TWI460564B - Controlling method using pid controller, controlling device thereof and robot with same - Google Patents

Controlling method using pid controller, controlling device thereof and robot with same Download PDF

Info

Publication number
TWI460564B
TWI460564B TW098114553A TW98114553A TWI460564B TW I460564 B TWI460564 B TW I460564B TW 098114553 A TW098114553 A TW 098114553A TW 98114553 A TW98114553 A TW 98114553A TW I460564 B TWI460564 B TW I460564B
Authority
TW
Taiwan
Prior art keywords
pid controller
vibration
displacement
control
value
Prior art date
Application number
TW098114553A
Other languages
Chinese (zh)
Other versions
TW201039082A (en
Inventor
Yuan Che Hsu
yan-chun Zhu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098114553A priority Critical patent/TWI460564B/en
Publication of TW201039082A publication Critical patent/TW201039082A/en
Application granted granted Critical
Publication of TWI460564B publication Critical patent/TWI460564B/en

Links

Landscapes

  • Manipulator (AREA)
  • Feedback Control In General (AREA)

Description

採用PID控制器之控制方法及控制裝置與機器人 PID controller control method and control device and robot

本發明涉及一控制方法及控制裝置以及具有該控制裝置之機器人,尤其涉及一採用PID控制器之控制方法及控制裝置以及具有該控制裝置之機器人。 The present invention relates to a control method and a control device, and a robot having the same, and more particularly to a control method and control device using a PID controller and a robot having the same.

在自動控制系統中,當被控物件之結構與參數不能完全被掌握,或難以得到精確之數學模型時,一些傳統之控制理論難以採用。PID(比例、微分、積分)控制器因其不依賴於受控物件之數學模型,其控制參數,如比例增益(Kp)、積分時間常數(Ti)及微分時間常數(Td)可藉由實驗、試湊或經驗公式來確定,得以廣泛應用。PID控制器係一線性控制器,其將系統設定值與實際輸出值構成之偏差之比例、積分及微分藉由線性組合構成控制量。實際應用中,根據被控物件之特性可取其中一部分形成比例(P)調節器、比例積分(PI)調節器、比例積分微分(PID)調節器等。 In the automatic control system, when the structure and parameters of the controlled object cannot be fully grasped, or it is difficult to obtain an accurate mathematical model, some traditional control theories are difficult to adopt. PID (proportional, differential, integral) controllers can be controlled by parameters such as proportional gain (Kp), integral time constant (Ti), and differential time constant (Td) because they do not depend on the mathematical model of the controlled object. , trial and error or empirical formula to determine, can be widely used. The PID controller is a linear controller that linearly combines the ratio, integral and derivative of the deviation between the system set value and the actual output value to form a control amount. In practical applications, a part of the proportional (P) regulator, proportional integral (PI) regulator, proportional integral derivative (PID) regulator, etc. may be formed according to the characteristics of the controlled object.

然,PID控制器各控制參數(Kp、Ti、Td)之設定需根據從熟練工程師之經驗所獲得之“經驗法則”來完成。以應用於機器人中對機械臂位置進行控制之PID控制器之比例調節器為例,比例調節器之作用強弱取決於比例增益Kp之大小,增大Kp可減小穩態誤 差,惟,Kp過大會引起被控量振盪,甚至導致系統不穩定,而減小Kp,系統回應速度將變慢。為同時滿足系統回應速度與穩定性之要求,確定一較佳之Kp,工程師往往需要憑藉經驗或用手感知機械臂之振動以對Kp進行調節,直至滿足系統性能指標要求。惟,該做法需耗費較長時間而且對工程師之技能要求較高。另,當一過程開始啟動時之初始條件改變或者系統引入新干擾,還需要重新調節上述各控制參數。 However, the setting of each control parameter (Kp, Ti, Td) of the PID controller is based on the "rule of thumb" obtained from the experience of skilled engineers. Taking the proportional regulator of the PID controller used to control the position of the robot arm in the robot as an example, the strength of the proportional regulator depends on the magnitude of the proportional gain Kp, and increasing the Kp can reduce the steady-state error. Poor, however, Kp over the assembly causes the controlled amount to oscillate, and even leads to system instability, while reducing Kp, the system response speed will be slower. In order to meet the requirements of system response speed and stability, and to determine a better Kp, engineers often need to experience the vibration of the arm by experience or by hand to adjust Kp until the system performance requirements are met. However, this practice takes a long time and requires a high level of skill for the engineer. In addition, when the initial condition changes when the process starts to start or the system introduces new interference, it is necessary to readjust the above various control parameters.

鑒於上述內容,有必要提供一可較為方便地將PID控制器之控制參數調節到較佳值以使其滿足系統性能指標要求之控制方法及控制裝置以及具有該控制裝置之機器人。 In view of the above, it is necessary to provide a control method and control device that can more conveniently adjust the control parameters of the PID controller to a preferred value to meet the system performance index requirements, and a robot having the control device.

一採用PID控制器之控制方法,其包括以下步驟:位移感測單元感測被控物件之位移訊號以獲取實際位移值;振動感測單元感測被控物件之振動訊號;以及調節單元根據該實際位移值與由PID控制器設定之被控物件之預設位移值之差量、該振動訊號及預先設定之該控制裝置之性能指標調節PID控制器之控制參數,該控制參數包括比例增益,且調節時設定比例增益之取值範圍,於該取值範圍內,將比例增益從較小值逐漸調節至較大值,當振動感測單元獲取之振動訊號大於設定值,調節單元減小比例增益,當振動感測單元獲取之振動訊號小於設定值,調節單元增大比例增益。 A control method using a PID controller, comprising: the displacement sensing unit sensing a displacement signal of the controlled object to obtain an actual displacement value; the vibration sensing unit sensing a vibration signal of the controlled object; and the adjusting unit is configured according to the Adjusting the difference between the actual displacement value and the preset displacement value of the controlled object set by the PID controller, the vibration signal and the preset performance index of the control device, the control parameter including the proportional gain, And adjust the value range of the proportional gain, within the range of values, gradually adjust the proportional gain from a small value to a larger value, when the vibration signal obtained by the vibration sensing unit is greater than the set value, the adjustment unit reduces the ratio Gain, when the vibration signal obtained by the vibration sensing unit is less than the set value, the adjustment unit increases the proportional gain.

一採用PID控制器之控制裝置,其包括PID控制器、位移感測單元、振動感測單元及調節單元。位移感測單元用於獲取被控物件之位移訊號並將該位移訊號回饋至PID控制器。PID控制器輸出控制 訊號控制該被控物件。振動感測單元用於獲取被控物件之振動訊號。調節單元根據該位移訊號所對應之實際位移值與由PID控制器設定之被控物件之預設位移值之差量、該振動訊號以及該控制裝置預先設定之性能指標調節PID控制器之控制參數。PID控制器包括依次連接之位置控制模組、速度控制模組及電流控制模組,該調節單元用於調節該位置控制模組之比例增益。 A control device using a PID controller includes a PID controller, a displacement sensing unit, a vibration sensing unit, and an adjustment unit. The displacement sensing unit is configured to acquire a displacement signal of the controlled object and feed the displacement signal to the PID controller. PID controller output control The signal controls the controlled object. The vibration sensing unit is configured to acquire the vibration signal of the controlled object. The adjusting unit adjusts the control parameter of the PID controller according to the difference between the actual displacement value corresponding to the displacement signal and the preset displacement value of the controlled object set by the PID controller, the vibration signal and the performance index preset by the control device . The PID controller includes a position control module, a speed control module and a current control module which are sequentially connected, and the adjustment unit is used for adjusting the proportional gain of the position control module.

一機器人,其包括機械臂、驅動該機械臂之步進電機、控制該步進電機之步進電機驅動器及上述控制裝置。上述控制裝置之PID控制器設於步進電機驅動器內。位移感測單元用於感測該機械臂之位移以獲取機械臂之實際位移值,振動感測單元設置於機械臂上用於感測機械臂之振動以獲取振動訊號。調節單元根據該實際位移值與由該PID控制器設定之機械臂預設位移值之差量、該振動訊號以及該控制裝置預先設定之性能指標調節PID控制器之控制參數,該控制參數包括比例增益,且調節時設定比例增益之取值範圍,於該取值範圍內,將比例增益從較小值逐漸調節至較大值,當振動感測單元獲取之振動訊號大於設定值,調節單元減小比例增益,當振動感測單元獲取之振動訊號小於設定值,調節單元增大比例增益,該PID控制器輸出控制訊號以控制該步進電機。 A robot includes a mechanical arm, a stepping motor for driving the mechanical arm, a stepping motor driver for controlling the stepping motor, and the above control device. The PID controller of the above control device is disposed in the stepper motor driver. The displacement sensing unit is configured to sense the displacement of the mechanical arm to obtain the actual displacement value of the mechanical arm, and the vibration sensing unit is disposed on the mechanical arm for sensing the vibration of the mechanical arm to obtain the vibration signal. The adjusting unit adjusts the control parameter of the PID controller according to the difference between the actual displacement value and the preset displacement value of the mechanical arm set by the PID controller, the vibration signal and the performance index preset by the control device, and the control parameter includes a ratio Gain, and set the range of proportional gain when adjusting, within the range of values, gradually adjust the proportional gain from a small value to a larger value. When the vibration signal obtained by the vibration sensing unit is greater than the set value, the adjustment unit is reduced. The small proportional gain, when the vibration signal obtained by the vibration sensing unit is less than the set value, the adjusting unit increases the proportional gain, and the PID controller outputs a control signal to control the stepping motor.

上述採用PID控制器之控制裝置及控制方法藉由振動感測單元獲取反映系統穩定性之振動訊號,藉由位移感測單元獲取反映系統穩態誤差之位移訊號,調節單元再結合該振動訊號及位移訊號,並根據控制裝置之性能要求對PID控制器之控制參數進行調節,上述方法可較為方便地實現動態調節,並易於將控制參數調節至 較佳值。應用上述控制方法,控制裝置可根據即時之回應對PID控制器之控制參數進行調節,不依賴於工程師之主觀判斷,易於得到較佳之參數且可提高調節之效率。具有上述控制裝置之機器人,其機械臂可具有較高之控制精度。 The control device and the control method using the PID controller obtain the vibration signal reflecting the stability of the system by the vibration sensing unit, and obtain the displacement signal reflecting the steady state error of the system by the displacement sensing unit, and the adjusting unit combines the vibration signal and Displace the signal and adjust the control parameters of the PID controller according to the performance requirements of the control device. The above method can conveniently realize the dynamic adjustment and adjust the control parameters to Preferred value. By applying the above control method, the control device can adjust the control parameters of the PID controller according to the immediate response, and does not depend on the subjective judgment of the engineer, and is easy to obtain better parameters and can improve the efficiency of the adjustment. A robot having the above control device can have a high control precision.

100‧‧‧機器人 100‧‧‧ Robot

11‧‧‧基座 11‧‧‧Base

12‧‧‧機架 12‧‧‧Rack

13‧‧‧第一機械臂 13‧‧‧First manipulator

14‧‧‧第二機械臂 14‧‧‧Second robotic arm

15‧‧‧第三機械臂 15‧‧‧3rd manipulator

16‧‧‧連接部 16‧‧‧Connecting Department

21‧‧‧步進電機 21‧‧‧Stepper motor

200‧‧‧控制裝置 200‧‧‧Control device

22‧‧‧步進電機驅動器 22‧‧‧Stepper motor driver

23‧‧‧位移感測單元 23‧‧‧ Displacement sensing unit

24‧‧‧振動感測單元 24‧‧‧Vibration sensing unit

25‧‧‧運動控制卡 25‧‧‧Sports Control Card

26‧‧‧主機 26‧‧‧Host

2231‧‧‧位置控制模組 2231‧‧‧Location Control Module

2232‧‧‧速度控制模組 2232‧‧‧Speed Control Module

2235‧‧‧電流控制模組 2235‧‧‧ Current Control Module

261‧‧‧調節單元 261‧‧‧Adjustment unit

262‧‧‧人機交互單元 262‧‧‧Human interaction unit

圖1係具有本發明採用PID控制器之控制裝置之機器人。 Fig. 1 is a view of a robot having a control device using a PID controller of the present invention.

圖2係本發明採用PID控制器之控制裝置實施例之原理圖。 2 is a schematic diagram of an embodiment of a control device using a PID controller of the present invention.

圖3係本發明採用PID控制器之控制裝置實施例之結構框圖。 FIG. 3 is a structural block diagram of an embodiment of a control device using a PID controller according to the present invention.

圖4係本發明採用PID控制器之控制方法之流程圖。 4 is a flow chart of a control method using a PID controller of the present invention.

下面結合附圖及實施例對本發明採用PID控制器之控制方法及控制裝置以及具有該控制裝置之機器人作進一步的詳細說明。本實施例以應用於工業機器人之採用PID控制器之控制方法及控制裝置為例進行說明。 The control method and control device of the PID controller and the robot having the same according to the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. This embodiment is described by taking a control method and a control device using a PID controller applied to an industrial robot as an example.

圖1所示為一機器人100。本實施例中,該機器人100為六軸工業機器人,其包括基座11、可轉動地設置於基座11之機架12、可轉動地設置於機架12之第一機械臂13、與第一機械臂13轉動連接之連接部16、與連接部16轉動連接之第二機械臂14及與第二機械臂14轉動連接之第三機械臂15。 FIG. 1 shows a robot 100. In this embodiment, the robot 100 is a six-axis industrial robot including a base 11, a frame 12 rotatably disposed on the base 11, a first mechanical arm 13 rotatably disposed on the frame 12, and a first A connecting portion 16 to which the mechanical arm 13 is rotatably coupled, a second mechanical arm 14 rotatably coupled to the connecting portion 16, and a third mechanical arm 15 rotatably coupled to the second mechanical arm 14.

基座11用於將機器人100安裝至地板或支承物上,機架12可繞第一旋轉軸a旋轉,第一機械臂13、第二機械臂14及第三機械臂15可分別繞旋轉軸b、d、e旋轉。機器人100還包括c、f所表示之其他二軸,其中第六軸f上可安裝夾具、刀具或者探測儀器等執行 裝置進行工作。 The base 11 is used to mount the robot 100 to the floor or the support, and the frame 12 is rotatable about the first rotation axis a. The first robot arm 13, the second robot arm 14, and the third robot arm 15 can respectively rotate around the rotation axis. b, d, e rotate. The robot 100 further includes other two axes represented by c and f, wherein the sixth axis f can be mounted with a fixture, a tool or a detecting instrument. The device works.

機器人100之每一旋轉軸之末端均設置有步進電機,步進電機之輸出軸與機械臂相連以帶動機械臂轉動,圖1中僅標示出安裝於旋轉軸e用於驅動第三機械臂15之步進電機21。 Each end of the rotating shaft of the robot 100 is provided with a stepping motor. The output shaft of the stepping motor is connected with the robot arm to drive the arm to rotate. In FIG. 1 , only the rotating shaft e is mounted for driving the third arm. 15 stepper motor 21.

圖2示出應用於圖1所示機器人100之本發明控制裝置200之原理圖(圖中僅以第三機械臂15之控制為例)。該控制裝置200包括步進電機驅動器22、位移感測單元23、振動感測單元24、運動控制卡25及主機26。 2 shows a schematic diagram of the control device 200 of the present invention applied to the robot 100 shown in FIG. 1 (only the control of the third robot arm 15 is taken as an example). The control device 200 includes a stepping motor driver 22, a displacement sensing unit 23, a vibration sensing unit 24, a motion control card 25, and a host computer 26.

步進電機驅動器22用於將運動控制卡25發出之脈衝訊號轉化為步進電機21之角位移訊號以使機器人100之各機械臂運動至預設位置。步進電機驅動器22包括設於其中之PID控制器223,該PID控制器223包括由位置控制模組2231、速度控制模組2232以及電流控制模組2235依次連接組成之由位置環、速度環及電流環構成之三環控制電路。其中PID控制器223之各控制參數(Kp、Ti、Td)可進行設定。 The stepping motor driver 22 is configured to convert the pulse signal from the motion control card 25 into an angular displacement signal of the stepping motor 21 to move the robot arms of the robot 100 to a preset position. The stepping motor driver 22 includes a PID controller 223 disposed therein. The PID controller 223 includes a position loop, a speed loop, and a sequence control module 2231, a speed control module 2232, and a current control module 2235. The current loop constitutes a three-loop control circuit. The control parameters (Kp, Ti, Td) of the PID controller 223 can be set.

位移感測單元23用於獲取第三機械臂15之實際位移值(轉動之角度),其訊號輸出端與主機26相連。本實施例所採用之位移感測單元23為光電編碼器,其安裝於步進電機21之輸出軸上並與步進電機21之輸出軸同步轉動,從而可獲得第三機械臂15之同步轉動訊號。 The displacement sensing unit 23 is configured to acquire the actual displacement value (the angle of rotation) of the third robot arm 15 , and the signal output end thereof is connected to the host 26 . The displacement sensing unit 23 used in this embodiment is a photoelectric encoder, which is mounted on the output shaft of the stepping motor 21 and rotates synchronously with the output shaft of the stepping motor 21, so that the synchronous rotation of the third robot arm 15 can be obtained. Signal.

振動感測單元24用於感測第三機械臂15之振動,其訊號輸出端與主機26相連。本實施例所採用之振動感測單元24為三軸加速度感測器,其安裝於第三機械臂15上,用於對第三機械臂15於空間座 標之三軸方向之振動進行感測,其輸出訊號包括第三機械臂15於三軸方向之振幅和振動頻率訊號。 The vibration sensing unit 24 is configured to sense the vibration of the third robot arm 15 , and the signal output end thereof is connected to the host 26 . The vibration sensing unit 24 used in this embodiment is a three-axis acceleration sensor, which is mounted on the third mechanical arm 15 for seating the third mechanical arm 15 in the space. The vibration in the three-axis direction is sensed, and the output signal includes the amplitude and vibration frequency signal of the third robot arm 15 in the three-axis direction.

運動控制卡25用於給步進電機驅動器22發出控制訊號以驅動步進電機21。運動控制卡25可產生脈衝和方向訊號等,並可進行自動升降速及原點訊號之感測。一運動控制卡25可單獨控制一個或同時控制複數步進電機驅動器22,本實施例中採用可同時對六軸工業機器人100之六個步進電機驅動器進行控制之六軸運動控制卡25。 The motion control card 25 is used to issue a control signal to the stepper motor driver 22 to drive the stepper motor 21. The motion control card 25 can generate pulse and direction signals, etc., and can perform automatic lifting speed and sensing of the origin signal. A motion control card 25 can individually control one or both of the plurality of stepper motor drivers 22. In this embodiment, a six-axis motion control card 25 that can simultaneously control six stepper motor drivers of the six-axis industrial robot 100 is employed.

主機26包括調節單元261及人機交互單元262。調節單元261獲取位移感測單元23和振動感測單元24之感測訊號,並將由PID控制器設定之第三機械臂15之預設位移值與位移感測單元23獲取之實際位移值求差量,得到系統穩態位置誤差,並結合控制裝置200所要求達到之動態性能指標調節出較佳之PID控制器223之控制參數(Kp、Ti、Td),並將上述較佳之控制參數傳送給PID控制器223,以使該控制裝置200達到較佳之控制性能。本實施例中,上述較佳之控制參數藉由串口傳送,上述較佳之動態性能指標指兼顧系統之穩定性與回應之快速性。人機交互單元262主要藉由圖像顯示出控制裝置200之動態回應,如時域回應圖,並提供對控制裝置200之參數進行設定之交互視窗。 The host 26 includes an adjustment unit 261 and a human-machine interaction unit 262. The adjusting unit 261 acquires the sensing signals of the displacement sensing unit 23 and the vibration sensing unit 24, and compares the preset displacement value of the third robot arm 15 set by the PID controller with the actual displacement value obtained by the displacement sensing unit 23. The system obtains the steady state position error of the system, and adjusts the control parameters (Kp, Ti, Td) of the preferred PID controller 223 in combination with the dynamic performance indicators required by the control device 200, and transmits the above preferred control parameters to the PID. The controller 223 is configured to achieve better control performance of the control device 200. In this embodiment, the preferred control parameters are transmitted through the serial port, and the preferred dynamic performance index refers to the stability of the system and the speed of response. The human-machine interaction unit 262 mainly displays the dynamic response of the control device 200, such as a time domain response map, by an image, and provides an interactive window for setting parameters of the control device 200.

以下介紹上述較佳控制參數調節之具體方法,並以對機器人100之第三機械臂15之PID控制器之Kp參數調節為例進行說明,其中,步進電機驅動器22設置為半自動模式,且僅有Kp可進行動態設定。 The specific method for adjusting the above preferred control parameters is described below, and the Kp parameter adjustment of the PID controller of the third robot arm 15 of the robot 100 is taken as an example. The stepping motor driver 22 is set to the semi-automatic mode, and only There are Kp for dynamic setting.

圖3所示為本發明實施例之控制裝置200之結構框圖。PID控制器 223支持位置控制、速度控制和電流控制,其輸出訊號用於控制與之相連之步進電機21,其輸入訊號為運動控制卡25之脈衝與方向訊號。 FIG. 3 is a block diagram showing the structure of a control device 200 according to an embodiment of the present invention. PID controller The 223 supports position control, speed control and current control, and its output signal is used to control the stepping motor 21 connected thereto, and the input signal is the pulse and direction signal of the motion control card 25.

主機26之調節單元261根據位移感測單元23獲取之實際位移值以及振動感測單元24獲取之振動訊號對位置控制模組2231之控制參數Kp進行調節,以使控制裝置200具有較佳之穩定性與較快之回應速度,達到所要求之動態性能指標。 The adjusting unit 261 of the main unit 26 adjusts the control parameter Kp of the position control module 2231 according to the actual displacement value acquired by the displacement sensing unit 23 and the vibration signal acquired by the vibration sensing unit 24, so that the control device 200 has better stability. With faster response speeds, the required dynamic performance metrics are achieved.

位置控制模組2231對步進電機21之實際位移值與由PID控制器設定之預設位移值之差量即時反應,使位移值朝著減小偏差之方向變化,控制之強弱取決於Kp之大小。增大Kp可增加系統之開環增益,使穩態誤差減小,還可增加系統回應之快速性,惟,易降低系統穩定性,造成振蕩加劇。減小Kp值,系統回應將變慢,惟,穩定性將提高。較佳之Kp應同時滿足系統快速性與穩定性之要求。 The position control module 2231 immediately reacts the difference between the actual displacement value of the stepping motor 21 and the preset displacement value set by the PID controller, so that the displacement value changes in the direction of decreasing the deviation, and the strength of the control depends on Kp. size. Increasing Kp can increase the open-loop gain of the system, reduce the steady-state error, and increase the rapid response of the system. However, it is easy to reduce the stability of the system and increase the oscillation. By reducing the Kp value, the system response will be slower, but stability will increase. The preferred Kp should meet the requirements of system speed and stability.

本發明實施例之採用PID控制器之控制方法可半自動地對PID控制器223之Kp參數進行調整。請參見圖4,該控制方法包括以下步驟: The control method of the PID controller of the embodiment of the present invention can semi-automatically adjust the Kp parameter of the PID controller 223. Referring to FIG. 4, the control method includes the following steps:

步驟S31:設定參數調節模式。本實施例中,設定PID控制器223參數調節模式為半自動模式,於該半自動模式下僅PID控制器223之位置控制模組2231之Kp可進行調節。 Step S31: Setting the parameter adjustment mode. In this embodiment, the parameter adjustment mode of the PID controller 223 is set to a semi-automatic mode. In the semi-automatic mode, only the Kp of the position control module 2231 of the PID controller 223 can be adjusted.

步驟S32:設定被控物件負載。本實施例中,設定六軸工業機器人100之負載,以確定參數設定之初始條件以及外部之擾動。 Step S32: setting the load of the controlled object. In the present embodiment, the load of the six-axis industrial robot 100 is set to determine initial conditions of parameter setting and external disturbances.

步驟S34:感測被控物件的位移訊號。由位移感測單元23感測第 三機械臂15之位移訊號以獲取第三機械臂15之實際位移值。 Step S34: sensing the displacement signal of the controlled object. Sensing by the displacement sensing unit 23 The displacement signal of the three robot arms 15 is used to obtain the actual displacement value of the third robot arm 15.

步驟S35:感測被控物件的振動訊號。由振動感測裝置25感測第三機械臂15之振動訊號,該振動訊號包括振幅和頻率訊號。 Step S35: Sensing the vibration signal of the controlled object. The vibration signal of the third robot arm 15 is sensed by the vibration sensing device 25, and the vibration signal includes amplitude and frequency signals.

步驟S36:調節單元261根據位移感測單元23獲取之位移訊號所對應之機械臂15之實際位移值與由PID控制器223設定之預設位移值之差量、振動感測單元24獲取之振動訊號以及控制裝置200之性能指標調節調節Kp值。 Step S36: The adjustment unit 261 obtains the vibration obtained by the vibration sensing unit 24 according to the difference between the actual displacement value of the robot arm 15 corresponding to the displacement signal acquired by the displacement sensing unit 23 and the preset displacement value set by the PID controller 223. The signal and the performance indicator of the control device 200 adjust and adjust the Kp value.

具體於步驟S36中,可首先設定PID控制器223之控制參數Kp之取值範圍,於該取值範圍內,將Kp從較小值逐漸調節至較大值,調節過程中,如振動感測單元24獲取之振動訊號較強,即振幅較大或頻率較高,調節單元261自動將Kp調小,如振動訊號較弱,調節單元261自動將可Kp調大,以加快系統之回應速度,直至振動訊號以及回應速度均落於設定之取值範圍之內,從而同時滿足系統快速性與穩定性之要求時,記錄該Kp值,並藉由串口設定PID控制器223之Kp值。作為一較佳方案,調整時可同時結合觀察控制裝置200之時域回應圖(主機26之人機交互單元262可顯示該時域回應圖),從而可較為直觀地觀察到參數調整之後系統之回應情況,並據此對Kp值進行調整。 Specifically, in step S36, the value range of the control parameter Kp of the PID controller 223 may be first set, and within the range of values, the Kp is gradually adjusted from a smaller value to a larger value, and the adjustment process, such as vibration sensing. The vibration signal obtained by the unit 24 is strong, that is, the amplitude is large or the frequency is high, and the adjustment unit 261 automatically reduces the Kp. If the vibration signal is weak, the adjustment unit 261 automatically increases the Kp to speed up the response speed of the system. Until the vibration signal and the response speed fall within the set value range, so as to meet the requirements of system rapidity and stability, the Kp value is recorded, and the Kp value of the PID controller 223 is set by the serial port. As a preferred solution, the time domain response map of the observation control device 200 can be combined with the adjustment (the human-computer interaction unit 262 of the host 26 can display the time domain response map), so that the system can be visually observed after the parameter adjustment. Respond to the situation and adjust the Kp value accordingly.

步驟S37:改變機器人100負載,即改變其初始條件及外部擾動,重復步驟S32至步驟S36,得到於該負載下較佳之Kp值並保存該Kp值。 Step S37: changing the load of the robot 100, that is, changing its initial condition and external disturbance, repeating steps S32 to S36 to obtain a preferred Kp value under the load and saving the Kp value.

重復步驟S37,即可得到不同負載下,與每一負載相對應之較佳之Kp值。作為一較佳方案,該控制方法還可包括建立上述負載及 與之對應之Kp值知識庫之步驟S38,並可將該知識庫存儲於主機26中。當需要對其他之機器人100之PID控制器223之Kp值進行設定時,可利用上述建立之知識庫,藉由對負載、振動值及穩態誤差值(回應速度)之匹配直接選擇出較佳之Kp值,從而可減少調節之時間,該匹配之方式還可進一步藉由模糊邏輯實現。 By repeating step S37, a better Kp value corresponding to each load under different loads can be obtained. As a preferred solution, the control method may further include establishing the load and The step S38 of the Kp value knowledge base corresponding thereto can be stored in the host 26. When it is necessary to set the Kp value of the PID controller 223 of the other robot 100, the knowledge base established above can be used to directly select the matching of the load, the vibration value and the steady-state error value (response speed). The Kp value, thereby reducing the adjustment time, can be further achieved by fuzzy logic.

以上僅給出機器人100第三軸e上之步進電機驅動器223之位置控制模組2231之Kp之調節方法,對於機器人100其他各旋轉軸上之步進電機驅動器之PID控制參數可採用相同之方法依次進行設定。 The above only gives the adjustment method of the Kp of the position control module 2231 of the stepping motor driver 223 on the third axis e of the robot 100. The PID control parameters of the stepping motor driver on the other rotating axes of the robot 100 can be the same. The method is set in order.

上述控制方法藉由振動感測單元24獲取振動訊號,並結合該振動訊號與位移感測單元23獲取之位移訊號,可半自動地調節步進電機驅動器223之位置控制模組2231之Kp參數。 The control method obtains the vibration signal by the vibration sensing unit 24, and combines the vibration signal with the displacement signal acquired by the displacement sensing unit 23 to semi-automatically adjust the Kp parameter of the position control module 2231 of the stepping motor driver 223.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

Claims (8)

一採用PID控制器之控制方法,其包括以下步驟:位移感測單元感測被控物件之位移訊號以獲取實際位移值;振動感測單元感測被控物件之振動訊號;以及調節單元根據該實際位移值與由PID控制器設定之被控物件之預設位移值之差量、該振動訊號及預先設定之控制系統之性能指標調節PID控制器之控制參數,該控制參數包括比例增益,且調節時設定比例增益之取值範圍,於該取值範圍內,將比例增益從較小值逐漸調節至較大值,當振動感測單元獲取之振動訊號大於設定值,調節單元減小比例增益,當振動感測單元獲取之振動訊號小於設定值,調節單元增大比例增益。 A control method using a PID controller, comprising: the displacement sensing unit sensing a displacement signal of the controlled object to obtain an actual displacement value; the vibration sensing unit sensing a vibration signal of the controlled object; and the adjusting unit is configured according to the Adjusting the difference between the actual displacement value and the preset displacement value of the controlled object set by the PID controller, the vibration signal and the preset performance parameter of the control system, the control parameter includes a proportional gain, and the control parameter includes a proportional gain, and During the adjustment, the range of the proportional gain is set, and within the range of values, the proportional gain is gradually adjusted from a smaller value to a larger value. When the vibration signal obtained by the vibration sensing unit is greater than the set value, the adjustment unit reduces the proportional gain. When the vibration signal obtained by the vibration sensing unit is less than the set value, the adjusting unit increases the proportional gain. 如申請專利範圍第1項所述之採用PID控制器之控制方法,其中該控制方法還包括步驟:設定被控物件負載;以及調節單元根據該實際位移值與由該PID控制器設定之被控物件之預設位移值之差量、該振動訊號及預先設定之控制系統之性能指標對該負載下PID控制器之控制參數進行調節。 The control method using the PID controller as described in claim 1, wherein the control method further comprises the steps of: setting a load of the controlled object; and adjusting the unit according to the actual displacement value and being controlled by the PID controller The difference between the preset displacement values of the object, the vibration signal and the performance index of the preset control system adjust the control parameters of the PID controller under the load. 如申請專利範圍第2項所述之採用PID控制器之控制方法,其中該控制方法還包括步驟:設定不同之負載,並根據與每一負載相對應之PID控制器之控制參數建立知識庫。 The control method using the PID controller as described in claim 2, wherein the control method further comprises the steps of: setting different loads, and establishing a knowledge base according to control parameters of the PID controller corresponding to each load. 一採用PID控制器之控制裝置,包括PID控制器及位移感測單元,該位移感測單元用於獲取被控物件之位移訊號並將該位移訊號回饋至PID控制器,該PID控制器輸出控制訊號控制被控物件,其中該控制裝置還包括振動 感測單元及調節單元,該振動感測單元用於獲取被控物件之振動訊號,該調節單元根據該位移訊號所對應之實際位移值與由該PID控制器設定之被控物件之預設位移值之差量、該振動訊號以及該控制裝置預先設定之性能指標調節PID控制器之控制參數,該PID控制器包括依次連接之位置控制模組、速度控制模組及電流控制模組,該調節單元用於調節該位置控制模組之比例增益。 A control device using a PID controller, comprising a PID controller and a displacement sensing unit, the displacement sensing unit is configured to acquire a displacement signal of the controlled object and feed the displacement signal to the PID controller, and the PID controller outputs the control The signal controls the controlled object, wherein the control device further includes vibration a sensing unit and an adjusting unit, wherein the vibration sensing unit is configured to acquire a vibration signal of the controlled object, and the adjusting unit is configured according to an actual displacement value corresponding to the displacement signal and a preset displacement of the controlled object set by the PID controller The difference between the value, the vibration signal and the preset performance index of the control device adjust the control parameter of the PID controller, and the PID controller comprises a position control module, a speed control module and a current control module which are sequentially connected, the adjustment The unit is used to adjust the proportional gain of the position control module. 如申請專利範圍第4項所述之採用PID控制器之控制裝置,其中該位移感測單元為光電編碼器。 A control device using a PID controller as described in claim 4, wherein the displacement sensing unit is a photoelectric encoder. 如申請專利範圍第4項所述之採用PID控制器之控制裝置,其中該振動感測單元為加速度感測器,其用於獲取被控物件空間座標之三軸方向之振動訊號。 The control device using the PID controller as described in claim 4, wherein the vibration sensing unit is an acceleration sensor for acquiring a vibration signal of a three-axis direction of the space coordinate of the controlled object. 如申請專利範圍第6項所述之採用PID控制器之控制裝置,其中該振動訊號包括振幅和振動頻率訊號。 A control device using a PID controller as described in claim 6 wherein the vibration signal comprises an amplitude and a vibration frequency signal. 一機器人,其包括機械臂、驅動機械臂之步進電機以及控制該步進電機之步進電機驅動器,其中該機器人還包括申請專利範圍第4至第7項任一項所述之控制裝置,該PID控制器設於該步進電機驅動器內,該位移感測單元用於感測該機械臂之位移以獲取機械臂之實際位移值,該振動感測單元設置於該機械臂上用於感測該機械臂之振動以獲取振動訊號,該調節單元根據該實際位移值與由該PID控制器設定之機械臂之預設位移值之差量、該振動訊號以及該控制裝置預先設定之性能指標調節PID控制器之控制參數,該控制參數包括比例增益,且調節時設定比例增益之取值範圍,於該取值範圍內,將比例增益從較小值逐漸調節至較大值,當振動感測單元獲取之振動訊號大於設定值,調節單元減小比例增益,當振動感測單元獲取之振動訊號小於設定值,調節單元增大比例增益,該PID控制器輸出控制訊號以控制該步進電機。 A robot comprising a mechanical arm, a stepping motor for driving the robot arm, and a stepping motor driver for controlling the stepping motor, wherein the robot further comprises the control device according to any one of claims 4 to 7. The PID controller is disposed in the stepping motor driver, the displacement sensing unit is configured to sense the displacement of the robot arm to obtain an actual displacement value of the robot arm, and the vibration sensing unit is disposed on the robot arm for sensing Measuring the vibration of the arm to obtain a vibration signal, the adjusting unit is based on the difference between the actual displacement value and the preset displacement value of the arm set by the PID controller, the vibration signal, and a preset performance index of the control device Adjusting the control parameter of the PID controller, the control parameter includes a proportional gain, and setting a range of the proportional gain during the adjustment, in which the proportional gain is gradually adjusted from a smaller value to a larger value, when the vibration is sensed The vibration signal obtained by the measuring unit is greater than the set value, and the adjusting unit reduces the proportional gain. When the vibration signal obtained by the vibration sensing unit is less than the set value, the adjusting unit is increased. Gain embodiment, the PID controller outputs a control signal for controlling the stepping motor.
TW098114553A 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same TWI460564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Publications (2)

Publication Number Publication Date
TW201039082A TW201039082A (en) 2010-11-01
TWI460564B true TWI460564B (en) 2014-11-11

Family

ID=44995299

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Country Status (1)

Country Link
TW (1) TWI460564B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358058A (en) * 1993-09-27 1994-10-25 Reedrill, Inc. Drill automation control system
TW397748B (en) * 1997-12-01 2000-07-11 Giddings & Lewis System and method for compensating for compliance of a hexapod positioning device
EP1147459B1 (en) * 1998-12-02 2005-02-16 Yaskawa Eshed Technology Ltd. Improved servomechanical control system and method
US20090069942A1 (en) * 2007-09-11 2009-03-12 Taro Takahashi Robot apparatus and method of controlling the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358058A (en) * 1993-09-27 1994-10-25 Reedrill, Inc. Drill automation control system
TW397748B (en) * 1997-12-01 2000-07-11 Giddings & Lewis System and method for compensating for compliance of a hexapod positioning device
EP1147459B1 (en) * 1998-12-02 2005-02-16 Yaskawa Eshed Technology Ltd. Improved servomechanical control system and method
US20090069942A1 (en) * 2007-09-11 2009-03-12 Taro Takahashi Robot apparatus and method of controlling the same

Also Published As

Publication number Publication date
TW201039082A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
US8073568B2 (en) Device utilizing a PID controller, control method thereof, and robot utilizing the controller
JP3883544B2 (en) Robot control apparatus and robot control method
CN104972465B (en) Robot controller and robot system for moving robot in response to force
EP3564574B1 (en) Method and device for controlling cradle head, and cradle head
JP6174654B2 (en) Robot system with function to calculate sensor position and orientation
CN109397265B (en) Joint type industrial robot dragging teaching method based on dynamic model
CN106842905B (en) PID control method and device
CN102608351B (en) Detection method and system of three-dimensional gesture of mechanical arm and system controlling mechanical arm to operate
CN104589304A (en) Robot control device and robot
JP2017196704A5 (en)
CN104914864A (en) Mobile device, mobile device control system and control method
JP2018171666A (en) Control device, robot and robot system
WO2018029910A1 (en) Device for controlling parallel link mechanism
CN106646220A (en) Spaceflight servo motor variable working condition dynamic loading system and spaceflight servo motor variable working condition dynamic loading method
US20150088309A1 (en) Method for Operating a Multi-Limb Manipulator
CN107199557A (en) Robot architecture's unit, robot and robot construction method
CN106426163A (en) Control apparatus of motor
CN108469849A (en) A kind of random angular oscillation control method
JP5869991B2 (en) Drive device
JP2009202335A (en) Abnormality determination device and abnormality determination method for reduction gear
TWI460564B (en) Controlling method using pid controller, controlling device thereof and robot with same
CN109669482A (en) Cloud platform control method, device and equipment
CN108845510B (en) Vibration control method and device for flexible connecting piece, storage medium and execution system
JPWO2018169006A1 (en) Stage device and composite stage control device
JP2009060744A (en) Motor controller and method for adjusting control constant