TWI455190B - Trench power mosfet array and fabrication method thereof - Google Patents

Trench power mosfet array and fabrication method thereof Download PDF

Info

Publication number
TWI455190B
TWI455190B TW100104130A TW100104130A TWI455190B TW I455190 B TWI455190 B TW I455190B TW 100104130 A TW100104130 A TW 100104130A TW 100104130 A TW100104130 A TW 100104130A TW I455190 B TWI455190 B TW I455190B
Authority
TW
Taiwan
Prior art keywords
layer
field
gate
germanium
trench
Prior art date
Application number
TW100104130A
Other languages
Chinese (zh)
Other versions
TW201234430A (en
Inventor
Linchung Huang
Original Assignee
Advanced Power Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Power Electronics Corp filed Critical Advanced Power Electronics Corp
Priority to TW100104130A priority Critical patent/TWI455190B/en
Publication of TW201234430A publication Critical patent/TW201234430A/en
Application granted granted Critical
Publication of TWI455190B publication Critical patent/TWI455190B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

溝渠式功率金氧半場效電晶體陣列及其製造方法Ditch type power MOS half field effect transistor array and manufacturing method thereof

本發明是有關於一種半導體裝置及其製造方法,且特別是有關於一種金氧半場效電晶體陣列及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a gold oxide half field effect transistor array and a method of fabricating the same.

在傳統技術中,由於金氧半場效電晶體(power metal-oxide-semiconductor field-effect transistor,MOSFET)具有耗電量較少及切換速率較快等優點,已逐步取代傳統的雙載子電晶體,成為積體電路中最常被使用的半導體元件。溝渠式功率金氧半場效電晶體即為金氧半場效電晶體的其中一種結構,而溝渠式設計可使元件的尺寸更小。In the conventional technology, the power metal-oxide-semiconductor field-effect transistor (MOSFET) has gradually replaced the traditional double-carrier transistor because of its low power consumption and fast switching rate. It is the most commonly used semiconductor component in integrated circuits. The trench-type power MOS half-field effect transistor is one of the structures of the gold-oxygen half-field effect transistor, and the trench-type design can make the size of the component smaller.

當設計上述金氧半場效電晶體之陣列時,主要會考慮到耐壓與導通電阻特性。但因這兩種特性是互相衝突的,所以需要更新穎的設計來改善這兩種特性。When designing the above array of MOS field-effect transistors, the withstand voltage and on-resistance characteristics are mainly considered. But because these two features are conflicting, a new design is needed to improve both features.

因此,本發明之一態樣是在提供一種溝渠式功率金氧半場效電晶體陣列及其製造方法,其可增加溝渠式功率金氧半場效電晶體的崩潰電壓,並同時降低單位面積的導通電阻。Therefore, one aspect of the present invention provides a trench-type power MOS field-effect transistor array and a manufacturing method thereof, which can increase the breakdown voltage of a trench-type power MOS field-effect transistor and simultaneously reduce the conduction per unit area. resistance.

依據本發明一實施例,上述溝渠式功率金氧半場效電晶體陣列之製造方法包含下面各步驟。在矽基材上形成矽磊晶層。在矽磊晶層中形成間隔的場溝渠。在場溝渠之內表面上依序形成共形的場介電層及第一複晶矽層,其中的第一複晶矽層做為場板。在相鄰之場溝渠間之矽磊晶層中形成閘溝渠,其中閘溝渠的垂直深度小於場溝渠。在閘溝渠之內表面上依序形成共形的閘介電層及第二複晶矽層,其中第二複晶矽層做為閘極。進行第一植入步驟,在矽磊晶層中形成基底區,而基底區之電性與矽磊晶層相反,且位在基底區下的矽磊晶層及矽基材做為汲極。進行第二植入步驟,在基底區中之閘溝渠兩側形成複數個源極。上述場介電層之厚度例如可為4000-10000。上述閘介電層之厚度例如可為100-1000According to an embodiment of the invention, the method for fabricating the trench-type power MOS field-effect transistor array comprises the following steps. A germanium epitaxial layer is formed on the germanium substrate. A spaced field trench is formed in the germanium epitaxial layer. A conformal field dielectric layer and a first polysilicon layer are sequentially formed on the inner surface of the field trench, and the first polysilicon layer is used as a field plate. A gate trench is formed in the epitaxial layer between adjacent trenches, wherein the vertical depth of the gate trench is smaller than the field trench. A conformal gate dielectric layer and a second polysilicon layer are sequentially formed on the inner surface of the gate trench, wherein the second polysilicon layer serves as a gate. A first implantation step is performed to form a base region in the tantalum epitaxial layer, and the base region is electrically opposite to the tantalum epitaxial layer, and the tantalum epitaxial layer and the tantalum substrate under the base region are used as the drain. A second implantation step is performed to form a plurality of sources on both sides of the gate trench in the substrate region. The thickness of the field dielectric layer may be, for example, 4000-10000 . The thickness of the gate dielectric layer can be, for example, 100-1000 .

依據本發明另一實施例,上述溝渠式功率金氧半場效電晶體的結構包含有矽基材、矽磊晶層、基底區、在矽磊晶層中的場溝渠、在場溝渠之內表面上的場介電層與場板,以及溝渠式功率金氧半電晶體。其中,溝渠式功率金氧半電晶體包含位在閘溝渠內的閘介電層與閘極,以及源極與汲極。其中,閘溝渠之垂直深度小於該場溝渠。According to another embodiment of the present invention, the structure of the trench type power MOS field effect transistor comprises a germanium substrate, a germanium epitaxial layer, a base region, a field trench in the germanium epitaxial layer, and an inner surface of the field trench Field dielectric layers and field plates, as well as trench-type power MOS transistors. The trench-type power MOS transistor includes a gate dielectric layer and a gate located in the gate trench, and a source and a drain. Wherein, the vertical depth of the gate trench is smaller than the trench of the field.

上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。The Summary of the Invention is intended to provide a simplified summary of the present disclosure in order to provide a basic understanding of the disclosure. This Summary is not an extensive overview of the disclosure, and is not intended to be an The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those skilled in the art of the invention.

依據上述,提供一種溝渠式功率金氧半場效電晶體陣列及其製造方法,其可增加溝渠式功率金氧半場效電晶體的崩潰電壓,並同時降低單位面積的導通電阻。在下面的敘述中,將會介紹上述溝渠式功率金氧半場效電晶體陣列的例示製造方法及其例示結構。為了容易瞭解所述實施例之故,下面將會提供不少技術細節。當然,並不是所有的實施例皆需要這些技術細節。同時,一些廣為人知之結構或元件,僅會以示意的方式在圖式中繪出,以適當地簡化圖式內容。According to the above, a trench type power MOS field effect transistor array and a manufacturing method thereof are provided, which can increase the breakdown voltage of the trench type power MOS field effect transistor and simultaneously reduce the on-resistance per unit area. In the following description, an exemplary manufacturing method of the above-described trench type power MOS field-effect transistor array and an exemplary structure thereof will be described. In order to facilitate an understanding of the described embodiments, a number of technical details are provided below. Of course, not all embodiments require these technical details. At the same time, some well-known structures or elements are only shown in the drawings in a schematic manner to appropriately simplify the contents of the drawings.

參照第1圖,此為一般溝渠式功率金氧半場效電晶體之剖面結構示意圖。通常在n型矽基材100上設置n型矽磊晶層110,其中n型矽基材100與n型矽磊晶層110作為汲極120。在矽磊晶層中設置閘極130、p型基底區140、源極150與p型接觸摻雜區160。Referring to Fig. 1, this is a schematic cross-sectional structure of a general trench type power MOS field effect transistor. An n-type germanium epitaxial layer 110 is generally disposed on the n-type germanium substrate 100, wherein the n-type germanium substrate 100 and the n-type germanium epitaxial layer 110 serve as the drain 120. A gate 130, a p-type base region 140, a source 150, and a p-type contact doping region 160 are disposed in the germanium epitaxial layer.

一般來說,若n型矽磊晶層110的摻雜濃度越低,則溝渠式功率金氧半場效電晶體的崩潰電壓就越高,但是其導通電阻就會越高,造成一個兩難的問題。In general, if the doping concentration of the n-type germanium epitaxial layer 110 is lower, the breakdown voltage of the trench-type power MOS field-effect transistor is higher, but the on-resistance is higher, causing a dilemma. .

因此,根據本發明一實施方式,在p型接觸摻雜區160所在位置處設置場板結構,可改善矽磊晶層的空乏區輪廓,而增加溝渠式功率金氧半場效電晶體的崩潰電壓。因此可增加n型矽磊晶層110的摻雜濃度,而降低溝渠式功率金氧半場效電晶體陣列之單位面積的導通電阻。Therefore, according to an embodiment of the present invention, the field plate structure is disposed at the position of the p-type contact doping region 160, which can improve the profile of the depletion region of the germanium epitaxial layer and increase the breakdown voltage of the trench-type power MOS field-effect transistor. . Therefore, the doping concentration of the n-type germanium epitaxial layer 110 can be increased, and the on-resistance per unit area of the trench-type power metal oxide half field effect transistor array can be reduced.

溝渠式功率金氧半場效電晶體陣列之製造方法Method for manufacturing trench type power MOS half field effect transistor array

請參照第2A-2G圖,其繪示依照本發明一實施方式的一種溝渠式功率金氧半場效電晶體之製造流程剖面結構示意圖。Please refer to FIG. 2A-2G, which is a cross-sectional structural diagram of a manufacturing process of a trench type power MOS field effect transistor according to an embodiment of the invention.

在第2A圖中,在矽基材200上形成矽磊晶層210。在第2B圖中,可以使用微影蝕刻的方式,在矽磊晶層210中形成間隔的場溝渠220。接著,在場溝渠220之內表面上依序形成共形的場介電層222及第一複晶矽層224。形成場介電層222的方法例如可為熱氧化法,而形成第一複晶矽層224的方法則例如可為化學氣相沉積(Chemical Vapor Deposition)法。In FIG. 2A, a germanium epitaxial layer 210 is formed on the tantalum substrate 200. In FIG. 2B, spaced field trenches 220 may be formed in the germanium epitaxial layer 210 using photolithographic etching. Next, a conformal field dielectric layer 222 and a first polysilicon layer 224 are sequentially formed on the inner surface of the field trench 220. The method of forming the field dielectric layer 222 may be, for example, a thermal oxidation method, and the method of forming the first polysilicon layer 224 may be, for example, a chemical vapor deposition (Chemical Vapor Deposition) method.

在第2C圖中,去除位在矽磊晶層210上多餘的第一複晶矽層224及場介電層222,留下在場溝渠220中的第一複晶矽層224及場介電層222,並暴露出矽磊晶層210。其中第一複晶矽層224做為場板224a,而場介電層222厚度可在4000-10000之間。去除第一複晶矽層224及場介電層222的方法例如可為乾蝕刻法。In FIG. 2C, the excess first polysilicon layer 224 and the field dielectric layer 222 are removed from the germanium epitaxial layer 210, leaving the first germanium layer 224 and field dielectric in the field trench 220. Layer 222 and exposed germanium epitaxial layer 210. The first polysilicon layer 224 is used as the field plate 224a, and the field dielectric layer 222 is 4,000-10000. between. The method of removing the first polysilicon layer 224 and the field dielectric layer 222 may be, for example, a dry etching method.

在第2D圖中,可以使用微影蝕刻的方式,在相鄰之場溝渠220間的矽磊晶層210中形成閘溝渠230。接著,在閘溝渠230之內表面上依序形成共形之閘介電層232及一第二複晶矽層234。形成閘介電層232的方法例如可為熱氧化法,而形成第二複晶矽層234的方法則例如可為化學氣相沉積法。上述閘溝渠230之垂直深度小於場溝渠220之垂直深度。In FIG. 2D, a gate trench 230 may be formed in the germanium epitaxial layer 210 between adjacent field trenches 220 by means of photolithography. Next, a conformal gate dielectric layer 232 and a second polysilicon layer 234 are sequentially formed on the inner surface of the gate trench 230. The method of forming the gate dielectric layer 232 may be, for example, a thermal oxidation method, and the method of forming the second polysilicon layer 234 may be, for example, a chemical vapor deposition method. The vertical depth of the gate trench 230 is less than the vertical depth of the field trench 220.

在第2E圖中,去除位在矽磊晶層210上多餘的第二複晶矽層234及閘介電層232,留下在閘溝渠230中的第二複晶矽層234及閘介電層232,並暴露出矽磊晶層210。其中第二複晶矽層234做為閘極234a,而閘介電層232厚度可在100-1000之間。去除第二複晶矽層234及閘介電層232的方法例如可為乾蝕刻法。In FIG. 2E, the excess second germanium layer 234 and the gate dielectric layer 232 on the germanium epitaxial layer 210 are removed, leaving a second germanium layer 234 and gate dielectric in the gate trench 230. Layer 232 and exposed germanium epitaxial layer 210. The second polysilicon layer 234 is used as the gate 234a, and the gate dielectric layer 232 is 100-1000 thick. between. The method of removing the second polysilicon layer 234 and the gate dielectric layer 232 may be, for example, a dry etching method.

在第2F圖中,進行全面性之第一植入步驟,以在矽磊晶層210中形成基底區240。接下來,進行區域性之第二植入步驟,以在基底區240中的閘溝渠230兩側形成源極250。其中,基底區240之電性與矽磊晶層210相反。此外,位在基底區240下之矽磊晶層210及矽基材200可做為汲極212。In FIG. 2F, a comprehensive first implantation step is performed to form the base region 240 in the tantalum epitaxial layer 210. Next, a regional second implantation step is performed to form source 250 on both sides of gate trench 230 in substrate region 240. The electrical conductivity of the base region 240 is opposite to that of the germanium epitaxial layer 210. In addition, the germanium epitaxial layer 210 and the germanium substrate 200 located under the substrate region 240 can serve as the drain 212.

上述溝渠式功率金氧半場效電晶體陣列的製造方法可進一步包含下列步驟,請參照第2G圖。首先,在矽磊晶層210上依序形成介電層260與接觸窗口262。接著,於基底區240中形成接觸摻雜區264。然後,在介電層260與接觸窗口262上依序形成導電層270與護層280。最後,在矽基材200下形成背金屬層290。下面將分別說明上述步驟。The method for manufacturing the above-described trench-type power MOS field-effect transistor array may further include the following steps, please refer to FIG. 2G. First, a dielectric layer 260 and a contact window 262 are sequentially formed on the germanium epitaxial layer 210. Next, a contact doping region 264 is formed in the base region 240. Then, a conductive layer 270 and a protective layer 280 are sequentially formed on the dielectric layer 260 and the contact window 262. Finally, a back metal layer 290 is formed under the tantalum substrate 200. The above steps will be separately explained below.

請參照第2G圖,首先,在第2F圖之結構中的矽磊晶層210上形成介電層260。接著,進行微影蝕刻步驟,在介電層260中形成接觸窗口262,以暴露出場板224a與源極250。接著,進行區域性之第三植入步驟,分別在暴露出之場板224a與源極250間之基底區240中形成接觸摻雜區264。其中,接觸摻雜區264與基底區240之電性相同且摻雜濃度較高。然後在介電層260上及接觸窗口262中形成一導電層270,與場板224a、接觸摻雜區264及源極250電性相接。Referring to FIG. 2G, first, a dielectric layer 260 is formed on the germanium epitaxial layer 210 in the structure of FIG. 2F. Next, a lithography etching step is performed to form a contact window 262 in the dielectric layer 260 to expose the field plate 224a and the source 250. Next, a regional third implantation step is performed to form contact doping regions 264 in the exposed substrate region 240 between the field plate 224a and the source 250, respectively. The contact doping region 264 is electrically identical to the substrate region 240 and has a higher doping concentration. A conductive layer 270 is then formed on the dielectric layer 260 and in the contact window 262 to electrically contact the field plate 224a, the contact doping region 264, and the source 250.

接下來在導電層270上形成一護層280,保護下方之溝渠式功率金氧半場效電晶體陣列。護層的材料例如可為磷矽玻璃、硼磷矽玻璃或氮化矽。最後在矽基材200下方形成背金屬層290。Next, a protective layer 280 is formed on the conductive layer 270 to protect the underlying trench power MOS field effect transistor array. The material of the sheath may be, for example, phosphor bismuth glass, borophosphoquinone glass or tantalum nitride. Finally, a back metal layer 290 is formed under the tantalum substrate 200.

溝渠式功率金氧半場效電晶體陣列Ditch-type power MOS half-field effect transistor array

參照第2F圖,其繪示依照本發明一實施方式的一種溝渠式功率金氧半場效電晶體陣列之剖面結構示意圖。上述溝渠式功率金氧半場效電晶體陣列的結構包含有矽基材200、矽磊晶層210、基底區240、場溝渠220、場介電層222及溝渠式功率金氧半電晶體。Referring to FIG. 2F, a cross-sectional structural diagram of a trench-type power MOS field effect transistor array according to an embodiment of the present invention is shown. The structure of the trench type power MOS field-effect transistor array comprises a germanium substrate 200, a germanium epitaxial layer 210, a base region 240, a field trench 220, a field dielectric layer 222, and a trench power MOS transistor.

在矽基材200上設置矽磊晶層210,在矽磊晶層210中設置基底區。其中,基底區240之電性與矽基材200及矽磊晶層210相反。舉例來說,上述基底區240的摻質例如可為p型,而矽基材200及矽磊晶層210的摻質例如可為n型。A germanium epitaxial layer 210 is disposed on the germanium substrate 200, and a base region is disposed in the germanium epitaxial layer 210. The electrical conductivity of the base region 240 is opposite to that of the tantalum substrate 200 and the tantalum epitaxial layer 210. For example, the dopant of the base region 240 may be, for example, a p-type, and the dopant of the tantalum substrate 200 and the tantalum epitaxial layer 210 may be, for example, an n-type.

在矽磊晶層210中設置間隔的場溝渠220。在場溝渠220之內表面上設置共形的場介電層222,用以電性隔離場板224a與矽磊晶層210。在場介電層222上設置場板224a,其中,場板224a的材料可包含有複晶矽。A spaced field trench 220 is disposed in the germanium epitaxial layer 210. A conformal field dielectric layer 222 is disposed on the inner surface of the field trench 220 for electrically isolating the field plate 224a from the germanium epitaxial layer 210. A field plate 224a is disposed on the field dielectric layer 222, wherein the material of the field plate 224a may include a polysilicon.

在相鄰的場板224a間之矽磊晶層210及矽基材200中設置溝渠式功率金氧半電晶體。其中,溝渠式功率金氧半電晶體包含有位在閘溝渠230內的閘介電層232與閘極234a,以及源極250與汲極212。A trench type power MOS transistor is disposed in the germanium epitaxial layer 210 and the germanium substrate 200 between adjacent field plates 224a. The trench-type power MOS transistor includes a gate dielectric layer 232 and a gate 234a, and a source 250 and a drain 212 in the gate trench 230.

在閘溝渠230的內表面上設置閘介電層232,其中,閘溝渠230位在相鄰的場板224a間的矽磊晶層210中,而且閘溝渠230的垂直深度小於該場溝渠220,上述閘介電層232則是用以電性隔離閘極234a與矽磊晶層210。在閘介電層232上設置閘極234a,在閘溝渠230兩側的基底區設置源極250,在基底區240下的矽磊晶層210及矽基材200中設置汲極212。A gate dielectric layer 232 is disposed on the inner surface of the gate trench 230. The gate trench 230 is located in the germanium epitaxial layer 210 between the adjacent field plates 224a, and the vertical depth of the gate trench 230 is smaller than the field trench 220. The gate dielectric layer 232 is used to electrically isolate the gate 234a from the germanium epitaxial layer 210. A gate 234a is disposed on the gate dielectric layer 232, a source 250 is disposed in a base region on both sides of the gate trench 230, and a drain 212 is disposed in the germanium epitaxial layer 210 and the germanium substrate 200 under the base region 240.

上述溝渠式功率金氧半場效電晶體陣列可進一步依序在矽磊晶層210上設置介電層260、導電層270及護層280。請參照第2G圖,首先,在閘極234a上設置介電層260,其中,介電層260具有接觸窗口262,用以暴露出場板224a與源極250。再來,在介電層260上及接觸窗口262中設置導電層270。接著,在導電層270上設置護層280。上述溝渠式功率金氧半場效電晶體結構也可在矽基材200下方設置背金屬層290。The trench-type power MOS field-effect transistor array may further include a dielectric layer 260, a conductive layer 270, and a cap layer 280 on the germanium epitaxial layer 210. Referring to FIG. 2G, first, a dielectric layer 260 is disposed on the gate 234a. The dielectric layer 260 has a contact window 262 for exposing the field plate 224a and the source 250. Further, a conductive layer 270 is disposed on the dielectric layer 260 and in the contact window 262. Next, a protective layer 280 is provided on the conductive layer 270. The trench type power MOS field effect crystal structure described above may also be provided with a back metal layer 290 under the ruthenium substrate 200.

綜合上述,其中的場板結構可以改善矽磊晶層的空乏區輪廓,改變電場分布,而可增加溝渠式功率金氧半場效電晶體的崩潰電壓。又因溝渠式功率金氧半場效電晶體的崩潰電壓增加後,而可提高矽磊晶層的摻雜濃度,以降低溝渠式功率金氧半場效電晶體單位面積的導通電阻。In summary, the field plate structure can improve the profile of the depletion region of the bismuth epitaxial layer, change the electric field distribution, and increase the breakdown voltage of the trench-type power MOS field effect transistor. Moreover, the doping concentration of the germanium epitaxial layer can be increased due to the increase of the breakdown voltage of the trench-type power MOS field-effect transistor, so as to reduce the on-resistance per unit area of the trench-type power MOS field-effect transistor.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100...n型矽基材100. . . N-type germanium substrate

110...n型矽磊晶層110. . . N-type germanium epitaxial layer

120...汲極120. . . Bungee

130...閘極130. . . Gate

140...p型基底區140. . . P-type basal region

150...源極150. . . Source

160...p型接觸摻雜區160. . . P-type contact doping region

200...矽基材200. . . Bismuth substrate

210...矽磊晶層210. . .矽 晶 layer

212...汲極212. . . Bungee

220...場溝渠220. . . Field ditch

222...場介電層222. . . Field dielectric layer

224...第一複晶矽層224. . . First polycrystalline layer

224a...場板224a. . . Field board

230...閘溝渠230. . . Gate ditch

232...閘介電層232. . . Gate dielectric layer

234...第二複晶矽層234. . . Second polycrystalline layer

234a...閘極234a. . . Gate

240...基底區240. . . Base area

250...源極250. . . Source

260...介電層260. . . Dielectric layer

262...接觸窗口262. . . Contact window

264...接觸摻雜區264. . . Contact doping region

270...導電層270. . . Conductive layer

280...護層280. . . Cover

290...背金屬層290. . . Back metal layer

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood.

第1圖係繪示一般溝渠式功率金氧半場效電晶體之剖面結構示意圖。Figure 1 is a schematic cross-sectional view showing a general trench type power MOS field effect transistor.

第2A-2G圖係繪示依照本發明一實施方式的溝渠式功率金氧半場效電晶體之製造流程剖面結構示意圖。2A-2G is a cross-sectional structural diagram showing a manufacturing process of a trench type power MOS field effect transistor according to an embodiment of the present invention.

200...矽基材200. . . Bismuth substrate

210...矽磊晶層210. . .矽 晶 layer

212...汲極212. . . Bungee

222...場介電層222. . . Field dielectric layer

224...第一複晶矽層224. . . First polycrystalline layer

224a...場板224a. . . Field board

232...閘介電層232. . . Gate dielectric layer

234...第二複晶矽層234. . . Second polycrystalline layer

234a...閘極234a. . . Gate

240...基底區240. . . Base area

250...源極250. . . Source

Claims (8)

一種溝渠式金氧半場效電晶體陣列的製造方法,包含下列步驟:形成一矽磊晶層於一矽基材上;形成間隔之複數個場溝渠於該矽磊晶層中;依序形成共形之一場介電層及一第一複晶矽層於該些場溝渠之內表面上,其中該第一複晶矽層做為場板;形成複數個閘溝渠於相鄰之該些場溝渠間之該矽磊晶層中,其中該些閘溝渠之垂直深度小於該些場溝渠;依序形成共形之一閘介電層及一第二複晶矽層於該些閘溝渠之內表面上,其中該第二複晶矽層做為閘極;進行一第一植入步驟,於該矽磊晶層中形成一基底區,該基底區之電性與該矽磊晶層相反,且位於該基底區下之該矽磊晶層及該矽基材做為汲極;進行一第二植入步驟,於該基底區中之該些閘溝渠兩側形成複數個源極;形成一介電層於該矽磊晶層上;形成複數個接觸窗口於該介電層中,以暴露出該些場板與該些源極;進行一第三植入步驟,形成複數個接觸摻雜區分別於暴露出之每一該些場板與每一該些源極間之該基底區中,該些接觸摻雜區與該基底區之電性相同;形成一導電層於該介電層上及該些接觸窗口中;以及 形成一護層於該導電層上。 A method for manufacturing a trench-type gold-oxygen half-field effect transistor array, comprising the steps of: forming a germanium epitaxial layer on a germanium substrate; forming a plurality of field trenches in the germanium epitaxial layer; forming a total Forming a field dielectric layer and a first polysilicon layer on the inner surface of the field trenches, wherein the first polysilicon layer is used as a field plate; forming a plurality of gate trenches adjacent to the field trenches In the epitaxial layer, the vertical depth of the gate trenches is smaller than the field trenches; a conformal gate dielectric layer and a second polysilicon layer are sequentially formed on the inner surfaces of the gate trenches The second polysilicon layer is used as a gate; a first implantation step is performed to form a base region in the germanium epitaxial layer, the base region being electrically opposite to the germanium epitaxial layer, and The germanium epitaxial layer under the substrate region and the germanium substrate are used as a drain; a second implantation step is performed to form a plurality of sources on opposite sides of the gate trenches in the base region; An electrical layer is on the germanium epitaxial layer; a plurality of contact windows are formed in the dielectric layer to expose the field plates And performing a third implantation step to form a plurality of contact doping regions respectively in the substrate region between each of the exposed field plates and each of the plurality of sources, the contact doping The region is electrically identical to the substrate region; forming a conductive layer on the dielectric layer and the contact windows; A protective layer is formed on the conductive layer. 如請求項1所述之製造方法,其中該場介電層之厚度為4000-10000Å。 The manufacturing method of claim 1, wherein the field dielectric layer has a thickness of 4000 to 10000 Å. 如請求項1所述之製造方法,其中該閘介電層之厚度為100-1000Å。 The manufacturing method of claim 1, wherein the gate dielectric layer has a thickness of 100-1000 Å. 如請求項1所述之製造方法,更包含形成一背金屬層於該矽基材之下。 The manufacturing method of claim 1, further comprising forming a back metal layer under the crucible substrate. 一種溝渠式功率金氧半場效電晶體陣列,其包含:一矽磊晶層,位於一矽基材上;一基底區,位於該矽磊晶層中,該基底區之電性與該矽磊晶層相反;間隔之複數個場溝渠,位於該矽磊晶層中;共形之複數個場介電層,分別位於該些場溝渠之內表面上;複數個場板,分別位於該些場溝渠內之該些場介電層上;複數個溝渠式功率金氧半電晶體,位於相鄰之該些場板間之該矽磊晶層及該矽基材中,其中每一該些溝渠式功率金氧半電晶體包含: 一閘介電層,位於一閘溝渠之內表面上,該閘溝渠位於相鄰之該些場板間之該矽磊晶層中,且該些閘溝渠之垂直深度小於該些場溝渠;一閘極,位於該閘介電層上,並填充該閘溝渠;一源極,位於該閘溝渠兩側之該基底區中;以及一汲極,位於該基底區下之該矽磊晶層及該矽基材中;以及複數個接觸摻雜區,位於每一該些場板與每一該些源極間之該基底區中,該些接觸摻雜區與該基底區之電性相同。 A trench-type power MOS field-effect transistor array comprising: a germanium epitaxial layer on a germanium substrate; a base region in the germanium epitaxial layer, the electrical properties of the base region and the germanium The crystal layer is opposite; a plurality of field trenches are located in the epitaxial layer; the conformal plurality of field dielectric layers are respectively located on inner surfaces of the field trenches; and a plurality of field plates are respectively located in the fields a plurality of trench-type power MOS transistors in the trenches, and the germanium epitaxial layer between the adjacent field plates and the germanium substrate, wherein each of the trenches Power MOS semi-transistor contains: a gate dielectric layer is disposed on an inner surface of the gate trench, the gate trench is located in the germanium epitaxial layer between the adjacent field plates, and the vertical depth of the gate trenches is smaller than the field trenches; a gate electrode located on the gate dielectric layer and filling the gate trench; a source located in the base region on both sides of the gate trench; and a drain, the germanium epitaxial layer under the base region and And the plurality of contact doping regions are located in the substrate region between each of the field plates and each of the plurality of sources, and the contact doping regions are electrically identical to the substrate region. 如請求項5所述之電晶體陣列,其中該場板的材料包含複晶矽。 The transistor array of claim 5, wherein the material of the field plate comprises a germanium. 如請求項5所述之電晶體陣列,更包含:一介電層,位於該閘極上,該介電層具有複數個接觸窗口,以暴露出該些場板及該些源極;一導電層,位於該介電層上及該些接觸窗口中;以及一護層,位於該導電層上。 The transistor array of claim 5, further comprising: a dielectric layer on the gate, the dielectric layer having a plurality of contact windows to expose the field plates and the source; a conductive layer Located on the dielectric layer and the contact windows; and a protective layer on the conductive layer. 如請求項5所述之電晶體陣列,更包含一背金屬層,位於該矽基材之下。 The transistor array of claim 5 further comprising a back metal layer underlying the germanium substrate.
TW100104130A 2011-02-08 2011-02-08 Trench power mosfet array and fabrication method thereof TWI455190B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100104130A TWI455190B (en) 2011-02-08 2011-02-08 Trench power mosfet array and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100104130A TWI455190B (en) 2011-02-08 2011-02-08 Trench power mosfet array and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201234430A TW201234430A (en) 2012-08-16
TWI455190B true TWI455190B (en) 2014-10-01

Family

ID=47070124

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104130A TWI455190B (en) 2011-02-08 2011-02-08 Trench power mosfet array and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI455190B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100187642A1 (en) * 2009-01-23 2010-07-29 Grivna Gordon M Semiconductor component and method of manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100187642A1 (en) * 2009-01-23 2010-07-29 Grivna Gordon M Semiconductor component and method of manufacture

Also Published As

Publication number Publication date
TW201234430A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
TWI396240B (en) Method of fabricating power semiconductor device
JP5081358B2 (en) Double diffusion metal oxide semiconductor transistor having trench gate electrode and method for manufacturing the same
TWI407564B (en) Power semiconductor with trench bottom poly and fabrication method thereof
TWI518908B (en) Semiconductor device and methods for forming the same
TWI541905B (en) Trench metal oxide semiconductor field effect transistor element and manufacturing method thereof
TWI610435B (en) High-voltage finfet device having ldmos structure and method for manufacturing the same
CN110400843A (en) Transistor and the method for preparing the transistor
TWI570917B (en) Trench power mosfet and manufacturing method thereof
TWI515893B (en) Vertical power mosfet and method for manufacturing the same
US9299788B2 (en) Multi-gate VDMOS transistor
TW201310651A (en) High-voltage device and manufacturing method thereof
TWI527096B (en) Growth epi as interconnection layer on mos structure
CN108155237B (en) Semiconductor device, manufacturing method thereof and electronic device
TW201822295A (en) Shelding gate trench semiconductor device and fabricating method thereof
US20140008722A1 (en) Vertical-gate mos transistor with field-plate access
TWI503983B (en) Power mosfet and methods for forming the same
JP2012015279A (en) Semiconductor device and method of manufacturing the same
US20140117379A1 (en) Semiconductor device and method of manufacturing the same
TWI446521B (en) Termination structure for power devices
TWI312192B (en) Semiconductor device and manufacture method thereof
CN111509044A (en) Semiconductor structure and forming method thereof
TWI455190B (en) Trench power mosfet array and fabrication method thereof
CN102956704A (en) Quasi-vertical power MOSFET and methods of forming the same
US10217857B2 (en) Super junction MOSFET and method of manufacturing the same
CN109004030B (en) Groove type MOS device structure and manufacturing method thereof