TWI460979B - Control method of a dc-dc converter and a voltage coverting system - Google Patents

Control method of a dc-dc converter and a voltage coverting system Download PDF

Info

Publication number
TWI460979B
TWI460979B TW100138859A TW100138859A TWI460979B TW I460979 B TWI460979 B TW I460979B TW 100138859 A TW100138859 A TW 100138859A TW 100138859 A TW100138859 A TW 100138859A TW I460979 B TWI460979 B TW I460979B
Authority
TW
Taiwan
Prior art keywords
voltage
converter
output
current
module
Prior art date
Application number
TW100138859A
Other languages
Chinese (zh)
Other versions
TW201318326A (en
Inventor
Yu Kang Lo
Huang Jen Chin
Shih Jen Cheng
Shu Wei Kuo
yu wei Li
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW100138859A priority Critical patent/TWI460979B/en
Publication of TW201318326A publication Critical patent/TW201318326A/en
Application granted granted Critical
Publication of TWI460979B publication Critical patent/TWI460979B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Description

直流/直流轉換器的控制方法與電壓轉換系統DC/DC converter control method and voltage conversion system

本發明有關於一種直流/直流轉換器之驅動控制方法,且特別是一種適用於管理控制太陽能供電系統之直流/直流轉換器的驅動控制方法與電壓轉換系統。The invention relates to a driving control method for a DC/DC converter, and in particular to a driving control method and a voltage conversion system suitable for managing a DC/DC converter for controlling a solar power supply system.

近年來,隨著科技持續地發展,能源(例如石油、煤與天然氣等)不斷地被開發利用、消耗,造成能源危機以及全球暖化效應等問題。因此,開發與研究各類綠色替代再生能源例如太陽能、風力、水力等成為世界各國主要研究項目之一。而上述各類綠色替代能源中,以太陽能供電最受到重視,因太陽能源具有取之不進、用之不竭且無環境汙染之特性,同時,太陽能源使用安全性及利用性遠高於其他各類綠色替代再生能源。據此,研究與開發運用太陽能供電系統及提高太陽能供電效率成為當前最重要的研究課題。In recent years, with the continuous development of science and technology, energy (such as oil, coal and natural gas) has been continuously exploited and consumed, resulting in energy crisis and global warming effects. Therefore, the development and research of various types of green alternative renewable energy sources such as solar energy, wind power, and water power have become one of the major research projects in the world. Among the above-mentioned various types of green alternative energy sources, solar power supply is the most important, because solar energy sources are inaccessible, inexhaustible and have no environmental pollution. At the same time, the safety and utilization of solar energy sources are much higher than others. Various types of green alternative renewable energy. Accordingly, research and development using solar power systems and improving solar power efficiency have become the most important research topics at present.

一般太陽能光電板(solar cell)是由多個太陽能光電池(photovoltaic,PV)係以串聯或並聯形式組成,利用光伏效應(photovoltaic effect)將光能轉換成電能,建立太陽能供電系統(photovoltaic system)。目前,太陽能供電系統可與市設電力整合或獨立運作並已廣泛運用於家用、工業,大樓等設施。Generally, a solar cell is composed of a plurality of solar photovoltaic cells (PV) in series or in parallel, and converts light energy into electric energy by using a photovoltaic effect to establish a photovoltaic system. At present, solar power supply systems can be integrated or operated independently with municipal power and have been widely used in homes, industries, buildings and other facilities.

請參照圖1,圖1繪示典型太陽能供電系統1架構示意圖。典型太陽能供電系統1包括太陽能模組11與升壓式直流/直流轉換器13。太陽能供電系統1可用於驅動負載15。太陽能模組11耦接升壓式直流/直流轉換器13之輸入端。升壓式直流/直流轉換器13之輸出端則耦接負載15。Please refer to FIG. 1 , which illustrates a schematic diagram of a typical solar power supply system 1 . A typical solar power system 1 includes a solar module 11 and a boost DC/DC converter 13. The solar power system 1 can be used to drive the load 15. The solar module 11 is coupled to the input of the boost DC/DC converter 13. The output of the boost DC/DC converter 13 is coupled to the load 15.

太陽能模組11可由多個太陽能光電板以串聯或並聯形式組成,藉由光伏效應將所接收到的光能轉換成直流電源輸出。換言之,太陽能模組11可產生輸出電流IPV 與輸出電壓VPVThe solar module 11 can be composed of a plurality of solar photovoltaic panels in series or in parallel, and the received light energy is converted into a DC power output by a photovoltaic effect. In other words, the solar module 11 can generate an output current I PV and an output voltage V PV .

升壓式直流/直流轉換器13為一般習知升壓式直流/直流轉換器電路包括輸入電容C1、電感L1、功率電晶體Q1、二極體D1及輸出電容C2。太陽能模組11輸出端耦接於輸入電容C1兩端,以注入輸出電流IPv對輸入電容C1充電。此外輸入電容C1的第一端耦接電感L1的第一端,而電感L1的第二端耦接功率電晶體Q1的汲極。功率電晶體Q1的源極則耦接於輸入電容C1的第二端。二極體D1耦接功率電晶體Q1的汲極與輸出電容C2的第一端之間。輸出電容C2的第二端耦接功率電晶體Q1的源極。功率電晶體Q1的閘極用於接收脈波控制信號PWM1,以對應控制功率電晶體Q1的導通與截止時間。換言之,藉由控制功率電晶體Q1的運作,可調整升壓式直流/直流轉換器13的升壓模式,據此獲得所需之輸出電壓Vo,以驅動負載15。The boost DC/DC converter 13 is a conventional conventional boost DC/DC converter circuit including an input capacitor C1, an inductor L1, a power transistor Q1, a diode D1, and an output capacitor C2. The output end of the solar module 11 is coupled to the input capacitor C1 to charge the input capacitor C1 by injecting an output current IPv1. In addition, the first end of the input capacitor C1 is coupled to the first end of the inductor L1, and the second end of the inductor L1 is coupled to the drain of the power transistor Q1. The source of the power transistor Q1 is coupled to the second end of the input capacitor C1. The diode D1 is coupled between the drain of the power transistor Q1 and the first end of the output capacitor C2. The second end of the output capacitor C2 is coupled to the source of the power transistor Q1. The gate of the power transistor Q1 is used to receive the pulse wave control signal PWM1 to correspondingly control the on and off times of the power transistor Q1. In other words, by controlling the operation of the power transistor Q1, the boost mode of the boost DC/DC converter 13 can be adjusted, thereby obtaining the desired output voltage Vo to drive the load 15.

此升壓式直流/直流轉換器13實際運作狀況,可如圖2所示,其繪示升壓式直流/直流轉換器13之電路運作波形示意圖。曲線C11為升壓式直流/直流轉換器13運作時,電感電流波形曲線。曲線C13為升壓式直流/直流轉換器13運作時,功率電晶體Q1截止時汲源極跨壓波形曲線。曲線C15為升壓式直流/直流轉換器13運作時,輸入至功率電晶體Q1閘極之脈波控制信號PWM1波形曲線。曲線C17為升壓式直流/直流轉換器13運作時,輸出電壓Vo波形曲線 。The actual operating condition of the boost DC/DC converter 13 can be as shown in FIG. 2, which shows a schematic diagram of the circuit operation waveform of the boost DC/DC converter 13. Curve C11 is the inductor current waveform when the boost DC/DC converter 13 is operating. The curve C13 is a 跨-source voltage-crossing waveform curve when the power transistor Q1 is turned off when the boost DC/DC converter 13 operates. The curve C15 is a waveform of the pulse wave control signal PWM1 input to the gate of the power transistor Q1 when the boost DC/DC converter 13 operates. Curve C17 is the output voltage Vo waveform when the boost DC/DC converter 13 is operating. .

一般習知升壓式直流/直流轉換器13運作應知不同的輸入電壓會對應不同的脈波控制信號PWM1的工作週期(即導通時間,T 2 -T 1 /T 3 -T 1 )。也就是說,當太陽能模組11之輸出電壓VPV 於輸入電容C1形成跨壓,可依據不同的輸出電壓VPV 之電壓準位,調整脈波控制信號PWM1之工作週期使升壓式直流/直流轉換器13穩定輸出電壓Vo,以供負載15使用。然承如圖2所示,為穩定輸出電壓Vo之電壓準位,功率電晶體Q1須不斷地持續切換導通。然而頻繁切換會使系統較不穩定,使得太陽能供電系統1無法充分利用太陽能模組11所輸出之能量,同時降低太陽能供電系統1之供電效率。此外,太陽能模組11中太陽能光電板一直持續不斷地運作,加速太陽能光電板老化,損壞率,且太陽能光電板價格昂貴,故也會增加太陽能供電系統1的維持成本。It is generally known that the boost DC/DC converter 13 operates with different input voltages corresponding to the duty cycle of the different pulse control signals PWM1 (ie, on-time, T 2 - T 1 / T 3 - T 1 ). That is to say, when the output voltage V PV of the solar module 11 forms a voltage across the input capacitor C1, the duty cycle of the pulse wave control signal PWM1 can be adjusted according to the voltage level of the different output voltage V PV to enable the boost DC/ The DC converter 13 stabilizes the output voltage Vo for use by the load 15. However, as shown in FIG. 2, in order to stabilize the voltage level of the output voltage Vo, the power transistor Q1 must continuously switch on and off. However, frequent switching may make the system more unstable, so that the solar power supply system 1 cannot fully utilize the energy output by the solar module 11 while reducing the power supply efficiency of the solar power supply system 1. In addition, the solar photovoltaic panels in the solar module 11 continue to operate continuously, accelerating the aging of the photovoltaic panels, the damage rate, and the high cost of the solar photovoltaic panels, thereby increasing the maintenance cost of the solar power supply system 1.

有鑑於此,本發明實施例提供一種直流/直流轉換器控制方法,此直流/直流轉換器控制方法可被運用於太陽能供電系統。此直流/直流轉換器控制方法可依據太陽能供電系統的供電需求,分段控制直流/直流轉換器,避免直流/直流轉換器切換過於頻繁,進而可提升能量轉換效率及系統穩定性,同時可有效地提升太陽能光電板能量利用率,建立智慧型太陽能供電系統。In view of this, the embodiment of the present invention provides a DC/DC converter control method, which can be applied to a solar power supply system. The DC/DC converter control method can control the DC/DC converter in stages according to the power supply requirements of the solar power supply system, so as to avoid switching the DC/DC converter too frequently, thereby improving energy conversion efficiency and system stability, and being effective at the same time. Improve the energy utilization rate of solar photovoltaic panels and establish a smart solar power supply system.

本發明實施例提供一種直流/直流轉換器控制方法,此直流/直流轉換器控制方法用於將太陽能模組所產生的第一直流電壓經由直流/直流轉換器作電壓轉換後,輸出第二直流電壓至直流匯流排。首先,偵測第二直流電壓。當判斷出第二直流電壓高於預設工作電壓範圍時,隨即藉由截止直流/直流轉換器之運轉,停止注入能量至直流匯流排。當判斷出第二直流電壓介於預設工作電壓範圍時,驅動直流/直流轉換器進入固定導通時間模式,即固定切換直流/直流轉換器以維持第二直流電壓。另外,當判斷出第二直流電壓低於預設工作電壓範圍時,驅動直流/直流轉換器進入最大功率追蹤模式,並進行最大功率追蹤演算以獲得太陽能模組之最大操作功率點,藉以提供最大功率至直流匯流排。The embodiment of the invention provides a DC/DC converter control method, which is used for converting a first DC voltage generated by a solar module to a voltage through a DC/DC converter, and outputting a second DC. Voltage to DC bus. First, the second DC voltage is detected. When it is determined that the second DC voltage is higher than the preset operating voltage range, the injection energy is stopped to the DC busbar by stopping the operation of the DC/DC converter. When it is determined that the second DC voltage is within a preset operating voltage range, the DC/DC converter is driven into a fixed on-time mode, that is, a fixed switching DC/DC converter is maintained to maintain the second DC voltage. In addition, when it is determined that the second DC voltage is lower than the preset working voltage range, the DC/DC converter is driven to enter the maximum power tracking mode, and the maximum power tracking calculation is performed to obtain the maximum operating power point of the solar module, thereby providing maximum power. To the DC bus.

本發明實施例另提供一種直流/直流轉換器控制方法,此直流/直流轉換器控制方法用於將太陽能模組所產生的第一直流電壓經由直流/直流轉換器作電壓轉換後,輸出第二直流電壓並提供給負載,以驅動負載之運轉。首先,偵測驅動負載之電流及電壓。而後,經由演算獲取驅動負載之功率。判斷驅動負載之功率是否大於預設功率值。當驅動負載之功率小於預設功率值(即為輕載狀態),驅動直流/直流轉換器進入固定導通時間模式,以維持驅動負載所需之電壓。當驅動負載之功率大於預設功率值(即為重載狀態),則驅動直流/直流轉換器進入最大功率追蹤模式並進行最大功率追蹤演算,以獲得太陽能模組之最大操作功率點,藉此以充分利用太陽能模組所提供之能量,提升供電效率。The embodiment of the invention further provides a DC/DC converter control method, wherein the DC/DC converter control method is used to convert the first DC voltage generated by the solar module to a voltage through a DC/DC converter, and output the second The DC voltage is supplied to the load to drive the load. First, the current and voltage of the driving load are detected. Then, the power of the driving load is obtained through calculation. Determine whether the power of the driving load is greater than a preset power value. When the power of the driving load is less than the preset power value (ie, the light load state), the DC/DC converter is driven into a fixed on-time mode to maintain the voltage required to drive the load. When the power of the driving load is greater than the preset power value (ie, the heavy load state), the DC/DC converter is driven into the maximum power tracking mode and the maximum power tracking calculation is performed to obtain the maximum operating power point of the solar module. To make full use of the energy provided by solar modules, to improve power efficiency.

在本發明其中一個實施例中,上述最大功率追蹤模式之建立方法包括,首先,偵測太陽能模組輸出之第一直流電流。其次,對第一直流電壓與第一直流電流進行最大功率演算,以獲得太陽能模組之最大功率操作點。而後,依據最大功率操作點,產生最大功率控制信號以驅動控制直流/直流轉換器,進而提供最大功率至負載。最大功率操作點為太陽能模組運作於最大功率時所輸出之第一直流電壓及第一直流電流。In one embodiment of the present invention, the method for establishing the maximum power tracking mode includes first detecting a first direct current output by the solar module. Secondly, a maximum power calculation is performed on the first DC voltage and the first DC current to obtain a maximum power operating point of the solar module. Then, based on the maximum power operating point, a maximum power control signal is generated to drive the control DC/DC converter to provide maximum power to the load. The maximum power operating point is the first DC voltage and the first DC current output when the solar module operates at the maximum power.

在本發明其中一個實施例中,上述固定導通時間模式之建立方法包括,首先,偵測第一直流電壓。其次,依據所偵測第一直流電壓以及第二直流電壓,產出固定導通時間控制信號。而後,利用固定導通時間控制信號驅動控制直流/直流轉換器,維持第二直流電壓。In one embodiment of the present invention, the method for establishing the fixed on-time mode includes first detecting a first DC voltage. Secondly, a fixed on-time control signal is generated according to the detected first DC voltage and the second DC voltage. Then, the DC/DC converter is driven and controlled by the fixed on-time control signal to maintain the second DC voltage.

本發明實施例提供一種電壓轉換系統,適用於將太陽能模組所輸出之第一直流電壓經電壓轉換後,輸出第二直流電壓以提供給直流匯流排。電壓轉換系統包括直流/直流轉換器、第一電壓感測模組、第一電流感測模組、第二電壓感測模組及控制裝置。直流/直流轉換器耦接於太陽能模組之輸出端,用以將第一直流電壓作電壓轉換後,輸出第二直流電壓至直流匯流排。第一電壓感測模組耦接於太陽能模組之輸出端,用以偵測第一直流電壓。第一電流感測模組,耦接太陽能模組之輸出端與直流/直流轉換器之輸入端之間,用以偵測太陽能模組輸出之第一直流電流。第二電壓感測模組,耦接於直流/直流轉換器之輸出端,用以偵測第二直流電壓。此外,控制裝置耦接第一電壓感測模組、第一電流感測模組、第二電壓感測模組以及直流/直流轉換器。控制裝置用以比較第二直流電壓與一預設工作電壓範圍,並當第二直流電壓介於預設工作電壓範圍內時,控制裝置輸出固定導通時間控制信號驅動直流/直流轉換器,維持固定第二直流電壓。而當第二直流電壓低於該預設工作電壓範圍,控制裝置輸出最大功率控制信號驅動直流/直流轉換器進行最大功率追蹤演算,以提供最大功率至直流匯流排。The embodiment of the invention provides a voltage conversion system, which is suitable for converting a first DC voltage outputted by a solar module by a voltage, and outputting a second DC voltage to provide a DC bus. The voltage conversion system includes a DC/DC converter, a first voltage sensing module, a first current sensing module, a second voltage sensing module, and a control device. The DC/DC converter is coupled to the output end of the solar module for converting the first DC voltage into a voltage and outputting the second DC voltage to the DC bus. The first voltage sensing module is coupled to the output end of the solar module for detecting the first DC voltage. The first current sensing module is coupled between the output end of the solar module and the input end of the DC/DC converter to detect the first DC current output by the solar module. The second voltage sensing module is coupled to the output of the DC/DC converter for detecting the second DC voltage. In addition, the control device is coupled to the first voltage sensing module, the first current sensing module, the second voltage sensing module, and the DC/DC converter. The control device is configured to compare the second DC voltage with a predetermined operating voltage range, and when the second DC voltage is within the preset operating voltage range, the control device outputs a fixed on-time control signal to drive the DC/DC converter to maintain the fixed The second DC voltage. When the second DC voltage is lower than the preset operating voltage range, the control device outputs a maximum power control signal to drive the DC/DC converter for maximum power tracking calculation to provide maximum power to the DC bus.

本發明實施例另提供一種電壓轉換系統,適用於將太陽能模組所輸出之第一直流電壓經電壓轉換後,輸出第二直流電壓以驅動負載。電壓轉換系統包括直流/直流轉換器、第一電壓感測模組、第一電流感測模組、第二電壓感測模組、第二電流感測模組及控制裝置。直流/直流轉換器耦接於太陽能模組之輸出端,用以將第一直流電壓作電壓轉換後,輸出第二直流電壓至負載。第一電壓感測模組耦接於太陽能模組之輸出端,用以偵測第一直流電壓。第一電流感測模組耦接太陽能模組之輸出端與直流/直流轉換器之輸入端之間,用以偵測太陽能模組輸出之第一直流電流。第二電壓感測模組耦接於直流/直流轉換器之輸出端。第二電壓感測模組用以偵測第二直流電壓。第二電流感測模組耦接於直流/直流轉換器之輸出端與負載之間,其中第二電流感測模組用以偵測直流/直流轉換器之第二直流電流。控制裝置耦接第一電壓感測模組、第一電流感測模組、第二電壓感測模組、第二電流感測模組以及直流/直流轉換器。控制裝置用以對第二直流電壓與第二直流電流進行演算,並獲取輸出功率。控制裝置進一步比較輸出功率與一預設輸出功率值。當輸出功率小於預設輸出功率值時,控制裝置輸出固定導通時間控制信號驅動直流/直流轉換器,以維持固定第二直流電壓。而當輸出功率大於預設輸出功率值時,控制裝置輸出最大功率控制信號驅動直流/直流轉換器進行最大功率追蹤演算,以提供最大功率至負載。The embodiment of the invention further provides a voltage conversion system, which is adapted to output a second DC voltage to drive the load after the first DC voltage outputted by the solar module is converted by voltage. The voltage conversion system includes a DC/DC converter, a first voltage sensing module, a first current sensing module, a second voltage sensing module, a second current sensing module, and a control device. The DC/DC converter is coupled to the output end of the solar module for converting the first DC voltage to a voltage and outputting the second DC voltage to the load. The first voltage sensing module is coupled to the output end of the solar module for detecting the first DC voltage. The first current sensing module is coupled between the output end of the solar module and the input end of the DC/DC converter to detect the first DC current output by the solar module. The second voltage sensing module is coupled to the output of the DC/DC converter. The second voltage sensing module is configured to detect the second DC voltage. The second current sensing module is coupled between the output of the DC/DC converter and the load, wherein the second current sensing module is configured to detect the second DC current of the DC/DC converter. The control device is coupled to the first voltage sensing module, the first current sensing module, the second voltage sensing module, the second current sensing module, and the DC/DC converter. The control device is configured to calculate the second DC voltage and the second DC current, and obtain output power. The control device further compares the output power with a predetermined output power value. When the output power is less than the preset output power value, the control device outputs a fixed on-time control signal to drive the DC/DC converter to maintain the fixed second DC voltage. When the output power is greater than the preset output power value, the control device outputs a maximum power control signal to drive the DC/DC converter for maximum power tracking calculation to provide maximum power to the load.

在本發明其中一個實施例中,太陽能模組係由多個太陽能光電板以串聯或並聯形式組成。In one embodiment of the invention, the solar module is comprised of a plurality of solar photovoltaic panels in series or in parallel.

綜上所述,本發明實施例所提供的直流/直流轉換器控制方法與電壓轉換系統,適用於管理和控制太陽能供電系統。此直流/直流轉換器控制方法可依據電壓及電流感測元件所偵測之後端電路之需求狀態(例如匯流排之電壓或負載之狀態)與太陽能光電板之供電情況,有效地控制驅動直流/直流轉換器,以使太陽能供電系統,運作太陽能光電板之最大操作功率點。同時,此方法可於預設條件下使直流/直流轉換器輸出固定電壓,藉此可避免直流/直流換器切換頻率過於頻繁,進而提升系統穩定性與供電效率,亦可延長太陽能光電板之運作時間,從而提升太陽能光電板利用性及經濟效益。In summary, the DC/DC converter control method and voltage conversion system provided by the embodiments of the present invention are suitable for managing and controlling a solar power supply system. The DC/DC converter control method can effectively control the driving DC according to the demand state of the rear end circuit detected by the voltage and current sensing components (such as the voltage of the bus bar or the state of the load) and the power supply of the solar photovoltaic panel. A DC converter is used to enable the solar powered system to operate the maximum operating power point of the solar photovoltaic panel. At the same time, the method can make the DC/DC converter output a fixed voltage under the preset condition, thereby avoiding the DC/DC converter switching frequency being too frequent, thereby improving system stability and power supply efficiency, and extending the solar photovoltaic panel. Operation time, thereby improving the utilization and economic benefits of solar photovoltaic panels.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

[併聯運轉式太陽能供電系統架構之實施例][Example of parallel operation type solar power supply system architecture]

請參照圖3,圖3繪示併聯運轉式太陽能供電系統2之功能方塊圖。與直流匯流排20相並聯之併聯運轉式太陽能供電系統2包括太陽能模組21、升壓式直流/直流轉換模組23、控制裝置25、電流感測模組27、第一電壓感測模組29a以及第二電壓感測模組29b。太陽能模組21之輸出端耦接於升壓式直流/直流轉換模組23之輸入端。此外,升壓式直流/直流轉換模組23之輸出端耦接於直流匯流排20。電流感測模組27耦接於太陽能模組21之輸出端與升壓式直流/直流轉換模組23之輸入端之間。第一電壓感測模組29a耦接於太陽能模組21之輸出端。第二電壓感測模組29b耦接於直流匯流排20。Please refer to FIG. 3 , which illustrates a functional block diagram of the parallel operation solar power supply system 2 . The parallel operation solar power supply system 2 connected in parallel with the DC bus bar 20 includes a solar module 21, a boost DC/DC conversion module 23, a control device 25, a current sensing module 27, and a first voltage sensing module. 29a and a second voltage sensing module 29b. The output end of the solar module 21 is coupled to the input end of the boost DC/DC converter module 23. In addition, the output end of the boost DC/DC converter module 23 is coupled to the DC bus bar 20. The current sensing module 27 is coupled between the output end of the solar module 21 and the input end of the boost DC/DC converter module 23 . The first voltage sensing module 29a is coupled to the output end of the solar module 21 . The second voltage sensing module 29b is coupled to the DC bus bar 20.

併聯運轉式太陽能供電系統2可將太陽能模組21所輸出之能量透過升壓式直流/直流轉換模組23作電壓升壓轉換後匯入直流匯流排20,以維持直流匯流排20之電壓Vbus (即第二直流電壓)。進一步地說,併聯運轉式太陽能供電系統2所包含之控制裝置25,可依據直流匯流排20之電壓準位以及太陽能模組21供電狀態,控制升壓式直流/直流轉換模組23運作,以多段式方式控制併聯運轉式太陽能供電系統供電狀態,藉此可充分利用太陽能模組21所產生之能量。The parallel operation solar power supply system 2 can convert the energy outputted by the solar module 21 through the boost DC/DC conversion module 23 for voltage boost conversion and then into the DC bus bar 20 to maintain the voltage of the DC bus bar 20 Bus (ie the second DC voltage). Further, the control device 25 included in the parallel operation solar power supply system 2 can control the operation of the boost DC/DC conversion module 23 according to the voltage level of the DC bus 20 and the power supply state of the solar module 21. The multi-stage mode controls the power supply state of the parallel operation solar power supply system, thereby making full use of the energy generated by the solar module 21.

舉例來說,控制裝置25可於直流匯流排20之電壓Vbus 準位大於預設直流匯流排20之最大電壓時(例如400V DC),藉由切換截止升壓式直流/直流轉換模組23之運作,關閉併聯運轉式太陽能供電系統2,以停止輸送電力至直流匯流排20。控制裝置25另可於直流匯流排20之電壓Vbus 之電壓準位介於正常工作電壓範圍內(例如介於390V~395V DC),控制裝置25可藉由固定導通時間切換驅動升壓式直流/直流轉換模組23的運作模式,維持穩定直流匯流排20之電壓Vbus 。換言之,透過調整升壓式直流/直流轉換模組23的切換週期,控 制升壓模式,以維持輸送至直流匯流排20之電壓Vbus 。控制裝置25還可於直流匯流排20之電壓Vbus 之電壓準位低於正常工作電壓範圍之下(例如低於390V),控制裝置25會依據太陽能模組21之供電狀態,即太陽能模組21之輸出電流IPV (即第一直流電流)與太陽能模組21之輸出電壓VPV (即第一直流電壓),並經由演算尋找太陽能模組21之最大操作功率點,而後,將太陽能模組21對應於最大操作功率點之輸出電壓VPV 經升壓式直流/直流轉換模組23升壓後,匯入直流匯流排20之電壓Vbus ,藉以提升直流匯流排20之功率。要說明的是,併聯運轉式太陽能供電系統2之具體管控方法會藉由其他實施例來描述,故在此不再贅述。For example, the control device 25 can switch the cut-off boost DC/DC conversion module 23 when the voltage V bus of the DC bus 20 is greater than the maximum voltage of the preset DC bus 20 (for example, 400 V DC). In operation, the parallel operation solar power supply system 2 is turned off to stop the transmission of power to the DC bus bar 20. The control device 25 can further DC bus voltage level of the voltage V bus 20 is interposed within the normal operating voltage range (e.g., between 390V ~ 395V DC), the switching control means 25 may be driven by a fixed on-time boost DC The mode of operation of the /DC converter module 23 maintains the voltage Vbus of the stabilized DC busbar 20. In other words, the boost mode is controlled by adjusting the switching period of the boost DC/DC converter module 23 to maintain the voltage Vbus delivered to the DC bus 20. The control device 25 can also be that the voltage level of the voltage V bus of the DC bus 20 is lower than the normal operating voltage range (for example, less than 390 V), and the control device 25 according to the power supply state of the solar module 21, that is, the solar module. The output current I PV (ie, the first direct current) of 21 and the output voltage V PV of the solar module 21 (ie, the first direct current voltage) are calculated by searching for the maximum operating power point of the solar module 21, and then the solar mode is The output voltage V PV of the group 21 corresponding to the maximum operating power point is boosted by the boost DC/DC converter module 23, and then converted into the voltage V bus of the DC bus 20 to boost the power of the DC bus 20 . It should be noted that the specific control method of the parallel operation solar power supply system 2 will be described by other embodiments, and therefore will not be described herein.

接著,併聯運轉式太陽能供電系統2之實體架構中,太陽能模組21如先前所述係由多個太陽能光電板以串聯或並聯形式組成,可藉由光伏效應將光能轉換成電能,以產生輸出電壓VPV 及輸出電流IPVThen, in the physical architecture of the parallel-operated solar power supply system 2, the solar module 21 is composed of a plurality of solar photovoltaic panels in series or in parallel as described above, and the light energy can be converted into electrical energy by the photovoltaic effect to generate Output voltage V PV and output current I PV .

升壓式直流/直流轉換模組23則可為習知升壓式直流/直流轉換器,用以將太陽能模組21產生之輸出電壓VPV 升壓,同時藉由輸出電容C4穩壓後匯入直流匯流排20以維持或提升直流匯流排20之電壓準位。The boost DC/DC converter module 23 can be a conventional boost DC/DC converter for boosting the output voltage V PV generated by the solar module 21 while being regulated by the output capacitor C4. The bus bar 20 maintains or raises the voltage level of the DC bus 20.

升壓式直流/直流轉換模組23之運作模式簡單來說,即假設輸入電容C3與輸出電容C4已被充電,當功率電晶體Q2導通時,太陽能模組21所輸出之能量會儲存於電感L2,此時電感電流上升,使得二極體D2逆向偏壓,藉此輸出電容C4則會將能量輸出至直流匯流排20。當功率電晶體Q2截止時,電感L2改變磁場,電感L2之電壓極性會反 轉,使得二極體D2順向偏壓。此時,存於電感L2之能量經二極體D2流入直流匯流排20。換句話說,藉由控制切換功率電晶體Q2之導通與截止時間,可控制升壓式直流/直流轉換模組23之運作。據此,升壓式直流/直流轉換模組23之電壓轉換方式,可以下列方程式來表示, The operation mode of the boost DC/DC converter module 23 is simply assumed, that is, the input capacitor C3 and the output capacitor C4 are charged. When the power transistor Q2 is turned on, the energy output by the solar module 21 is stored in the inductor. L2, at this time, the inductor current rises, causing the diode D2 to be reverse biased, whereby the output capacitor C4 outputs energy to the DC busbar 20. When the power transistor Q2 is turned off, the inductor L2 changes the magnetic field, and the polarity of the voltage of the inductor L2 is reversed, so that the diode D2 is biased in the forward direction. At this time, the energy stored in the inductor L2 flows into the DC bus bar 20 via the diode D2. In other words, the operation of the boost DC/DC converter module 23 can be controlled by controlling the turn-on and turn-off times of the switching power transistor Q2. Accordingly, the voltage conversion mode of the boost DC/DC conversion module 23 can be expressed by the following equation.

於上述方程式中,vbus 為直流匯流排20之電壓值、vPV 為太陽能模組21所輸出直流電壓值而D 為功率電晶體Q2之導通時間(亦即功率電晶體Q2之工作週期)。本技術領域具有通常知識者應可推知上述方程式之推導方式以及升壓式直流/直流轉換模組23之控制方式,故在此不加贅述。In the above equation, v bus is the voltage value of the DC bus 20, v PV is the DC voltage value output by the solar module 21, and D is the conduction time of the power transistor Q2 (that is, the duty cycle of the power transistor Q2). Those skilled in the art should be able to infer the derivation of the above equations and the control mode of the boost DC/DC conversion module 23, and therefore will not be described herein.

另外,電流感測模組27可用以擷取太陽能模組21之輸出電流IPV ,以取樣至控制裝置25。第一電壓感測模組29a與第二電壓感測模組29b則可分別用以擷取太陽能模組21之輸出電壓VPV 以及直流匯流排20之電壓Vbus ,以取樣至控制裝置25。控制裝置25則可利用第二電壓感測模組29b回授所擷取直流匯流排20之電壓Vbus ,判斷控制此併聯運轉式太陽能供電系統2的運作模式。In addition, the current sensing module 27 can be used to capture the output current I PV of the solar module 21 for sampling to the control device 25. The first voltage sensing module 29a and the second voltage sensing module 29b are respectively configured to capture the output voltage V PV of the solar module 21 and the voltage V bus of the DC bus 20 for sampling to the control device 25. The control device 25 can use the second voltage sensing module 29b to feedback the voltage V bus of the captured DC busbar 20 to determine the operation mode of the parallel-operated solar power supply system 2.

詳細地說,控制裝置25包括最大功率追蹤模組251、開關控制裝置253及微處理模組255。最大功率追蹤模組251與開關控制裝置253分別耦接至微處理模組255。最大功率追蹤模組251可用以接收電流感測模組27與第一電壓感測模組29a偵測太陽能模組21之輸出 電壓VPV 及輸出電流IPV 。最大功率追蹤模組251可藉由對所擷取太陽能模組21之輸出電壓VPV 及輸出電流IPV ,進行最大功率演算,以獲得太陽能模組21於不同條件下(例如日照、溫度等)之最大操作功率點(亦即最大輸出電壓VPV 與最大輸出電流IPV )。據此,微處理模組255可對升壓式直流/直流轉換模組23進行控制以使太陽能模組21運作在最大功率點亦即使太陽能模組21維持最大功率輸出。微處理模組255可依據第一電壓感測模組29a與第二電壓感測模組29b所分別擷取及回授太陽能模組21之輸出電壓VPV 與直流匯流排20之電壓Vbus ,並利用開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2至功率電晶體Q2,以控制功率電晶體Q2之導通與截止時間。In detail, the control device 25 includes a maximum power tracking module 251, a switch control device 253, and a micro processing module 255. The maximum power tracking module 251 and the switch control device 253 are respectively coupled to the micro processing module 255. The maximum power tracking module 251 can be used to receive the current sensing module 27 and the first voltage sensing module 29a to detect the output voltage V PV and the output current I PV of the solar module 21 . The maximum power tracking module 251 can perform maximum power calculation on the output voltage V PV and the output current I PV of the captured solar module 21 to obtain the solar module 21 under different conditions (eg, sunshine, temperature, etc.). The maximum operating power point (ie, the maximum output voltage V PV and the maximum output current I PV ). Accordingly, the microprocessor module 255 can control the boost DC/DC converter module 23 to operate the solar module 21 at the maximum power point even if the solar module 21 maintains maximum power output. The micro-processing module 255 can respectively capture and feedback the output voltage V PV of the solar module 21 and the voltage V bus of the DC bus 20 according to the first voltage sensing module 29a and the second voltage sensing module 29b. And the switch control device 253 outputs a pulse wave control signal PWM2 with a corresponding duty cycle to the power transistor Q2 to control the turn-on and turn-off time of the power transistor Q2.

於電路實際運作時,太陽能模組21經由光伏效應產生並輸出之輸出電壓VPV 至升壓式直流/直流轉換模組23。一般來說,太陽能模組21可提供150V-300V DC,而直流匯流排20之電壓Vbus 為380V+/-20V DC。因此,控制裝置25可依據第二電壓感測模組29b所偵測直流匯流排20之電壓Vbus ,驅動開關控制裝置253產出具有相對應工作週期之脈波控制信號PWM2,輸入至功率電晶體Q2之閘極,以控制功率電晶體Q2之運作。藉此,可控制升壓式直流/直流轉換模組23運作,以輸出所需之功率至直流匯流排20,藉以提升或維持直流匯流排20之電壓Vbus 。此外,控制裝置25也可依據太陽能模組21供電狀況,進行演算後,調整升壓式直流/直流轉換模組23運作(亦即太陽能模組21之操作功率 點),以達到太陽能模組21最大功率輸出,以提升併聯運轉式太陽能供電系統2之供電效率。具體實施管理控制方式會藉由其他實施例來描述,在此不加贅述。During the actual operation of the circuit, the solar module 21 generates and outputs an output voltage V PV to the boost DC/DC conversion module 23 via a photovoltaic effect. In general, the solar module 21 can provide 150V-300V DC, and the voltage of the DC bus 20 V bus is 380V +/- 20V DC. Therefore, the control device 25 can drive the switch control device 253 to generate the pulse wave control signal PWM2 with the corresponding duty cycle according to the voltage V bus of the DC bus bar 20 detected by the second voltage sensing module 29b, and input the power to the power. The gate of crystal Q2 controls the operation of power transistor Q2. Thereby, the boost DC/DC converter module 23 can be controlled to output the required power to the DC busbar 20, thereby boosting or maintaining the voltage Vbus of the DC busbar 20. In addition, the control device 25 can also adjust the operation of the boost DC/DC conversion module 23 (that is, the operating power point of the solar module 21) after the calculation according to the power supply condition of the solar module 21 to reach the solar module 21. The maximum power output is to improve the power supply efficiency of the parallel operation solar power supply system 2. The specific implementation management control mode will be described by other embodiments, and will not be further described herein.

附帶一提的是,太陽能模組21最大操作功率點定義可參照圖4,圖4繪示典型太陽能光電板於一特定日照及溫度條件下輸出電流-輸出電壓(I-V)及輸出功率-輸出電壓(P-V)特性曲線示意圖。曲線C21繪示典型太陽能光電板之輸出電流(Ipv)及輸出電壓(Vpv)特性曲線。曲線C23繪示典型太陽能光電板輸出功率-輸出電壓(P-V)特性曲線。曲線C25繪示典型太陽能光電板具有閉路電流(Isc)及開路電壓(Voc)的固定斜率之曲線。值得一提的是,無論太陽能光電板如何運作,其操作功率點皆會位於開路電壓Voc與短路電流Isc曲線之右側。此外,C23之最頂點P1即為太陽能光電板可輸出之最大功率。P2為於曲線C21之上,為對應於P1之操作功率點。也就是說,當太陽能光電板操作於P2(亦即當輸出電流為I*,輸出電壓為V*)時,太陽能光電板可輸出最大功率P1。Incidentally, the definition of the maximum operating power point of the solar module 21 can be referred to FIG. 4. FIG. 4 shows the output current-output voltage (IV) and the output power-output voltage of a typical solar photovoltaic panel under a specific sunlight and temperature conditions. Schematic diagram of the (PV) characteristic curve. Curve C21 shows the output current (Ipv) and output voltage (Vpv) characteristics of a typical solar photovoltaic panel. Curve C23 shows the output power-output voltage (P-V) characteristic curve of a typical solar photovoltaic panel. Curve C25 shows a typical solar photovoltaic panel having a fixed slope of closed circuit current (Isc) and open circuit voltage (Voc). It is worth mentioning that no matter how the solar photovoltaic panel operates, its operating power point will be located to the right of the open circuit voltage Voc and the short circuit current Isc curve. In addition, the highest vertex P1 of C23 is the maximum power that the solar photovoltaic panel can output. P2 is above the curve C21 and is the operating power point corresponding to P1. That is to say, when the solar photovoltaic panel is operated at P2 (that is, when the output current is I* and the output voltage is V*), the solar photovoltaic panel can output the maximum power P1.

此外,由圖4可知輸出功率呈非線性變化,故需利用電壓轉換器及最大功率追蹤(Maximum power point tracking,MPPT)演算法使太陽能光電板輸出功率運作於最大功率點,以提高太陽能光電板之供電效率。In addition, as shown in Fig. 4, the output power changes nonlinearly. Therefore, the voltage converter and the maximum power point tracking (MPPT) algorithm are required to operate the solar photovoltaic panel output power at the maximum power point to improve the solar photovoltaic panel. Power efficiency.

實際實施時,太陽能模組21係由太陽光電板所組成,且太陽能模組21可如前述以多模組串聯、多模組並聯或其組合來實現。多模組串聯可提升太陽能模組21輸出的電壓準位而多模組並聯可提升太陽能模組21 輸出的電流量。換言之,太陽能模組21的設計可依據整體供電系統之需求而設置。電流感測模組27可利用霍爾元件(Hall Effect Sensor)與類比數位轉換電路來實現。同樣地,第一電壓感測模組29a與第二電壓感測模組29b可用分壓電路與類比數位電路來實現。控制裝置25可由數位訊號處理器(digital signal processor,DSP)來實現,也就是說,最大功率追蹤模組251、開關控制裝置253及微處理模組255可以程式設計方式整合於數位訊號處理器,以控制管理併聯運轉式太陽能供電系統2。In actual implementation, the solar module 21 is composed of a solar photovoltaic panel, and the solar module 21 can be implemented by multiple modules in series, multiple modules in parallel, or a combination thereof as described above. The multi-module series can increase the voltage level of the output of the solar module 21, and the multi-module parallel connection can upgrade the solar module 21 The amount of current output. In other words, the design of the solar module 21 can be set according to the requirements of the overall power supply system. The current sensing module 27 can be implemented by using a Hall Effect Sensor and an analog digital conversion circuit. Similarly, the first voltage sensing module 29a and the second voltage sensing module 29b can be implemented by a voltage dividing circuit and an analog digital circuit. The control device 25 can be implemented by a digital signal processor (DSP), that is, the maximum power tracking module 251, the switch control device 253, and the micro processing module 255 can be programmed to be integrated into the digital signal processor. The parallel operation solar power supply system 2 is controlled by the control.

要說明的是,本發明並不限定太陽能模組21、升壓式直流/直流轉換模組23、控制裝置25、電流感測模組27、第一電壓感測模組29a與第二電壓感測模組29b的種類、實體架構及/或實施方式。It should be noted that the present invention does not limit the solar module 21, the boost DC/DC conversion module 23, the control device 25, the current sensing module 27, the first voltage sensing module 29a, and the second voltage sense. The type, physical architecture and/or implementation of the test module 29b.

〔直流/直流轉換器控制方法之實施例〕[Example of DC/DC Converter Control Method]

接著,請參照圖5並同時參照圖3,圖5繪示本發明實施例所提供直流/直流轉換器控制方法流程圖。於此實施中,此直流/直流轉換器控制方法可用於管理連接於直流匯流排20之併聯運轉式太陽能供電系統2。Next, please refer to FIG. 5 and simultaneously refer to FIG. 3. FIG. 5 is a flow chart of a DC/DC converter control method according to an embodiment of the present invention. In this implementation, the DC/DC converter control method can be used to manage the parallel-operated solar power system 2 connected to the DC busbar 20.

首先,併聯運轉式太陽能供電系統參數初始化,例如設定升壓式直流/直流轉換模組23之工作週期,供電系統之初始輸入電壓值、供電系統之初始輸入電流值、供電系統之初始輸出電壓值、供電系統之初始輸出電流值、第一預設電壓值、第二預設電壓值及第三預設電壓值等(步驟S101)。而後於步驟S103中,利用第二電壓感測模組29b偵測並擷取目前直流匯流排20 之電壓值Vbus [n](即第二直流電壓的電壓準位)。接著,於步驟S105,比較目前直流匯流排20之電壓值Vbus [n]與第一預設電壓值,判斷目前直流匯流排20之電壓值Vbus [n]是否大於第一預設電壓值。若目前直流匯流排20之電壓值Vbus [n]大於第一預設電壓值,控制裝置25關閉併聯運轉式太陽能供電系統2,亦即停止輸入能量至直流匯流排20(步驟S107)。反之,若目前直流匯流排20之電壓值Vbus [n]小於第一預設電壓值,則比較目前直流匯流排20之電壓值Vbus [n]是否介於第二預設電壓值及第三預設電壓值之間(步驟S109)。換句話說,判斷目前直流匯流排20之電壓值Vbus [n]是否小於第二預設電壓值且大於第三預設電壓值。若目前直流匯流排20之電壓值Vbus [n]係介於第二預設電壓值及第三預設電壓值之間,控制裝置25隨即於步驟S111,使用第一電壓感測模組29a偵測並擷取輸入至升壓式直流/直流轉換模組23之電壓值(亦即太陽能模組21之輸出電壓VPV 或第一直流電壓的電壓準位),以對目前直流匯流排20之目前電壓值Vbus [n]與太陽能模組21之輸出電壓值VPV [n]進行演算,以獲得對應之脈波控制信號PWM2之工作週期(步驟S113)。藉此,控制裝置25會驅動開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2(即固定導通時間控制信號)至升壓式直流/直流轉換模組23之中的功率電晶體Q2,進而維持目前直流匯流排20之電壓值Vbus [n],使直流/直流轉換模組23進入固定導通時間(constant on time)模式。反之,若目前直流匯流排20之電壓值Vbus [n]小 於第三預設電壓值,則於步驟S115,控制裝置25利用最大功率追縱模組251進行最大功率演算,驅動直流/直流轉換模組23進入最大功率追縱模式,以獲得對應的太陽能模組21之最大操作功率點,即太陽能模組21之最大輸出電壓VPV 與最大輸出電流IPV 。隨後,控制裝置25依據太陽能模組21之目前輸出電壓值VPV [n]及目前輸出電流值IPV [n](即第一直流電流值)進行演算,獲得脈波控制信號PWM2之工作週期(步驟S117)。藉此,控制裝置25會驅動開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2(即最大功率控制信號)至升壓式直流/直流轉換模組23之中的功率電晶體Q2,以提升目前直流匯流排20之功率。之後,當完成對直流/直流轉換模組23的控制後,重新執行步驟S103,直至併聯運轉式太陽能供電系統2被關閉或停止運作。First, the parameters of the parallel operation solar power supply system are initialized, for example, the duty cycle of the boost DC/DC conversion module 23, the initial input voltage value of the power supply system, the initial input current value of the power supply system, and the initial output voltage value of the power supply system. And an initial output current value of the power supply system, a first preset voltage value, a second preset voltage value, and a third preset voltage value, etc. (step S101). Then, in step S103, the voltage value V bus [n] of the current DC bus bar 20 (ie, the voltage level of the second DC voltage) is detected and captured by the second voltage sensing module 29b. Next, in step S105, comparing the current voltage value V bus [n] of the DC bus bar 20 with the first preset voltage value, determining whether the current voltage value V bus [n] of the DC bus bar 20 is greater than the first preset voltage value. . If the current voltage value V bus [n] of the DC bus 20 is greater than the first predetermined voltage value, the control device 25 turns off the parallel operation solar power supply system 2, that is, stops inputting energy to the DC bus 20 (step S107). On the other hand, if the current voltage value V bus [n] of the DC bus 20 is less than the first preset voltage value, compare whether the current voltage value V bus [n] of the DC bus 20 is between the second preset voltage value and the first Between three preset voltage values (step S109). In other words, it is judged whether the current voltage value V bus [n] of the DC bus 20 is smaller than the second preset voltage value and greater than the third preset voltage value. If the current voltage value V bus [n] of the DC bus 20 is between the second preset voltage value and the third preset voltage value, the control device 25 then uses the first voltage sensing module 29a in step S111. Detecting and capturing the voltage value input to the boost DC/DC conversion module 23 (that is, the output voltage V PV of the solar module 21 or the voltage level of the first DC voltage) to the current DC bus 20 The current voltage value V bus [n] is calculated with the output voltage value V PV [n] of the solar module 21 to obtain a duty cycle of the corresponding pulse wave control signal PWM2 (step S113). Thereby, the control device 25 drives the switch control device 253 to output the pulse transistor control signal PWM2 (ie, the fixed on-time control signal) corresponding to the duty cycle to the power transistor Q2 in the boost DC/DC converter module 23, Further, the current voltage value V bus [n] of the current DC bus 20 is maintained, so that the DC/DC conversion module 23 enters a constant on time mode. On the other hand, if the current voltage value V bus [n] of the DC bus 20 is less than the third preset voltage value, the control device 25 performs the maximum power calculation using the maximum power tracking module 251 to drive the DC/DC conversion in step S115. The module 23 enters a maximum power tracking mode to obtain a maximum operating power point of the corresponding solar module 21, that is, a maximum output voltage V PV and a maximum output current I PV of the solar module 21. Subsequently, the control device 25 performs calculation according to the current output voltage value V PV [n] of the solar module 21 and the current output current value I PV [n] (ie, the first DC current value), and obtains the duty cycle of the pulse wave control signal PWM2. (Step S117). Thereby, the control device 25 drives the switch control device 253 to output the pulse wave control signal PWM2 (ie, the maximum power control signal) corresponding to the duty cycle to the power transistor Q2 in the boost DC/DC conversion module 23, Increase the power of the current DC bus 20 . Thereafter, when the control of the DC/DC conversion module 23 is completed, step S103 is re-executed until the parallel-operated solar power supply system 2 is turned off or stopped.

附帶一提的是,上述之第一預設電壓值大於第二預設電壓值,第二預設電壓值大於第三預設電壓值。換句話說,第一預設電壓值可為直流匯流排20可承受之最大電壓。而第三預設電壓值可為直流匯流排20之最低電壓值。藉此,第二預設電壓值與第三預設電壓值可形成工作電壓範圍。然要說明的是,第一預設電壓值、第二預設電壓值及第三預設電壓值可依實際計需求而設置,故本發明並不限定於第一預設電壓值、第二預設電壓值及第三預設電壓值實際設置方式。Incidentally, the first preset voltage value is greater than the second preset voltage value, and the second preset voltage value is greater than the third preset voltage value. In other words, the first predetermined voltage value can be the maximum voltage that the DC bus 20 can withstand. The third preset voltage value may be the lowest voltage value of the DC bus 20 . Thereby, the second preset voltage value and the third preset voltage value can form an operating voltage range. It should be noted that the first preset voltage value, the second preset voltage value, and the third preset voltage value may be set according to actual requirements, so the present invention is not limited to the first preset voltage value, and the second The preset voltage value and the third preset voltage value are actually set.

舉例來說,併聯運轉式太陽能供電系統2可與市電供電系統進行併聯運作,其所需直流匯流排20之電壓 一般為380V DC。據此,如先前所述,可設定第一預設電壓值為400V DC,亦即直流匯流排20之最大電壓值。接著,設定第二預設電壓值為395V DC,第三預設電壓值為390V DC。For example, the parallel-operated solar power supply system 2 can be operated in parallel with the mains power supply system, and the voltage of the required DC bus 20 is required. Generally it is 380V DC. Accordingly, as previously described, the first predetermined voltage value can be set to 400V DC, that is, the maximum voltage value of the DC bus 20 . Next, the second preset voltage value is set to 395V DC, and the third preset voltage value is 390V DC.

當所偵測到之目前直流匯流排20之電壓值Vbus [n]上升並大於400V DC時,控制裝置25隨即因目前直流匯流排20大於最大電壓值,切換截止升壓式直流/直流轉換模組23,以關閉併聯運轉式太陽能供電系統2。當目前直流匯流排20之電壓值Vbus [n]下降但低於395V DC且大於390V DC時(亦即直流/直流轉換模組23進入固定導通時間模式),控制裝置25即目前直流匯流排20之電壓值與升壓式直流/直流轉換模組23之輸入電壓值(即太陽能模組21之目前輸出電壓VPV [n])進行演算,獲得脈波控制信號PWM2之工作週期(即固定導通時間控制信號之工作週期)。而當目前直流匯流排20之電壓值Vbus [n]下降至低於390V DC時(亦即直流/直流轉換模組23進入最大功率追縱模式),控制裝置25則可利用最大功率追縱模組251進行最大功率追蹤演算,獲得對應的太陽能模組21之操作電壓及操作電流並進行演算,以獲得脈波控制信號PWM2之工作週期(即最大功率控制信號之工作週期)。當完成對直流/直流轉換模組23的控制後,重新偵測直流匯流排20之電壓值Vbus [n],並進行判斷目前直流匯流排20之電壓值之狀態,以對直流/直流轉換模組23作相對應控制,直至併聯運轉式太陽能供電系統2被關閉或停止運作。When the detected voltage value V bus [n] of the current DC bus 20 rises and is greater than 400V DC, the control device 25 then switches the cut-off boost DC/DC conversion because the current DC bus 20 is greater than the maximum voltage value. The module 23 is configured to turn off the parallel operation solar power supply system 2. When the current voltage value V bus [n] of the DC bus 20 drops but is lower than 395V DC and greater than 390V DC (that is, the DC/DC conversion module 23 enters the fixed on-time mode), the control device 25 is the current DC bus. The voltage value of 20 is calculated by the input voltage value of the boost DC/DC converter module 23 (ie, the current output voltage of the solar module 21 V PV [n]), and the duty cycle of the pulse wave control signal PWM2 is obtained (ie, fixed) The duty cycle of the on-time control signal). When the current voltage value V bus [n] of the DC bus 20 drops below 390V DC (that is, the DC/DC conversion module 23 enters the maximum power tracking mode), the control device 25 can utilize the maximum power tracking. The module 251 performs maximum power tracking calculation, obtains the operating voltage and operating current of the corresponding solar module 21, and performs calculation to obtain a duty cycle of the pulse wave control signal PWM2 (ie, a duty cycle of the maximum power control signal). After the control of the DC/DC conversion module 23 is completed, the voltage value V bus [n] of the DC bus 20 is re-detected, and the state of the voltage value of the current DC bus 20 is determined to convert the DC/DC. The module 23 is controlled accordingly until the parallel-operated solar power supply system 2 is turned off or stopped.

此直流/直流轉換器控制方法中的最大功率追蹤演算法進一步包含遮蔽演算法。當太陽能模組21中的太陽能光電板被遮蔽(例如雲層、建築物陰影或塵土覆蓋情況)時,太陽能模組21會出現多個區域最大功率及一個全域最大功率。據此,若未加入遮蔽功能時,最大功率追蹤演算法通常只會追到區域最大功率值,無法充分利用太陽能模組21之最大效能。由於當太陽能模組21中的太陽能光電板發生部分或全部遮蔽時,太陽能模組21之輸出電流IPV 會大幅下降,故可依據太陽能模組21中的之輸出電流IPV ,判斷是否發生遮蔽現象,並可藉由改變脈波控制信號PWM2之工作週期來脫離區域最大值,重新追蹤至全域最大操作功率點。The maximum power tracking algorithm in this DC/DC converter control method further includes a masking algorithm. When the solar photovoltaic panel in the solar module 21 is shielded (for example, cloud layer, building shadow or dust cover), the solar module 21 will have multiple regions of maximum power and one global maximum power. Accordingly, if the masking function is not added, the maximum power tracking algorithm usually only catches up to the maximum power value of the region, and the maximum performance of the solar module 21 cannot be fully utilized. Because when the solar module 21 solar panels generating portion or all of the shielding, solar module 21 that the output current I PV will be substantially reduced, it can be based on the output of the solar module 21 the current I PV, it determines whether masking occurred The phenomenon can be re-tracked to the global maximum operating power point by changing the duty cycle of the pulse control signal PWM2 to deviate from the regional maximum.

此外,於此實施例中所使用之最大功率追蹤演算法為擾動觀察法。Furthermore, the maximum power tracking algorithm used in this embodiment is a perturbation observation method.

具體地說,請參照圖6,圖6繪示本發明實施例所提供最大功率追蹤演算方法。首先,於步驟S201中,使用電流感測模組27及第一電壓感測模組29a分別偵測太陽能模組21目前輸出電流值IPV [n](即第一直流電流值)及太陽能模組21目前輸出電壓值VPV [n](即第一直流電壓值)接著,於步驟S203,比較擷取之太陽能模組21之目前輸出電流值IPV [n]與上一次輸出電流值IPV [n-1]之電流差值與預設電流值(第一預設電流值),以判斷是否有遮蔽情況(即太陽能模組21中的部分或全部太陽能光電板有遮蔽情況發生)。若太陽能模組21之目前輸出電流值IPV [n]與上一次輸出電流值IPV [n-1]之電流差值小於預設電流值,即有遮蔽發生 ,對所擷取之太陽能模組21目前輸出電流值IPV [n]進行演算,以獲得全域最大操作功率點(步驟S205)。隨後,利用演算結果所獲取之最大操作功率點(即太陽能模組21之最大輸出電壓及最大輸出電流),獲得對應之脈波控制信號PWM2之工作週期,亦即遮蔽控制信號之工作週期(步驟S207)。控制裝置25隨即會驅動開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2(即遮蔽控制信號)至升壓式直流/直流轉換模組23之中的功率電晶體Q2,以提升目前直流匯流排20之功率。Specifically, please refer to FIG. 6. FIG. 6 illustrates a maximum power tracking calculation method provided by an embodiment of the present invention. First, in step S201, the current sensing module 27 and the first voltage sensing module 29a are used to respectively detect the current output current value I PV [n] (ie, the first DC current value) of the solar module 21 and the solar mode. Group 21 current output voltage value V PV [n] (ie, the first DC voltage value). Next, in step S203, the current output current value I PV [n] of the captured solar module 21 is compared with the previous output current value I. The current difference between PV [n-1] and the preset current value (first preset current value) to determine whether there is a shadow condition (ie, some or all of the solar photovoltaic panels in the solar module 21 have a shadowing condition). If the current difference between the current output current value I PV [n] of the solar module 21 and the last output current value I PV [n-1] is less than the preset current value, that is, shielding occurs, and the captured solar mode is obtained. Group 21 currently performs an output current value I PV [n] to obtain a global maximum operating power point (step S205). Then, using the maximum operating power point obtained by the calculation result (ie, the maximum output voltage of the solar module 21 and the maximum output current), the duty cycle of the corresponding pulse wave control signal PWM2 is obtained, that is, the duty cycle of the shielding control signal (step S207). The control device 25 then drives the switch control device 253 to output the pulse transistor control signal PWM2 (ie, the masking control signal) corresponding to the duty cycle to the power transistor Q2 in the boost DC/DC converter module 23 to improve the current DC. The power of bus 20 .

附帶一提的是,步驟S205所述之演算法可為利用太陽能模組21中固定的開路電壓Voc與短路電流Isc,獲取固定斜率(即開路電壓Voc/短路電流Isc)。承前述,無論太陽能光電板如何運作,其操作功率點皆會位於開路電壓Voc與短路電流Isc曲線之右側,故當遮蔽發生時,可將電流感測模組27所偵測之太陽能模組21目前輸出電流IPV [n]乘上此固定斜率,即可脫離區域最大值,重新追蹤至全域最大操作功率點。Incidentally, the algorithm described in step S205 may be to obtain a fixed slope (ie, an open circuit voltage Voc/short current Isc) by using the open circuit voltage Voc and the short circuit current Isc fixed in the solar module 21. In the foregoing, regardless of how the solar photovoltaic panel operates, the operating power point is located to the right of the open circuit voltage Voc and the short circuit current Isc curve, so that when the shielding occurs, the solar module 21 detected by the current sensing module 27 can be detected. The current output current I PV [n] is multiplied by this fixed slope to deviate from the regional maximum and re-track to the global maximum operating power point.

反之,若太陽能模組21之目前輸出電流IPV [n]與上一次輸出電流值IPV [n-1]之電流差值大於預設電流值,即無遮蔽現象發生,即對所擷取太陽能模組21之目前輸出電流值IPV [n]及太陽能模組21之目前輸出電壓值VPV [n]進行演算,以獲取太陽能模組21之目前輸出功率值PPV [n](步驟S209)。隨後,於步驟S211中,比較太陽能模組21之目前輸出功率值PPV [n]與上一次的輸出功率值PPV [n-1]。若太陽能模組21之目前輸出 功率值PPV [n]大於上一次的輸出功率值PPV [n-1](亦即功率呈現上升趨勢),則比較判斷太陽能模組21目前輸出電壓值VPV [n]是否大於上一次的輸出電壓值VPV [n-1](步驟S213)。若太陽能模組21之目前輸出電壓值VPV [n]大於上一次的輸出電壓值VPV [n-1],則控制裝置25減少脈波控制信號PWM2之工作週期(步驟S215)。反之,若太陽能模組21之目前輸出電壓值VPV [n]小於上一次的輸出電壓值VPV [n-1],則控制裝置25增加脈波控制信號PWM2之工作週期(步驟S217)。On the other hand, if the current difference between the current output current I PV [n] of the solar module 21 and the previous output current value I PV [n-1] is greater than the preset current value, that is, no masking occurs, that is, the captured The current output current value I PV [n] of the solar module 21 and the current output voltage value V PV [n] of the solar module 21 are calculated to obtain the current output power value P PV [n] of the solar module 21 (step S209). Subsequently, in step S211, the current output power value P PV [n] of the solar module 21 is compared with the last output power value P PV [n-1]. If the current output power value P PV [n] of the solar module 21 is greater than the previous output power value P PV [n-1] (that is, the power shows an upward trend), the current output voltage value V of the solar module 21 is compared and judged. Whether PV [n] is greater than the last output voltage value V PV [n-1] (step S213). If the current output voltage value V PV [n] of the solar module 21 is greater than the previous output voltage value V PV [n-1], the control device 25 reduces the duty cycle of the pulse wave control signal PWM2 (step S215). On the other hand, if the current output voltage value V PV [n] of the solar module 21 is smaller than the previous output voltage value V PV [n-1], the control device 25 increases the duty cycle of the pulse wave control signal PWM2 (step S217).

若太陽能模組21之目前輸出功率值PPV [n]小於上一次的輸出功率值PPV [n-1](亦即功率呈現下降趨勢),則比較判斷太陽能模組21之目前輸出電壓值VPV [n]是否大於上一次的輸出電壓值VPV [n-1](步驟S219)。若太陽能模組21之目前輸出電壓值VPV [n]大於上一次的輸出電壓值VPV [n-1],則控制裝置25增加脈波控制信號PWM2之工作週期(步驟S221)。反之,若太陽能模組21之目前輸出電壓值VPV [n]小於上一次的輸出電壓值VPV [n-1],則控制裝置25減少脈波控制信號PWM2之工作週期(步驟S223)。If the current output power value P PV [n] of the solar module 21 is smaller than the previous output power value P PV [n-1] (that is, the power exhibits a downward trend), the current output voltage value of the solar module 21 is compared and judged. Whether V PV [n] is greater than the previous output voltage value V PV [n-1] (step S219). If the current output voltage value V PV [n] of the solar module 21 is greater than the previous output voltage value V PV [n-1], the control device 25 increases the duty cycle of the pulse wave control signal PWM2 (step S221). On the other hand, if the current output voltage value V PV [n] of the solar module 21 is smaller than the previous output voltage value V PV [n-1], the control device 25 reduces the duty cycle of the pulse wave control signal PWM2 (step S223).

無論是在步驟S215、S217、S221或S223,於完成計算脈波控制信號PWM2之工作週期後,將目前所獲取之太陽能模組21之目前輸出電壓值VPV [n]、太陽能模組21之目前輸出電流值IPV [n]與太陽能模組21之目前輸出功率值PPV [n]取代上一次之輸出電壓值VPV [n-1]、輸出電流值IPV [n-1]與輸出功率值PPV [n-1](步驟S225)。In step S215, S217, S221 or S223, after the duty cycle of calculating the pulse wave control signal PWM2 is completed, the current output voltage value V PV [n] of the currently acquired solar module 21, the solar module 21 The current output current value I PV [n] and the current output power value P PV [n] of the solar module 21 replace the last output voltage value V PV [n-1], the output current value I PV [n-1] and The output power value P PV [n-1] is output (step S225).

要說明的是,本發明實施例使用擾動觀察法為最大功率追蹤演算法,但其他最大功率追蹤演算法,例如電壓回授法、增量電導法,直線近似法等均可被運用於本發明,而本技術領域具有通常知識者應熟知上述各類最大功率追蹤演算方法,故不在此加以贅述,另外本發明並不限定所述之最大功率追蹤演算法實際實施方式,只要可達到計算太陽能光電板之最大功率運作點即可。此外圖6僅為最大功率追蹤演算法之示範實施例,並非用以限定本發明。It should be noted that the embodiment of the present invention uses the disturbance observation method as the maximum power tracking algorithm, but other maximum power tracking algorithms, such as voltage feedback method, incremental conductance method, linear approximation method, etc., can be applied to the present invention. However, those skilled in the art should be familiar with the above various types of maximum power tracking calculation methods, and therefore will not be described herein. In addition, the present invention does not limit the actual implementation method of the maximum power tracking algorithm as long as the solar photovoltaic can be calculated. The maximum power operation point of the board is sufficient. In addition, FIG. 6 is merely an exemplary embodiment of a maximum power tracking algorithm and is not intended to limit the present invention.

值得一提的是,圖5所述之直流/直流轉換器控制方法與圖6所述之最大功率追蹤演算方法可如前所述利用程式設計設置於控制裝置25,以對併聯運轉式太陽能供電系統2進行控制。但本發明並不限定直流/直流轉換器控制方法與最大功率追蹤演算方法的實際設置方式及運用方式。It is worth mentioning that the DC/DC converter control method described in FIG. 5 and the maximum power tracking calculation method described in FIG. 6 can be programmed in the control device 25 as described above to supply power to the parallel operation solar power. System 2 performs control. However, the present invention does not limit the actual setting mode and operation mode of the DC/DC converter control method and the maximum power tracking calculation method.

[獨立運轉式太陽能供電系統架構之實施例][Embodiment of Independent Operational Solar Power System Architecture]

獨立運轉式(stand alone)太陽能供電系統顧名思義係由太陽能光電板直接透過直流/直流轉換器,將能量轉換成負載所需的電力以驅動負載。因此,獨立供電系統可以不受市設電網路停電之影響,因而適用於高山或孤島等偏遠且不易設電力網路的地區。The stand alone solar power system, as the name suggests, uses solar panels directly through a DC/DC converter to convert energy into the power required by the load to drive the load. Therefore, the independent power supply system can be protected from the power outage of the city's power grid, so it is suitable for areas such as mountains or isolated islands that are remote and difficult to set up.

請參照圖7,圖7繪示獨立運轉式太陽能供電系統3之功能方塊圖。獨立運轉式太陽能供電系統3包括太陽能模組21、升壓式直流/直流轉換模組23、控制裝置25、蓄電池單元33、第一電流感測模組31a、第二電壓感測模組31b、第一電壓感測模組29a及第二電壓感測模組29b。獨立運轉式太陽能供電系統3可用以將太陽能模組21所產生之能量提供至直流負載30。蓄電池單元33可包含充放電模組(未繪示於圖7)與電池(未繪示於圖7)。控制裝置25則包含最大功率追蹤模組251、開關控制裝置253及微處理模組255。太陽能模組21之輸出端耦接於升壓式直流/直流轉換模組23之輸入端。升壓式直流/直流轉換模組23之輸出端耦接於直流負載30。蓄電池單元33耦接於太陽能模組21之輸出端與升壓式直流/直流轉換模組23之輸入端之間。第一電流感測模組31a耦接於太陽能模組21之輸出端與升壓式直流/直流轉換模組23之輸入端之間。第二電流感測模組31b耦接於直流負載30與升壓式直流/直流轉換模組23之輸出端之間。第一電壓感測模組29a耦接於太陽能模組21之輸出端。第二電壓感測模組29b則與直流負載30相並聯。Please refer to FIG. 7. FIG. 7 is a functional block diagram of the independently operated solar power supply system 3. The independent operation solar power supply system 3 includes a solar module 21, a boost DC/DC conversion module 23, a control device 25, a battery unit 33, a first current sensing module 31a, and a second voltage sensing module 31b. The first voltage sensing module 29a and the second voltage sensing module 29b. The stand-alone solar power system 3 can be used to provide the energy generated by the solar module 21 to the DC load 30. The battery unit 33 can include a charging and discharging module (not shown in FIG. 7) and a battery (not shown in FIG. 7). The control device 25 includes a maximum power tracking module 251, a switch control device 253, and a micro processing module 255. The output end of the solar module 21 is coupled to the input end of the boost DC/DC converter module 23. The output end of the boost DC/DC converter module 23 is coupled to the DC load 30. The battery unit 33 is coupled between the output end of the solar module 21 and the input end of the boost DC/DC conversion module 23 . The first current sensing module 31a is coupled between the output end of the solar module 21 and the input end of the boost DC/DC converter module 23 . The second current sensing module 31b is coupled between the DC load 30 and the output of the boost DC/DC converter module 23. The first voltage sensing module 29a is coupled to the output end of the solar module 21 . The second voltage sensing module 29b is connected in parallel with the DC load 30.

獨立運轉式太陽能供電系統3運作簡單來說,控制裝置25可透過太陽能模組21經由升壓式直流/直流轉換模組23作電壓升壓轉換後,提供直流負載30所需電力。同時,太陽能模組21可於蓄電池單元33中電池未達上限時,進行充電。蓄電池單元33中電池可於太陽能模組21中的能量耗盡時(例如夜晚或日照不足時),提供直流負載30所需電力。獨立運轉式太陽能供電系統3運作基本架構與操作方式與上述併聯運轉式太陽能供電系統2相似,故本技術領域具有通常知識者應可推知,獨立運轉式太陽能供電系統3實際控制方式,故不再贅述。In a simple operation, the control unit 25 can provide the power required for the DC load 30 after the voltage is boosted and converted by the boosting DC/DC converter module 23 through the solar module 21. At the same time, the solar module 21 can be charged when the battery in the battery unit 33 does not reach the upper limit. The battery in battery unit 33 can provide the power required for DC load 30 when the energy in solar module 21 is exhausted (eg, at night or when there is insufficient sunshine). The basic structure and operation mode of the independent operation solar power supply system 3 are similar to those of the parallel operation type solar power supply system 2 described above. Therefore, those skilled in the art should be able to infer that the independent operation type solar power supply system 3 is actually controlled, so that it is no longer Narration.

獨立運轉式太陽能供電系統3中的控制裝置25,可利用上述實施例中所述之直流/直流轉換器控制方法,可依據直流負載30的情況,分段管制獨立運轉式太陽能供電系統3,以充分利用太陽能模組21經光伏效應轉換後產生之能量。The control device 25 in the independent-operated solar power supply system 3 can utilize the DC/DC converter control method described in the above embodiments to segmentally control the independently-operated solar power supply system 3 according to the condition of the DC load 30. Make full use of the energy generated by the solar module 21 after being converted by the photovoltaic effect.

控制裝置25可利用第二電流感測模組31b偵測升壓式直流/直流轉換模組23之輸出電流IL (即第二直流電流)及升壓式直流/直流轉換模組23之輸出電壓VL (即第二直流電壓),判斷直流負載30的情況,進而依據預先設定模式控制驅動獨立運轉式太陽能供電系統3的運作。The control device 25 can detect the output current I L of the boost DC/DC conversion module 23 (ie, the second DC current) and the output of the boost DC/DC conversion module 23 by using the second current sensing module 31b. The voltage V L (ie, the second DC voltage) determines the condition of the DC load 30, and further controls the operation of the independently operated solar power supply system 3 according to the preset mode.

具體地說,控制裝置25可利用第二電流感測模組31b偵測升壓式直流/直流轉換模組23之輸出電流IL ,第二電壓感測模組29b偵測升壓式直流/直流轉換模組23之輸出電壓VL 進行演算,以獲取驅動直流負載30所需之功率PL 。而當於直流負載30所需之功率PL 小於預設輸出功率值,即代表直流負載30處於輕載狀態。控制裝置25驅動升壓式直流/直流轉換模組23執行固定導通時間模式,利用第一電壓感測模組29a與第二電壓感測模組29b分別擷取太陽能模組21之輸出電壓與直流負載30兩端之電壓,進行演算,以獲得控制升壓式直流/直流轉換模組23所需之脈波控制信號PWM2之工作週期(即固定導通時間控制信號之工作週期)。藉此,控制裝置25隨即會驅動開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2(即固定導通時間控 制信號)至升壓式直流/直流轉換模組23之中的功率電晶體Q2,以維持固定輸出電壓VL 。要說明的是,此模式管控方法類似於圖5之步驟S105~S113。Specifically, the control device 25 can detect the output current I L of the boost DC/DC conversion module 23 by using the second current sensing module 31b, and the second voltage sensing module 29b detects the boost DC/ The output voltage V L of the DC conversion module 23 is calculated to obtain the power P L required to drive the DC load 30. When the power P L required for the DC load 30 is less than the preset output power value, it means that the DC load 30 is in a light load state. The control device 25 drives the boost DC/DC conversion module 23 to perform a fixed on-time mode, and the first voltage sensing module 29a and the second voltage sensing module 29b respectively capture the output voltage and DC of the solar module 21. The voltage across the load 30 is calculated to obtain a duty cycle (ie, a duty cycle of the fixed on-time control signal) required to control the pulse wave control signal PWM2 required by the boost DC/DC converter module 23. Thereby, the control device 25 will drive the switch control device 253 to output the pulse wave control signal PWM2 (ie, the fixed on-time control signal) corresponding to the duty cycle to the power transistor Q2 in the boost DC/DC conversion module 23. To maintain a fixed output voltage V L . It should be noted that this mode control method is similar to steps S105 to S113 of FIG.

當控制裝置25對第二電流感測模組31b偵測之輸出電流IL ,第二電壓感測模組29b偵測之輸出電壓VL 進行演算,所獲取驅動直流負載30所需之功率PL 大於預設輸出功率值,即代表直流負載30處於重載狀態。此時,控制裝置25可驅動升壓式直流/直流轉換模組23執行如前實施例所述之最大功率追蹤模式,利用第一電壓感測模組29a與第一電流感測模組31a分別擷取太陽能模組21之輸出電壓VPV (即第一直流電壓)與太陽能模組21之輸出電流IPV (即第一直流電流)以獲取太陽能模組21之最大操作功率點以及對應之脈波控制信號PWM2之工作週期(即最大功率控制信號之工作週期),以對升壓式直流/直流轉換模組23進行相對應控制。藉此,控制裝置25隨即會驅動開關控制裝置253輸出具對應工作週期之脈波控制信號PWM2(即最大功率控制信號)至升壓式直流/直流轉換模組23之中的功率電晶體Q2,以提升輸出功率。換言之,此模式管控方法類似於圖6之步驟S201~S225。When the control device 25 calculates the output current I L detected by the second current sensing module 31b and the output voltage V L detected by the second voltage sensing module 29b, the power required to drive the DC load 30 is obtained. L is greater than the preset output power value, that is, the DC load 30 is in a heavy load state. At this time, the control device 25 can drive the boost DC/DC conversion module 23 to perform the maximum power tracking mode as described in the previous embodiment, using the first voltage sensing module 29a and the first current sensing module 31a, respectively. Obtaining the output voltage V PV of the solar module 21 (ie, the first DC voltage) and the output current I PV of the solar module 21 (ie, the first DC current) to obtain the maximum operating power point of the solar module 21 and the corresponding pulse The duty cycle of the wave control signal PWM2 (ie, the duty cycle of the maximum power control signal) is controlled correspondingly to the boost DC/DC converter module 23. Thereby, the control device 25 will drive the switch control device 253 to output the pulse wave control signal PWM2 (ie, the maximum power control signal) corresponding to the duty cycle to the power transistor Q2 in the boost DC/DC converter module 23, To increase the output power. In other words, this mode management method is similar to steps S201 to S225 of FIG.

值得一提的是,獨立運轉式太陽能供電系統3之控制方式可如先前所述,以程式設計方式設於控制裝置25中的微處理模組255。預設輸出功率值也可依據系統設計需求而設置於控制裝置25中的微處理模組255。控制裝置25也可由數位訊號處理器來實現,即最大功率追蹤模組251、開關控制裝置253及微處理模組255可以程式設計方式整合於數位訊號處理器,以控制管理獨立運轉式太陽能供電系統3。要說明的是,本發明並不限定控制裝置25與預設輸出功率值的實體架構及或實際設計方式。此外,圖7僅為獨立運轉式太陽能供電系統架構之示意圖,並非用以限定本發明。It is worth mentioning that the control mode of the independent operation solar power supply system 3 can be programmed in the micro processing module 255 in the control device 25 as described above. The preset output power value can also be set in the microprocessor module 255 in the control device 25 according to system design requirements. The control device 25 can also be implemented by a digital signal processor, that is, the maximum power tracking module 251, the switch control device 253, and the micro processing module 255 can be programmed in a digital signal processor to control and manage the independent operation solar power supply system. 3. It should be noted that the present invention does not limit the physical architecture and or the actual design of the control device 25 and the preset output power value. In addition, FIG. 7 is only a schematic diagram of an independent operation solar power system architecture, and is not intended to limit the present invention.

[實施例的可能功效][Possible efficacy of the embodiment]

請參照圖8,圖8繪示本發明實施例所提供併聯運轉式太陽能供電系統2之電路運作波形示意圖。曲線C31為流經電感L2之電流波形示意圖。曲線C33為功率電晶體Q2截止時跨壓波形示意圖。曲線C35為升壓式直流/直流轉換模組23中輸入至功率電晶體Q2閘極之脈波控制信號波形示意圖。曲線C37則繪示直流匯流排20之電壓波形示意圖。Please refer to FIG. 8. FIG. 8 is a schematic diagram showing the circuit operation waveforms of the parallel operation solar power supply system 2 according to an embodiment of the present invention. Curve C31 is a schematic diagram of the current waveform flowing through the inductor L2. Curve C33 is a schematic diagram of the voltage across the voltage when the power transistor Q2 is turned off. The curve C35 is a waveform diagram of the pulse wave control signal input to the gate of the power transistor Q2 in the step-up DC/DC conversion module 23. Curve C37 shows a schematic diagram of the voltage waveform of the DC bus 20 .

如圖8所示,控制裝置25藉由控制升壓式直流/直流轉換模組23,以多段式方式管理控制併聯運轉式太陽能供電系統2。As shown in FIG. 8, the control device 25 manages and controls the parallel operation solar power supply system 2 in a multi-stage manner by controlling the boost DC/DC conversion module 23.

舉例來說,以直流匯流排20之最大電壓為400V DC為例,當所偵測之目前直流匯流排20的電壓大於400V DC時(即時間點TB ),控制裝置25會停止升壓式直流/直流轉換模組23之運作,藉以停止太陽能模組21供電至直流匯流排20。當所偵測之目前直流匯流排20的電壓介於390V~395V DC之間(即時間點TA 與TC ),控制裝置25會驅動升壓式直流/直流轉換模組23維持直流匯流排20之電壓Vbus ,以使併聯運轉式太陽能供電系統2操作於固定導通時間模式。同理,當所偵測之目前直流匯流排20的電壓低於390V DC之間(即時間點TD ),控制裝置25會進行最大功率追蹤模式,搜尋太陽能模組21之最大操作功率點直至直流匯流排20之電壓高於390V DC。據此,與一般運用於太陽能供電系統電路之升壓式直流/直流轉換模組運作模式相比較(圖2),本發明實施例所提供升壓式直流/直流轉換模組23利用上述之直流/直流轉換器控制方法,可於供電系統之輸出電壓工作範圍內,固定切換升壓式直流/直流轉換模組23,藉此可避免升壓式直流/直流轉換模組23切換過於頻繁,提升系統的穩定性,同時亦可充分利用太陽能模組21所產生之能量。For example, taking the maximum voltage of the DC bus 20 as 400V DC as an example, when the detected current DC bus 20 voltage is greater than 400V DC (ie, time point T B ), the control device 25 stops the boosting mode. The operation of the DC/DC conversion module 23 is to stop the solar module 21 from supplying power to the DC bus bar 20. When the detected current DC bus 20 voltage is between 390V and 395V DC (ie, time points T A and T C ), the control device 25 drives the boost DC/DC conversion module 23 to maintain the DC bus. The voltage V bus 20 is such that the parallel-operated solar power supply system 2 operates in a fixed on-time mode. Similarly, when the detected current DC bus 20 voltage is lower than 390V DC (ie, time point T D ), the control device 25 performs a maximum power tracking mode to search for the maximum operating power point of the solar module 21 until The voltage of the DC bus 20 is higher than 390V DC. Accordingly, the boost DC/DC converter module 23 according to the embodiment of the present invention utilizes the DC described above in comparison with the operation mode of the boost DC/DC converter module generally used in the circuit of the solar power supply system (FIG. 2). The DC/DC converter control method can fixedly switch the boost DC/DC conversion module 23 within the output voltage working range of the power supply system, thereby preventing the boost DC/DC conversion module 23 from switching too frequently and improving The stability of the system can also make full use of the energy generated by the solar module 21.

綜上所述,本發明實施例所提供的直流/直流轉換器控制方法與電壓轉換系統,適用於管理和控制太陽能供電系統。此直流/直流轉換器控制方法可依據電壓及電流感測元件所偵測之後端電路之需求狀態(例如匯流排之電壓或負載之狀態)與太陽能光電板之供電情況,有效地控制驅動直流/直流轉換器,以使太陽能供電系統,運作太陽能光電板之最大操作功率點。同時,此方法可於預設條件下使直流/直流轉換器輸出固定電壓,藉此可避免直流/直流換器切換頻率過於頻繁,進而可提升系統穩定度,及供電效率,亦可延長太陽能光電板之運作時間,從而提升太陽能光電板利用性及經濟效益。In summary, the DC/DC converter control method and voltage conversion system provided by the embodiments of the present invention are suitable for managing and controlling a solar power supply system. The DC/DC converter control method can effectively control the driving DC according to the demand state of the rear end circuit detected by the voltage and current sensing components (such as the voltage of the bus bar or the state of the load) and the power supply of the solar photovoltaic panel. A DC converter is used to enable the solar powered system to operate the maximum operating power point of the solar photovoltaic panel. At the same time, this method can make the DC/DC converter output a fixed voltage under preset conditions, thereby avoiding the DC/DC converter switching frequency being too frequent, thereby improving system stability, power supply efficiency, and extending solar photovoltaic The operation time of the board will enhance the utilization and economic benefits of solar photovoltaic panels.

以上所述僅為本發明之實施例,其並非用以侷限本發明之專利範圍。The above description is only an embodiment of the present invention, and is not intended to limit the scope of the invention.

1...傳統典型太陽能供電系統1. . . Traditional typical solar power supply system

11、21...太陽能模組11, 21. . . Solar module

13、23...升壓式直流/直流轉換模組13,23. . . Boost DC/DC converter module

15...負載15. . . load

2...併聯運轉式太陽能供電系統2. . . Parallel operation solar power supply system

20...直流匯流排20. . . DC bus

25...控制裝置25. . . Control device

251...最大功率追蹤模組251. . . Maximum power tracking module

253...開關控制裝置253. . . Switch control device

255...微處理模組255. . . Micro processing module

27...電流感測模組27. . . Current sensing module

3...獨立運轉式太陽能供電系統3. . . Independently operating solar power system

30...直流負載30. . . DC load

31a...第一電流感測模組31a. . . First current sensing module

31b...第二電流感測模組31b. . . Second current sensing module

29a...第一電壓感測模組29a. . . First voltage sensing module

29b...第二電壓感測模組29b. . . Second voltage sensing module

L1、L2...電感L1, L2. . . inductance

C1~C4...電容C1~C4. . . capacitance

Q1、Q2...功率電晶體Q1, Q2. . . Power transistor

D1、D2...二極體D1, D2. . . Dipole

Vo...輸出電壓Vo. . . The output voltage

VPV ...太陽能模組之輸出電壓V PV . . . Solar module output voltage

IPV ...太陽能模組之輸出電流I PV . . . Solar module output current

VBUS ...直流匯流排之電壓V BUS . . . DC bus voltage

VL ...負載電壓V L . . . Load voltage

IL ...負載電流I L . . . Load current

V*...太陽能模組之最大操作電壓V*. . . Maximum operating voltage of the solar module

I*...太陽能模組之最大操作電流I*. . . Maximum operating current of the solar module

Voc...太陽能模組之開路電壓Voc. . . Open circuit voltage of solar module

Isc...太陽能模組之閉路電流Isc. . . Closed circuit current of solar module

T1 、T2 、T3 、TA 、TB 、TC 、TD ...電路運作時間點T 1 , T 2 , T 3 , T A , T B , T C , T D . . . Circuit operation time point

PWM1、PWM2...脈波控制信號PWM1, PWM2. . . Pulse wave control signal

P1、P2...點P1, P2. . . point

C11~C17...曲線C11~C17. . . curve

C21~25...曲線C21~25. . . curve

S101~S117...步驟S101~S117. . . step

S201~S225...步驟S201~S225. . . step

圖1是傳統典型太陽能供電系統的系統架構示意圖。1 is a schematic diagram of a system architecture of a conventional typical solar power supply system.

圖2繪示典型升壓式直流/直流轉換器之電路運作波形示意圖。FIG. 2 is a schematic diagram showing the circuit operation waveform of a typical boost DC/DC converter.

圖3是本發明實施例提供的併聯運轉式太陽能供電系統之功能方塊圖。3 is a functional block diagram of a parallel operation solar power supply system according to an embodiment of the present invention.

圖4是典型太陽能光電板特性曲線示意圖。Figure 4 is a schematic diagram showing the characteristic curve of a typical solar photovoltaic panel.

圖5是本發明實施例所提供直流/直流轉換器控制方法流程圖。FIG. 5 is a flow chart of a DC/DC converter control method according to an embodiment of the present invention.

圖6是本發明實施例所提供最大功率追蹤演算方法。FIG. 6 is a schematic diagram of a maximum power tracking calculation method provided by an embodiment of the present invention.

圖7是本發明實施例所提供獨立運轉式太陽能供電系統之功能方塊圖。FIG. 7 is a functional block diagram of an independently operated solar power supply system according to an embodiment of the present invention.

圖8是本發明實施例所提供太陽能供電系統電路運作波形示意圖。FIG. 8 is a schematic diagram of circuit operation waveforms of a solar power supply system according to an embodiment of the present invention.

S101~S117...步驟S101~S117. . . step

Claims (10)

一種直流/直流轉換器的控制方法,用於對一太陽能模組輸出之一第一直流電壓作電壓轉換後輸出一第二直流電壓至一直流匯流排,該控制方法包括:偵測該第二直流電壓;判斷該第二直流電壓是否介於一預設工作電壓範圍;當該第二直流電壓介於該預設工作電壓範圍內時,驅動該直流/直流轉換器進入一固定導通時間模式,以維持固定該第二直流電壓;以及若當該第二直流電壓低於該預設工作電壓範圍,驅動該直流/直流轉換器進入一最大功率追蹤模式,並進行最大功率追蹤,以提升直流輸出功率。A DC/DC converter control method for converting a first DC voltage of a solar module output and outputting a second DC voltage to a DC bus, the control method comprising: detecting the second a DC voltage; determining whether the second DC voltage is within a predetermined operating voltage range; and driving the DC/DC converter to enter a fixed ON time mode when the second DC voltage is within the preset operating voltage range, To maintain the second DC voltage; and if the second DC voltage is lower than the preset operating voltage range, drive the DC/DC converter to enter a maximum power tracking mode, and perform maximum power tracking to increase DC output power. . 如申請專利範圍第1項之直流/直流轉換器的控制方法,其中該控制方法更包括:當該第二直流電壓高於該預設工作電壓範圍時,截止該直流/直流轉換器運轉,以停止輸出該第二直流電壓至該直流匯流排。The control method of the DC/DC converter of claim 1, wherein the control method further comprises: when the second DC voltage is higher than the preset operating voltage range, turning off the DC/DC converter to operate Stop outputting the second DC voltage to the DC bus. 如申請專利範圍第1項之直流/直流轉換器的控制方法,其中該固定導通時間模式之建立方法包括:偵測該第一直流電壓;依據所偵測該第一直流電壓以及該第二直流電壓,產出一固定導通時間控制信號;以及利用該固定導通時間控制信號驅動控制該直流/直流轉換器,維持固定該第二直流電壓。The method for controlling a DC/DC converter according to claim 1, wherein the method for establishing the fixed on-time mode comprises: detecting the first DC voltage; and detecting the first DC voltage and the second DC a voltage that produces a fixed on-time control signal; and driving the DC/DC converter with the fixed on-time control signal to maintain the second DC voltage. 如申請專利範圍第1項之直流/直流轉換器的控制方法,其中該最大功率追蹤模式之建立方法包括:偵測該太陽能模組輸出之一第一直流電流;對該第一直流電壓與該第一直流電流進行最大功率演算,以獲得該太陽能模組之一最大功率操作點;依據該最大功率操作點,產出一最大功率控制信號;以及使該最大功率控制信號驅動控制該直流/直流轉換器,以提升直流輸出功率;其中該最大功率操作點為該太陽能模組運作於最大功率時所輸出之該第一直流電壓及該第一直流電流。The method for controlling a DC/DC converter according to claim 1, wherein the method for establishing the maximum power tracking mode comprises: detecting a first direct current of the solar module output; and the first DC voltage and the The first DC current is subjected to maximum power calculation to obtain a maximum power operation point of the solar module; according to the maximum power operation point, a maximum power control signal is generated; and the maximum power control signal is driven to control the DC/DC And a converter for boosting DC output power; wherein the maximum power operating point is the first DC voltage and the first DC current output when the solar module operates at maximum power. 如申請專利範圍第4項之直流/直流轉換器的控制方法,其中該最大功率追蹤模式之建立方法更包括:於偵測該第一直流電流後,進行演算獲取與上一次第一直流電流之一電流差值;比較該電流差值與一預設電流值並判斷該電流差值是否小於該預設電流值;當該電流差值小於該預設電流值時,對該第一直流電流進行演算,以獲得該太陽能模組之一全域最大功率操作點;依據該全域最大功率操作點,產出一遮蔽控制信號;以及輸出該遮蔽控制信號以對應驅動該直流/直流轉換器,進而提升直流輸出功率。The method for controlling a DC/DC converter according to claim 4, wherein the method for establishing the maximum power tracking mode further comprises: after detecting the first DC current, performing calculation and acquiring the first DC current. a current difference; comparing the current difference with a preset current value and determining whether the current difference is less than the preset current value; when the current difference is less than the preset current value, performing the first direct current Calculating to obtain a global maximum power operating point of the solar module; generating a shielding control signal according to the global maximum power operating point; and outputting the shielding control signal to correspondingly drive the DC/DC converter, thereby improving DC Output Power. 一種電壓轉換系統,適用於將一太陽能模組所輸出之一第一直流電壓經電壓轉換後,輸出一第二直流電壓並提供給一直流匯流排,包括:一直流/直流轉換器,耦接於該太陽能模組之輸出端,用以將該第一直流電壓作電壓轉換後,輸出該第二直流電壓至該直流匯流排;一第一電壓感測模組,耦接於該太陽能模組之輸出端,用以偵測該第一直流電壓;一第一電流感測模組,耦接該太陽能模組之輸出端與該直流/直流轉換器之輸入端之間,用以偵測該太陽能模組輸出之一第一直流電流;一第二電壓感測模組,耦接於該直流/直流轉換器之輸出端,用以偵測該第二直流電壓;以及一控制裝置,耦接該第一電壓感測模組、該第一電流感測模組、該第二電壓感測模組以及該直流/直流轉換器,該控制裝置用以比較該第二直流電壓與一預設工作電壓範圍,並當該第二直流電壓介於該預設工作電壓範圍內時,輸出一固定導通時間控制信號驅動該直流/直流轉換器,以維持固定該第二直流電壓;當該第二直流電壓低於該預設工作電壓範圍,輸出一最大功率控制信號驅動該直流/直流轉換器進行最大功率追蹤演算,以提升直流輸出功率。A voltage conversion system is suitable for converting a first DC voltage outputted by a solar module by a voltage, and outputting a second DC voltage and supplying the current to the bus bar, including: a DC/DC converter, coupled The output voltage of the solar module is used to convert the first DC voltage into a voltage, and output the second DC voltage to the DC bus. A first voltage sensing module is coupled to the solar module. The output terminal is configured to detect the first DC voltage; a first current sensing module is coupled between the output end of the solar module and the input end of the DC/DC converter to detect the current a first DC current is outputted by the solar module; a second voltage sensing module is coupled to the output of the DC/DC converter for detecting the second DC voltage; and a control device coupled The first voltage sensing module, the first current sensing module, the second voltage sensing module, and the DC/DC converter, the control device is configured to compare the second DC voltage with a preset operation Voltage range and when the second When the DC voltage is within the preset operating voltage range, outputting a fixed on-time control signal to drive the DC/DC converter to maintain the second DC voltage; when the second DC voltage is lower than the preset operating voltage range A maximum power control signal is output to drive the DC/DC converter for maximum power tracking calculation to increase DC output power. 一種直流/直流轉換器的控制方法,將一太陽能模組輸出之一第一直流電壓作電壓轉換後輸出一第二直流電壓,以驅動一負載,該控制方法包括:偵測該第二直流電壓與該直流/直流轉換器輸出之一第二直流電流;對該第二直流電壓及該第二直流電流進行演算,以獲取一輸出功率;比較該輸出功率與一預設輸出功率值;當該輸出功率小於該預設輸出功率值時,驅動該直流/直流轉換器進入一固定導通時間模式,以維持固定該第二直流電壓;以及若當該輸出功率大於該預設輸出功率值時,驅動該直流/直流轉換器進入一最大功率追蹤模式,並進行最大功率追蹤,以提升直流匯流排功率。A control method for a DC/DC converter, which converts a first DC voltage of a solar module output into a voltage and converts a second DC voltage to drive a load, the control method comprising: detecting the second DC voltage And outputting, by the DC/DC converter, a second DC current; calculating the second DC voltage and the second DC current to obtain an output power; comparing the output power with a preset output power value; When the output power is less than the preset output power value, driving the DC/DC converter to enter a fixed on-time mode to maintain the fixed second DC voltage; and if the output power is greater than the preset output power value, driving The DC/DC converter enters a maximum power tracking mode and performs maximum power tracking to boost DC bus power. 如申請專利範圍第7項之直流/直流轉換器的控制方法,其中該固定導通時間模式之建立方法包括:偵測該第一直流電壓;依據所偵測該第一直流電壓以及該第二直流電壓,產出一固定導通時間控制信號;以及使該固定導通時間控制信號驅動控制該直流/直流轉換器,維持固定該第二直流電壓。The method for controlling a DC/DC converter according to claim 7 , wherein the method of establishing the fixed on-time mode comprises: detecting the first DC voltage; and detecting the first DC voltage and the second DC a voltage, a fixed on-time control signal is generated; and the fixed on-time control signal is driven to control the DC/DC converter to maintain the second DC voltage. 如申請專利範圍第7項之直流/直流轉換器的控制方法,其中該最大功率追蹤模式之建立方法包括:偵測該太陽能模組輸出之一第一直流電流;對該第一直流電壓與該第一直流電流進行最大功率演算,以獲得該太陽能模組之一最大功率操作點;依據該最大功率操作點,產出一最大功率控制信號;以及使該最大功率控制信號驅動控制該直流/直流轉換器,以提升直流輸出功率;其中該最大功率操作點為該太陽能模組運作於最大功率時所輸出之該第一直流電壓及該第一直流電流。The method for controlling a DC/DC converter according to claim 7 , wherein the method for establishing the maximum power tracking mode comprises: detecting a first direct current of the solar module output; and the first DC voltage and the The first DC current is subjected to maximum power calculation to obtain a maximum power operation point of the solar module; according to the maximum power operation point, a maximum power control signal is generated; and the maximum power control signal is driven to control the DC/DC And a converter for boosting DC output power; wherein the maximum power operating point is the first DC voltage and the first DC current output when the solar module operates at maximum power. 一種電壓轉換系統,適用於將一太陽能模組所輸出之一第一直流電壓經電壓轉換後,輸出一第二直流電壓以驅動一負載,包括:一直流/直流轉換器,耦接於該太陽能模組之輸出端,用以將該第一直流電壓作電壓轉換後,輸出該第二直流電壓至該負載;一第一電壓感測模組,耦接於該太陽能模組之輸出端,用以偵測該第一直流電壓;一第一電流感測模組,耦接該太陽能模組之輸出端與該直流/直流轉換器之輸入端之間,用以偵測該太陽能模組輸出之一第一直流電流;一第二電壓感測模組,耦接於該直流/直流轉換器之輸出端,用以偵測該第二直流電壓;以及一第二電流感測模組,耦接於該直流/直流轉換器之輸出端與該負載之間,用以偵測該直流/直流轉換器之一第二直流電流;以及一控制裝置,耦接該第一電壓感測模組、該第一電流感測模組、該第二電壓感測模組、該第二電流感測模組以及該直流/直流轉換器,該控制裝置用以對該第二直流電壓與該第二直流電流進行演算,並獲取一輸出功率;該控制裝置比較該輸出功率與一預設輸出功率值;當該輸出功率小於該預設輸出功率值時,輸出一固定導通時間控制信號驅動該直流/直流轉換器,以維持固定該第二直流電壓;若當該輸出功率大於該預設輸出功率值時,輸出一最大功率控制信號驅動該直流/直流轉換器進行最大功率追蹤演算,以提升直流輸出功率。A voltage conversion system is adapted to convert a first DC voltage outputted by a solar module to a load, and output a second DC voltage to drive a load, comprising: a DC/DC converter coupled to the solar energy The output end of the module is configured to output the second DC voltage to the load after the first DC voltage is converted into a voltage; a first voltage sensing module is coupled to the output end of the solar module, The first current sensing module is coupled between the output end of the solar module and the input end of the DC/DC converter for detecting the output of the solar module. a first DC current sensing module coupled to the output of the DC/DC converter for detecting the second DC voltage; and a second current sensing module coupled Between the output end of the DC/DC converter and the load, for detecting a second DC current of the DC/DC converter; and a control device coupled to the first voltage sensing module, the a first current sensing module, the second a voltage sensing module, the second current sensing module, and the DC/DC converter, wherein the control device is configured to calculate the second DC voltage and the second DC current, and obtain an output power; the control The device compares the output power with a preset output power value; when the output power is less than the preset output power value, outputting a fixed on-time control signal to drive the DC/DC converter to maintain the second DC voltage; If the output power is greater than the preset output power value, outputting a maximum power control signal to drive the DC/DC converter for maximum power tracking calculation to increase the DC output power.
TW100138859A 2011-10-26 2011-10-26 Control method of a dc-dc converter and a voltage coverting system TWI460979B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138859A TWI460979B (en) 2011-10-26 2011-10-26 Control method of a dc-dc converter and a voltage coverting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138859A TWI460979B (en) 2011-10-26 2011-10-26 Control method of a dc-dc converter and a voltage coverting system

Publications (2)

Publication Number Publication Date
TW201318326A TW201318326A (en) 2013-05-01
TWI460979B true TWI460979B (en) 2014-11-11

Family

ID=48872121

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138859A TWI460979B (en) 2011-10-26 2011-10-26 Control method of a dc-dc converter and a voltage coverting system

Country Status (1)

Country Link
TW (1) TWI460979B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584095B (en) * 2015-05-19 2017-05-21 耕源科技股份有限公司 Apparatus for supplying power and method thereof
CN108923647A (en) * 2018-07-11 2018-11-30 汉能移动能源控股集团有限公司 DC voltage converter, maximum power tracking method, device, equipment and medium
TWI730796B (en) * 2020-06-03 2021-06-11 友達光電股份有限公司 Solar power generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200801889A (en) * 2006-06-16 2008-01-01 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
CN201041953Y (en) * 2007-04-12 2008-03-26 东莞市特龙金科能源科技有限公司 A solar power supply conversion circuit
TWI305699B (en) * 2005-12-01 2009-01-21 Ming Chin Ho A power inverter for a solar energy photovoltaic system
US20090079385A1 (en) * 2007-09-21 2009-03-26 Msr Innovations Inc. Solar powered battery charger using switch capacitor voltage converters
TW201023472A (en) * 2008-12-05 2010-06-16 Ablerex Electronics Co Ltd Battery-charging device for a stand-alone generator system having a MPPT function and method thereof
TWM408678U (en) * 2010-11-16 2011-08-01 Allis Electric Co Ltd Photovoltaic powered system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI305699B (en) * 2005-12-01 2009-01-21 Ming Chin Ho A power inverter for a solar energy photovoltaic system
TW200801889A (en) * 2006-06-16 2008-01-01 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
CN201041953Y (en) * 2007-04-12 2008-03-26 东莞市特龙金科能源科技有限公司 A solar power supply conversion circuit
US20090079385A1 (en) * 2007-09-21 2009-03-26 Msr Innovations Inc. Solar powered battery charger using switch capacitor voltage converters
TW201023472A (en) * 2008-12-05 2010-06-16 Ablerex Electronics Co Ltd Battery-charging device for a stand-alone generator system having a MPPT function and method thereof
TWM408678U (en) * 2010-11-16 2011-08-01 Allis Electric Co Ltd Photovoltaic powered system

Also Published As

Publication number Publication date
TW201318326A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
Taghvaee et al. A current and future study on non-isolated DC–DC converters for photovoltaic applications
JP5503745B2 (en) Photovoltaic power generation system, control device used in solar power generation system, control method and program thereof
Boukenoui et al. Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems
KR101510986B1 (en) Photovoltaic Power With Start Controller by Sub-system
CN109802556B (en) Photovoltaic power generation system with photovoltaic inverter and starting method of inverter
CN102904302A (en) High-efficiency solar charging device and charging method thereof
Dursun et al. Analysis and performance comparison of DC-DC power converters used in photovoltaic systems
Makni et al. Design simulation and realization of solar battery charge controller using Arduino Uno
Anandhi et al. Application of DC-DC boost converter for solar powered traffic light with battery backup
TWI460979B (en) Control method of a dc-dc converter and a voltage coverting system
US11081961B2 (en) Power convertor, power generation system, and power generation control method
Musa et al. Design and implementation of solar power as battery charger using incremental conductance current control method based on dsPIC30F4012
CN109885123B (en) Maximum power point tracking system and tracking method for photovoltaic module
Raveendhra et al. Design and small signal analysis of solar PV fed FPGA based Closed Loop control Bi-Directional DC-DC converter
He et al. Integrated solar controller for solar powered off-grid lighting system
CN110212628B (en) Switching method of solar photovoltaic power generation inversion control switching system
Kadhem et al. Improve the energy efficiency of PV systems by installing a soft switching boost converter with MPPT control
Zacharias et al. Modeling and simulation of photovoltaic system with soft switching SEPIC converter
KR20060091672A (en) Photovoltaic generation by parallel driving of modified buck-boost converter
Zhan et al. Research on maximum power point tracking of PV systems based on perturbation and observation method
CN102684241B (en) Solar inverter and control method thereof
Lin et al. MPPT photovoltaic wide load-range ZVS phase-shift full-bridge charger with DC-link current regulation
Ramya et al. A novel multi input DC–DC converter for integrated wind, PV renewable energy generated system
Linares Design and implementation of module integrated converters for series connected photovoltaic strings
Murdianto et al. Performance Evaluation Zeta Converter Using PI Controller for Energy Management in DC Nanogrid Isolated System

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees