TWI465748B - Voltage testing device with positive and negative outputs - Google Patents
Voltage testing device with positive and negative outputs Download PDFInfo
- Publication number
- TWI465748B TWI465748B TW101131278A TW101131278A TWI465748B TW I465748 B TWI465748 B TW I465748B TW 101131278 A TW101131278 A TW 101131278A TW 101131278 A TW101131278 A TW 101131278A TW I465748 B TWI465748 B TW I465748B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- switch
- electrically connected
- signal
- diode
- Prior art date
Links
Landscapes
- Testing Relating To Insulation (AREA)
Description
本發明係關於一種耐壓測試裝置,並且特別地,關於一種具可輸出直流正極性電壓、直流負極性電壓以及交流電壓以測試電子裝置之耐壓測試裝置。The present invention relates to a withstand voltage test apparatus, and in particular to a withstand voltage test apparatus having a DC positive polarity voltage, a DC negative polarity voltage, and an AC voltage for testing an electronic device.
於科技發達的今日,小至個人生活大至國際社會,電子裝置均無所不在。由於電子裝置是如此廣泛地應用於各種領域中,因此確保其安全運作乃是相當重要的課題。不論是電子裝置(例如電熱器、吹風機等)或是電子零件(例如光耦合器、電容器、太陽能板等),於生產後或是販售之前皆須通過一連串的安規測試以確認其是否符合安全規格。若電子產品未通過上述安規測試即被使用,可能會因突發性的電壓不穩定導致產品損毀,更甚者,可能危及使用者的人身安全。Today, with the development of science and technology, from personal life to the international community, electronic devices are ubiquitous. Since electronic devices are so widely used in various fields, ensuring their safe operation is an important issue. Whether it is electronic devices (such as electric heaters, hair dryers, etc.) or electronic components (such as optocouplers, capacitors, solar panels, etc.), a series of safety tests must be passed after production or before sale to confirm that they are safe. specification. If the electronic product is used without the above safety test, the product may be damaged due to sudden voltage instability, and even worse, the user's personal safety may be endangered.
上述安規測試包含耐電壓測試以及絕緣測試。於耐電壓測試時,測試裝置會輸出高壓測試電壓至待測電子零件或產品,以測試其是否能符合安全規格的耐電壓條件。接著,測試裝置輸出較低的絕緣測試電壓至待測電子零件或產品以測試其絕緣值。The above safety test includes a withstand voltage test and an insulation test. In the withstand voltage test, the test device outputs a high voltage test voltage to the electronic component or product to be tested to test whether it can meet the withstand voltage conditions of the safety specification. Next, the test device outputs a lower insulation test voltage to the electronic component or product to be tested to test its insulation value.
部分的電子零件或產品,例如陶瓷電容器或是太陽能板,在高壓測試後本身會產生剩餘電壓(remained voltage),而剩餘電壓的電壓大小與高壓測試時所輸入的高 壓測試電壓大小呈等比例的關係。接著進行的絕緣測試由於係以較小的電壓來進行,因此可能受到剩餘電壓的影響導致測試誤差過大。Some electronic components or products, such as ceramic capacitors or solar panels, generate residual voltage after high voltage testing, and the voltage of the residual voltage is higher than that entered during high voltage testing. The voltage test voltage is proportional to the magnitude of the voltage. The subsequent insulation test is performed with a small voltage, so it may be affected by the residual voltage, resulting in excessive test error.
請參閱圖一,圖一係繪示先前技術中電子裝置進行高壓測試以及絕緣測試時的電壓變化的示意圖。如圖一所示,縱軸為測試時的電壓(V)且橫軸為測試時間(T)。曲線L1係電子裝置進行高壓測試所輸入的電壓,例如其最高電壓達到6600伏特,而曲線L2則為高壓測試後電子裝置所產生的剩餘電壓,例如其最高剩餘電壓約為1000伏特。曲線L3係電子裝置進行絕緣測試所輸入的電壓,例如其最高電壓為500伏特。由圖一可看出,絕緣測試時所輸入的電壓於部分週期小於剩餘電壓,而於此部分週期中,絕緣測試將呈現無意義的負電流方向。換言之,高壓測試所產生的剩餘電壓將會嚴重影響絕緣測試的精確度。Referring to FIG. 1 , FIG. 1 is a schematic diagram showing voltage changes in an electronic device during a high voltage test and an insulation test in the prior art. As shown in Figure 1, the vertical axis is the voltage (V) at the time of the test and the horizontal axis is the test time (T). The curve L1 is the voltage input by the electronic device for the high voltage test, for example, the highest voltage reaches 6600 volts, and the curve L2 is the residual voltage generated by the electronic device after the high voltage test, for example, the highest residual voltage is about 1000 volts. Curve L3 is the voltage input by the electronic device for insulation testing, for example, its maximum voltage is 500 volts. It can be seen from Fig. 1 that the voltage input during the insulation test is less than the residual voltage in the partial period, and in this part of the cycle, the insulation test will show a meaningless negative current direction. In other words, the residual voltage generated by the high voltage test will seriously affect the accuracy of the insulation test.
要避免上述剩餘電壓的問題,可於剩餘電壓消失後再進行絕緣測試,但此種方法會增加整體的測試時間。此外,也可於絕緣測試時對待測物輸入相反極性的電壓訊號來避免剩餘電壓問題。請參閱圖二,圖二係繪示電子裝置進行高壓測試以及絕緣測試時輸入不同極性電壓的電壓變化的示意圖。如圖二所示,若高壓測試輸入正電壓而絕緣測試輸入負電壓時,由於曲線L2’所代表的剩餘電壓與曲線L3’所代表的絕緣測試電壓極性相反,因此可避免無意義的負電流方向而影響絕緣測試的準確度。此外,於安規測試時,若電子零件或產品等待測物的旁路電容過大時,將無法使用交流耐壓測試而必須使用直流耐壓測試,故待測物於此 狀況下僅接收直流正電壓的安規測試。然而,待測物可能於負電壓測試時具有不同測試結果,因此僅以直流正電壓輸入無法確實模擬負電壓與交流電壓狀態。To avoid the above residual voltage problem, the insulation test can be performed after the residual voltage disappears, but this method will increase the overall test time. In addition, voltage signals of opposite polarity can be input to the object to be tested during the insulation test to avoid residual voltage problems. Please refer to FIG. 2 . FIG. 2 is a schematic diagram showing voltage changes of voltages input with different polarities when the electronic device performs high voltage testing and insulation testing. As shown in Figure 2, if the high voltage test inputs a positive voltage and the insulation test inputs a negative voltage, since the residual voltage represented by the curve L2' is opposite to the polarity of the insulation test voltage represented by the curve L3', a meaningless negative current can be avoided. The direction affects the accuracy of the insulation test. In addition, in the safety test, if the bypass capacitance of the electronic component or product waiting for the test object is too large, the AC withstand voltage test cannot be used and the DC withstand voltage test must be used, so the test object is here. In the case of a safety test that only receives DC positive voltage. However, the object to be tested may have different test results in the negative voltage test, so the negative voltage and the AC voltage state cannot be truly simulated only with the DC positive voltage input.
先前技術中係以獨立的電路來分別進行上述不同極性的高壓與絕緣測試,然而獨立的電路不僅使整個裝置架構複雜度提高,同時也提高了測試裝置的成本。另一方面,先前技術中也提供以掃描方式進行正負極切換,此種方式於切換正負極測試時將會交換原本的輸入端及接地端。舉例來說,於正電壓測試時,電子裝置之測試端接收來自測試裝置之正電壓而外殼接地;於負電壓測試時,電子裝置之外殼接收來自測試裝置之正電壓而測試端則接地,換言之,電子裝置之測試端相對於接地端而言為負電壓輸入。然而,此種負電壓測試極可能因為操作人員誤觸電子裝置的外殼而受到高壓電擊,進而危害其人身安全。In the prior art, high voltage and insulation tests of different polarities described above were performed by separate circuits. However, the independent circuit not only increases the complexity of the entire device architecture, but also increases the cost of the test device. On the other hand, the prior art also provides a positive and negative switching in a scanning manner, which will exchange the original input terminal and the ground terminal when switching between the positive and negative electrodes. For example, in a positive voltage test, the test terminal of the electronic device receives a positive voltage from the test device and the case is grounded; in the negative voltage test, the outer casing of the electronic device receives a positive voltage from the test device and the test terminal is grounded, in other words The test terminal of the electronic device is a negative voltage input with respect to the ground. However, such a negative voltage test is highly likely to be subjected to a high-voltage electric shock due to an operator accidentally touching the outer casing of the electronic device, thereby endangering personal safety.
因此,本發明之一範疇在於提供一種具有正負極性電壓輸出之耐壓測試裝置,以解決先前技術之問題。Accordingly, it is an object of the present invention to provide a withstand voltage test apparatus having a positive and negative polarity voltage output to solve the problems of the prior art.
根據一具體實施例,本發明之具有正負極性電壓輸出之耐壓測試裝置包含訊號產生模組、輸出端以及切換模組,其中,切換模組電性連接於訊號產生模組以及輸出端之間。訊號產生模組可用來產生高壓訊號至切換模組,輸出端則可電性連接至待測物。切換模組包含第一開關或第二開關,並根據第一開關與第二開關的配合可將所接收到的高壓訊號輸出為直流正電壓、直流負電壓或是交流電壓 後傳送至輸出端,以對待測物進行測試。According to a specific embodiment, the withstand voltage test device having a positive and negative voltage output includes a signal generating module, an output end, and a switching module, wherein the switching module is electrically connected between the signal generating module and the output end. . The signal generation module can be used to generate a high voltage signal to the switching module, and the output end can be electrically connected to the object to be tested. The switching module includes a first switch or a second switch, and according to the cooperation of the first switch and the second switch, the received high voltage signal can be output as a DC positive voltage, a DC negative voltage or an AC voltage. After being sent to the output, the test object is tested.
於本具體實施例中,當第一開關導通且第二開關開路時,切換模組可將高壓訊號輸出為直流負電壓並傳送至輸出端;當第一開關開路且第二開關導通時,切換模組可將高壓訊號輸出為直流正電壓並傳送至該輸出端;並且,當第一開關與第二開關同時導通時,切換模組可將高壓訊號輸出為交流電壓並傳送至輸出端。In this embodiment, when the first switch is turned on and the second switch is open, the switching module can output the high voltage signal as a DC negative voltage and transmit to the output end; when the first switch is open and the second switch is turned on, the switching is performed. The module can output the high voltage signal as a direct current voltage and transmit to the output terminal; and when the first switch and the second switch are simultaneously turned on, the switching module can output the high voltage signal as an alternating current voltage and transmit it to the output end.
關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.
請參閱圖三,圖三係繪示根據本發明之另一具體實施例之具有正負極性電壓輸出之耐壓測試裝置1的示意圖。如圖一所示,耐壓測試裝置1包含訊號產生模組10、電性連接於訊號產生模組10之切換模組12、以及電性連接於切換模組12之輸出端14。此外,耐壓測試裝置1還可包含電性連接於訊號產生模組10及切換模組12之控制模組16,用來控制訊號產生模組10及切換模組12運作。輸出端14用以電性連接至一待測物的第一端,而待測物的第二端則電性連接到耐壓測試裝置1的接地端140,其中,待測物之第一端係測試端。此待測物可為需進行高壓測試以及絕緣測試的電子零件或產品,例如電熱器、吹風機、光耦合器、電容器或太陽能板等。Referring to FIG. 3, FIG. 3 is a schematic diagram showing a withstand voltage testing device 1 having a positive and negative polarity voltage output according to another embodiment of the present invention. As shown in FIG. 1 , the withstand voltage testing device 1 includes a signal generating module 10 , a switching module 12 electrically connected to the signal generating module 10 , and an output end 14 electrically connected to the switching module 12 . In addition, the withstand voltage test device 1 can further include a control module 16 electrically connected to the signal generating module 10 and the switching module 12 for controlling the operation of the signal generating module 10 and the switching module 12. The output end 14 is electrically connected to the first end of the object to be tested, and the second end of the object to be tested is electrically connected to the ground end 140 of the withstand voltage testing device 1, wherein the first end of the object to be tested Is the test end. The object to be tested may be an electronic component or product that requires high voltage testing and insulation testing, such as an electric heater, a hair dryer, an optocoupler, a capacitor, or a solar panel.
於本具體實施例中,切換模組12包含第一開關120、 第二開關122、第一二極體124以及第二二極體126。第一二極體124的正極電性連接於訊號產生模組10,而第二二極體126的負極電性連接於第一二極體124的負極且第二二極體126的正極電性連接於輸出端14。第一開關120並聯連接於第一二極體124,第二開關122並聯連接於第二二極體126。切換模組12還包含有第三開關128電性連接於輸出端14,第三開關128同樣受控於控制模組16而導通或開路,且第三開關128與訊號產生模組10間以一RC濾波電路串聯。In this embodiment, the switching module 12 includes a first switch 120, The second switch 122, the first diode 124 and the second diode 126. The anode of the first diode 124 is electrically connected to the signal generating module 10, and the cathode of the second diode 126 is electrically connected to the cathode of the first diode 124 and the anode of the second diode 126. Connected to the output terminal 14. The first switch 120 is connected in parallel to the first diode 124, and the second switch 122 is connected in parallel to the second diode 126. The switching module 12 further includes a third switch 128 electrically connected to the output end 14 , and the third switch 128 is also controlled by the control module 16 to be turned on or open, and the third switch 128 and the signal generating module 10 are connected to each other. The RC filter circuit is connected in series.
控制模組16可控制訊號產生模組10產生高壓訊號,而此高壓訊號可傳送至切換模組12,其中,高壓訊號係交流的高壓訊號。接著,控制模組16可控制第一開關120以及第二開關122開路或導通。當控制模組16控制第一開關120導通且第二開關122開路時,此時第三開關128也導通,使得輸出端16電性連接RC濾波電路,以對高壓訊號進行濾波,高壓訊號經過第二二極體126及RC濾波電路轉換為直流的負電壓訊號後傳送至輸出端14,並且透過輸出端14可提供此直流負電壓至待測物之第一端(測試端)來進行測試。相對地,當控制模組16控制第一開關120開路且第二開關122導通時,此時第三開關128也導通,使得輸出端16電性連接RC濾波電路,以對高壓訊號進行濾波,高壓訊號經過第一二極體124及RC濾波電路轉換為直流的正電壓訊號傳送至輸出端14,並且透過輸出端14可提供此直流正電壓至待測物之第一端(測試端)來進行測試。The control module 16 can control the signal generating module 10 to generate a high voltage signal, and the high voltage signal can be transmitted to the switching module 12, wherein the high voltage signal is an alternating high voltage signal. Then, the control module 16 can control the first switch 120 and the second switch 122 to open or conduct. When the control module 16 controls the first switch 120 to be turned on and the second switch 122 is open, the third switch 128 is also turned on, so that the output terminal 16 is electrically connected to the RC filter circuit to filter the high voltage signal, and the high voltage signal passes through the first The diode 126 and the RC filter circuit are converted into a DC negative voltage signal and then sent to the output terminal 14, and the DC negative voltage is supplied through the output terminal 14 to the first end (test end) of the object to be tested for testing. In contrast, when the control module 16 controls the first switch 120 to open and the second switch 122 is turned on, the third switch 128 is also turned on, so that the output terminal 16 is electrically connected to the RC filter circuit to filter the high voltage signal. The signal is converted to a direct current positive voltage signal by the first diode 124 and the RC filter circuit, and is sent to the output terminal 14 through the output terminal 14, and the DC positive voltage is supplied to the first end (test end) of the object to be tested. test.
當第一開關120及第二開關122導通且第三開關128開路時,高壓訊號經過第一開關120以及第二開關122而傳送至輸出端14,並且透過輸出端14可提供此交流的高壓訊號至待測物之第一端(測試端)來進行測試。如上所述,藉由控制第一開關120、第二開關122以及第三開關128,能將訊號產生模組10所產生的高壓訊號以直流正電壓、直流負電壓以及交流電壓的形式直接輸出至待測物的測試端。When the first switch 120 and the second switch 122 are turned on and the third switch 128 is open, the high voltage signal is transmitted to the output terminal 14 through the first switch 120 and the second switch 122, and the high voltage signal of the alternating current is provided through the output terminal 14. Test to the first end (test end) of the object to be tested. As described above, by controlling the first switch 120, the second switch 122, and the third switch 128, the high voltage signal generated by the signal generating module 10 can be directly outputted to the DC positive voltage, the DC negative voltage, and the AC voltage. The test end of the object to be tested.
請再參閱圖三,如圖三所示,耐壓測試裝置1進一步包含分流電路180以及分壓電路182,其中,分流電路180可電性連接於上述待測物的第二端(接地端140),分壓電路282則可電性連接於待測物之第一端(輸出端14)與第二端(接地端140)之間。分流電路180與分壓電路182分別用來偵測待測物的電流以及電壓,並據以產生回授電流的類比訊號及回授電壓的類比訊號。分流電路180以及分壓電路182可分別電性連接控制模組16,以將上述回授電流及電壓的類比傳送至控制模組16供進行測試計算。Referring to FIG. 3 again, as shown in FIG. 3 , the withstand voltage testing device 1 further includes a shunt circuit 180 and a voltage dividing circuit 182 , wherein the shunt circuit 180 is electrically connected to the second end of the object to be tested (ground end) 140), the voltage dividing circuit 282 is electrically connected between the first end (output end 14) and the second end (ground end 140) of the object to be tested. The shunt circuit 180 and the voltage dividing circuit 182 are respectively configured to detect the current and the voltage of the object to be tested, and accordingly generate an analog signal of the analog current and the analog signal of the feedback voltage. The shunt circuit 180 and the voltage dividing circuit 182 can be electrically connected to the control module 16 to transmit the analog current and voltage analogy to the control module 16 for test calculation.
於本具體實施例中,控制模組16可進一步包含控制單元160、第一轉換單元162以及第二轉換單元164,其中,第一轉換單元162電性連接於控制單元160與訊號產生模組10,第二轉換單元164則分別電性連接於控制單元160及分流電路180以及分壓電路182。控制單元160可產生輸出控制的數位訊號至第一轉換單元162,接著,第一轉換單元162能將此輸出控制的數位訊號轉換成輸出控制的類比訊號後傳送至訊號產生模組10,訊號產生模組10則 可根據此輸出控制的類比訊號產生高壓訊號。另一方面,上述分流電路180以及分壓電路182所產生的回授電流及電壓的類比訊號,可經由第二轉換單元164分別轉換成回授電流及電壓的數位訊號後再回傳至控制單元160,使控制單元160能根據回授電流及電壓的數位訊號進行測試計算。此外,切換模組12的各開關同樣受到控制模組10中的控制單元100控制。舉例而言,若一操作者欲以直流正電壓對待測物進行測試,可下操作指令至控制單元100,控制單元100則根據操作指令控制第一開關120開路、第二開關122及第三開關128導通。更甚者,控制單元100可藉控制邏輯程序對切換模組12進行控制,以達到自動可變電壓測試的效果。In the embodiment, the control module 16 further includes a control unit 160, a first conversion unit 162, and a second conversion unit 164. The first conversion unit 162 is electrically connected to the control unit 160 and the signal generation module 10. The second conversion unit 164 is electrically connected to the control unit 160 and the shunt circuit 180 and the voltage dividing circuit 182, respectively. The control unit 160 can generate the output-controlled digital signal to the first conversion unit 162. Then, the first conversion unit 162 can convert the output-controlled digital signal into an output-controlled analog signal, and then transmit the signal to the signal generation module 10, and generate the signal. Module 10 A high voltage signal can be generated based on the analog signal controlled by this output. On the other hand, the analog signals of the feedback current and voltage generated by the shunt circuit 180 and the voltage dividing circuit 182 can be converted into digital signals of the current and voltage by the second converting unit 164, and then transmitted back to the control. The unit 160 enables the control unit 160 to perform a test calculation based on the digital signals of the feedback current and voltage. In addition, the switches of the switching module 12 are also controlled by the control unit 100 in the control module 10. For example, if an operator wants to test the object to be tested with a DC positive voltage, the operation command may be sent to the control unit 100, and the control unit 100 controls the first switch 120 to open, the second switch 122, and the third switch according to the operation command. 128 is on. Moreover, the control unit 100 can control the switching module 12 by the control logic program to achieve the effect of the automatic variable voltage test.
訊號產生模組10能接收控制模組16的控制來產生高壓訊號,其詳細說明如下所述。於本具體實施例中,訊號產生模組10進一步包含正弦波產生器100、功率放大器102以及高壓變壓器104。正弦波產生器100電性連接於控制模組16之第一轉換單元162,以自第一轉換單元162接收輸出控制的類比訊號,並據以產生正弦波。功率放大器102電性連接於正弦波產生器100,其可根據正弦波產生器100所產生的正弦波產生驅動訊號。高壓變壓器104電性連接於功率放大器102以及切換模組12,以自功率放大器102接收驅動訊號,並將驅動訊號轉換為高壓訊號後輸出至切換模組12。The signal generation module 10 can receive the control of the control module 16 to generate a high voltage signal, which is described in detail below. In the specific embodiment, the signal generating module 10 further includes a sine wave generator 100, a power amplifier 102, and a high voltage transformer 104. The sine wave generator 100 is electrically connected to the first conversion unit 162 of the control module 16 to receive an analog signal of the output control from the first conversion unit 162, and accordingly generate a sine wave. The power amplifier 102 is electrically connected to the sine wave generator 100, which can generate a driving signal according to a sine wave generated by the sine wave generator 100. The high voltage transformer 104 is electrically connected to the power amplifier 102 and the switching module 12 to receive the driving signal from the power amplifier 102 and convert the driving signal into a high voltage signal and output the signal to the switching module 12.
請參閱圖四,圖四係繪示根據本發明之另一具體實施例之具有正負極性電壓輸出之耐壓測試裝置2的示意圖。如圖四所示,本具體實施例與上述具體實施例不同處,在 於本具體實施例之切換模組22之第一二極體224的正極電性連接於輸出端24,而第二二極體226的負極電性連接於輸出端24。此外,切換模組22的第一開關220電性連接於訊號產生模組20與第一二極體224的負極之間,第二開關222則電性連接於訊號產生模組20與第二二極體226的正極之間。本具體實施例之耐壓測試裝置2的其它單元均與上述具體實施例之耐壓測試裝置1中的相對應單元大體上相同,故於此不再贅述。Referring to FIG. 4, FIG. 4 is a schematic diagram showing a withstand voltage testing device 2 having a positive and negative polarity voltage output according to another embodiment of the present invention. As shown in FIG. 4, this specific embodiment is different from the above specific embodiment in The anode of the first diode 224 of the switching module 22 of the present embodiment is electrically connected to the output terminal 24 , and the cathode of the second diode 226 is electrically connected to the output terminal 24 . In addition, the first switch 220 of the switching module 22 is electrically connected between the signal generating module 20 and the negative pole of the first diode 224, and the second switch 222 is electrically connected to the signal generating module 20 and the second Between the positive poles of the polar body 226. The other units of the withstand voltage test apparatus 2 of the present embodiment are substantially the same as the corresponding units of the withstand voltage test apparatus 1 of the above specific embodiment, and thus will not be described again.
於本具體實施例中,當控制模組26控制第一開關220導通、第二開關222開路且第三開關228導通時,訊號產生模組20所產生的高壓訊號經過第一二極體224及RC濾波電路後轉換為直流的負電壓訊號傳送至輸出端24。另一方面,當控制模組26控制第一開關220開路、第二開關222導通且第三開關228導通時,高壓訊號經過第二二極體226及RC濾波電路後轉換為直流的正電壓訊號傳送至輸出端24。此外,當控制模組26控制第一開關220、第二開關222導通且第三開關228開路時,交流的高壓訊號經過第一開關220、第二開關222、第一二極體224以及第二二極體226而傳送至輸出端24。請注意,於另一具體實施例中,第一開關220也可設置於第一二極體224與輸出端24之間,且第二開關222也可設置於第二二極體226與輸出端24之間,同樣可透過上一具體實施例之控制而輸出直流正電壓、直流負電壓或交流電壓至輸出端24。In the embodiment, when the control module 26 controls the first switch 220 to be turned on, the second switch 222 to be open, and the third switch 228 to be turned on, the high voltage signal generated by the signal generating module 20 passes through the first diode 224 and The negative voltage signal converted to DC after the RC filter circuit is transmitted to the output terminal 24. On the other hand, when the control module 26 controls the first switch 220 to open, the second switch 222 is turned on, and the third switch 228 is turned on, the high voltage signal is converted into a direct current positive voltage signal after passing through the second diode 226 and the RC filter circuit. Transfer to output 24. In addition, when the control module 26 controls the first switch 220 and the second switch 222 to be turned on and the third switch 228 is open, the alternating high voltage signal passes through the first switch 220, the second switch 222, the first diode 224, and the second. The diode 226 is passed to the output terminal 24. Please note that in another embodiment, the first switch 220 can also be disposed between the first diode 224 and the output terminal 24, and the second switch 222 can also be disposed at the second diode 226 and the output end. Between 24, a DC positive voltage, a DC negative voltage or an AC voltage can also be output to the output terminal 24 by the control of the previous embodiment.
綜上所述,本發明之耐壓測試裝置可透過切換模組對待測物的第一端(測試端)輸入直流正電壓、直流負電壓或交流電壓,故耐壓測試裝置能對待測物進行高壓測試後直 接以相反極性的測試電壓進行絕緣測試,避免高壓測試後產生的剩餘電壓影響絕緣測試的精確度。另一方面,相較於先前技術以掃描方式進行正負極切換之方法,由於本發明之耐壓測試裝置將待測物的第二端(接地端)維持於低電位,不會因為改變測試訊號的極性使待測物的外殼帶有高壓電壓,可避免操作者因誤觸高壓外殼而遭受電擊,進一步提供安全的測試環境。此外,本發明之耐壓測試裝置係以單一電路而非獨立電路來提供直流正電壓、直流負電壓或交流電壓,故於裝置架構上精簡不複雜,可降低測試裝置的成本。In summary, the withstand voltage test device of the present invention can input a DC positive voltage, a DC negative voltage or an AC voltage through the first end (test end) of the device to be tested through the switching module, so that the withstand voltage test device can perform the object to be tested. Straight after high voltage test The insulation test is conducted with the test voltage of the opposite polarity to avoid the residual voltage generated after the high voltage test affecting the accuracy of the insulation test. On the other hand, compared with the prior art method of performing positive and negative switching in a scanning manner, since the withstand voltage test device of the present invention maintains the second end (ground terminal) of the object to be tested at a low potential, it is not caused by changing the test signal. The polarity of the object to be tested has a high voltage voltage to prevent the operator from being shocked by accidentally touching the high voltage housing, further providing a safe test environment. In addition, the withstand voltage test device of the present invention provides a DC positive voltage, a DC negative voltage or an AC voltage in a single circuit instead of a separate circuit, so that the device architecture is simplified and uncomplicated, and the cost of the test device can be reduced.
藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。因此,本發明所申請之專利範圍的範疇應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed. Therefore, the scope of the patented scope of the invention should be construed as broadly construed in the
L1、L2、L3、L1’、L2’、L3’‧‧‧曲線L1, L2, L3, L1', L2', L3'‧‧‧ curves
1、2‧‧‧具有正負極性電壓輸出之耐壓測試裝置1, 2‧‧‧ Withstand voltage test device with positive and negative voltage output
10、20‧‧‧訊號產生模組10, 20‧‧‧ Signal Generation Module
12、22‧‧‧切換模組12, 22‧‧‧Switch Module
14、24‧‧‧輸出端14, 24‧‧‧ Output
16、26‧‧‧控制模組16, 26‧‧‧Control Module
100、200‧‧‧正弦波產生器100, 200‧‧‧ sine wave generator
102、202‧‧‧功率放大器102, 202‧‧‧ power amplifier
104、204‧‧‧高壓變壓器104, 204‧‧‧ high voltage transformer
120、220‧‧‧第一開關120, 220‧‧‧ first switch
122、222‧‧‧第二開關122, 222‧‧‧ second switch
124、224‧‧‧第一二極體124, 224‧‧‧ first diode
126、226‧‧‧第二二極體126, 226‧‧‧ second diode
128、228‧‧‧第三開關128, 228‧‧‧ third switch
140、240‧‧‧接地端140, 240‧‧‧ Grounding
160、260‧‧‧控制單元160, 260‧‧‧ control unit
162、262‧‧‧第一轉換單元162, 262‧‧‧ first conversion unit
164、264‧‧‧第二轉換單元164, 264‧‧‧ second conversion unit
180、280‧‧‧分流電路180, 280‧‧ ‧ shunt circuit
182、282‧‧‧分壓電路182, 282‧‧ ‧ voltage divider circuit
圖一係繪示先前技術中電子裝置進行高壓測試以及絕緣測試時的電壓變化的示意圖。FIG. 1 is a schematic diagram showing voltage changes during the high voltage test and the insulation test of the electronic device in the prior art.
圖二係繪示電子裝置進行高壓測試以及絕緣測試時輸入不同極性電壓的電壓變化的示意圖。FIG. 2 is a schematic diagram showing changes in voltages of different polarity voltages when the electronic device performs high voltage testing and insulation testing.
圖三係繪示根據本發明之另一具體實施例之具有正負極性電壓輸出之耐壓測試裝置的示意圖。FIG. 3 is a schematic diagram showing a withstand voltage test apparatus having a positive and negative polarity voltage output according to another embodiment of the present invention.
圖四係繪示根據本發明之另一具體實施例之具有正負極性電壓輸出之耐壓測試裝置的示意圖。4 is a schematic diagram showing a withstand voltage test apparatus having a positive and negative polarity voltage output according to another embodiment of the present invention.
1‧‧‧具有正負極性電壓輸出之耐壓測試裝置1‧‧‧Withstand voltage test device with positive and negative voltage output
10‧‧‧訊號產生模組10‧‧‧Signal Generation Module
12‧‧‧切換模組12‧‧‧Switch Module
14‧‧‧輸出端14‧‧‧ Output
16‧‧‧控制模組16‧‧‧Control Module
100‧‧‧正弦波產生器100‧‧‧Sine wave generator
102‧‧‧功率放大器102‧‧‧Power Amplifier
104‧‧‧高壓變壓器104‧‧‧High voltage transformer
120‧‧‧第一開關120‧‧‧First switch
122‧‧‧第二開關122‧‧‧Second switch
124‧‧‧第一二極體124‧‧‧First Diode
126‧‧‧第二二極體126‧‧‧second diode
128‧‧‧第三開關128‧‧‧third switch
140‧‧‧接地端140‧‧‧ Grounding terminal
160‧‧‧控制單元160‧‧‧Control unit
162‧‧‧第一轉換單元162‧‧‧First conversion unit
164‧‧‧第二轉換單元164‧‧‧Second conversion unit
180‧‧‧分流電路180‧‧‧Split circuit
182‧‧‧分壓電路182‧‧‧voltage circuit
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101131278A TWI465748B (en) | 2012-08-29 | 2012-08-29 | Voltage testing device with positive and negative outputs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101131278A TWI465748B (en) | 2012-08-29 | 2012-08-29 | Voltage testing device with positive and negative outputs |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201409053A TW201409053A (en) | 2014-03-01 |
TWI465748B true TWI465748B (en) | 2014-12-21 |
Family
ID=50820341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101131278A TWI465748B (en) | 2012-08-29 | 2012-08-29 | Voltage testing device with positive and negative outputs |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI465748B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200301612A (en) * | 2001-12-21 | 2003-07-01 | Fujitsu Ltd | Bipolar supply voltage generator and semiconductor device for same |
TW200721654A (en) * | 2005-11-18 | 2007-06-01 | Friwo Mobile Power Gmbh | Control circuit for current and voltage control in a switching power supply |
TW200929816A (en) * | 2007-12-31 | 2009-07-01 | Fitipower Integrated Tech Inc | Voltage converter |
US20100213966A1 (en) * | 2009-02-26 | 2010-08-26 | Advantest Corporation, a Japanese Corporation | Comparator with latching function |
TW201128921A (en) * | 2010-02-01 | 2011-08-16 | Univ Nat Taipei Technology | adapted to perform voltage conversion on an input voltage outputted by a voltage source to output a |
-
2012
- 2012-08-29 TW TW101131278A patent/TWI465748B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200301612A (en) * | 2001-12-21 | 2003-07-01 | Fujitsu Ltd | Bipolar supply voltage generator and semiconductor device for same |
TW200721654A (en) * | 2005-11-18 | 2007-06-01 | Friwo Mobile Power Gmbh | Control circuit for current and voltage control in a switching power supply |
TW200929816A (en) * | 2007-12-31 | 2009-07-01 | Fitipower Integrated Tech Inc | Voltage converter |
US20100213966A1 (en) * | 2009-02-26 | 2010-08-26 | Advantest Corporation, a Japanese Corporation | Comparator with latching function |
TW201128921A (en) * | 2010-02-01 | 2011-08-16 | Univ Nat Taipei Technology | adapted to perform voltage conversion on an input voltage outputted by a voltage source to output a |
Also Published As
Publication number | Publication date |
---|---|
TW201409053A (en) | 2014-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6268617B2 (en) | Cascade type multi-level converter self-test system and self-test method therefor | |
RU2637775C2 (en) | Diagram of flyback quick start driver and method of excitation | |
US8373406B2 (en) | Electrical power quality test circuitry and method | |
CN103969674B (en) | The method of radiation monitor and the electrometer measurement electric current for passing through radiation monitor | |
TWI646760B (en) | Electric conversion device | |
JP2016189189A (en) | Memory device for storing operational data of electronic apparatus, and system for the same | |
CN103630801A (en) | Voltage withstanding test device with positive and negative polarity voltage output | |
TWI465748B (en) | Voltage testing device with positive and negative outputs | |
CN112994457A (en) | Switching power supply circuit, switching power supply chip and electronic equipment | |
CN107390139B (en) | Portable grid-connected converter testing device | |
CN217133305U (en) | Aging circuit for diode | |
JP5959385B2 (en) | AC voltage generator and voltage detector | |
JP6907827B2 (en) | Line noise test equipment | |
KR101604672B1 (en) | Regenerative Electronics Load | |
CN108054940B (en) | Capacitor series automatic voltage-sharing circuit and control circuit thereof | |
JP6305236B2 (en) | Non-contact voltage detector | |
TWI654820B (en) | Booster apparatus | |
CN108270211B (en) | Bidirectional power supply device with parallel protection and method thereof | |
JP6907828B2 (en) | Line noise test equipment | |
CN107248821A (en) | A kind of nonlinear load analogue means | |
CN104734538A (en) | Power supply device with variable circuit loop impedance | |
CN203688610U (en) | Large power grid voltage simulation circuit | |
CN103913648B (en) | DC power supply and relevant photovoltaic inverter test system | |
RU2446408C1 (en) | Device to monitor discharge voltage of liquid dielectrics | |
JP5990420B2 (en) | Power supply system and computer |