TW201039082A - Controlling method using PID controller, controlling device thereof and robot with same - Google Patents

Controlling method using PID controller, controlling device thereof and robot with same Download PDF

Info

Publication number
TW201039082A
TW201039082A TW98114553A TW98114553A TW201039082A TW 201039082 A TW201039082 A TW 201039082A TW 98114553 A TW98114553 A TW 98114553A TW 98114553 A TW98114553 A TW 98114553A TW 201039082 A TW201039082 A TW 201039082A
Authority
TW
Taiwan
Prior art keywords
control
controller
displacement
vibration
value
Prior art date
Application number
TW98114553A
Other languages
Chinese (zh)
Other versions
TWI460564B (en
Inventor
Yuan-Che Hsu
yan-chun Zhu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098114553A priority Critical patent/TWI460564B/en
Publication of TW201039082A publication Critical patent/TW201039082A/en
Application granted granted Critical
Publication of TWI460564B publication Critical patent/TWI460564B/en

Links

Abstract

A controlling method using PID controller includes: position measuring unit detecting and obtaining a position signal of an object; vibration measuring unit detecting and obtaining a vibration signal of the object; adjusting unit adjusting process parameters of the PID controller according to the detected position information, the detected vibration information, and predetermined control characteristic. The adjusting unit is capable of adjusting the process parameters of the PID controller quickly and easily. The present invention further provides a controlling device using the controlling method described above, and a robot with the controlling device.

Description

201039082 • 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種控制方法及控制裝置以及具有該 控制裝置之機器人,尤其涉及一種採用piD控制器之= 制方法及控制裝置以及具有該控制裝置之機器人。 【先前技術】 在自動控制系統中,當被控物件之結構與參數不能 Ο 完全被掌握,或難以得到精確之數學模型時,_些傳統 之控制理論難以採用。PID (比例、微分、積分)控制 器因其不依賴於受控物件之數學模型,其控制參數,如 比例增益(Κρ )、積分時間常數(Ti )及微分時間常數 (Td )可藉由實驗、試湊或經驗公式來確定,得以廣泛 應用。PID控制器係一種線性控制器,其將系統設定值 與實際輸出值構成之偏差之比例、積分及微分藉由線性 ◎ 組合構成控制量。實際應用中,根據被控物件之特性可 取其中一部分形成比例(P)調節器、比例積分(ρι) 調節器、比例積分微分(PID )調節器等。 然,PID控制器各控制參數(、Ti、Td )之設定 需根據從熟練工程師之經驗所獲得之“經驗法則,,來 完成。以應用於機器人中對機械臂位置進行控制之piD 控制窃之比例調節器為例,比例調節器之作用強弱取決 於比例增盈Kp之大小,增大κρ可減小穩態誤差,惟, Κρ過大會引起被控量振盪,甚至導致系統不穩定,而 4 201039082 2 Κρ’系統回應速度將變慢。為同時滿足系統回應 j度?穩定性之要求,確定―較佳之Κρ,工程師往往 2要為馳驗或用手感知機械臂之振動以對Κρ進行調 ^士直至滿足系統性能指標要求。惟,該做法需耗費較 長時間而且對工程師之技能要求較高。另,當-過程開 始啟動時之初始條件改變或者系統引人新干擾,還需要 重新調節上述各控制參數。 Ο 【發明内容】 鑒於上述内容,有必要提供一種可較為方便地將 ^控制器之控制參數調節到較佳值以使其滿足系統性 才曰標要求之控制方法及控制裝置以及具有該控制裝 置之機器人。 • 一種採用PID控制器之控制方法,其包括以下步 驟·位移感測單元感測被控物件之位移訊號以獲取實際 位2值;振動感測單元感測被控物件之振動訊號;以及 Ο調節單元根據該實際位移值與由PID控制器設定之被控 物件之預設位移值之差量、該振動訊號及預先設定之該 控制裝置之性能指標調節PID控制器之控制參數。201039082 • Technical Description OF THE INVENTION The present invention relates to a control method and a control device, and a robot having the same, and more particularly to a method and a control device using a piD controller and having the same Robot. [Prior Art] In the automatic control system, when the structure and parameters of the controlled object cannot be completely grasped, or it is difficult to obtain an accurate mathematical model, some conventional control theories are difficult to adopt. PID (proportional, differential, integral) controllers can be controlled by experiments, such as proportional gain (Κρ), integral time constant (Ti), and differential time constant (Td), because they do not depend on the mathematical model of the controlled object. , trial and error or empirical formula to determine, can be widely used. The PID controller is a linear controller that combines the ratio, integral and derivative of the deviation between the system set value and the actual output value to form a control amount by linear ◎. In practical applications, some of them can be scaled (P) regulators, proportional integral (ρι) regulators, proportional integral derivative (PID) regulators, etc. depending on the characteristics of the controlled object. However, the setting of each control parameter (Ti, Td) of the PID controller needs to be completed according to the "rule of thumb" obtained from the experience of skilled engineers. It is applied to the piD control of the robot arm position control in the robot. As an example, the proportional regulator depends on the magnitude of the proportional gain Kp. Increasing the κρ can reduce the steady-state error. However, if the Κρ is too large, the controlled amount will oscillate, and even the system will be unstable. 201039082 2 Κρ' system response speed will be slower. In order to meet the stability requirements of the system response, determine the "optimal Κ ρ, the engineer often 2 to calibrate or manually sense the vibration of the arm to adjust Κρ The system will meet the requirements of the system performance index. However, this method takes a long time and requires a high skill for the engineer. In addition, when the initial condition changes when the process starts, or the system introduces new interference, it needs to be re-adjusted. Each of the above control parameters. Ο [Summary of the Invention] In view of the above, it is necessary to provide a control parameter that can be conveniently adjusted A control method and a control device that are preferable for satisfying the system requirements and a robot having the control device. A control method using a PID controller, which includes the following steps: displacement sensing unit sensing is controlled The displacement signal of the object obtains the actual bit 2 value; the vibration sensing unit senses the vibration signal of the controlled object; and the difference between the actual displacement value and the preset displacement value of the controlled object set by the PID controller according to the adjustment unit The quantity, the vibration signal and the preset performance index of the control device adjust the control parameters of the PID controller.

一種採用PID控制器之控制裝置,其包括PID控制 為、位移感測單元、振動感測單元及調節單元。位移感 測單元用於獲取被控物件之位移訊號並將該位移訊號 回饋至PID控制器。pid控制器輸出控制訊號控制該被 控物件。振動感測單元用於獲取被控物件之振動訊號。 °周茚單元根據該位移訊號所對應之實際位移值與由PID 5 201039082 控制為没定之被控物件之預設位移值之差量、該振動訊 #U以及4控制裝置預先設定之性能指標調節PID控制琴 之控制參數。 Ο ^ 種機„„人,其包括機械臂、驅動該機械臂之步進 私機控制该步進電機之步進電機驅動器及上述控制裝 置。上述控制裳置之pm控制器設於步進電機驅動器 ,。:移感測單元用於感測該機械臂之位移以獲取機械 ’之貝際位移值’振動感測單元設置於機械臂 _械臂之振動以獲取振動訊號。調節單元根據該實^ 位移值與由該灿控制器設定之機械臂預設位移值2 =、該振動訊號以及該㈣裝置預纽定之 印灿控制器之控制參數,該灿控制 ^ 以控制該步進電機。 ,利訊#uA control device using a PID controller includes a PID control, a displacement sensing unit, a vibration sensing unit, and an adjustment unit. The displacement sensing unit is configured to acquire a displacement signal of the controlled object and feed the displacement signal to the PID controller. The pid controller outputs a control signal to control the controlled object. The vibration sensing unit is configured to acquire the vibration signal of the controlled object. The peripheral unit adjusts the difference between the actual displacement value corresponding to the displacement signal and the preset displacement value of the controlled object controlled by PID 5 201039082, and the preset performance index of the vibration signal #U and 4 control device. The PID controls the control parameters of the piano. The machine includes a robot arm, a stepping machine that drives the arm, and a stepping motor driver for controlling the stepping motor and the above control device. The pm controller for controlling the above is set in the stepper motor driver. The shift sensing unit is configured to sense the displacement of the arm to obtain the mechanical displacement of the mechanical unit. The vibration sensing unit is disposed on the vibration of the arm _ arm to obtain the vibration signal. The adjusting unit controls the control parameter according to the actual displacement value and the preset displacement value 2 = of the mechanical arm set by the can controller, the vibration signal, and the control parameter of the printing controller of the (4) device pre-news Stepper motor. , 利讯#u

G 動感ΐΐ採riD控制器之控制裝置及控制方法藉由振 残測單元系統穩定性之振動訊號’藉由位移 號及位移訊號,並根據控制裝置之性处 二控制器之控制參數進行調節,上述: =更地實現動態調節’並易於將控制參數調節至較佳 』土述控制方法,控制裝置可根據即時之回應對 D控制H之控制參數進行二 ::=得到較佳之參數且可提二= =述控制裝置之機器人,其機械臂可具有料之_ 6 201039082 【實施方式】The control device and the control method of the dynamic riD controller are adjusted by the vibration signal of the stability of the vibration recovery unit system by the displacement number and the displacement signal, and according to the control parameters of the controller of the control device, The above: = more dynamic adjustment 'and easy to adjust the control parameters to better" soil control method, the control device can be based on the immediate response to the control parameters of the D control H two:: = get better parameters and can be Two = = the robot of the control device, the robot arm can have the material _ 6 201039082 [Embodiment]

下面結合附圖及實施例對本發明採用P 及控制裝置以及具有該控制震置之機工心 詳細說明。本實施例以應用於卫業機器人 用空制器之控制方法及控制裝置為例進行說明。 圖工所示為-種機器人_。本實施 Ο 〇 Π為六轴工業機器人,其包括基座⑴可轉動地設 置於基座η之機架12、可轉動地設置於機架12之第一 機械臂13、與第-機械f 13轉動連接之連接部16、與 連接416轉動連接之第二機械臂14及與第二機械臂^ 轉動連接之第三機械臂15。 基座11用於將機||人i⑽安裝至地板或支承物 上’機架12可繞第一旋轉軸a旋轉,第一機械臂13、 第二機械臂U及第三機械臂15可分別繞旋轉軸^、 e旋轉。機器人100還包括c、f所表示之其他二軸其 中第八轴f上可安裝夾具、刀具或者探測儀器等執行裝 置進行工作。 機器人100之每一旋轉軸之末端均設置有步進電 機,步進電機之輸出軸與機械臂相連以帶動機械臂轉 動’圖1中僅標不出安裝於旋轉轴e用於驅動第三機械 臂15之步進電機21。 圖2不出應用於圖i所示機器人1〇〇之本發明控制 裝置200之原理圖(圖中僅以第三機械臂15之控制為 例)。该控制裝置200包括步進電機驅動器22、位移感 7 201039082 測皁几23、振動感測單元24、運動控制+ 25及主機%。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and embodiments, using the P and the control device and the mechanism with the control. This embodiment will be described by taking a control method and a control device applied to an air conditioner for a sanitary robot as an example. The figure shows a kind of robot _. The present embodiment is a six-axis industrial robot comprising a base 12 (1) rotatably mounted to the base 11 of the base n, a first mechanical arm 13 rotatably disposed on the frame 12, and a first mechanical f 13 The connecting portion 16 is rotatably connected, the second mechanical arm 14 rotatably coupled to the connection 416, and the third mechanical arm 15 rotatably coupled to the second mechanical arm. The base 11 is used to mount the machine||i (10) to the floor or the support. The frame 12 is rotatable about the first axis of rotation a. The first arm 13, the second arm U and the third arm 15 can be respectively respectively Rotate around the axis of rotation ^, e. The robot 100 further includes an execution device such as a jig, a tool, or a detecting instrument mounted on the eighth axis f of the other two axes indicated by c and f. Each end of the rotating shaft of the robot 100 is provided with a stepping motor, and the output shaft of the stepping motor is connected with the robot arm to drive the arm to rotate. In FIG. 1, only the rotating shaft e is mounted for driving the third machine. Stepper motor 21 of arm 15. Fig. 2 is a schematic diagram of the control device 200 of the present invention applied to the robot 1 shown in Fig. 1 (only the control of the third robot arm 15 is taken as an example). The control device 200 includes a stepper motor driver 22, a displacement sense 7 201039082, a soap sensor 23, a vibration sensing unit 24, a motion control + 25, and a host %.

步進電機驅動器22用於將運動控制卡25發出之脈 衝訊號轉化為步進電機21《角位移訊號以使機器人 各機械臂運動至預設位置。步進電機驅動器22 括又於,、中之pID控制态223,該仙控制器包 括由位置控制模組2231、速度控制模組2232以及電流 f制模組2235依次連接組成之由位置環、速度環及電 環構成之三環控制電路。其中pm控制器如之各控 制參數(Kp、Ti、Td)可進行設定。 位移感測單元23用於獲取第三機械臂15之實際位 移值(轉動之角度),其訊號輸出端與主機26相連。本 實施例所㈣之位移感料元23為光電編碼器,其安 裝於步進電機21之輸出軸上並與步進電機21之輸出轴 间步轉動’從而可獲得第三機械臂15之同步轉動訊號。 振動感測單元24用於感測第三機械臂15之振動, 二訊,輪出端與主機26相連。本實施例所採用之振動 二測早兀24為三軸加速度感測器,其安裝於第三機械 b上’用於對第三機械f 15於空間座標之三轴方向 ^振動進行感測,其輸出訊號包括第三機械臂15於三 方向之振幅和振動頻率訊號。 =運動控制卡25用於給步進電機驅動器22發出控制 =號以驅動步進電機21。運動控制卡25可產生脈衝和 —向訊號等’並可進行自動升降速及原點⑽之感測。 運動控制卡25可單獨控制一個或同時控制複數步進 8 201039082 工業機器 運動控制 芘===:::: 主機26包括調節單亓? 節單元261獲取位移感測單元 元262。調 感測訊號’並將由PID控制器設定之:感:=之 =設位移值與位移感•元23 _ -機The stepper motor driver 22 is configured to convert the pulse signal from the motion control card 25 into a stepper motor 21 "angular displacement signal" to move the robot arms to a preset position. The stepping motor driver 22 includes a pID control state 223 in the middle, and the controller includes a position loop and a speed which are sequentially connected by the position control module 2231, the speed control module 2232, and the current f system module 2235. The three-loop control circuit formed by the ring and the electric ring. The pm controller can be set as the control parameters (Kp, Ti, Td). The displacement sensing unit 23 is configured to acquire the actual displacement value (angle of rotation) of the third robot arm 15, and its signal output terminal is connected to the host 26. The displacement sensing element 23 of the fourth embodiment of the present embodiment is a photoelectric encoder which is mounted on the output shaft of the stepping motor 21 and rotates stepwise with the output shaft of the stepping motor 21 to obtain synchronization of the third robot arm 15 Turn the signal. The vibration sensing unit 24 is configured to sense the vibration of the third robot arm 15 , and the wheel end is connected to the host 26 . The vibration second test early 24 used in this embodiment is a three-axis acceleration sensor mounted on the third machine b for sensing the vibration of the third machine f 15 in the three-axis direction of the space coordinate. The output signal includes the amplitude and vibration frequency signals of the third robot arm 15 in three directions. The motion control card 25 is used to issue a control = number to the stepper motor driver 22 to drive the stepper motor 21. The motion control card 25 can generate pulses and - signals, etc. and can perform automatic lifting speed and sensing of the origin (10). The motion control card 25 can be controlled individually or simultaneously to control complex steps. 8 201039082 Industrial Machine Motion Control 芘===:::: Does the main unit 26 include an adjustment unit? The section unit 261 acquires the displacement sensing unit 262. Adjust the sense signal' and set it by the PID controller: Sense: = = Set the displacement value and displacement sense • Yuan 23 _ - Machine

〇 求達到之動態性能指標調節出較佳之二=: 控制參數(ΚΡ、Ti、Td),並將上 w 送給PID控制器,將上述較佳之控制參數傳 控制性处以使該控制裝置達到較佳之 ^、 °本Λ施例$ ’上述較佳之控制參數藉由串口 杨佳之動紐能指標指兼㈣統 :應之快速性。人機交互單元加主要藉由圖像顯示出、 置細之動態回應,如時域回應圖,並提供對控 裝置200之參數進行設定之交互視窗。 以下介紹上述較佳控制參數調節之具體方法,並以 對,器人⑽之第三機械臂15之灿控制器之邱參數 屑#為例進行朗,其中,步進電機驅動器22設置為 半自動模式,且僅有Κρ可進行動態設定。 圖3所示為本發明實施例之控制裝置2〇〇之結構框 圖PID控制器223支持位置控制、速度控制和電流控 制,其輸出訊號用於控制與之相連之步進電機21,其輸 入讯號為運動控制卡25之脈衝與方向訊號。 9 201039082 主機26之含思誌ησ - 之實際位㈣Λ/^261根據位移感測單元23獲取 位置控·& 2231 ^;1=躲讀動訊號對 裝置細具有較佳==錄Kp進行調節’以使控制 要灰佳之穩疋性與較快之回應速度,達到所 要求之動態性能指標。 位置控制模組22 .PTn 對ッ進電機2ι之實際位移值與 由PID控制器設定之 n ^ iH ^ ^ r 1〇又位移值之差量即時反應,使位 Ο 朝者減小偏差之方向變化’控制之強弱取決於邱 ^增大Kp可增加系統之開環增益,使穩態誤差 減小,還可增加系統回摩 —^ Λ W應之快速性,惟,易降低系統穩 疋性,=成振蕩加劇。減小Kp值,系統回應將變慢, 惟,穩定性將提高。較佳之⑭應同時滿足系統快速性 與穩定性之要求。 本發明實施例之採用PID控制器之控制方法可半自 動地對PID控制H如之Kp參數進行調整。請參見圖 4,該控制方法包括以下步驟: 步驟S31··設定參數調節模式。本實施例中,設定 PID控制H 223參數調節模式為半自動模式,於該半自 動模式下僅pm控制器223之位置控制模組2231之κρ 可進行調節。 步驟S32:設定被控物件負載。本實施射,設定 六軸工業機器人100之負載,以確定參數設定之初始條 件以及外部之擾動。 步驟S34 .感測被控物件的位移訊號。由位移感測 201039082 .單元23感測第三機械臂15之位移訊號以獲取第三機械 ' 臂15之實際位移值。 步驟S35 :感測被控物件的振動訊號。由振動感測 裝置25感測第二機械臂15之振動訊號,該振動訊號包 括振幅和頻率訊號。 步驟S36:調節單元261根據位移感測單元23獲取The dynamic performance index that is pleading to achieve adjusts the better two =: control parameters (ΚΡ, Ti, Td), and sends the upper w to the PID controller, and transmits the above preferred control parameters to the control to make the control device reach the comparison.佳之^, °本Λ例例$'The above preferred control parameters are controlled by the serial port Yang Jia's dynamic energy index and (4) system: the rapidity of the response. The human-computer interaction unit adds a dynamic response that is mainly displayed by the image, such as a time domain response map, and provides an interactive window for setting parameters of the control device 200. The following describes the specific method for adjusting the above preferred control parameters, and takes the example of the Qiu parameter chip # of the third controller of the third robot arm 15 of the device (10), wherein the stepping motor driver 22 is set to the semi-automatic mode. And only Κρ can be dynamically set. 3 is a structural block diagram of a control device 2 according to an embodiment of the present invention. The PID controller 223 supports position control, speed control, and current control, and an output signal thereof is used to control a stepping motor 21 connected thereto, and an input thereof. The signal is the pulse and direction signal of the motion control card 25. 9 201039082 The actual bit of the host 26 contains the ησ - the actual bit (4) Λ / ^ 261 according to the displacement sensing unit 23 to obtain the position control · & 2231 ^; 1 = read the mobile signal to the device fine == record Kp to adjust 'In order to make the control gray and stable and faster response speed, to achieve the required dynamic performance indicators. The position control module 22 .PTn immediately reacts with the difference between the actual displacement value of the motor 2 1 and the n ^ iH ^ ^ r 1 〇 and the displacement value set by the PID controller, so that the position of the position is reduced by the direction of the deviation. The change of 'control' depends on Qiu's increase of Kp, which can increase the open-loop gain of the system, reduce the steady-state error, and increase the speed of the system's return--- ΛW, but it can easily reduce the stability of the system. , = into oscillations. Decreasing the Kp value will slow down the system response, but stability will increase. The preferred 14 should meet both the system's rapidity and stability requirements. The control method using the PID controller of the embodiment of the present invention can semi-automatically adjust the Kp parameter of the PID control H as it is. Referring to FIG. 4, the control method includes the following steps: Step S31··Set the parameter adjustment mode. In this embodiment, the PID control H 223 parameter adjustment mode is set to a semi-automatic mode. In the semi-automatic mode, only the κρ of the position control module 2231 of the pm controller 223 can be adjusted. Step S32: setting the load of the controlled object. In this embodiment, the load of the six-axis industrial robot 100 is set to determine the initial conditions of parameter setting and external disturbances. Step S34. Sensing the displacement signal of the controlled object. From the displacement sensing 201039082. The unit 23 senses the displacement signal of the third robot arm 15 to obtain the actual displacement value of the third mechanical 'arm 15. Step S35: sensing the vibration signal of the controlled object. The vibration signal of the second robot arm 15 is sensed by the vibration sensing device 25, and the vibration signal includes amplitude and frequency signals. Step S36: The adjustment unit 261 acquires according to the displacement sensing unit 23

之位移訊號所對應之機械臂15之實際位移值與由piD 控制器223設定之預設位移值之差量、振動感測單元24 獲取之振動訊號以及控制裝置2〇〇之性能指標調節調節 Kp值。 具體於步驟S36中,可首先設定piD控制器223之 控制參數ΚΡ之取值範圍,於該取值範圍内,將κρ從 較小值逐漸調節至較大值,調節過程中,如振動感測單 獲取之振動訊號較強’即振幅較大或頻率較高, ,即單兀261自動將Κρ調小,如振動訊號較弱,調節 〇早το 261自動將可Κρ調大,以加快系統之回應速度, 直至振動訊號以及回應速度均落於設定之取值範圍之 ▲内’從而同時滿足㈣快速性與穩定性之要求時,記錄 4 Κρ值’並藉由串口設定piD控制器⑶之邱值。 作為-較佳方案,調整時可同時結合觀察控制裝置· 之時域回應圖(主機26之人機交互單元262 一般可顯 1時域回應圖)’從而可較為直觀地觀察到參數調整 之後糸統之回應情況,並據此對Κρ值進行調整。 步驟S37:改變機器人⑽負載,即改變其初始條 11 201039082 •件及外部擾動,重復步驟S32至步驟S36,得到於該負 載下較佳之Kp值並保存該Kp值。 • 重復步驟S37,即可得到不同負载下,與每一負载 相對應之較佳之Kp冑。作為一較佳方案,該控制方法 還可包括建立上述負載及與之對應之Kp值知識庫之步 驟S38,並可將該知識庫存儲於主機%中。當需要對其 他之機器人100之PID控制器223之Κρ值進行設定時、, 可利用上述建立之知識庫,藉由對負載、振動值及穩態 誤差值(回應速度)之匹配直接選擇出較佳之Kp值, 從而可減少調節之時間,該匹配之方式還可進一 模糊邏輯實現。 曰 以上僅給出機器人第三軸6上之步進電機驅動 。器223之位置控制模組2231之Κρ之調節方法,對於機 器人1〇〇其他各旋轉軸上之步進電機驅動器之控 參數可採用相同之方法依次進行設定。 〇 上述控制方法藉由振動感測單元24獲取振動訊 遽,並結合該振動訊號與位移感測單元23獲取之位移 訊號,可半自動地調節步進電機驅動器22 模組2231之&參數。 &置㈣ 综上所述,本發明確已符合發明專利之要件 法提出專利申請。惟,以上所述者僅為本發明之較㈣ 施方式’自不能以此限制本案之中請專利範圍。舉凡二 悉本案技藝之人士援依本發明之精神所作之等效修飾 或變化,皆應涵蓋於以下申請專利範圍内。 / 12 201039082 • 【圖式簡單說明】 * 圖1係具有本發明採用PID控制器之控制裝置之機 . 器人。 圖2係本發明採用PID控制器之控制裝置實施例之 原理圖。 圖3係本發明採用PID控制器之控制裝置實施例之 結構框圖。 圖4係本發明採用PID控制器之控制方法之流程 〇 圖。 【主要元件符號說明】 機器人 100 基座 11 機架 12 第一機械臂 13 第二機械臂 14 第三機械臂 15 連接部 16 步進電機 21 控制裝置 200 步進電機驅動器 22 PID控制器 223 位移感測單元 23 振動感測單元 24 運動控制卡 25 主機 26 位置控制模組 2231 速度控制模組 2232 電流控制模組 2235 調節單元 261 人機交互單元 262 13The difference between the actual displacement value of the robot arm 15 corresponding to the displacement signal and the preset displacement value set by the piD controller 223, the vibration signal obtained by the vibration sensing unit 24, and the performance index adjustment adjustment of the control device 2〇〇 value. Specifically, in step S36, the value range of the control parameter ΚΡ of the piD controller 223 may be first set, and within the range of values, the κρ is gradually adjusted from a smaller value to a larger value, and the adjustment process, such as vibration sensing. The vibration signal obtained by a single one is stronger', that is, the amplitude is larger or the frequency is higher, that is, the single 兀261 automatically reduces the Κρ, such as the vibration signal is weak, and the adjustment 〇 early το 261 automatically increases the Κρ to speed up the system. Respond to the speed, until the vibration signal and the response speed fall within the set value range ▲ to meet the requirements of (4) rapidity and stability, record the 4 Κρ value' and set the piD controller (3) by the serial port. value. As a preferred solution, the adjustment can be combined with the time domain response graph of the observation control device (the human-machine interaction unit 262 of the host 26 can generally display the time domain response map), so that the parameter adjustment can be observed relatively intuitively. The response is adjusted and the Κρ value is adjusted accordingly. Step S37: changing the load of the robot (10), that is, changing its initial strip 11 201039082 • and external disturbance, repeating steps S32 to S36, obtaining a preferred Kp value under the load and saving the Kp value. • Repeat step S37 to get the better Kp胄 for each load under different loads. As a preferred solution, the control method may further include the step S38 of establishing the load and the Kp value knowledge base corresponding thereto, and storing the knowledge base in the host %. When it is necessary to set the value of the 控制器ρ of the PID controller 223 of the other robot 100, the knowledge base established above can be directly selected by matching the load, the vibration value and the steady-state error value (response speed). The Kp value is better, so that the adjustment time can be reduced, and the matching method can also be implemented by a fuzzy logic.曰 The above only gives the stepper motor drive on the third axis 6 of the robot. The method of adjusting the Κρ of the position control module 2231 of the device 223 can be sequentially set by the same method for the control parameters of the stepper motor driver on the other rotating shafts of the robot. The above control method acquires the vibration signal by the vibration sensing unit 24, and combines the vibration signal with the displacement signal acquired by the displacement sensing unit 23 to semi-automatically adjust the & parameter of the stepping motor driver 22 module 2231. & (4) In summary, the present invention has indeed filed a patent application in accordance with the requirements of the invention patent. However, the above is only the (4) mode of the present invention, which cannot limit the scope of the patent in this case. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. / 12 201039082 • [Simple description of the diagram] * Fig. 1 is a machine having the control device of the present invention using a PID controller. Figure 2 is a schematic diagram of an embodiment of a control device employing a PID controller of the present invention. Fig. 3 is a block diagram showing the construction of an embodiment of a control device using a PID controller of the present invention. Fig. 4 is a flow chart of the control method using the PID controller of the present invention. [Main component symbol description] Robot 100 Base 11 Rack 12 First arm 13 Second arm 14 Third arm 15 Connecting part 16 Stepper motor 21 Control device 200 Stepper motor driver 22 PID controller 223 Displacement sense Measuring unit 23 vibration sensing unit 24 motion control card 25 host 26 position control module 2231 speed control module 2232 current control module 2235 adjustment unit 261 human interaction unit 262 13

Claims (1)

201039082 • 七、申請專利範圍·· 1.一種採用PID控制器之控制方法,其包括以下步驟: - 位移感測單元感測被控物件之位移訊號以獲取 位移值; $ ο 振動感測單元感測被控物件之振動訊號;以及 调郎單元根據該實際位移值與由PID控制器設定之被 控物件之預設位移值之差量、該振動訊號及預先設定之控 制系統之性能指標調節PID控制器之控制參數。 2.如申請專利範圍第i項所述之採用piD控制器之 控制方法,其中該調節單元調節該pm控制器之比;增 益’且調節時設定比例增益之取值範圍,於該取值範^ =將比例增益從較小值逐漸調節至較大值,當振動感測 :疋獲取之振動訊號大於設定值,調節單元減小比例增 血’當振動感測單元獲取之振動訊號小於設定值,調節單 元增大比例增益。 G 3. 如申請專利範圍第1項所述之採用PID控制器之 控制方法,其中該控制方法還包括步驟: 設定被控物件負載;以及 ”周喊單元根據该實際位移值與由該灿㉟制器設定之 被控物件之預設位移值之差量、該振動訊號及 預先設定之 二制^標對該負載下piD控制器之控制參數進 行調節。 4. 如申μ專利圍第3項所述之採用piD控制器之 控制方法,其中該控制方法還包括步驟: 14 201039082 設定不同之負载,並根據與每一 制器之控制參數建立知識庫。 、目對應之PID控 抑5.-種採用PID㈣器之控制裝置,包括仙 态及位移感測單元,該位移戍 二 你m … 砂關早70用於獲取被控物件之 -給:二丨位移訊號回饋至灿控制器,該PID控制 敎號控龍控物件,其中該控㈣置還包括振 :感:則:7°及調節單元’該振動感測單元用於獲取被控物 Ο Ο =:::,該調節單元根據該位移訊號所對應= 位移值與由㈣控制器設定之被控物件之預設位移值之 節™控制器之控制參數。置預先叹疋之性能指標調 6.如申請專利範圍第5項所 控制裝置’其中該pm控制器包㈣盗之 組、速度控制模組及電流控制模::位置控制模 該位置控制模組之比例增益。用於調節 7壯*申請專利範圍第5項所述之制灿 控制裝置’其中該位移感測單元為光電編碼器。工- 二㈣請控制器之 =:Ϊ 動感測單元為加速度感測器,其用於 獲取被控物件空間座標之絲方向之振動訊號。、、 控制裝置申:中專:]:動圍:二所述之採用。ID控制器之 〃中《動“包括振幅和振動頻率訊號。 電機以及2機$人,其包括機械臂、驅動機械f之步進 及控制該步進電機之步進電機驅動器,其中該機器 201039082 人還包括中請專利範圍第5至第9項任—項所述之控制農 置,該PID控制器設於該步進電機驅動器内,該位移感測 單70用於感測該機械臂之位移以獲取機械臂之實際位移 值,該振動❹彳單元設置於該機械臂上用於感測該機械臂 之振動以獲取振動訊號’該調節單元根據該實際位移值與 由該PID控制器設定之機械臂之預設位移值之差量、該振 動訊號以及該控制裝置㈣設定之性能指標調節灿控制 器之控制參數’該PID控制器輪出控制訊號以控制該步進 雷擒。 16201039082 • VII. Patent application scope · 1. A control method using a PID controller, which includes the following steps: - The displacement sensing unit senses the displacement signal of the controlled object to obtain the displacement value; $ ο vibration sensing unit sense Measuring the vibration signal of the controlled object; and adjusting the PID according to the difference between the actual displacement value and the preset displacement value of the controlled object set by the PID controller, the vibration signal and the performance index of the preset control system Controller control parameters. 2. The control method using the piD controller as described in claim i, wherein the adjusting unit adjusts the ratio of the pm controller; the gain is set and the range of the proportional gain is set during the adjustment, and the value is ^ = gradually adjust the proportional gain from a small value to a larger value. When the vibration is sensed: the vibration signal obtained by 疋 is greater than the set value, the adjustment unit reduces the proportional increase of blood. 'When the vibration signal obtained by the vibration sensing unit is smaller than the set value The adjustment unit increases the proportional gain. G 3. The control method using the PID controller as described in claim 1, wherein the control method further comprises the steps of: setting the load of the controlled object; and “the shouting unit according to the actual displacement value and the The difference between the preset displacement values of the controlled object set by the controller, the vibration signal and the preset two-standard standard adjust the control parameters of the piD controller under the load. 4. For example, the third item of the patent The control method of the piD controller is adopted, wherein the control method further comprises the steps of: 14 201039082 setting different loads, and establishing a knowledge base according to the control parameters of each controller. The PID control corresponding to the target is 5.- The control device adopting the PID (four) device, including the fairy state and the displacement sensing unit, the displacement 戍 二 you m ... sand closing early 70 is used to obtain the controlled object - to: the second displacement signal is fed back to the controller, the PID Controlling the nickname control object, wherein the control (4) further includes vibration: Sense: then: 7° and the adjustment unit 'The vibration sensing unit is used to acquire the controlled object Ο Ο =:::, the adjustment unit according to Displacement signal Corresponding = the displacement value and the control parameter of the TM controller of the preset displacement value of the controlled object set by the (4) controller. The performance index of the pre-sighing is adjusted. 6. The device controlled by the fifth item of the patent application' The pm controller package (4) the pirate group, the speed control module and the current control mode: the proportional gain of the position control module of the position control module, which is used for adjusting the control of the chanting described in item 5 of the patent application scope The device 'where the displacement sensing unit is a photoelectric encoder. The worker-two (four) please the controller =: the motion sensing unit is an acceleration sensor, which is used to obtain the vibration signal of the wire direction of the space coordinate of the controlled object. Control device application: secondary school:]: moving around: the use of the two. The "control" in the ID controller includes amplitude and vibration frequency signals. The motor and the two machines, including the robot arm, the stepping of the driving machine f, and the stepping motor driver for controlling the stepping motor, wherein the machine 201039082 also includes the fifth to the ninth item of the patent scope. The PID controller is disposed in the stepping motor driver, and the displacement sensing unit 70 is configured to sense the displacement of the robot arm to obtain the actual displacement value of the robot arm, and the vibration unit is set. The vibration of the mechanical arm is used to sense the vibration of the mechanical arm. The adjustment unit is based on the difference between the actual displacement value and the preset displacement value of the mechanical arm set by the PID controller, the vibration signal, and The control device (4) sets the performance index to adjust the control parameter of the controller. The PID controller rotates the control signal to control the stepping thunder. 16
TW098114553A 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same TWI460564B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Publications (2)

Publication Number Publication Date
TW201039082A true TW201039082A (en) 2010-11-01
TWI460564B TWI460564B (en) 2014-11-11

Family

ID=44995299

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114553A TWI460564B (en) 2009-04-30 2009-04-30 Controlling method using pid controller, controlling device thereof and robot with same

Country Status (1)

Country Link
TW (1) TWI460564B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358058A (en) * 1993-09-27 1994-10-25 Reedrill, Inc. Drill automation control system
CA2312802A1 (en) * 1997-12-01 1999-06-10 Richard J. Loerch System and method for compensating for compliance of a hexapod positioning device
IL127370A (en) * 1998-12-02 2004-05-12 Yaskawa Eshed Technology Ltd Servomechanism control system and method
JP2009066685A (en) * 2007-09-11 2009-04-02 Sony Corp Robot device, and control method for robot device

Also Published As

Publication number Publication date
TWI460564B (en) 2014-11-11

Similar Documents

Publication Publication Date Title
US8073568B2 (en) Device utilizing a PID controller, control method thereof, and robot utilizing the controller
JP4693898B2 (en) Screw tightening control system and screw tightening control method
JP4684330B2 (en) Screw tightening device
JP4824080B2 (en) Synchronous control system
CN104589304A (en) Robot control device and robot
JP2009122779A (en) Control system and control support device
JP4650062B2 (en) Robot controller and robot positioning accuracy correction method
KR102087121B1 (en) Control program, control method, and control device
CN104034461B (en) A kind of test macro of elaborate servo mechanism friction moment and method of testing
JPWO2007099629A1 (en) Motor control device and motor control method
JP2007147614A (en) Geomagnetic sensor for calculating azimuth, and method therefor
CN104914864A (en) Mobile device, mobile device control system and control method
CN111153280B (en) Method for realizing constant tension output of tensioner by controlling current of servo motor
WO2018029910A1 (en) Device for controlling parallel link mechanism
CN102360231A (en) Rate gyroscope-based flexible antenna servo control system
Feng et al. Modeling and implementation of two-wheel self-balancing robot equipped with supporting arms
US11137728B2 (en) Processing device, control parameter determination method, and non-transitory recording medium storing a control parameter determination program
CN106426163A (en) Control apparatus of motor
CN108469849A (en) A kind of random angular oscillation control method
TW201039082A (en) Controlling method using PID controller, controlling device thereof and robot with same
CN107315340A (en) It is a kind of that the steady as device and control method of feedback is measured based on micro electromechanical IMU
JP2015033277A (en) Servo device, and control method of servo device
US11146191B2 (en) Simulation device, simulation method, and simulation program for a motor control device
CN108880366B (en) Control method of torque loading controller of reduction gearbox test bed
JP2017198231A (en) Positioner