TWI459409B - Process for preparing metal-based materials for magnetic cooling or heat pumps - Google Patents

Process for preparing metal-based materials for magnetic cooling or heat pumps Download PDF

Info

Publication number
TWI459409B
TWI459409B TW098114088A TW98114088A TWI459409B TW I459409 B TWI459409 B TW I459409B TW 098114088 A TW098114088 A TW 098114088A TW 98114088 A TW98114088 A TW 98114088A TW I459409 B TWI459409 B TW I459409B
Authority
TW
Taiwan
Prior art keywords
metal
stage
range
based material
cooling
Prior art date
Application number
TW098114088A
Other languages
Chinese (zh)
Other versions
TW201009855A (en
Inventor
Ekkehard Brueck
Thanh Trung Nguyen
Original Assignee
Technology Foundation Stw
Univ Amsterdam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Foundation Stw, Univ Amsterdam filed Critical Technology Foundation Stw
Publication of TW201009855A publication Critical patent/TW201009855A/en
Application granted granted Critical
Publication of TWI459409B publication Critical patent/TWI459409B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1028Controlled cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

用於磁冷卻或熱泵之以金屬為主之材料的製造方法 Method for manufacturing a metal-based material for magnetic cooling or heat pump

本發明係關於用於磁冷卻或熱泵之以金屬為主之材料的製造方法,此類型之材料及其用途。根據本發明製造之該等材料係用於磁冷卻、熱泵或空調系統中。 The present invention relates to a method of manufacturing a metal-based material for magnetic cooling or heat pump, a material of this type and its use. The materials made in accordance with the present invention are used in magnetic cooling, heat pump or air conditioning systems.

此類型之材料大體上已知且描述於(例如)WO 2004/068512中。磁冷卻技術係基於磁卡效應(MCE)且可構成一已知蒸氣循環冷卻方法之替代方法。在展現磁卡效應之材料中,藉由外部磁場使隨機對準之磁矩對準會使得材料發熱。可藉由熱轉移將此熱自MCE材料移除至周圍大氣中。當隨後關閉或移除磁場時,磁矩回復為隨機對準,此使得材料冷卻至周圍溫度以下。此效應可用於冷卻目的;亦參見Nature,第415卷,2002年1月10日,第150至152頁。通常,使用諸如水之熱轉移介質以自磁卡材料移除熱。 Materials of this type are generally known and described, for example, in WO 2004/068512. The magnetic cooling technique is based on the Magnetic Card Effect (MCE) and can form an alternative to a known vapor cycle cooling method. In materials exhibiting a magnetic card effect, aligning the magnetic moments of random alignment by an external magnetic field causes the material to heat up. This heat can be removed from the MCE material to the surrounding atmosphere by thermal transfer. When the magnetic field is subsequently turned off or removed, the magnetic moments return to random alignment, which causes the material to cool below the ambient temperature. This effect can be used for cooling purposes; see also Nature, Vol. 415, January 10, 2002, pp. 150-152. Typically, a heat transfer medium such as water is used to remove heat from the magnetic card material.

常用材料係藉由以下方法製得:該材料之起始元素或起始合金在球磨機中進行固相反應,且隨後在惰性氛圍中進行壓製,燒結及熱處理並隨後逐漸冷卻至室溫。此方法係(例如)描述於J.Appl.Phys.99,2006,08Q107中。 A commonly used material is obtained by a method in which a starting element or a starting alloy of the material is subjected to a solid phase reaction in a ball mill, and then pressed, sintered and heat-treated in an inert atmosphere and then gradually cooled to room temperature. This method is described, for example, in J. Appl. Phys. 99, 2006, 08Q107.

亦有可能藉助於熔融紡絲進行加工。此使得有可能達成更均一元素分布,其產生一獲改良之磁卡效應;參見Rare Metals,第25卷,2006年10月,第544至549頁。在其中所述方法中,首先令起始元素在氬氣氛圍中感應熔融且隨後以熔融狀態經由噴嘴將其噴霧於旋轉銅捲筒上。接著在 1000℃下燒結且逐漸冷卻至室溫。 It is also possible to process by means of melt spinning. This makes it possible to achieve a more uniform elemental distribution which results in an improved magnetic card effect; see Rare Metals, Vol. 25, October 2006, pages 544-549. In the method described therein, the starting element is first inductively melted in an argon atmosphere and then sprayed onto the rotating copper drum via a nozzle in a molten state. Then at Sintering at 1000 ° C and gradually cooling to room temperature.

藉由已知方法獲得之材料通常展現高熱滯後。舉例而言,在經鍺或矽取代之Fe2P型化合物中,在10 K或10 K以上之寬範圍內觀測到較大熱滯後值。該等材料因此並不十分適於磁卡冷卻。 Materials obtained by known methods typically exhibit high thermal hysteresis. For example, in the Fe 2 P type compound substituted by ruthenium or osmium, a large thermal hysteresis value is observed in a wide range of 10 K or more. These materials are therefore not well suited for magnetic card cooling.

本發明之目的在於提供一種用於磁冷卻之以金屬為主之材料的製造方法,其使熱滯後降低。同時,應達成較大磁卡效應(MCE)。 It is an object of the present invention to provide a method for producing a metal-based material for magnetic cooling which reduces thermal hysteresis. At the same time, a large magnetic card effect (MCE) should be achieved.

該目的係根據本發明藉由一種用於磁冷卻或熱泵之以金屬為主之材料的製造方法達成,該方法包含以下步驟:a)使化學元素及/或合金以固相及/或液相對應於該以金屬為主之材料之化學計量反應,b)適當時將來自階段a)之反應產物轉換為固體,c)燒結及/或熱處理來自階段a)或b)之該固體,d)以至少100 K/s之冷卻速率驟冷來自階段c)之經燒結及/或經熱處理的固體。 This object is achieved according to the invention by a method for the production of a metal-based material for magnetic cooling or heat pumping, the method comprising the steps of: a) bringing the chemical elements and/or alloys into a solid phase and/or a liquid phase Corresponding to the stoichiometric reaction of the metal-based material, b) converting the reaction product from stage a) to a solid, c) sintering and/or heat treating the solid from stage a) or b), d) The sintered and/or heat treated solid from stage c) is quenched at a cooling rate of at least 100 K/s.

根據本發明已發現當該等以金屬為主之材料在燒結及/或熱處理之後並非逐漸冷卻至周圍溫度而是以高冷卻速率驟冷時,熱滯後可顯著降低。此冷卻速率為至少100 K/s。冷卻速率較佳為100 K/s至10000 K/s,更佳為200 K/s至1300 K/s。尤其較佳之冷卻速率為300 K/s至1000 K/s。 It has been found in accordance with the present invention that thermal hysteresis can be significantly reduced when the metal-based materials are not gradually cooled to ambient temperature after sintering and/or heat treatment but are quenched at a high cooling rate. This cooling rate is at least 100 K/s. The cooling rate is preferably from 100 K/s to 10000 K/s, more preferably from 200 K/s to 1300 K/s. A particularly preferred cooling rate is from 300 K/s to 1000 K/s.

可藉由任何合適之冷卻方法達成此驟冷,例如藉以水或水性液體(例如經冷卻水或冰/水混合物)使固體驟冷。舉例 而言,可使固體落入經冰冷卻之水中。亦可以諸如液態氮之過冷氣體使固體驟冷。熟習此項技術者已知其他驟冷方法。此處較佳方法為受控且迅速之冷卻。 This quenching can be achieved by any suitable cooling method, such as by quenching the solids with water or an aqueous liquid (e.g., via cooling water or an ice/water mixture). Example In this case, the solid can be allowed to fall into the ice-cooled water. The solid may also be quenched by a supercooled gas such as liquid nitrogen. Other quenching methods are known to those skilled in the art. The preferred method herein is controlled and rapid cooling.

不受限於理論,降低之滯後可歸因於驟冷組合物之較小粒度。 Without being bound by theory, the reduced hysteresis can be attributed to the smaller particle size of the quenched composition.

在迄今已知之方法中,在每一情況下燒結及熱處理之後均為逐漸冷卻,其導致較大粒度之形成且因此導致熱滯後之增加。 In the methods known hitherto, in each case sintering and heat treatment are gradually cooled, which leads to the formation of larger particle sizes and thus to an increase in thermal hysteresis.

製造以金屬為主之材料之其餘步驟的關鍵性較低,其限制條件為在最後步驟中經燒結及/或經熱處理之固體係以本發明之冷卻速率驟冷。該方法可應用於任何合適用於磁冷卻之以金屬為主之材料的製造中。用於磁冷卻之典型材料為多金屬混合物,其通常包含至少三種金屬元素且適當時另外包含非金屬元素。表述「以金屬為主之材料」指示此等材料之主要比例係由金屬或金屬元素形成。通常,全部材料中之比例為至少50重量%、較佳至少75重量%、尤其至少80重量%。下文中詳細說明合適的以金屬為主之材料。 The remaining steps of making a metal-based material are less critical, with the proviso that the sintered and/or heat treated solids in the final step are quenched at the cooling rate of the present invention. The method can be applied to the manufacture of any metal-based material suitable for magnetic cooling. A typical material for magnetic cooling is a multi-metal mixture which typically comprises at least three metal elements and, where appropriate, additionally comprises a non-metallic element. The expression "metal-based materials" indicates that the major proportions of such materials are formed by metals or metallic elements. Typically, the proportion of all materials is at least 50% by weight, preferably at least 75% by weight, especially at least 80% by weight. Suitable metal-based materials are described in detail below.

在根據本發明方法之步驟(a)中,存在於後來以金屬為主之材料中的元素及/或合金係以固相或液相對應於該以金屬為主之材料之化學計量轉換。 In step (a) of the process according to the invention, the elements and/or alloys present in the later metal-based material correspond to the stoichiometric conversion of the metal-based material in a solid or liquid phase.

較佳為藉由在密封容器中或在擠壓機中一起加熱元素及/或合金或在球磨機中進行固相反應來進行階段a)中之反應。尤其較佳為進行固相反應,其尤其係在球磨機中進 行。此反應大體上為已知的;參見引言中所引用之文獻。通常,將存在於後來以金屬為主之材料中的個別元素之粉末或兩種或兩種以上之個別元素之合金粉末以粉狀形式以合適重量比例混合。必要時,可額外研磨混合物以獲得微晶粉末混合物。較佳係在球磨機中加熱該粉末混合物,此導致進一步粉碎以及良好混合,且導致粉末混合物之固相反應。 Preferably, the reaction in stage a) is carried out by heating the elements and/or alloys together in a sealed vessel or in an extruder or by performing a solid phase reaction in a ball mill. It is especially preferred to carry out a solid phase reaction, which is especially in a ball mill. Row. This reaction is generally known; see the literature cited in the introduction. Usually, the powder of the individual elements present in the later metal-based material or the alloy powder of two or more of the individual elements is mixed in a powder form in a suitable weight ratio. If necessary, the mixture may be additionally ground to obtain a microcrystalline powder mixture. It is preferred to heat the powder mixture in a ball mill which results in further comminution and good mixing and results in a solid phase reaction of the powder mixture.

或者,將個別元素以所選化學計量以粉末形式混合且隨後熔融之。 Alternatively, the individual elements are mixed in powder form in selected stoichiometry and subsequently melted.

在密封容器中進行組合加熱允許固定揮發性元素且控制化學計量。特定言之,在使用磷之情況下,此元素在開放系統中會容易蒸發。 Combined heating in a sealed container allows for the immobilization of volatile elements and control of stoichiometry. In particular, in the case of phosphorus, this element will easily evaporate in an open system.

反應之後為燒結及/或熱處理固體,其中可提供一或多個中間步驟。舉例而言,在階段a)中所獲得之固體可在其經燒結及/或熱處理之前先經壓製。此使得材料之密度增加,以致在後來應用中存在高密度之磁卡材料。此為特別有利的,因為可減小磁場存於內之體積,此可能與顯著成本節約有相關聯。壓製本身為已知的且可在有或無壓製助劑存在的情況下進行。有可能使用任何合適用於此壓製的模具。藉由壓製,已可能獲得具有所要三維結構的成形物體。壓製之後可為階段c)之燒結及/或熱處理,接著為階段d)之驟冷。 The reaction is followed by a sintered and/or heat treated solid wherein one or more intermediate steps are provided. For example, the solid obtained in stage a) can be pressed before it is sintered and/or heat treated. This increases the density of the material so that there is a high density of magnetic card material in later applications. This is particularly advantageous because the volume of the magnetic field can be reduced, which may be associated with significant cost savings. The pressing itself is known and can be carried out with or without the presence of a press aid. It is possible to use any suitable mold for this pressing. By pressing, it is possible to obtain a shaped object having a desired three-dimensional structure. The pressing can be followed by sintering and/or heat treatment of stage c) followed by quenching of stage d).

或者,有可能將自球磨機獲得之固體送至熔融紡絲製程中。熔融紡絲製程本身為已知且(例如)描述於Rare Metals, 第25卷,2006年10月,第544至549頁,以及WO 2004/068512中。 Alternatively, it is possible to deliver the solids obtained from the ball mill to the melt spinning process. The melt spinning process itself is known and, for example, described in Rare Metals, Volume 25, October 2006, pages 544 to 549, and WO 2004/068512.

在該等方法中,使階段a)中獲得之組合物熔融且噴霧於旋轉之冷金屬捲筒上。可藉助於噴嘴上游之高壓或噴嘴下游之低壓來達成此噴霧。通常,使用旋轉銅鼓或捲筒,適當時可額外冷卻之。該銅鼓較佳係以10m/s至40m/s、尤其20m/s至30m/s之表面速度旋轉。在銅鼓上,液體組合物係以較佳102 K/s至107 K/s之速率、更佳係至少104 K/s之速率、尤其0.5×106 K/s至2×106 K/s之速率冷卻。 In such processes, the composition obtained in stage a) is melted and sprayed onto a rotating cold metal roll. This spray can be achieved by means of a high pressure upstream of the nozzle or a low pressure downstream of the nozzle. Usually, a rotating copper drum or reel is used, which can be additionally cooled as appropriate. The copper drum preferably rotates at a surface speed of from 10 m/s to 40 m/s, especially from 20 m/s to 30 m/s. On a copper drum, the liquid composition is at a rate of preferably from 10 2 K/s to 10 7 K/s, more preferably at a rate of at least 10 4 K/s, especially from 0.5 x 10 6 K/s to 2 x 10 6 The rate of K/s is cooled.

亦如階段a)中之反應般,熔融紡絲可在減壓下或在惰性氛圍中進行。 Also as in the reaction in stage a), melt spinning can be carried out under reduced pressure or in an inert atmosphere.

因為可縮短後續燒結及熱處理,所以熔融紡絲達到一高加工速率。特定言之,在工業規模上,以金屬為主之材料的製造因此在經濟上變得顯著可行。噴霧乾燥亦導致高加工速率。尤其較佳為進行熔融紡絲。 Melt spinning achieves a high processing rate because subsequent sintering and heat treatment can be shortened. In particular, on an industrial scale, the manufacture of metal-based materials is therefore economically significant. Spray drying also results in high processing rates. It is especially preferred to carry out melt spinning.

或者,在階段b)中,可進行噴霧冷卻,其中將來自階段a)之組合物熔體噴入噴霧塔中。該噴霧塔可(例如)經額外冷卻。在噴霧塔中,通常達到在103 K/s至105 K/s之範圍內、尤其約104 K/s之冷卻速率。 Alternatively, in stage b), spray cooling can be carried out in which the composition from stage a) is melted into the spray tower. The spray tower can, for example, be additionally cooled. In the spray tower, a cooling rate in the range from 10 3 K/s to 10 5 K/s, especially about 10 4 K/s, is usually achieved.

固體之燒結及/或熱處理係在階段c)中進行,較佳係先在800℃至1400℃之範圍內的溫度下燒結且隨後在500℃至750℃之範圍內的溫度下熱處理。該等值尤其適用於成形物體,而較低燒結及熱處理溫度可用於粉末。舉例而言,燒結隨後可在500℃至800℃之範圍內的溫度下進行。對於 成形物體/固體而言,燒結更佳係在1000℃至1300℃、尤其1100℃至1300℃之範圍內的溫度下進行。隨後可(例如)在600℃至700℃下進行熱處理。 The sintering and/or heat treatment of the solid is carried out in stage c), preferably by first sintering at a temperature in the range of from 800 ° C to 1400 ° C and then at a temperature in the range of from 500 ° C to 750 ° C. This value is especially suitable for shaped objects, while lower sintering and heat treatment temperatures can be used for powders. For example, sintering can then be carried out at temperatures in the range of from 500 °C to 800 °C. for In the case of a shaped object/solid, sintering is preferably carried out at a temperature in the range of from 1000 ° C to 1300 ° C, especially from 1100 ° C to 1300 ° C. The heat treatment can then be carried out, for example, at 600 ° C to 700 ° C.

燒結較佳係進行一段1小時至50小時、更佳係2小時至20小時、尤其5小時至15小時之時間。熱處理較佳係進行一段在10小時至100小時、更佳係10小時至60小時、尤其30小時至50小時之範圍內的時間。可根據材料按照實際需要調整確切時期。 Sintering is preferably carried out for a period of from 1 hour to 50 hours, more preferably from 2 hours to 20 hours, especially from 5 hours to 15 hours. The heat treatment is preferably carried out for a period of time ranging from 10 hours to 100 hours, more preferably from 10 hours to 60 hours, especially from 30 hours to 50 hours. The exact period can be adjusted according to the actual needs of the materials.

在使用熔融紡絲方法之情況下,通常可省掉燒結,且熱處理可顯著縮短(例如)至5分鐘至5小時、較佳係10分鐘至1小時之時間。與其他方式之燒結10小時及熱處理50小時之常用值相比,此產生較大時間優勢。 In the case of using the melt spinning method, sintering can usually be omitted, and the heat treatment can be remarkably shortened, for example, to 5 minutes to 5 hours, preferably 10 minutes to 1 hour. This gives a greater time advantage than the usual values of 10 hours of sintering and 50 hours of heat treatment.

燒結/熱處理導致粒子邊界部分熔融,以致材料進一步緻密化。 The sintering/heat treatment causes partial melting of the particle boundaries, so that the material is further densified.

階段b)中之熔融及快速冷卻因此使階段c)之持續時間顯著降低。此亦允許連續製造以金屬為主之材料。 The melting and rapid cooling in stage b) thus significantly reduces the duration of stage c). This also allows the continuous manufacture of metal-based materials.

根據本發明尤其較佳為以下方法順序:a)使化學元素及/或合金以對應於以金屬為主之材料之化學計量在球磨機中進行固相反應,b)熔融紡絲階段a)中所獲得之材料,c)在430℃至1200℃、較佳係800℃至1000℃之範圍內的溫度下熱處理來自階段b)之固體達一段10秒或1分鐘至5小時、較佳係30分鐘至2小時之時間,d)以200 K/s至1300 K/s之冷卻速率驟冷來自階段c)之經 熱處理的成形物體。 According to the invention, the following sequence of processes is particularly preferred: a) subjecting the chemical elements and/or alloys to a solid phase reaction in a ball mill corresponding to the stoichiometry of the metal-based material, b) in the melt spinning stage a) The material obtained, c) heat treating the solid from stage b) for a period of 10 seconds or 1 minute to 5 hours, preferably 30 minutes, at a temperature in the range of from 430 ° C to 1200 ° C, preferably from 800 ° C to 1000 ° C. Up to 2 hours, d) quenching from stage c) at a cooling rate of 200 K/s to 1300 K/s Heat treated shaped object.

本發明方法可用於任何合適的以金屬為主之材料。 The process of the invention can be used with any suitable metal based material.

該等以金屬為主之材料更佳係選自:(1)通式(I)之化合物(AyBy-1)2+δCwDxEz (I) Preferably, the metal-based material is selected from the group consisting of: (1) a compound of the formula (I) (A y B y-1 ) 2+δ C w D x E z (I)

其中:A 為Mn或Co,B 為Fe、Cr或Ni,C、D及E C、D及E中至少兩者不同,具有非零之濃度且係選自P、B、Se、Ge、Ga、Si、Sn、N、As及Sb,其中C、D及E中至少一者為Ge或Si,δ 為在-0.1至0.1之範圍內之數值,w、x、y、z 為在0至1之範圍內之數值,其中w+x+z=1;(2)通式(II)及/或(III)及/或(IV)之基於La及Fe之化合物La(FexAl1-x)13Hy或La(FexSi1-x)13Hy (II) Wherein: A is Mn or Co, B is Fe, Cr or Ni, and C, D and at least two of EC, D and E are different, have a non-zero concentration and are selected from P, B, Se, Ge, Ga, Si, Sn, N, As, and Sb, wherein at least one of C, D, and E is Ge or Si, and δ is a value in the range of -0.1 to 0.1, and w, x, y, and z are 0 to 1. a value within the range, where w+x+z=1; (2) La and Fe-based compounds La(Fe x Al 1-x of formula (II) and/or (III) and/or (IV) 13 H y or La(Fe x Si 1-x ) 13 H y (II)

其中:x 為0.7至0.95之數值,y 為0至3、較佳係0至2之數值;La(FexAlyCoz)13或La(FexSiyCoz)13 (III) Wherein: x is a value from 0.7 to 0.95, y is a value from 0 to 3, preferably from 0 to 2; La(Fe x Al y Co z ) 13 or La(Fe x Si y Co z ) 13 (III)

其中:x 為0.7至0.95之數值,y 為0.05至1-x之數值,z 為0.005至0.5之數值; LaMnxFe2-xGe (IV) Where: x is a value from 0.7 to 0.95, y is a value from 0.05 to 1-x, and z is a value from 0.005 to 0.5; LaMn x Fe 2-x Ge (IV)

其中:x 為1.7至1.95之數值,及(3)MnTP型之豪斯勒合金(Heusler alloy),其中T為過渡金屬,且P為每原子之電子數e/a在7至8.5之範圍內的p摻雜型金屬。 Where: x is a value from 1.7 to 1.95, and (3) a MnTP type of Heusler alloy, where T is a transition metal and P is the number of electrons per atom e/a in the range of 7 to 8.5 P-doped metal.

根據本發明尤其合適之材料係描述於(例如)WO 2004/068512;Rare Metals,第25卷,2006年,第544至549頁;J.Appl.Phys.99.08Q107(2006);Nature,第415卷,2002年1月10日,第150至152頁;及Physica B 327(2003),第431至437頁中。 Particularly suitable materials in accordance with the invention are described, for example, in WO 2004/068512; Rare Metals, Vol. 25, 2006, pages 544 to 549; J. Appl. Phys. 99.08 Q107 (2006); Nature, 415 Vol. 1, 10, 2002, pp. 150-152; and Physica B 327 (2003), pp. 431-437.

在前述通式(I)之化合物中,C、D及E較佳係相同或不同且係選自P、Ge、Si、Sn及Ga中的至少一者。 In the compound of the above formula (I), C, D and E are preferably the same or different and are selected from at least one of P, Ge, Si, Sn and Ga.

通式(I)之以金屬為主之材料較佳係選自至少四元化合物,其不僅包含Mn、Fe、P及若適當之Sb,且另外亦包含Ge或Si或As或Ge及Si或Ge及As或Si及As或Ge、Si及As。 The metal-based material of the formula (I) is preferably selected from at least a quaternary compound comprising not only Mn, Fe, P and, if appropriate, Sb, but additionally Ge or Si or As or Ge and Si or Ge and As or Si and As or Ge, Si and As.

較佳至少90重量%、更佳係至少95重量%之組份A為Mn。較佳至少90重量%、更佳係至少95重量%之B為Fe。較佳至少90重量%、更佳係至少95重量%之C為P。較佳至少90重量%、更佳係至少95重量%之D為Ge。較佳至少90重量%、更佳係至少95重量%之E為Si。 Preferably at least 90% by weight, more preferably at least 95% by weight, of component A is Mn. Preferably at least 90% by weight, more preferably at least 95% by weight, of B is Fe. Preferably at least 90% by weight, more preferably at least 95% by weight, of C is P. Preferably at least 90% by weight, more preferably at least 95% by weight, of D is Ge. Preferably at least 90% by weight, more preferably at least 95% by weight, of E is Si.

材料較佳具有通式MnFe(PwGexSiz)。 The material preferably has the general formula MnFe(P w Ge x Si z ).

x較佳為在0.3至0.7之範圍內之數值,w係小於或等於1-x且z對應於1-x-w。 x is preferably a value in the range of 0.3 to 0.7, w is less than or equal to 1-x and z corresponds to 1-x-w.

材料較佳具有結晶六方Fe2P結構。合適結構之實例為MnFeP0.45至0.7、Ge0.55至0.30及MnFeP0.5至0.70、(Si/Ge)0.5至0.30The material preferably has a crystalline hexagonal Fe 2 P structure. Examples of suitable structures are MnFeP 0.45 to 0.7 , Ge 0.55 to 0.30, and MnFeP 0.5 to 0.70 , and (Si/Ge) 0.5 to 0.30 .

合適化合物另外為Mn1+xFe1-xP1-yGey,其中x在-0.3至0.5之範圍內,y在0.1至0.6之範圍內。同樣合適者為通式Mn1+xFe1-xP1-yGey-zSbz之化合物,其中x在-0.3至0.5之範圍內,y在0.1至0.6之範圍內,且z小於y且小於0.2。亦合適者為式Mn1+xFe1-xP1-yGey-zSiz之化合物,其中x在0.3至0.5之範圍內,y在0.1至0.66之範圍內,z小於或等於y且小於0.6。 A suitable compound is additionally M n1+x Fe 1-x P 1-y Ge y , wherein x is in the range of -0.3 to 0.5 and y is in the range of 0.1 to 0.6. Also suitable are compounds of the formula Mn 1+x Fe 1-x P 1-y Ge yz Sb z wherein x is in the range from -0.3 to 0.5, y is in the range from 0.1 to 0.6, and z is less than y and Less than 0.2. Also suitable are compounds of the formula Mn 1+x Fe 1-x P 1-y Ge yz Si z wherein x is in the range of 0.3 to 0.5, y is in the range of 0.1 to 0.66, z is less than or equal to y and less than 0.6.

較佳通式(II)及/或(III)及/或(IV)之基於La及Fe之化合物為La(Fe0.90Si0.10)13、La(Fe0.89Si0.11)13、La(Fe0.880Si0.120)13、La(Fe0.877Si0.123)13、LaFe11.8Si1.2、La(Fe0.88Si0.12)13H0.5、La(Fe0.88Si0.12)13H1.0、LaFe11.7Si1.3H1.1、LaFe11.57Si1.43H1.3、La(Fe0.88Si0.12)H1.5、LaFe11.2Co0.7Si1.1、LaFe11.5Al1.5C0.1、LaFe11.5Al1.5C0.2、LaFe11.5Al1.5C0.4、LaFe11.5Al1.5Co0.5、La(Fe0.94Co0.06)11.83Al1.17、La(Fe0.92Co0.08)11.83Al1.17Preferred La and Fe-based compounds of the formula (II) and/or (III) and/or (IV) are La(Fe 0.90 Si 0.10 ) 13 , La(Fe 0.89 Si 0.11 ) 13 , La (Fe 0.880 Si 0.120) 13, La (Fe 0.877 Si 0.123) 13, LaFe 11.8 Si 1.2, La (Fe 0.88 Si 0.12) 13 H 0.5, La (Fe 0.88 Si 0.12) 13 H 1.0, LaFe 11.7 Si 1.3 H 1.1, LaFe 11.57 Si 1.43 H 1.3 , La(Fe 0.88 Si 0.12 )H 1.5 , LaFe 11.2 Co 0.7 Si 1.1 , LaFe 11.5 Al 1.5 C 0.1 , LaFe 11.5 Al 1.5 C 0.2 , LaFe 11.5 Al 1.5 C 0.4 , LaFe 11.5 Al 1.5 Co 0.5 , La (Fe 0.94 Co 0.06 ) 11.83 Al 1.17 , La(Fe 0.9 2Co 0.08 ) 11.83 Al 1.17 .

合適的含錳化合物為MnFeGe、MnFe0.9Co0.1Ge、MnFe0.8Co0.2Ge、MnFe0.7Co0.3Ge、MnFe0.6Co0.4Ge、MnFe0.5Co0.5Ge、MnFe0.4Co0.6Ge、MnFe0.3Co0.7Ge、MnFe0.2Co0.8Ge、MnFe0.15Co0.85Ge、MnFe0.1Co0.9Ge、MnCoGe、Mn5Ge2.5Si0.5、Mn5Ge2Si、Mn5Ge1.5Si1.5、Mn5GeSi2、Mn5Ge3、Mn5Ge2.9Sb0.1、Mn5Ge2.8Sb0.2、Mn5Ge2.7Sb0.3、LaMn1.9Fe0.1Ge、LaMn1.85Fe0.15Ge、LaMn1.8Fe0.2Ge、(Fe0.9Mn0.1)3C、(Fe0.8Mn0.2)3C、(Fe0.7Mn0.3)3C、Mn3GaC、MnAs、(Mn,Fe)As、Mn1+δAs0.8Sb0.2、MnAs0.75Sb0.25、Mn1.1As0.75Sb0.25、Mn1.5As0.75Sb0.25Suitable manganese-containing compounds are MnFeGe, MnFe 0.9 Co 0.1 Ge, MnFe 0.8 Co 0.2 Ge, MnFe 0.7 Co 0.3 Ge, MnFe 0.6 Co 0.4 Ge, MnFe 0.5 Co 0.5 Ge, MnFe 0.4 Co 0.6 Ge, MnFe 0.3 Co 0.7 Ge, MnFe 0.2 Co 0.8 Ge, MnFe 0.15 Co 0.85 Ge, MnFe 0.1 Co 0.9 Ge, MnCoGe, Mn 5 Ge 2.5 Si 0.5 , Mn 5 Ge 2 Si, Mn 5 Ge 1.5 Si 1.5 , Mn 5 GeSi 2 , Mn 5 Ge 3 , Mn 5 Ge 2.9 Sb 0.1 , Mn 5 Ge 2.8 Sb 0.2 , Mn 5 Ge 2.7 Sb 0.3 , LaMn 1.9 Fe 0.1 Ge, LaMn 1.85 Fe 0.15 Ge, LaMn 1.8 Fe 0.2 Ge, (Fe 0.9 Mn 0.1 ) 3 C, (Fe 0.8 Mn 0.2 ) 3 C, (Fe 0.7 Mn 0.3 ) 3 C, Mn 3 GaC, MnAs, (Mn, Fe) As, Mn 1+δ As 0.8 Sb 0.2 , MnAs 0.75 Sb 0.25 , Mn 1.1 As 0.75 Sb 0.25 , Mn 1.5 As 0.75 Sb 0.25 .

根據本發明合適之豪斯勒合金為(例如)Fe2MnSi0.5Ge0.5、Ni52.9Mn22.4Ga24.7、Ni50.9Mn24.7Ga24.4、Ni55.2Mn18.6Ga26.2、Ni51.6Mn24.7Ga23.8、Ni52.7Mn23.9Ga23.4、CoMnSb、CoNb0.2Mn0.8Sb、CoNb0.4Mn0.6SB、CoNb0.6Mn0.4Sb、Ni50Mn35Sn15、Ni50Mn37Sn13、MnFeP0.45As0.55、MnFeP0.47A0.53、Mn1.1Fe0.9P0.47As0.53、MnFeP0.89-xSixGe0.11(x=0.22、x=0.26、x=0.30、x=0.33)。 Suitable Haussler alloys according to the invention are, for example, Fe 2 MnSi 0.5 Ge 0.5 , Ni 52.9 Mn 22.4 Ga 24.7 , Ni 50.9 Mn 24.7 Ga 24.4 , Ni 55.2 Mn 18.6 Ga 26.2 , Ni 51.6 Mn 24.7 Ga 23.8 , Ni 52.7 Mn 23.9 Ga 23.4 , CoMnSb, CoNb 0.2 Mn 0.8 Sb, CoNb 0.4 Mn 0.6 SB, CoNb 0.6 Mn 0.4 Sb, Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , MnFeP 0.45 As 0.55 , MnFeP 0.47 A 0.53 , Mn 1.1 Fe 0.9 P 0.47 As 0.53 , MnFeP 0.89-x Si x Ge 0.11 (x = 0.22, x = 0.26, x = 0.30, x = 0.33).

本發明亦係關於一種用於磁冷卻之以金屬為主之材料,其可藉由如上所述之方法獲得。 The present invention is also directed to a metal-based material for magnetic cooling which can be obtained by the method described above.

另外,本發明係關於一種如上文參考不包括含As材料之組合物所定義用於磁冷卻之以金屬為主之材料,該組合物之平均晶體大小係在10nm至400nm、更佳係20nm至200nm、尤其30nm至80nm之範圍內。可藉由X射線繞射來測定平均晶體大小。當晶體大小變得過小時,最大磁卡效應降低。相反地,當晶體大小過大時,系統之滯後增加。 Further, the present invention relates to a metal-based material for magnetic cooling as defined above with reference to a composition not including an As-containing material, the composition having an average crystal size of from 10 nm to 400 nm, more preferably from 20 nm to It is in the range of 200 nm, especially 30 nm to 80 nm. The average crystal size can be determined by X-ray diffraction. When the crystal size becomes too small, the maximum magnetic card effect is lowered. Conversely, when the crystal size is too large, the hysteresis of the system increases.

如上文所述,本發明以金屬為主之材料較佳係用於磁冷卻中。除包含磁鐵(較佳為永久磁鐵)之外,相應之冷凍機亦包含如上所述之以金屬為主之材料。電腦晶片及太陽能發電器之冷卻亦為可能的。其他使用領域為熱泵及空調系統。 As described above, the metal-based material of the present invention is preferably used in magnetic cooling. In addition to containing a magnet (preferably a permanent magnet), the corresponding freezer also contains a metal-based material as described above. Cooling of computer chips and solar generators is also possible. Other areas of use are heat pumps and air conditioning systems.

藉由本發明方法製造之以金屬為主之材料可呈任何所要的固體形式。其亦可以薄片、條帶、線、粉末形式或以成形物體形式存在。可(例如)藉由熱擠壓方法製造諸如單石或蜂巢之成形物體。舉例而言,400 CPI至1600 CPI或1600 CPI以上的單元密度係可能存在的。根據本發明亦偏好可藉由 輥軋法獲得之薄片。有利的無孔成形物體為彼等由薄成形材料所形成者,例如管、板、網、柵格或棒。根據本發明亦可能藉由金屬射出成形(MIM)法進行成形。 The metal-based material produced by the process of the invention can be in any desired solid form. It can also be in the form of flakes, strips, threads, powders or in the form of shaped objects. Shaped objects such as monoliths or honeycombs can be made, for example, by a hot extrusion process. For example, a cell density of 400 CPI to 1600 CPI or above 1600 CPI may be present. According to the invention, the preference is also The sheet obtained by the rolling method. Advantageous non-porous shaped objects are those formed from thin shaped materials such as tubes, plates, meshes, grids or rods. It is also possible according to the invention to carry out the shaping by means of a metal injection molding (MIM) process.

藉由以下實例詳細說明本發明。 The invention is illustrated in detail by the following examples.

實例 Instance 實例1 Example 1

將包含MnFePGe之壓製樣品之真空石英安瓿瓶保存在1100℃下10小時以燒結粉末。此燒結之後為在650℃下進行熱處理60小時以產生均質化。取代在烘箱中緩慢冷卻至室溫,而是立即將樣品在水中驟冷至室溫。在水中驟冷使樣品表面產生某種程度之氧化。藉由稀酸蝕刻移除外部氧化殼。XRD圖案展示所有樣品皆以Fe2P型結構結晶。 A vacuum quartz ampoule containing a pressed sample of MnFePGe was stored at 1100 ° C for 10 hours to sinter the powder. This sintering was followed by heat treatment at 650 ° C for 60 hours to produce homogenization. Instead of slowly cooling to room temperature in an oven, the sample was immediately quenched to room temperature in water. Quenching in water produces some degree of oxidation on the surface of the sample. The outer oxide shell is removed by dilute acid etching. The XRD pattern shows that all samples were crystallized in a Fe 2 P type structure.

獲得以下組合物:Mn1.1Fe0.9P0.81Ge0.19;Mn1.1Fe0.9P0.78Ge0.22;Mn1.1Fe0.9P0.75Ge0.25;及Mn1.2Fe0.8P0.81Ge0.19。對於既定順序之該等樣品而言,熱滯後之觀測值為7 K、5 K、2 K及3 K。與熱滯後大於10 K之緩慢冷卻的樣品相比,該熱滯後已大幅減小。 The following composition was obtained: Mn 1.1 Fe 0.9 P 0.81 Ge 0.19 ; Mn 1.1 Fe 0.9 P 0.78 Ge 0.22 ; Mn 1.1 Fe 0.9 P 0.75 Ge 0.25 ; and Mn 1.2 Fe 0.8 P 0.81 Ge 0.19 . For these samples in a given order, the observed values of thermal hysteresis were 7 K, 5 K, 2 K, and 3 K. This thermal hysteresis has been substantially reduced compared to slow cooled samples with thermal hysteresis greater than 10K.

在0.5特斯拉(tesla)之磁場中測定熱滯後。 The thermal hysteresis was measured in a magnetic field of 0.5 tesla.

以升高之磁場等溫磁化接近居里溫度之Mn1.1Fe0.9B0.78Ge0.22,對於高達5特斯拉之磁場,觀測到產生較大MCE之場感應轉變行為。 Mn 1.1 Fe 0.9 B 0.78 Ge 0.22 close to the Curie temperature is magnetized isothermally with an elevated magnetic field. For a magnetic field of up to 5 Tesla, a field-induced transition behavior of a large MCE is observed.

可藉由改變Mn/Fe比及Ge濃度來調整居里溫度,亦可如此調整熱滯後值。 The Curie temperature can be adjusted by changing the Mn/Fe ratio and the Ge concentration, and the thermal hysteresis value can also be adjusted in this way.

對於0至2特斯拉之最大磁場變化而言,使用麥斯韋爾(Maxwell)關係自直流磁化所計算出之磁熵變化對於前三個樣品而言分別為14 J/kgK、20 J/kgK及12.7 J/kgK。 For the maximum magnetic field change of 0 to 2 Tesla, the change in magnetic entropy calculated from DC magnetization using Maxwell's relationship is 14 J/kgK, 20 J/ for the first three samples, respectively. kgK and 12.7 J/kgK.

居里溫度及熱滯後隨Mn/Fe比增加而降低。因此,MnFePGe化合物在低磁場中展現相對較大之MCE值。該等材料之熱滯後極低。 The Curie temperature and thermal hysteresis decrease as the Mn/Fe ratio increases. Therefore, the MnFePGe compound exhibits a relatively large MCE value in a low magnetic field. The thermal hysteresis of these materials is extremely low.

實例2 Example 2 MnFeP(GeSb)之熔融紡絲 Melt spinning of MnFeP (GeSb)

首先在具有高能量輸入之球磨機中且藉由如WO 2004/068512及J.Appl.Phys.99,08 Q107(2006)中所述之固相反應方法製造多晶MnFeP(Ge,Sb)合金。隨後將材料片引入具有噴嘴之石英管中。將腔室抽空至10-2毫巴(mbar)之真空且隨後填充高純氬氣。藉助於高頻率使樣品熔融,且由於壓力差使其經由噴嘴噴霧至含有旋轉銅鼓之腔室中。銅輪之表面速度為可調整的,且達到約105 K/s之冷卻速率。隨後,令紡絲條帶在900℃下熱處理1小時。 Polycrystalline MnFeP (Ge, Sb) alloys are first produced in a ball mill with high energy input and by a solid phase reaction process as described in WO 2004/068512 and J. Appl. Phys. 99, 08 Q107 (2006). The sheet of material is then introduced into a quartz tube with a nozzle. The chamber was evacuated to a vacuum of 10 -2 mbar and then filled with high purity argon. The sample is melted by means of high frequency and is sprayed through the nozzle into the chamber containing the rotating copper drum due to the pressure difference. The surface speed of the copper wheel is adjustable and reaches a cooling rate of about 10 5 K/s. Subsequently, the spun ribbon was heat treated at 900 ° C for 1 hour.

X射線繞射測定法揭示所有樣品皆以六方Fe2P結構型式結晶。與並非藉由熔融紡絲法製得之樣品相比,未觀測到MnO之較小污染物相。 X-ray diffraction measurements revealed that all samples were crystallized in a hexagonal Fe 2 P structure. No smaller contaminant phase of MnO was observed compared to the sample that was not produced by the melt spinning process.

針對熔融紡絲中之不同圓周速度測定居里溫度、滯後及熵之所得值。結果列於下表1及表2中。在每一情況下,皆測得低滯後溫度。 The values obtained for Curie temperature, hysteresis and entropy were determined for different circumferential velocities in the melt spinning. The results are shown in Tables 1 and 2 below. In each case, a low hysteresis temperature was measured.

Claims (9)

一種製造用於磁冷卻或熱泵之以金屬為主之材料的方法,其包含以下步驟:a)使化學元素及/或合金以固相及/或液相對應於該以金屬為主之材料之化學計量反應,b)適當時將來自階段a)之反應產物轉換為固體,c)燒結及/或熱處理來自階段a)或b)之該固體,d)以至少100 K/s之冷卻速率驟冷來自階段c)之該經燒結及/或經熱處理的固體,其中該以金屬為主之材料係選自:(1)通式(I)之化合物(AyB1-y)2+δCwDxEz (I)其中:A 為Mn或Co,B 為Fe、Cr或Ni,C、D及E C、D及E中至少兩者不同,具有非零之濃度且係選自P、B、Se、Ge、Ga、Sn、N、As及Sb,其中C、D及E中的至少一者為Ge,δ 為在-0.1至0.1之範圍內之數值,w、x、y、z 為在0至1之範圍內之數值,其中w+x+z=1;(2)通式(II)及/或(III)及/或(IV)之基於La及Fe之化合物La(FexAl1-x)13Hy或La(FexSi1-x)13Hy (II)其中: X 為0.7至0.95之數值,y 為0至3之數值;La(FexAlyCoz)13或La(FexSiyCoz)13 (III)其中:X 為0.7至0.95之數值,y 為0.05至1-x之數值,z 為0.005至0.5之數值;LaMnxFe2-xGe (IV)其中:X 為1.7至1.95之數值,及(3)MnTP型豪斯勒合金,其中T為過渡金屬,且P為每原子之電子數e/a在7至8.5之範圍內的p摻雜型金屬。 A method of manufacturing a metal-based material for magnetic cooling or heat pump, comprising the steps of: a) causing a chemical element and/or an alloy to correspond to the metal-based material in a solid phase and/or a liquid phase; a stoichiometric reaction, b) converting the reaction product from stage a) to a solid, c) sintering and/or heat treating the solid from stage a) or b), d) at a cooling rate of at least 100 K/s Cooling the sintered and/or heat treated solid from stage c), wherein the metal-based material is selected from the group consisting of: (1) a compound of formula (I) (A y B 1-y ) 2+δ C w D x E z (I) wherein: A is Mn or Co, B is Fe, Cr or Ni, and C, D and at least two of EC, D and E are different, have a non-zero concentration and are selected from P , B, Se, Ge, Ga, Sn, N, As, and Sb, wherein at least one of C, D, and E is Ge, and δ is a value in the range of -0.1 to 0.1, w, x, y, z is a value in the range of 0 to 1, wherein w+x+z=1; (2) a compound La based on La and Fe of the formula (II) and/or (III) and/or (IV) Fe x Al 1-x) 13 H y or (Fe x Si 1-x) 13 H y (II) wherein La: X is a number of from 0.7 to 0.95, y Numerical 0-3 of; La (Fe x Al y Co z) 13 or the La (Fe x Si y Co z ) 13 (III) wherein: X is a number from 0.7 to 0.95 of, y is the value 0.05 to 1-x, the z is a value of 0.005 to 0.5; LaMn x Fe 2-x Ge (IV) wherein: X is a value of 1.7 to 1.95, and (3) a MnTP type Hausler alloy in which T is a transition metal and P is per atom A p-doped metal having an electron number e/a in the range of 7 to 8.5. 如請求項1之方法,其中階段d)中之該驟冷係以在200 K/s至1300 K/s之範圍內的冷卻速率進行。 The method of claim 1, wherein the quenching in stage d) is performed at a cooling rate in the range of from 200 K/s to 1300 K/s. 如請求項1之方法,其中階段a)中之該反應係藉使該等元素及/或合金於一密封容器中或於一擠壓機中一起加熱或於一球磨機中進行固相反應來進行。 The method of claim 1, wherein the reaction in stage a) is carried out by heating the elements and/or alloys in a sealed container or in an extruder or by solid phase reaction in a ball mill. . 如請求項1至3中任一項之方法,其中階段b)中之轉換至固體係藉由熔融紡絲或噴霧冷卻來進行。 The method of any one of claims 1 to 3, wherein the conversion to solids in stage b) is carried out by melt spinning or spray cooling. 如請求項1至3中任一項之方法,其中在階段c)中,首先燒結係在800℃至1400℃之範圍內的溫度下進行,且隨後熱處理係在500℃至750℃之範圍內的溫度下進行。 The method of any one of claims 1 to 3, wherein in stage c), the sintering system is first carried out at a temperature in the range of 800 ° C to 1400 ° C, and then the heat treatment is in the range of 500 ° C to 750 ° C The temperature is carried out. 如請求項1之方法,其中該以金屬為主之材料係選自該通式(I)之至少四元化合物,其不僅包含Mn、Fe、P及若 適當之Sb,且另外亦包含Ge或As或Ge及As。 The method of claim 1, wherein the metal-based material is selected from the group consisting of at least a quaternary compound of the formula (I), which comprises not only Mn, Fe, P, and Suitable Sb, and additionally includes Ge or As or Ge and As. 一種用於磁冷卻或熱泵之以金屬為主之材料,其可藉由如請求項1至3中任一項之方法獲得。 A metal-based material for magnetic cooling or heat pump, which can be obtained by the method of any one of claims 1 to 3. 一種用於磁冷卻或熱泵之以金屬為主之材料,其可藉由如請求項1之方法獲得,不包括含As材料且平均晶體大小在10nm至400nm之範圍內。 A metal-based material for magnetic cooling or heat pump, obtainable by the method of claim 1, excluding the As-containing material and having an average crystal size in the range of 10 nm to 400 nm. 如請求項7之以金屬為主之材料,其係用於磁冷卻、熱泵或空調系統中。 Metal-based material of claim 7 for use in magnetic cooling, heat pump or air conditioning systems.
TW098114088A 2008-04-28 2009-04-28 Process for preparing metal-based materials for magnetic cooling or heat pumps TWI459409B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08155259 2008-04-28

Publications (2)

Publication Number Publication Date
TW201009855A TW201009855A (en) 2010-03-01
TWI459409B true TWI459409B (en) 2014-11-01

Family

ID=40785565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098114088A TWI459409B (en) 2008-04-28 2009-04-28 Process for preparing metal-based materials for magnetic cooling or heat pumps

Country Status (11)

Country Link
US (1) US20110061775A1 (en)
EP (1) EP2277180B1 (en)
JP (1) JP5855457B2 (en)
KR (1) KR101553091B1 (en)
CN (1) CN102017025B (en)
AU (2) AU2009242216C1 (en)
BR (1) BRPI0911771A2 (en)
CA (1) CA2721621A1 (en)
NZ (1) NZ588756A (en)
TW (1) TWI459409B (en)
WO (1) WO2009133049A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110041513A1 (en) * 2009-08-18 2011-02-24 Technology Foundation Stw Polycrystalline magnetocaloric materials
TW201145319A (en) * 2010-01-11 2011-12-16 Basf Se Magnetocaloric materials
NZ601798A (en) 2010-03-11 2014-01-31 Basf Se Magnetocaloric materials
TWI398609B (en) * 2010-04-08 2013-06-11 Univ Nat Taipei Technology Rotary magneto-cooling apparatus under room temperature
CN101906563B (en) * 2010-08-31 2013-04-10 沈阳理工大学 Preparation method of MnAsP compound with efficient room temperature magnetic refrigeration performance
DE102010063061B3 (en) * 2010-12-14 2012-06-14 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Use of a rare earth metal-free substance as a magnetocalorically active material
KR20130112600A (en) 2012-04-04 2013-10-14 삼성전자주식회사 Method for preparing transition metal pnictide magnetocaloric material with boron doped
JP6009994B2 (en) * 2012-06-12 2016-10-19 国立大学法人九州大学 Magnetic refrigeration material
FR2994252B1 (en) * 2012-08-01 2014-08-08 Cooltech Applications MONOBLOC PIECE COMPRISING A MAGNETOCALORIC MATERIAL NOT COMPRISING AN ALLOY COMPRISING IRON AND SILICON AND A LANTHANIDE, AND A THERMIC GENERATOR COMPRISING SAID PIECE
US20140157793A1 (en) * 2012-12-07 2014-06-12 General Electric Company Novel magnetic refrigerant materials
DE102013201845B4 (en) * 2013-02-05 2021-09-02 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. RARE EARTH METAL FREE PERMANENT MAGNETIC MATERIALS
CN105612593B (en) * 2013-08-09 2018-06-29 巴斯夫欧洲公司 Magneto-caloric material containing B
CN105637600B (en) * 2013-08-09 2019-05-10 巴斯夫欧洲公司 Magneto-caloric material containing B
KR20160062092A (en) 2013-09-27 2016-06-01 바스프 에스이 Corrosion inhibitors for fe2p structure magnetocaloric materials in water
WO2016104739A1 (en) * 2014-12-26 2016-06-30 大電株式会社 Production method for magnetic refrigeration material
US20180114659A1 (en) 2015-03-30 2018-04-26 Basf Se Mechanical heat switch and method
EP3537456A4 (en) * 2016-11-02 2020-06-10 NGK Insulators, Ltd. Method for manufacturing magnetic material
CN108085547B (en) * 2017-12-15 2019-12-13 东北大学 Magnetic material with abnormal coercive force temperature coefficient and magnetic refrigeration capability and preparation method thereof
EP3915944A1 (en) * 2020-05-28 2021-12-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Adiabatic coolant

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPH06102549B2 (en) * 1988-08-12 1994-12-14 東京大学長 Ca-Sr-Bi-Cu-O-based oxide superconducting photoconductive material and method for producing the same
CN1140646C (en) * 2000-05-15 2004-03-03 中国科学院物理研究所 Rare earth-iron-based compound with large magnetic entropy change
JP4352023B2 (en) * 2001-03-27 2009-10-28 株式会社東芝 Magnetic material
US7695574B2 (en) * 2002-10-25 2010-04-13 Showda Denko K.K. Alloy containing rare earth element, production method thereof, magnetostrictive device, and magnetic refrigerant material
CA2514773C (en) * 2003-01-29 2012-10-09 Stichting Voor De Technische Wetenschappen A magnetic material with cooling capacity, a method for the manufacturing thereof and use of such material
JP3967728B2 (en) * 2003-03-28 2007-08-29 株式会社東芝 Composite magnetic material and manufacturing method thereof
JP2005086904A (en) * 2003-09-08 2005-03-31 Canon Inc Heat engine using magnetic substance
JP4240380B2 (en) * 2003-10-14 2009-03-18 日立金属株式会社 Manufacturing method of magnetic material
JP5157076B2 (en) * 2005-04-01 2013-03-06 日立金属株式会社 Method for producing sintered body of magnetic alloy
JP2007291437A (en) * 2006-04-24 2007-11-08 Hitachi Metals Ltd Sintered compact for magnetic refrigeration working bed, and its manufacturing method
AU2009242214A1 (en) * 2008-04-28 2009-11-05 Basf Se Thermomagnetic generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF APPLIED PHYSICS 99, 08Q107 2006 *

Also Published As

Publication number Publication date
AU2014203376A1 (en) 2014-07-10
CN102017025A (en) 2011-04-13
JP2011523676A (en) 2011-08-18
TW201009855A (en) 2010-03-01
EP2277180B1 (en) 2017-08-09
CN102017025B (en) 2014-06-25
JP5855457B2 (en) 2016-02-09
NZ588756A (en) 2012-05-25
CA2721621A1 (en) 2009-11-05
AU2009242216A1 (en) 2009-11-05
US20110061775A1 (en) 2011-03-17
KR101553091B1 (en) 2015-09-14
WO2009133049A1 (en) 2009-11-05
BRPI0911771A2 (en) 2015-10-06
AU2009242216C1 (en) 2014-09-04
EP2277180A1 (en) 2011-01-26
AU2009242216B2 (en) 2014-03-20
KR20110036700A (en) 2011-04-08

Similar Documents

Publication Publication Date Title
TWI459409B (en) Process for preparing metal-based materials for magnetic cooling or heat pumps
TWI467910B (en) Thermomagnetic generator
EP2523927B1 (en) Magnetocaloric materials
JP5713889B2 (en) Open-cell porous moldings for heat exchangers
EP2545563B1 (en) Magnetocaloric material and process for producing it
US9318245B2 (en) Heat carrier medium for magnetocaloric materials
KR20120053034A (en) Heat exchanger beds composed of thermomagnetic material
US20110220838A1 (en) Magnetocaloric materials
CA2771669A1 (en) Polycrystalline magnetocaloric materials
CN108300881B (en) Method for realizing wide-temperature-zone giant negative thermal expansion in MnCoGe-based alloy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees