9). Assuming that the sample 101 to be tested is a film, and the coupling coefficient K and the secondary coil L 2 are fixed, the imaginary impedance Y of the sensing module 110 will increase as the impedance R L of the sample 101 to be tested increases. . In addition, an increase in the imaginary impedance Y will cause the resonant frequency of the sensing module 110 to increase by a squared change in proximity to the inductive reactance. Thereby, the variation in the conversion function A / ω 2 L 2 will be able to close to the offset, causing the transfer function A to remain unchanged. Therefore, when the sensing module 110 operates at the resonant frequency and the amplitude of the driving voltage V D of the sensing module 110 is fixed, the method of reacting the sample 101 to be tested by the driving current I D can improve the measurement. Linearity and improved nonlinearity in traditional measurements.

此外,在本實施例中,可調頻率振盪器130為一主動電路,並可自行振盪而產生振盪電壓VO 。相對地,功率放大器120則用以隔離可調頻率振盪器130與感測模組110。換言之,可調頻率振盪器130不會受到感測模組110的影響,進而有助於提升感測模組110的量測範圍。再者,本實施例是將感測模組110持續地操作在諧振頻率ω0 上,因此無須進行頻率掃描的操作,進而提升自激振盪電磁耦合量測裝置100的量測速度。In addition, in the embodiment, the adjustable frequency oscillator 130 is an active circuit and can oscillate by itself to generate an oscillating voltage V O . In contrast, the power amplifier 120 is used to isolate the adjustable frequency oscillator 130 and the sensing module 110. In other words, the adjustable frequency oscillator 130 is not affected by the sensing module 110, thereby helping to increase the measurement range of the sensing module 110. Furthermore, in this embodiment, the sensing module 110 is continuously operated at the resonance frequency ω 0 , so that the frequency scanning operation is not required, and the measurement speed of the self-excited oscillation electromagnetic coupling measuring device 100 is further improved.

除此之外,在系統架構上,圖1實施例中的感測模組110是設置在待測樣品101的上方。雖然圖1實施例列舉了感測模組110與待測樣品101在配置上的實施型態,但其並非用以限定本發明。本領域具有通常知識者可依據設具所需,更改感測模組110的數量與配置位置,或是增設相應的磁感測元件,以針對特殊需求的待測樣品101進行檢測。舉例來說,圖8至圖12為依據本發明之另一實施例之自激振盪電磁耦合量測裝置的示意圖。In addition, in the system architecture, the sensing module 110 in the embodiment of FIG. 1 is disposed above the sample 101 to be tested. Although the embodiment of FIG. 1 exemplifies the configuration of the sensing module 110 and the sample 101 to be tested, it is not intended to limit the present invention. Those skilled in the art can change the number and arrangement position of the sensing module 110 according to the needs of the device, or add corresponding magnetic sensing components to detect the sample 101 to be tested for special needs. For example, FIG. 8 to FIG. 12 are schematic diagrams of a self-excited oscillation electromagnetic coupling measuring device according to another embodiment of the present invention.

在圖8與圖9實施例中,自激振盪電磁耦合量測裝置100更包括感測模組810。其中,感測模組110包括第一繞線,感測模組810包括第二繞線,且第一繞線與第二繞線電性相連,以形成一驅動線圈。換言之,感測模組110與感測模組810係由同一驅動線圈所組成,並藉由驅動線圈來產生交變磁場。除此之外,在圖8實施例中,感測模組110與感測模組810是一同設置在待測樣品101的上方。在圖9實施例中,感測模組110與感測模組810則是分別設置在待測樣品101的上下兩側。據此,自激振盪電磁耦合量測裝置100將可透過感測模組110與感測模組810形成不同磁路的交變磁場,進而針對特殊需求的待測樣品101進行檢測。例如:待測樣品101的表面可能為平面、圓柱面或是任意曲面。再者,在圖8與圖9實施例中,振幅控制單元140是依據回授訊號SF 來產生控制資訊DT。亦即,此時的電壓增益控制器141是將回授訊號SF 轉換成偵測電壓,並將偵測電壓與參考電壓VR ,進而依據比對結果產生控制資訊DT。換言之,與圖1實施例相較之下,振幅控制單元140除了可以利用驅動電壓VD 來產生控制資訊DT以外,還可利用回授訊號SF 來產生控制資訊DT。In the embodiment of FIG. 8 and FIG. 9 , the self-oscillating electromagnetic coupling measuring device 100 further includes a sensing module 810 . The sensing module 110 includes a first winding, and the sensing module 810 includes a second winding, and the first winding is electrically connected to the second winding to form a driving coil. In other words, the sensing module 110 and the sensing module 810 are composed of the same driving coil, and the alternating magnetic field is generated by driving the coil. In addition, in the embodiment of FIG. 8 , the sensing module 110 and the sensing module 810 are disposed together above the sample 101 to be tested. In the embodiment of FIG. 9 , the sensing module 110 and the sensing module 810 are respectively disposed on the upper and lower sides of the sample 101 to be tested. Accordingly, the self-oscillating electromagnetic coupling measuring device 100 can form an alternating magnetic field of different magnetic circuits through the sensing module 110 and the sensing module 810, and then detect the sample 101 to be tested for special needs. For example, the surface of the sample to be tested 101 may be a plane, a cylindrical surface or an arbitrary curved surface. Furthermore, in the embodiment of FIGS. 8 and 9, the amplitude control unit 140 generates the control information DT based on the feedback signal S F . That is, the voltage gain controller 141 at this time converts the feedback signal S F into a detection voltage, and generates a control voltage DT according to the comparison result with the reference voltage V R . In other words, under the embodiment of Figure 1 as compared with, in addition to the amplitude control unit 140 may generate control information other than the DT, the feedback signal may also be utilized to generate the control information S F DT by the driving voltage V D.

在圖10與圖11實施例中,自激振盪電磁耦合量測裝置100更包括磁感測元件1010。其中,磁感測元件1010是設置在交變磁場的路徑上。藉此,磁感測元件1010將感應交變磁場的變化,進而將來自感測模組110的第二回授訊號SF2 回授至振幅控制單元140。此時,振幅控制單元140將可利用第二回授訊號SF2 來產生控制資訊DT。亦即,此時的電壓增益控制器141是將第二回授訊號SF2 轉換成偵測電壓,並將偵測電壓與參考電壓VR ,進而依據比對結果產生控制資訊DT。換言之,與圖1、圖8與圖9實施例相較之下,振幅控制單元140除了可以利用驅動電壓VD 或是回授訊號SF 來產生控制資訊DT以外,還可利用第二回授訊號SF2 來產生控制資訊DT。此外,磁感測元件1010可由線圈、霍爾感測器(Hall sensor)、巨磁電阻(GMR)...等其他可感應磁場的元件所組成。更進一步來看,在圖10實施例中,磁感測元件1010與感測模組110是一同設置在待測樣品101的上方。在圖11實施例中,感測模組110與磁感測元件1010則是分別設置在待測樣品101的上下兩側。In the embodiment of FIGS. 10 and 11, the self-oscillating electromagnetic coupling measuring device 100 further includes a magnetic sensing element 1010. Wherein, the magnetic sensing element 1010 is disposed on the path of the alternating magnetic field. Thereby, the magnetic sensing component 1010 senses the change of the alternating magnetic field, and then returns the second feedback signal S F2 from the sensing module 110 to the amplitude control unit 140. At this time, the amplitude control unit 140 will generate the control information DT by using the second feedback signal S F2 . That is, the voltage gain controller 141 at this time converts the second feedback signal S F2 into a detection voltage, and generates the control voltage DT according to the comparison result by the detection voltage and the reference voltage V R . In other words, in comparison with the embodiment of FIG. 1, FIG. 8 and FIG. 9, the amplitude control unit 140 can use the second feedback function in addition to the driving voltage V D or the feedback signal S F to generate the control information DT. Signal S F2 is used to generate control information DT. In addition, the magnetic sensing element 1010 may be composed of other elements that can induce magnetic fields, such as a coil, a Hall sensor, a giant magnetoresistance (GMR), and the like. Furthermore, in the embodiment of FIG. 10, the magnetic sensing component 1010 and the sensing module 110 are disposed together above the sample 101 to be tested. In the embodiment of FIG. 11 , the sensing module 110 and the magnetic sensing component 1010 are respectively disposed on the upper and lower sides of the sample 101 to be tested.

圖12實施例則是由圖8至圖11實施例所延伸出的另一實施例。在圖12實施例中,自激振盪電磁耦合量測裝置100更包括感測模組1210、磁感測元件1220與磁感測元件1230。其中,感測模組110與感測模組1220是由同一驅動線圈所組成。此外,感測模組110與感測模組1220分別設置在待測樣品101的上下兩側。再者,磁感測元件1220與磁感測元件1230設置在交變磁場的路徑上,且分別設置在待測樣品101的上下兩側。至於圖12實施例中各構件的案例細部說明已包含在上述各實施例中,故在此不予贅述。The embodiment of Figure 12 is another embodiment extending from the embodiment of Figures 8-11. In the embodiment of FIG. 12 , the self-oscillating electromagnetic coupling measuring device 100 further includes a sensing module 1210 , a magnetic sensing component 1220 and a magnetic sensing component 1230 . The sensing module 110 and the sensing module 1220 are composed of the same driving coil. In addition, the sensing module 110 and the sensing module 1220 are respectively disposed on upper and lower sides of the sample 101 to be tested. Furthermore, the magnetic sensing element 1220 and the magnetic sensing element 1230 are disposed on the path of the alternating magnetic field, and are respectively disposed on the upper and lower sides of the sample 101 to be tested. The detailed description of the components of the components in the embodiment of Fig. 12 is included in the above embodiments, and therefore will not be described herein.

綜上所述,本發明是利用可調頻率振盪器追蹤驅動電壓的相位變化,以致使感測模組在感應待測樣品之後依舊可以操作在諧振頻率下。此外,本發明更利用振幅控制單元回授控制驅動電壓的振幅,以致使驅動電壓的振幅維持固定。藉此,在諧振頻率下所產生的功率耗損將反應在功率放大器所提供的驅動電流上,因此本發明可藉由偵測驅動電流來取得待測樣品的相關資訊。除此之外,由於本發明是利用可調頻率振盪器自激振盪出振盪電壓,因此可提升感測模組的量測範圍。再者,由於本發明無須進行頻率掃描即可量測出待測樣品的特性,因此可提升量測的速度與線性度。In summary, the present invention utilizes an adjustable frequency oscillator to track the phase change of the driving voltage so that the sensing module can still operate at the resonant frequency after sensing the sample to be tested. In addition, the present invention further utilizes the amplitude control unit to feedback the amplitude of the control driving voltage so that the amplitude of the driving voltage is maintained constant. Thereby, the power loss generated at the resonant frequency will be reflected in the driving current provided by the power amplifier, so the present invention can obtain the relevant information of the sample to be tested by detecting the driving current. In addition, since the present invention utilizes the adjustable frequency oscillator to self-oscillate the oscillating voltage, the measurement range of the sensing module can be improved. Furthermore, since the present invention can measure the characteristics of the sample to be tested without performing frequency scanning, the speed and linearity of the measurement can be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...自激振盪電磁耦合量測裝置100. . . Self-oscillating electromagnetic coupling measuring device

110、810、1210...感測模組110, 810, 1210. . . Sensing module

120...功率放大器120. . . Power amplifier

130...可調頻率振盪器130. . . Adjustable frequency oscillator

140...振幅控制單元140. . . Amplitude control unit

141...電壓增益控制器141. . . Voltage gain controller

142...電壓產生器142. . . Voltage generator

150...電流感測器150. . . Current sensor

101...待測樣品101. . . Sample to be tested

VR ...參考電壓V R . . . Reference voltage

VO ...振盪電壓V O . . . Oscillating voltage

VD ...驅動電壓V D . . . Driving voltage

SF ...回授訊號S F . . . Feedback signal

SF2 ...第二回授訊號S F2 . . . Second feedback signal

DT...控制資訊DT. . . Control information

SD...檢出訊號SD. . . Checkout signal

T2 ...變壓器T 2 . . . transformer

L1 ...主線圈L 1 . . . Main coil

L2 ...次線圈L 2 . . . Secondary coil

I1 、I2 ...電流I 1 , I 2 . . . Current

V1 、V2 ...電壓V 1 , V 2 . . . Voltage

RS 、RL ...阻抗R S , R L . . . impedance

Req ...等效電阻R eq . . . Equivalent resistance

Leq ...等效電感L eq . . . Equivalent inductance

C...電容C. . . capacitance

L...電感L. . . inductance

RP ...負載R P . . . load

R’...電阻R’. . . resistance

ID ...驅動電流I D . . . Drive current

N4...節點N4. . . node

401...等效阻抗401. . . Equivalent impedance

610~640...曲線610~640. . . curve

700...鎖相迴路700. . . Phase-locked loop

710...相位比較器710. . . Phase comparator

720...低通濾波器720. . . Low pass filter

730...壓控振盪器730. . . Voltage controlled oscillator

1010、1220、1230...磁感測元件1010, 1220, 1230. . . Magnetic sensing component

圖1為依據本發明之一實施例之自激振盪電磁耦合量測裝置的示意圖。1 is a schematic diagram of a self-excited oscillation electromagnetic coupling measuring device according to an embodiment of the present invention.

圖2為依據本發明之一實施例之渦電流的耦合模型的示意圖。2 is a schematic diagram of a coupling model of eddy currents in accordance with an embodiment of the present invention.

圖3為依據本發明之一實施例之感測模組的等效電路圖。3 is an equivalent circuit diagram of a sensing module in accordance with an embodiment of the present invention.

圖4為依據本發明之另一實施例之感測模組的等效電路圖。4 is an equivalent circuit diagram of a sensing module in accordance with another embodiment of the present invention.

圖5為依據本發明之一實施例之轉換函數的頻率響應示意圖。Figure 5 is a schematic diagram of the frequency response of a transfer function in accordance with an embodiment of the present invention.

圖6為依據本發明之一實施例之用以說明感測模組的波形示意圖。FIG. 6 is a schematic diagram showing waveforms of a sensing module according to an embodiment of the invention.

圖7為依據本發明之一實施例之鎖相迴路的方塊示意圖。7 is a block diagram of a phase locked loop in accordance with an embodiment of the present invention.

圖8至圖12為依據本發明之另一實施例之自激振盪電磁耦合量測裝置的示意圖。8 to 12 are schematic views of a self-excited oscillation electromagnetic coupling measuring device according to another embodiment of the present invention.

100...自激振盪電磁耦合量測裝置100. . . Self-oscillating electromagnetic coupling measuring device

110...感測模組110. . . Sensing module

120...功率放大器120. . . Power amplifier

130...可調頻率振盪器130. . . Adjustable frequency oscillator

140...振幅控制單元140. . . Amplitude control unit

141...電壓增益控制器141. . . Voltage gain controller

142...電壓產生器142. . . Voltage generator

150...電流感測器150. . . Current sensor

101...待測樣品101. . . Sample to be tested

VR ...參考電壓V R . . . Reference voltage

VO ...振盪電壓V O . . . Oscillating voltage

VD ...驅動電壓V D . . . Driving voltage

SF ...回授訊號S F . . . Feedback signal

DT...控制資訊DT. . . Control information

SD...檢出訊號SD. . . Checkout signal

Claims (17)

一種自激振盪電磁耦合量測裝置,包括:一第一感測模組,利用一驅動電壓幅射出一交變磁場以感測一待測樣品,並因應其等效阻抗的變化產生一回授訊號;一可調頻率振盪器,產生一振盪電壓,並致使該振盪電壓的頻率相等於該第一感測模組的諧振頻率;一振幅控制單元,依據該驅動電壓產生一控制資訊;一功率放大器,依據一增益值放大該振盪電壓,以產生該驅動電壓,並依據該控制資訊調整該增益值,以致使該驅動電壓的振幅維持固定;以及一電流感測器,檢測該功率放大器所產生的驅動電流,並產生與該待測樣品之特性相關的一檢出訊號。A self-oscillating electromagnetic coupling measuring device comprises: a first sensing module, which uses an driving voltage to emit an alternating magnetic field to sense a sample to be tested, and generates a response according to a change in its equivalent impedance An adjustable frequency oscillator generates an oscillating voltage and causes the oscillating voltage to have a frequency equal to a resonant frequency of the first sensing module; an amplitude control unit generates a control information according to the driving voltage; a power amplifier amplifying the oscillating voltage according to a gain value to generate the driving voltage, and adjusting the gain value according to the control information to maintain a constant amplitude of the driving voltage; and a current sensor detecting the power amplifier The generated drive current generates a detection signal related to the characteristics of the sample to be tested. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該可調頻率振盪器由一鎖相迴路所構成。The self-oscillating electromagnetic coupling measuring device according to claim 1, wherein the adjustable frequency oscillator is constituted by a phase locked loop. 如申請專利範圍第2項所述之自激振盪電磁耦合量測裝置,其中該鎖相迴路包括:一壓控振盪器,產生該振盪電壓;一相位比較器,比較該振盪電壓與該回授訊號之間的相位差,並據以產生一相位誤差訊號;以及一低通濾波器,濾除該相位誤差訊號中的高頻成份,並據以產生一調整電壓,其中,該壓控振盪器依據該調整電壓重新振盪,以調整該振盪電壓的頻率與相位。The self-excited oscillation electromagnetic coupling measuring device according to claim 2, wherein the phase locked loop comprises: a voltage controlled oscillator to generate the oscillating voltage; and a phase comparator for comparing the oscillating voltage with the feedback a phase difference between the signals, and according to which a phase error signal is generated; and a low pass filter that filters out high frequency components in the phase error signal and generates an adjusted voltage, wherein the voltage controlled oscillator Re-oscillation according to the adjustment voltage to adjust the frequency and phase of the oscillating voltage. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該振幅控制單元包括:一電壓產生器,產生一參考電壓;以及一電壓增益控制器,將該驅動電壓轉換為一偵測電壓,且該電壓增益控制器將該偵測電壓與該參考電壓進行比較,並依據比較結果產生該控制資訊。The self-excited oscillation electromagnetic coupling measuring device according to claim 1, wherein the amplitude control unit comprises: a voltage generator that generates a reference voltage; and a voltage gain controller that converts the driving voltage into one The voltage is detected, and the voltage gain controller compares the detected voltage with the reference voltage, and generates the control information according to the comparison result. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該第一感測模組包括一驅動線圈與一電容,且該驅動線圈與該電容在電性連接上相互並聯。The self-oscillating electromagnetic coupling measuring device according to the first aspect of the invention, wherein the first sensing module comprises a driving coil and a capacitor, and the driving coil and the capacitor are electrically connected in parallel with each other. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該第一感測模組包括一第一繞線,且該自激振盪電磁耦合量測裝置更包括:一第二感測模組,包括一第二繞線,其中該第一繞線與該第二繞線電性相連,以形成用以產生該交變磁場的驅動線圈。The self-oscillating electromagnetic coupling measuring device of the first sensing module includes a first winding, and the self-oscillating electromagnetic coupling measuring device further comprises: a second The sensing module includes a second winding, wherein the first winding is electrically connected to the second winding to form a driving coil for generating the alternating magnetic field. 如申請專利範圍第6項所述之自激振盪電磁耦合量測裝置,其中該第一感測模組與該第二感測模組一同設置在該待測樣品的上方。The self-oscillating electromagnetic coupling measuring device according to the sixth aspect of the invention, wherein the first sensing module and the second sensing module are disposed above the sample to be tested. 如申請專利範圍第6項所述之自激振盪電磁耦合量測裝置,其中該第一感測模組與該第二感測模組分別設置在該待測樣品的上下兩側。The self-oscillating electromagnetic coupling measuring device according to the sixth aspect of the invention, wherein the first sensing module and the second sensing module are respectively disposed on upper and lower sides of the sample to be tested. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,更包括:一磁感測元件,設置在該交變磁場的路徑上,並感應該交變磁場的變化,以將來自該第一感測模組的一第二回授訊號回授至該振幅控制單元。The self-oscillating electromagnetic coupling measuring device according to claim 1, further comprising: a magnetic sensing component disposed on the path of the alternating magnetic field and sensing a change of the alternating magnetic field to be derived from A second feedback signal of the first sensing module is fed back to the amplitude control unit. 如申請專利範圍第9項所述之自激振盪電磁耦合量測裝置,其中該磁感測元件由一線圈、一霍爾感測器或是一巨磁電阻所構成。The self-oscillating electromagnetic coupling measuring device according to claim 9, wherein the magnetic sensing component is composed of a coil, a Hall sensor or a giant magnetoresistance. 如申請專利範圍第9項所述之自激振盪電磁耦合量測裝置,其中該磁感測元件與該第一感測模組設置在該待測樣品的同側。The self-excited oscillation electromagnetic coupling measuring device according to claim 9, wherein the magnetic sensing component and the first sensing module are disposed on the same side of the sample to be tested. 如申請專利範圍第11項所述之自激振盪電磁耦合量測裝置,其中該磁感測元件與該第一感測模組一同設置在該待測樣品的上方。The self-oscillating electromagnetic coupling measuring device according to claim 11, wherein the magnetic sensing component is disposed above the sample to be tested together with the first sensing module. 如申請專利範圍第9項所述之自激振盪電磁耦合量測裝置,其中該磁感測元件與該第一感測模組分別設置在該待測樣品的兩側。The self-excited oscillation electromagnetic coupling measuring device according to claim 9, wherein the magnetic sensing component and the first sensing module are respectively disposed on two sides of the sample to be tested. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該待測樣品為一薄膜,且該薄膜由不導磁材料所構成。The self-oscillating electromagnetic coupling measuring device according to claim 1, wherein the sample to be tested is a film, and the film is composed of a non-magnetic material. 如申請專利範圍第14項所述之自激振盪電磁耦合量測裝置,其中該自激振盪電磁耦合量測裝置依據該檢出訊號判別該薄膜的片電阻值。The self-oscillating electromagnetic coupling measuring device according to claim 14, wherein the self-oscillating electromagnetic coupling measuring device determines the sheet resistance value of the film according to the detection signal. 如申請專利範圍第1項所述之自激振盪電磁耦合量測裝置,其中該第一感測模組的等效阻抗致使流入該第一感測模組的一驅動電流的相位以及該第一感測模組的諧振頻率產生相應的改變。The self-oscillating electromagnetic coupling measuring device according to the first aspect of the invention, wherein the equivalent impedance of the first sensing module causes a phase of a driving current flowing into the first sensing module and the first The resonant frequency of the sensing module produces a corresponding change. 如申請專利範圍第16項所述之自激振盪電磁耦合量測裝置,其中該驅動電流流經該第一感測模組中的一節點,且位在該節點的電壓用以作為該回授訊號,且該第一感測模組利用該回授訊號來反應該驅動電流的相位變化。The self-oscillating electromagnetic coupling measuring device according to claim 16, wherein the driving current flows through a node of the first sensing module, and a voltage at the node is used as the feedback a signal, and the first sensing module uses the feedback signal to reflect a phase change of the driving current.
TW100149589A 2011-12-29 2011-12-29 Electromagnetic coupling measurement device of self-excited oscillation type TWI467167B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100149589A TWI467167B (en) 2011-12-29 2011-12-29 Electromagnetic coupling measurement device of self-excited oscillation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100149589A TWI467167B (en) 2011-12-29 2011-12-29 Electromagnetic coupling measurement device of self-excited oscillation type

Publications (2)

Publication Number Publication Date
TW201326801A TW201326801A (en) 2013-07-01
TWI467167B true TWI467167B (en) 2015-01-01

Family

ID=49224954

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149589A TWI467167B (en) 2011-12-29 2011-12-29 Electromagnetic coupling measurement device of self-excited oscillation type

Country Status (1)

Country Link
TW (1) TWI467167B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104377959B (en) 2013-08-16 2017-04-26 台达电子企业管理(上海)有限公司 Power converter and method for stabilizing voltage gain
TWI725592B (en) * 2019-10-29 2021-04-21 新唐科技股份有限公司 Testing circuit
CN113311030B (en) * 2020-02-26 2022-12-06 上海凡宜科技电子有限公司 Moisture sensing module
TWI794764B (en) * 2021-03-05 2023-03-01 國立臺灣大學 Eddy current sensing system and method thereof
TWI785855B (en) * 2021-10-21 2022-12-01 中國鋼鐵股份有限公司 Detection device
CN116297819B (en) * 2022-11-25 2023-08-18 利达机电有限公司 Crack detector for reinforcing ring of commutator, application device and detection method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546578A (en) * 1967-07-21 1970-12-08 Bell Inc F W Heterodyned frequency nondestructive testing system utilizing a hall effect device for magnetic field sensing of an eddy current reaction magnetic field
US5017869A (en) * 1989-12-14 1991-05-21 General Electric Company Swept frequency eddy current system for measuring coating thickness
US5731697A (en) * 1995-04-10 1998-03-24 International Business Machines Corporation In-situ monitoring of the change in thickness of films
JP2003021501A (en) * 2000-11-24 2003-01-24 Ebara Corp Eddy current sensor
TW201018544A (en) * 2008-08-05 2010-05-16 Ebara Corp Polishing method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546578A (en) * 1967-07-21 1970-12-08 Bell Inc F W Heterodyned frequency nondestructive testing system utilizing a hall effect device for magnetic field sensing of an eddy current reaction magnetic field
US5017869A (en) * 1989-12-14 1991-05-21 General Electric Company Swept frequency eddy current system for measuring coating thickness
US5731697A (en) * 1995-04-10 1998-03-24 International Business Machines Corporation In-situ monitoring of the change in thickness of films
JP2003021501A (en) * 2000-11-24 2003-01-24 Ebara Corp Eddy current sensor
TW201018544A (en) * 2008-08-05 2010-05-16 Ebara Corp Polishing method and apparatus

Also Published As

Publication number Publication date
TW201326801A (en) 2013-07-01

Similar Documents

Publication Publication Date Title
TWI467167B (en) Electromagnetic coupling measurement device of self-excited oscillation type
JP4607753B2 (en) Voltage measuring device and power measuring device
CN101876691B (en) System and method for testing magnetoelectricity property of multiferroic thin-film material
Aschenbrenner et al. Analysis and validation of a planar high-frequency contactless absolute inductive position sensor
CN106574950A (en) Current transducer with fluxgate detector
JP2009539098A (en) Adaptive magnetic field compensation sensor device
JP2007195137A (en) Variable-capacitance circuit, voltage measuring device, and power measuring device
CN103616550A (en) Giant magnetoresistance current sensor
US20150145509A1 (en) Conductive foreign material detecting apparatus
CN110927428B (en) Wide-range wide-band high-precision magnetic balance type current measuring device
CN112379315B (en) Weak direct-current magnetic field measuring method suitable for magnetoelectric coupling sensor
CA2064083A1 (en) Magnetism detecting apparatus
US20040239336A1 (en) System and method for measuring characteriscs of materials with the use of a composite sensor
Zhao et al. Eddy current displacement sensor with ultrahigh resolution obtained through the noise suppression of excitation voltage
JP2816175B2 (en) DC current measuring device
CN111948438B (en) Low-cost current sensor
CN101592715A (en) The electricity of magnetoelectric material is induced magnetic conversion coefficient proving installation and method of testing
JPH0257984A (en) Circuit apparatus for application connected to inductive and capacitive device for non-destructive measurement of orm resistance of thin film
CN110542871B (en) Magnetic characteristic measurement system and method for magnetic material
TWI472757B (en) Non-contact measurement device with adjustable range
CN102478646A (en) Magnetic sensor based on amorphous magnetic core coil and working method thereof
TWI509242B (en) Non-contact eddy-current detecting device and controlling method thereof
US6809542B2 (en) Wafer resistance measurement apparatus and method using capacitively coupled AC excitation signal
Thormählen et al. Low-noise inverse magnetoelectric magnetic field sensor
US20140002069A1 (en) Eddy current probe