TWI455343B - 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法 - Google Patents

一種薄膜太陽能電池之p-i-n微晶矽結構及其製法 Download PDF

Info

Publication number
TWI455343B
TWI455343B TW101114082A TW101114082A TWI455343B TW I455343 B TWI455343 B TW I455343B TW 101114082 A TW101114082 A TW 101114082A TW 101114082 A TW101114082 A TW 101114082A TW I455343 B TWI455343 B TW I455343B
Authority
TW
Taiwan
Prior art keywords
ratio
type layer
fluoride
film solar
solar cell
Prior art date
Application number
TW101114082A
Other languages
English (en)
Other versions
TW201344945A (zh
Inventor
Yu Hung Chen
Jun Chin Liu
Chun Heng Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101114082A priority Critical patent/TWI455343B/zh
Priority to US13/549,049 priority patent/US8557041B1/en
Publication of TW201344945A publication Critical patent/TW201344945A/zh
Application granted granted Critical
Publication of TWI455343B publication Critical patent/TWI455343B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

一種薄膜太陽能電池之P-I-N微晶矽結構及其製法
本案係關於一種P-I-N微晶矽結構及其製法,尤指一種薄膜太陽能電池之P-I-N微晶矽結構及其製法。
傳統之太陽能電池之P-I-N微晶矽結構,係藉由混成氣體源SiH4及H2以單一步驟製成I型層(I layer),其中,H2之摻雜量需佔有混成氣體中相當高之比例以提昇I型層之結晶度,如SiH4:H2為1:40。然而,當氫摻雜量過高時,結晶度不會再行提昇,以致Voc及FF降低,造成元件效率衰退;同時,過高之氫摻雜量亦容易使得位於I型層下方之P型層(P layer)受到損傷。
業界有提出以SiF4、SiH4及H2之混合氣體通過單一步驟形成I型層,以進一步使得I型層之成核(nucleation)增加之技術。惟,氟之侵蝕率比氫更為強烈,故通過單一步驟添加之SiF4雖能讓成核增加,但卻會讓I型層及P型層之介面之損傷程度更加擴大,同時亦增加了I型層中之內部缺陷。
另外,第7919398號美國專利及特許第3672754號日本專利雖揭露一種利用氫氣與含矽氣體之混合氣體,進而以不同之沈積速度形成複數層I型層之技術,但是,其仍未能解決I型層及P型層因單一步驟中添加SiF4所造成之介面損傷,以及讓I型層中產生內部缺陷等嚴重問題。
鑑於習知技術之種種缺失,本案之主要目的在於提供一種能有效避免I型層及P型層間之介面損傷,以及降低I型層中之內部缺陷之技術。
為了達到上述目的及其它目的,本案遂提供一種薄膜太陽能電池之P-I-N微晶矽結構之製法,係包括以下步驟:(1)形成P型層;(2)以氟化物對氫化物之氣體比例為不同之複數混合氣體,依序於該P型層上形成由複數個堆疊子層構成之I型層;以及(3)於由該複數個堆疊子層構成之I型層上形成N型層。
於本案之一實施例中,步驟(2)係包括:步驟(2-1),以該氣體比例為第一比例之氟化物與氫化物之混合氣體,於該P型層上形成第一I型層;以及步驟(2-2),以該氣體比例為第二比例之氟化物與氫化物之混合氣體,於該第一I型層上形成第二I型層,且該第二比例係大於該第一比例。
本案亦提供一種薄膜太陽能電池之P-I-N微晶矽結構,係包括:P型層;由複數個堆疊子層構成之I型層,係透過氟化物對氫化物之氣體比例為不同之複數混合氣體依序形成於該P型層上;以及N型層,係形成於該有複數個堆疊子層構成之I型層上。
於本案之一實施例中,該複數個堆疊之I型層係包括:第一I型層,係以該氣體比例為第一比例之氟化物與氫化物之混合氣體形成於該P型層上;以及第二I型層,係以該氣體比例為第二比例之氟化物與氫化物之混合氣體形成於該第一I型層上,且該第二比例係大於該第一比例。
因此,本案係在P型層上先以氟化物比重較低之氟化物與氫化物之混合氣體形成第一I型層,再以氟化物比重較高之氟化物與氫化物之混合氣體於第一I型層上形成第二I型層,藉此多段式之方式形成I型層,再於I型層上形成N型層,從而有效降低I型層及P型層間因氟化物過量造成之介面損傷,以及有效降低I型層中之內部缺陷。
以下係藉由特定的具體實施型態說明本案之實施方式,熟悉此技術之人士可藉由本說明書所揭示之內容輕易地瞭解本案之其他優點與功效。而本案亦可藉由其他不同的具體實施型態加以施行或應用。
請先參閱第1圖繪示之步驟流程圖,以瞭解本案提供之薄膜太陽能電池之P-I-N微晶矽結構之製法。
首先於步驟S11中,先形成一P型層,其中,係可藉由電漿化學氣相沈積(PECVD)技術於相關之基板上形成該P型層,接著進至步驟S12。
於步驟S12中,係以氟化物對氫化物之氣體比例為不同之複數由氟化物與氫化物組成之混合氣體,依序於該P型層之頂面形成由複數個堆疊子層構成之I型層,其中,該氟化物係為SiF4、SF6、CF4、CHF3、C2F6、C3F8、HF、CaF2、MgF2、BaF2之一者或其組合,該氫化物係為SiH4或Si2H6之一者或其組合,而形成I型層之步驟亦可藉由電漿化學氣相沈積技術(PECVD)為之,接著進至步驟S13。
於步驟S13中,藉由電漿化學氣相沈積(PECVD)技術於該由複數個堆疊子層構成之I型層之頂面上形成N型層。
於本實施例中,如所述之以複數種氣體比例之有氟化物與氫化物組成之混合氣體,依序於該P型層之頂面形成由複數個堆疊子層構成之I型層之步驟S12,係可先以氣體比例為第一比例之由氟化物與氫化物組成之混合氣體於該P型層上形成第一I型層,接著,再以氣體比例為第二比例之由氟化物與氫化物組成之混合氣體,於該第一I型層上形成第二I型層,且該第二比例係可大於該第一比例。
舉例言之,如第2圖所示,當P型層21形成後,係可先藉由氟化物對氫化物(例如SiF4/SiH4)之氣體比例為如8%之混合氣體,於P型層21上形成第一I型層221,再藉由SiF4/SiH4之氣體比例為如30%之混合氣體,於第一I型層221上形成第二I型層222,而堆疊之第一I型層221及第二I型層222即構成P-I-N微晶矽結構中之I型層22。
再者,於本實施例中,步驟S12還可先以氣體比例為第一比例之由氟化物與氫化物組成之混合氣體,於該P型層上形成第一I型層,接著再以氣體比例為第二比例之由氟化物與氫化物組成之混合氣體,於該第一I型層上形成第二I型層,最後再以氣體比例為第三比例之由氟化物與氫化物組成之混合氣體,於該第二I型層上形成第三I型層,且該第三比例係大於第二比例,該第二比例係大於該第一比例。
舉例言之,如第3圖所示,P型層31形成後,係先藉由SiF4/SiH4之氣體比例為如8%之混合氣體,於P型層31上形成第一I型層321;接著,藉由SiF4/SiH4之氣體比例為如16%之混合氣體,於第一I型層321上形成第二I型層322;最後,再藉由SiF4/SiH4之氣體比例為如24%之混合氣體,於第二I型層322上形成第三I型層323;而堆疊之第一I型層321、第二I型層322、及第三I型層323即係構成P-I-N微晶矽結構中之I型層32。
另外,於本實施例中,所述之氣體比例為第一比例之由氟化物與氫化物組成之混合氣體之氟濃度,係介於1E15cm -3 至1E21cm -3 間,且該第一I型層221、321之結晶度係可介於45%至80%間。所述之混合氣體中尚可摻雜有一定量之H2。而實際實施時,亦可因應不同之需求再增加形成I型層之步驟以增加層疊數量。
本案所述之薄膜太陽能電池之P-I-N微晶矽結構,即可如第2圖及第3圖所示。
如第2圖所示,薄膜太陽能電池之P-I-N微晶矽結構2係包括P型層21,形成於P型層21上之由複數個堆疊子層構成之I型層,以及形成於I型層之頂面N型層23,其中,由複數個堆疊子層構成之I型層係為透過複數種氣體比例不同之由氟化物與氫化物組成之混合氣體依序形成於P型層21之頂面者。
具體言之,該由複數個堆疊子層構成之I型層係可包括第一I型層221及第二I型層222,其中,第一I型層221為以氣體比例為第一比例之由氟化物與氫化物組成之混合氣體形成於P型層21之上者;而第二I型層222係以氣體比例為第二比例之由氟化物與氫化物組成之混合氣體形成於第一I型層221之上者。
如第3圖所示,薄膜太陽能電池之P-I-N微晶矽結構3係包括P型層31,形成於P型層31上之由複數個堆疊子層構成之I型層,以及形成於I型層之頂面N型層33,其中,該由複數個堆疊子層構成之I型層係為透過複數種氣體比例不同之由氟化物與氫化物組成之混合氣體依序形成於P型層31之頂面者。
具體言之,該由複數個堆疊子層構成之I型層係可包括第一I型層321、第二I型層322及第三I型層323,其中,第一I型層321係以氣體比例為第一比例之由氟化物與氫化物組成之混合氣體形成於P型層31之上者;第二I型層322係以氣體比例為由第二比例之氟化物與氫化物組成之混合氣體形成於第一I型層321之上者;而第三I型層323係以氣體比例為第三比例之由氟化物與氫化物組成之混合氣體形成於第二I型層322之上者。
相同於前述關於製法之內容所揭露之技術概念,氣體比例為第一比例之由氟化物與氫化物組成之混合氣體係為氟化物對氫化物(如SiF4/SiH4)之氣體比例為如8%之混合氣體;氣體比例為第二比例之由氟化物與氫化物組成之混合氣體係SiF4/SiH4之氣體比例為如介於15%至35%間之混合氣體;氣體比例為第三比例之由氟化物與氫化物組成之混合氣體係SiF4/SiH4之氣體比例為如介於35%至50%間之混合氣體。換言之,第三比例係大於第二比例,第二比例係大於第一比例。其它關於濃度、結晶度、化合物之範例、以及所使用之沈積技術等技術,係相同於前述關於製法所揭示者,故不再於此贅述。
綜上所述,本案能在P型層上先以氟化物比重較低之由氟化物與氫化物組成之混合氣體形成第一I型層,藉此有效避免I型層及P型層間之介面產生損傷,接著再以氟化物比重較高之由氟化物與氫化物組成之混合氣體於第一I型層上再形成第二I型層,或再以氟化物比重更高之由氟化物與氫化物組成之混合氣體進一步形成第三I型層,最後再於I型層之頂面形成N型層,即完成P-I-N微晶矽結構。而由於I型層係以調變氟化物對氫化物之氣體比例之多段式方式所製成,因此不但能避免P型層受到侵蝕而損傷,亦能有效降低I型層中之內部缺陷,提高產品之良率。
惟,上述實施型態僅例示性說明本案之原理及其功效,而非用於限制本案。任何熟習此項技藝之人士均可在不違背本案之精神及範疇下,對上述實施型態進行修飾與改變。因此,本案之權利保護範圍,應如後述之申請專利範圍所列。
2、3...薄膜太陽能電池之P-I-N微晶矽結構
21、31...P型層
22、32...I型層
221、321...第一I型層
222、322...第二I型層
23、33...N型層
323...第三I型層
S11~S13...步驟
第1圖係為本案所述之薄膜太陽能電池之P-I-N微晶矽結構之製法之步驟示意圖;
第2圖係為本案所述之薄膜太陽能電池之P-I-N微晶矽結構之一結構示意圖;以及
第3圖係為本案所述之薄膜太陽能電池之P-I-N微晶矽結構之另一結構示意圖。
S11~S13...步驟

Claims (22)

  1. 一種薄膜太陽能電池之P-I-N微晶矽結構之製法,係包括以下步驟:(1) 形成P型層;(2) 以氟化物對氫化物之氣體比例不同之複數由氟化物與氫化物組成之混合氣體,依序於該P型層上形成由複數個堆疊子層構成之I型層;以及(3) 於該由複數個堆疊子層構成之I型層上形成N型層。
  2. 如申請專利範圍第1項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,步驟(2)係包括:(2-1)以該氣體比例為第一比例之由氟化物與氫化物組成之混合氣體,於該P型層上形成第一I型層;以及(2-2)以該氣體比例為第二比例之由氟化物與氫化物組成之混合氣體,於該第一I型層上形成第二I型層。
  3. 如申請專利範圍第2項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,步驟(2)復包括:(2-3)以該氣體比例為第三比例之由氟化物與氫化物組成之混合氣體,於該第二I型層上形成第三I型層。
  4. 如申請專利範圍第2項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該氣體比例為第一比例之由氟化物與氫化物組成之混合氣體之氟濃度係介於1E15cm -3 至1E21cm -3 間。
  5. 如申請專利範圍第2項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該第二比例係大於該第一比例。
  6. 如申請專利範圍第2項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該第一I型層之結晶度係介於45%至80%間。
  7. 如申請專利範圍第3項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該第三比例係大於該第二比例,該第二比例係大於該第一比例。
  8. 如申請專利範圍第3項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該第一比例係氟化物對氫化物之氣體比例為8%,該第二比例係氟化物對氫化物之氣體比例介於15%至80%間,且該第三比例係氟化物對氫化物之氣體比例介於35%至50%間。
  9. 如申請專利範圍第1項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該氟化物係為SiF4、SF6、CF4、CHF3、C2F6、C3F8、HF、CaF2、MgF2、BaF2之一者或其組合。
  10. 如申請專利範圍第1項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,該氫化物係為SiH4或Si2H6之一者或其組合。
  11. 如申請專利範圍第1項所述之薄膜太陽能電池之P-I-N微晶矽結構之製法,其中,形成該P型層、I型層、或N型層之步驟,係藉由電漿化學氣相沈積技術為之。
  12. 一種薄膜太陽能電池之P-I-N微晶矽結構,係包括:P型層;由複數個堆疊子層構成之I型層,係透過氟化物對氫化物之氣體比例不同之複數由氟化物與氫化物組成之混合氣體依序形成於該P型層上;以及N型層,係形成於該I型層上。
  13. 如申請專利範圍第12項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該由複數個堆疊子層構成之I型層係包括:第一I型層,係以該氣體比例為第一比例之由氟化物與氫化物組成之混合氣體形成於該P型層上;以及第二I型層,係以該氣體比例為第二比例之由氟化物與氫化物組成之混合氣體形成於該第一I型層上。
  14. 如申請專利範圍第13項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該由複數個堆疊子層構成之I型層復包括:第三I型層,係以該氣體比例為第三比例之由氟化物與氫化物組成之混合氣體形成於該第二I型層上。
  15. 如申請專利範圍第13項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該氣體比例為第一比例之由氟化物與氫化物組成之混合氣體之氟濃度係介於1E15cm -3 至1E21cm -3 間。
  16. 如申請專利範圍第13項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該第二比例係大於該第一比例。
  17. 如申請專利範圍第13項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該第一I型層之結晶度係介於45%至80%間。
  18. 如申請專利範圍第14項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該第三比例係大於第二比例,該第二比例係大於該第一比例。
  19. 如申請專利範圍第14項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該第一比例係氟化物對氫化物之氣體比例為8%,該第二比例係氟化物對氫化物之氣體比例介於15%至80%間,且該第三比例係氟化物對氫化物之氣體比例介於35%至50%間。
  20. 如申請專利範圍第12項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該氟化物係為SiF4、SF6、CF4、CHF3、C2F6、C3F8、HF、CaF2、MgF2、BaF2之一者或其組合。
  21. 如申請專利範圍第12項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該氫化物係為SiH4或Si2H6之一者或其組合。
  22. 如申請專利範圍第12項所述之薄膜太陽能電池之P-I-N微晶矽結構,其中,該P型層、I型層、或N型層係為藉由電漿化學氣相沈積技術所形成者。
TW101114082A 2012-04-20 2012-04-20 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法 TWI455343B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101114082A TWI455343B (zh) 2012-04-20 2012-04-20 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法
US13/549,049 US8557041B1 (en) 2012-04-20 2012-07-13 Method for manufacturing P-I-N microcrystalline silicon structure for thin-film solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101114082A TWI455343B (zh) 2012-04-20 2012-04-20 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法

Publications (2)

Publication Number Publication Date
TW201344945A TW201344945A (zh) 2013-11-01
TWI455343B true TWI455343B (zh) 2014-10-01

Family

ID=49321427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101114082A TWI455343B (zh) 2012-04-20 2012-04-20 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法

Country Status (2)

Country Link
US (1) US8557041B1 (zh)
TW (1) TWI455343B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676765A (en) * 1994-03-25 1997-10-14 Canon Kabushiki Kaisha Pin junction photovoltaic device having a multi-layered I-type semiconductor layer with a specific non-single crystal I-type layer formed by a microwave plasma CVD process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121541A (en) 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
JP3672754B2 (ja) 1998-12-09 2005-07-20 株式会社カネカ シリコン系薄膜光電変換装置の製造方法
US20090104733A1 (en) 2007-10-22 2009-04-23 Yong Kee Chae Microcrystalline silicon deposition for thin film solar applications
WO2009059238A1 (en) 2007-11-02 2009-05-07 Applied Materials, Inc. Plasma treatment between deposition processes
US20090130827A1 (en) 2007-11-02 2009-05-21 Soo Young Choi Intrinsic amorphous silicon layer
AU2009257187C1 (en) * 2008-06-12 2020-04-02 Sato Holdings Corporation Antenna design and interrogator system
US20100059110A1 (en) 2008-09-11 2010-03-11 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
JP5324966B2 (ja) 2009-03-06 2013-10-23 三菱重工業株式会社 光電変換装置の製造方法及び製膜装置
TW201121065A (en) 2009-12-11 2011-06-16 Metal Ind Res Anddevelopment Ct Thin-film solar cells containing nanocrystalline silicon and microcrystalline silicon.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676765A (en) * 1994-03-25 1997-10-14 Canon Kabushiki Kaisha Pin junction photovoltaic device having a multi-layered I-type semiconductor layer with a specific non-single crystal I-type layer formed by a microwave plasma CVD process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Effects of the Addition of SiF4 to the SiH4 Feed Gas for Depositing Polycrystalline Silicon Films at Low Temperature" Jpn. J. Appl. Phys. Vol.36(1997) pp. 6625~6632 *

Also Published As

Publication number Publication date
US20130276871A1 (en) 2013-10-24
TW201344945A (zh) 2013-11-01
US8557041B1 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
CN110660881B (zh) 一种无掩膜去除钝化接触电池多晶硅绕镀的方法
CN108231917B (zh) 一种perc太阳能电池及其制备方法
CN103346214B (zh) 一种硅基径向同质异质结太阳电池及其制备方法
CN102361037A (zh) 一种晶体硅太阳能电池四层减反射膜及其制备方法
CN103618022A (zh) 一种太阳能电池减反射膜的制作方法
CN206194747U (zh) 一种抗pid效应的太阳能电池片
CN107068774A (zh) 太阳能电池减反钝化膜及其制备方法及太阳能电池片
TWI455343B (zh) 一種薄膜太陽能電池之p-i-n微晶矽結構及其製法
CN111697110A (zh) 异质结太阳能电池及其制造方法
CN117038799A (zh) 一种bc电池制备方法及bc电池
JP2002277605A (ja) 反射防止膜の成膜方法
CN107731951A (zh) 一种n‑p‑p+结构电池的制备方法
CN204230253U (zh) 一种具有三层钝化结构的太阳能电池
CN103474515A (zh) P型双面太阳电池的制作方法
TW201503392A (zh) 異質接面薄膜磊晶矽太陽能電池之結構及其製備方法
CN106856214A (zh) 一种太阳能电池制备方法
CN206864483U (zh) 太阳能电池减反射膜
CN104241410A (zh) 复合硅基材料及其制法和应用
CN105261672B (zh) 一种抗pid的太阳能电池制备方法
Moriya et al. Development of high-efficiency tandem silicon solar cells on W-textured zinc oxide-coated soda-lime glass substrates
CN103474516A (zh) N型双面太阳电池的制作方法
CN216871985U (zh) 一种太阳能电池的背膜结构及太阳能电池
Liao et al. High efficiency amorphous silicon germanium solar cells
CN107017317B (zh) 一种太阳能电池及其制备方法
KR101224643B1 (ko) 태양전지 제조방법