TWI454031B - Three-port single-phase single-stage micro-inverter and operation method thereof - Google Patents

Three-port single-phase single-stage micro-inverter and operation method thereof Download PDF

Info

Publication number
TWI454031B
TWI454031B TW101119992A TW101119992A TWI454031B TW I454031 B TWI454031 B TW I454031B TW 101119992 A TW101119992 A TW 101119992A TW 101119992 A TW101119992 A TW 101119992A TW I454031 B TWI454031 B TW I454031B
Authority
TW
Taiwan
Prior art keywords
switch
power
input
control signal
output
Prior art date
Application number
TW101119992A
Other languages
Chinese (zh)
Other versions
TW201351856A (en
Inventor
Yaow Ming Chen
Chien Yao Liao
Cheng Yen Chou
Li Hsiang
Hsiao Chih Ku
Original Assignee
Darfon Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darfon Electronics Corp filed Critical Darfon Electronics Corp
Priority to TW101119992A priority Critical patent/TWI454031B/en
Priority to CN201210276973.9A priority patent/CN102820803B/en
Publication of TW201351856A publication Critical patent/TW201351856A/en
Application granted granted Critical
Publication of TWI454031B publication Critical patent/TWI454031B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

三埠單相單極微換流器及其操作方法Three-phase single-phase single-pole micro-converter and operation method thereof

本發明是有關於一種三埠單相單極微換流器及其操作方法,尤指一種具有較小體積、較長壽命及較高可靠度等優點的三埠單相單極微換流器及其操作方法。The invention relates to a three-turn single-phase single-pole micro-converter and an operation method thereof, in particular to a three-turn single-phase single-pole micro-converter having the advantages of small volume, long life and high reliability, and the like Method of operation.

一般而言,微換流器的輸入埠必須具有最大功率追蹤(maximum power point tracking,MPPT)的功能以汲取太陽能板的最大功率(maximum power point,MPP)。微換流器的輸入埠將太陽能板能量吸收後,微換流器的調變埠會輸出全波整流的弦波電流。然後,低頻切換的換相器轉換全波整流的弦波電流成為交流電流,並傳送至市電。在先前技術中,微換流器是利用一高容值電解電容以平衡太陽能板的輸入功率及換相器的輸出功率。亦即當太陽能板的輸入功率大於換相器的輸出功率時,高容值電解電容吸收太陽能板的輸入功率和換相器的輸出功率的差值;當太陽能板的輸入功率小於換相器的輸出功率時,高容值電解電容透過換相器釋出差值至市電。但是高容值電解電容具有較大體積、較短壽命及較低可靠度等缺點。In general, the input port of the micro-converter must have the function of maximum power point tracking (MPPT) to capture the maximum power point (MPP) of the solar panel. After the input of the micro-converter absorbs the energy of the solar panel, the modulation of the micro-converter outputs a full-wave rectified sine wave current. Then, the low frequency switching phase converter converts the full wave rectified sine wave current into an alternating current and transmits it to the mains. In the prior art, the micro-converter utilizes a high-capacity electrolytic capacitor to balance the input power of the solar panel and the output power of the inverter. That is, when the input power of the solar panel is greater than the output power of the inverter, the high-capacity electrolytic capacitor absorbs the difference between the input power of the solar panel and the output power of the inverter; when the input power of the solar panel is less than that of the inverter When the power is output, the high-capacity electrolytic capacitor releases the difference to the mains through the commutator. However, high-capacity electrolytic capacitors have disadvantages such as large volume, short life, and low reliability.

本發明的一實施例提供一種三埠單相單極微換流器。該三埠單相單極微換流器包含一輸入埠、一調變埠、一換相器及一主動功率 解耦電路(Active Power Decoupling Circuit,APDC)。該輸入埠是用以耦接於一直流電源,並接收及傳遞該直流電源的輸入功率;該調變埠是用以磁耦合該輸入埠,並根據該輸入功率,產生並輸出一全波整流的弦波電流;該換相器是耦接於該調變埠,用以根據一開關控制訊號和一反相開關控制訊號,轉換該弦波電流成為一交流電流,並輸出該交流電流至一市電,其中該開關控制訊號和該反相開關控制訊號的頻率和該市電的頻率相同;當該輸入功率大於該換相器所輸出的輸出功率時,該調變埠根據一第一脈衝寬度調變控制訊號,輸出該全波整流的弦波電流至該換相器,以及該主動功率解耦電路埠根據一第二脈衝寬度調變控制訊號,儲存該輸入功率與該輸出功率的差值;當該輸入功率小於該輸出功率時,該調變埠根據該第一脈衝寬度調變控制訊號,輸出該弦波電流至該換相器,以及該主動功率解耦電路埠根據一第三脈衝寬度調變控制訊號,透過該調變埠輸出該差值至該換相器。An embodiment of the invention provides a three-turn single-phase single-pole micro-converter. The three-phase single-phase single-pole micro-converter includes an input 埠, a modulation 埠, a phase changer and an active power Decoupling Circuit (APDC). The input port is configured to be coupled to the DC power source and receive and transmit the input power of the DC power source; the modulation port is configured to magnetically couple the input port, and generate and output a full-wave rectification according to the input power The sinusoidal current is coupled to the modulating 埠 for converting a sinusoidal current into an alternating current according to a switching control signal and an inverting switching control signal, and outputting the alternating current to a Mains, wherein the switch control signal and the reverse switch control signal have the same frequency as the mains; when the input power is greater than the output power output by the inverter, the modulation is adjusted according to a first pulse width Changing the control signal, outputting the full-wave rectified sine wave current to the inverter, and the active power decoupling circuit modulating the control signal according to a second pulse width, and storing the difference between the input power and the output power; When the input power is less than the output power, the modulation 调 modulates the control signal according to the first pulse width, outputs the sine wave current to the inverter, and the active power decoupling circuit 埠According to a third pulse width modulation control signal, an output port through the modulation of the phase difference to the transducer.

本發明的另一實施例提供一種三埠單相單極微換流器的操作方法,該三埠單相單極微換流器包含一輸入埠、一調變埠、一換相相器及一主動功率解耦電路。該操作方法包含該輸入埠接收及傳遞一直流電源的輸入功率;該調變埠根據一第一脈衝寬度調變控制訊號,及該主動功率解耦電路埠根據一第二脈衝寬度調變控制訊號或一第三脈衝寬度調變控制訊號,執行相對應的動作。Another embodiment of the present invention provides a method for operating a three-turn single-phase single-pole micro-converter including an input 埠, a modulation 埠, a phase change phase converter, and an active Power decoupling circuit. The operation method includes the input 埠 receiving and transmitting the input power of the DC power source; the modulation 调 modulating the control signal according to a first pulse width, and the active power decoupling circuit modulating the control signal according to a second pulse width Or a third pulse width modulation control signal to perform the corresponding action.

本發明提供一種三埠單相單極微換流器及其操作方法。該三埠 單相單極微換流器及該操作方法是利用一調變埠根據一第一脈衝寬度調變控制訊號,和一主動功率解耦電路根據一第二脈衝寬度調變控制訊號或依第三脈衝寬度調變控制訊號,執行相對應的動作。如此,當一輸入功率大於一輸出功率時,該三埠單相單極微換流器可儲存該輸入功率和該輸出功率的差值;當該輸入功率小於該輸出功率時,該三埠單相單極微換流器可釋放該輸入功率和該輸出功率的差值至一市電。相較於先前技術,此主動功率解耦合電路可取代高容值、體積大的電解電容。因此,本發明具有較小體積、較長壽命及較高可靠度等優點。The invention provides a three-turn single-phase single-pole micro-converter and an operation method thereof. The three The single-phase single-pole micro-converter and the operation method use a modulation modulating signal according to a first pulse width modulation, and an active power decoupling circuit modulating the control signal according to a second pulse width or the third pulse The width modulation control signal performs the corresponding action. Thus, when an input power is greater than an output power, the three-phase single-phase single-pole micro-converter can store a difference between the input power and the output power; when the input power is less than the output power, the three-phase single-phase The monopolar micro-converter can release the difference between the input power and the output power to a mains. Compared with the prior art, this active power decoupling circuit can replace the high capacitance and bulk electrolytic capacitor. Therefore, the present invention has advantages of a small volume, a long life, and a high reliability.

請參照第1圖,第1圖是為本發明的一實施例說明一種三埠單相單極微換流器100的示意圖。三埠單相單極微換流器100包含一輸入埠102、一調變埠104、一換相器106及一主動功率解耦電路(Active Power Decoupling Circuit,APDC)108。輸入埠102是用以耦接於一直流電源110,並接收及傳遞直流電源110的輸入功率PDC,其中直流電源是可為一太陽能板,且輸入埠102具有一最大功率追蹤(maximum power point tracking)的功能。但本發明並不受限於直流電源是可為太陽能板。調變埠104是用以磁耦合輸入埠102,並根據直流電源110的輸入功率PDC,產生並輸出一全波整流的弦波電流。換相器106是耦接於調變埠104,用以根據一開關控制訊號SCS和一反相開關控制訊號,轉換該弦波電流成為一交流電流IAC,並輸出交流電流IAC至一市電AC,其中開關控制訊號SCS和反相 開關控制訊號的頻率和市電AC的頻率相同;當直流電源110的輸入功率PDC大於換相器106所輸出的輸出功率PAC時,調變埠104根據一第一脈衝寬度調變控制訊號FPWM,輸出全波整流的弦波電流至換相器106,以及主動功率解耦電路108根據一第二脈衝寬度調變控制訊號SPWM,儲存直流電源110的輸入功率PDC與換相器106輸出的輸出功率PAC的差值;當直流電源110的輸入功率PDC小於換相器106所輸出的輸出功率PAC時,調變埠104根據第一脈衝寬度調變控制訊號FPWM,輸出弦波電流至換相器106,以及主動功率解耦電路108根據一第三脈衝寬度調變控制訊號TPWM,透過調變埠104輸出直流電源110的輸入功率PDC與換相器106輸出的輸出功率PAC的差值至換相器106。Please refer to FIG. 1. FIG. 1 is a schematic diagram showing a three-turn single-phase single-pole micro-converter 100 according to an embodiment of the present invention. The three-phase single-phase monopole micro-converter 100 includes an input port 102, a modulation block 104, a phase changer 106, and an active power decoupling circuit (APDC) 108. The input port 102 is configured to be coupled to the DC power source 110 and receive and transmit the input power PDC of the DC power source 110. The DC power source is a solar panel, and the input port 102 has a maximum power point tracking (maximum power point tracking). ) function. However, the present invention is not limited to a DC power source which is a solar panel. The modulation 埠 104 is for magnetically coupling the input 埠 102 and generates and outputs a full-wave rectified sine wave current according to the input power PDC of the DC power supply 110. The inverter 106 is coupled to the modulation buffer 104 for controlling signals according to a switch control signal SCS and an inversion switch Converting the sinusoidal current into an alternating current IAC and outputting an alternating current IAC to a mains AC, wherein the switch control signal SCS and the inverting switch control signal The frequency is the same as the frequency of the commercial AC; when the input power PDC of the DC power supply 110 is greater than the output power PAC output by the inverter 106, the modulation 埠 104 outputs a full-wave rectification according to a first pulse width modulation control signal FPWM. The sine wave current to the commutator 106, and the active power decoupling circuit 108 stores the difference between the input power PDC of the DC power source 110 and the output power PAC output by the inverter 106 according to a second pulse width modulation control signal SPWM. When the input power PDC of the DC power source 110 is less than the output power PAC output by the inverter 106, the modulation buffer 104 outputs the sine wave current to the inverter 106 according to the first pulse width modulation control signal FPWM, and the active power. The decoupling circuit 108 outputs the difference between the input power PDC of the DC power source 110 and the output power PAC output by the inverter 106 to the inverter 106 via the modulation 埠 104 according to a third pulse width modulation control signal TPWM.

如第1圖所示,輸入埠102包含一第一線圈1022、一激磁電感1024及一第一開關1026。第一線圈1022具有一第一端,耦接於直流電源110的第一端,及一第二端,其中直流電源110的第二端是耦接於一地端GND;激磁電感1024具有一第一端,耦接於直流電源110的第一端,及一第二端,耦接於第一線圈1022的第二端;第一開關1026具有一第一端,耦接於第一線圈1022的第二端,一第二端,用以接收一控制訊號CS,及一第三端,耦接於地端GND。As shown in FIG. 1, the input port 102 includes a first coil 1022, a magnetizing inductance 1024, and a first switch 1026. The first coil 1022 has a first end coupled to the first end of the DC power supply 110, and a second end, wherein the second end of the DC power supply 110 is coupled to a ground GND; the magnetizing inductance 1024 has a first One end is coupled to the first end of the DC power source 110, and the second end is coupled to the second end of the first coil 1022. The first switch 1026 has a first end coupled to the first coil 1022. The second end is configured to receive a control signal CS and a third end coupled to the ground GND.

如第1圖所示,調變埠104包含一第二線圈1042、一第二開關1044、一第一二極體1046、一第二二極體1048及一第一電感1050。第二線圈1042具有一第一端,及一第二端,耦接於地端GND;第 二開關1044具有一第一端,耦接於第二線圈1042的第一端,一第二端,用以接收第一脈衝寬度調變控制訊號FPWM,及一第三端;第一二極體1046具有一第一端,耦接於第二開關1044的第三端,及一第二端;第二二極體1048具有一第一端,耦接於地端GND,及一第二端,耦接於第一二極體1046的第二端;第一電感1050具有一第一端,耦接於第一二極體1046的第二端,及一第二端。As shown in FIG. 1 , the modulation transistor 104 includes a second coil 1042 , a second switch 1044 , a first diode 1046 , a second diode 1048 , and a first inductor 1050 . The second coil 1042 has a first end and a second end coupled to the ground GND; The second switch 1044 has a first end coupled to the first end of the second coil 1042, a second end for receiving the first pulse width modulation control signal FPWM, and a third end; the first diode 1046 has a first end coupled to the third end of the second switch 1044, and a second end; the second diode 1048 has a first end coupled to the ground end GND, and a second end, The second inductor is coupled to the second end of the first diode 1046. The first inductor 1050 has a first end coupled to the second end of the first diode 1046 and a second end.

如第1圖所示,主動功率解耦電路108包含一第三線圈1082、一第三開關1084、一第三二極體1086、一第二電感1088、一第四二極體1090、一第一電容1092、一第五二極體1094及一第四開關1096。第三線圈1082具有一第一端,及一第二端,耦接於第一二極體1046的第二端;第三開關1084具有一第一端,耦接於第三線圈1082的第一端,一第二端,用以接收第二脈衝寬度調變控制訊號SPWM,及一第三端;第三二極體1086具有一第一端,耦接於第三開關1084的第三端,及一第二端;第二電感1088具有一第一端,耦接於第三二極體1086的第二端,及一第二端,耦接於第三線圈1082的第二端;第四二極體1090具有一第一端,及一第二端,耦接於第三二極體1086的第二端;第一電容1092具有一第一端,耦接於第二電感1088的第二端,及一第二端,耦接於第四二極體1090的第一端;第五二極體1094具有一第一端,耦接於第四二極體1090的第一端,及一第二端,耦接於第三線圈1082的第一端;第四開關1096具有一第一端,耦接於第五二極體1094的第一端,一第二端,用以接收第三脈衝寬度調變控制訊號TPWM,及一第三端,耦接於 地端GND。As shown in FIG. 1 , the active power decoupling circuit 108 includes a third coil 1082 , a third switch 1084 , a third diode 1086 , a second inductor 1088 , a fourth diode 1090 , and a first A capacitor 1092, a fifth diode 1094 and a fourth switch 1096. The third coil 1082 has a first end, and a second end coupled to the second end of the first diode 1046. The third switch 1084 has a first end coupled to the first end of the third coil 1082. The second end is configured to receive the second pulse width modulation control signal SPWM, and a third end; the third diode 1086 has a first end coupled to the third end of the third switch 1084. And a second end; the second inductor 1088 has a first end coupled to the second end of the third diode 1086, and a second end coupled to the second end of the third coil 1082; The diode 1090 has a first end and a second end coupled to the second end of the third diode 1086. The first capacitor 1092 has a first end coupled to the second inductor 1088. And a second end coupled to the first end of the fourth diode 1090; the fifth diode 1094 has a first end coupled to the first end of the fourth diode 1090, and a first end The second end is coupled to the first end of the third coil 1082. The fourth switch 1096 has a first end coupled to the first end of the fifth diode 1094 and a second end for receiving the third end. pulse TPWM of the modulation control signal, and a third terminal coupled to the Ground GND.

如第1圖所示,換相器106包含一第二電容1062、一第五開關1064、一第六開關1066、一第七開關1068、一第八開關1070及一第三電感1072。第二電容1062具有一第一端,耦接於第一電感1050的第二端,及一第二端,耦接於地端GND;第五開關1064具有一第一端,耦接於第二電容1062的第一端,一第二端,用以接收開關控制訊號SCS,及一第三端;第六開關1066具有一第一端,耦接於第二電容1062的第一端,一第二端,用以接收反相開關控制訊號,及一第三端,耦接於市電AC的第二端;第七開關1068具有一第一端,耦接於第五開關1064的第三端,一第二端,用以接收反相開關控制訊號,及一第三端,耦接於地端GND;第八開關1070具有一第一端,耦接於第六開關1066的第三端,一第二端,用以接收開關控制訊號SCS,及一第三端,耦接於地端GND;第三電感1072具有一第一端,耦接於第五開關1064的第三端,及一第二端,耦接於市電AC的第一端。因為開關控制訊號SCS和反相開關控制訊號的頻率和市電AC的頻率相同,所以當市電AC是為一正半週期時,第五開關1064和第八開關1070開啟,以及第六開關1066和第七開關1068關閉;當市電AC是為一負半週期時,第五開關1064和第八開關1070關閉,以及第六開關1066和第七開關1068開啟。另外,第三電感1072可濾掉第一電感1050上的高頻電流成分。As shown in FIG. 1 , the inverter 106 includes a second capacitor 1062 , a fifth switch 1064 , a sixth switch 1066 , a seventh switch 1068 , an eighth switch 1070 , and a third inductor 1072 . The second capacitor 1062 has a first end coupled to the second end of the first inductor 1050, and a second end coupled to the ground end GND. The fifth switch 1064 has a first end coupled to the second end. a first end of the capacitor 1062, a second end for receiving the switch control signal SCS, and a third end; the sixth switch 1066 has a first end coupled to the first end of the second capacitor 1062, a first Two ends for receiving the inverting switch control signal And a third end coupled to the second end of the mains AC; the seventh switch 1068 has a first end coupled to the third end of the fifth switch 1064, and a second end for receiving the inverting switch Control signal And a third end coupled to the ground GND; the eighth switch 1070 has a first end coupled to the third end of the sixth switch 1066, and a second end for receiving the switch control signal SCS, and A third end is coupled to the ground end GND. The third inductor 1072 has a first end coupled to the third end of the fifth switch 1064, and a second end coupled to the first end of the mains AC. Because the switch control signal SCS and the inverting switch control signal The frequency is the same as the frequency of the mains AC, so when the mains AC is a positive half cycle, the fifth switch 1064 and the eighth switch 1070 are turned on, and the sixth switch 1066 and the seventh switch 1068 are turned off; when the commercial AC is one During the negative half cycle, the fifth switch 1064 and the eighth switch 1070 are turned off, and the sixth switch 1066 and the seventh switch 1068 are turned on. In addition, the third inductor 1072 can filter out the high frequency current component on the first inductor 1050.

另外,如第1圖所示,三埠單相單極微換流器100另包含一穩壓電容112。穩壓電容112具有一第一端,耦接於直流電源110的第一端,及一第二端,耦接於直流電源110的第二端,其中穩壓電容112是用以穩定直流電源110所提供的一直流電壓VDC。In addition, as shown in FIG. 1, the three-turn single-phase single-pole micro-converter 100 further includes a voltage stabilizing capacitor 112. The voltage stabilizing capacitor 112 has a first end coupled to the first end of the DC power source 110 and a second end coupled to the second end of the DC power source 110. The Zener capacitor 112 is used to stabilize the DC power source 110. The supplied current voltage VDC.

如第1圖所示,第二線圈1042的感應方向和第三線圈1082的感應方向是和第一線圈1022的感應方向相同。另外,直流電源110的輸入功率PDC是等於直流電壓VDC與直流電源110所提供的一直流電流IDC的乘積,以及換相器106輸出的輸出功率PAC是等於交流電流IAC與市電AC的交流電壓VAC的乘積。As shown in FIG. 1, the sensing direction of the second coil 1042 and the sensing direction of the third coil 1082 are the same as the sensing direction of the first coil 1022. In addition, the input power PDC of the DC power source 110 is equal to the product of the DC voltage VDC and the DC current IDC provided by the DC power source 110, and the output power PAC output by the inverter 106 is equal to the AC current of the AC current IAC and the AC AC. The product of.

請參照第2圖至第9圖,第2圖是為說明輸入功率PDC、輸出功率PAC、交流電流IAC與交流電壓VAC的示意圖,第3圖至第6圖是為說明三埠單相單極微換流器100在狀態I的示意圖,以及第7圖至第9圖是為說明三埠單相單極微換流器100在狀態II的示意圖。如第2圖所示,狀態I是輸入功率PDC大於輸出功率PAC,以及狀態II是輸入功率PDC小於輸出功率PAC。基本上三埠單相單極微換流器100可操作在固定切換頻率,且可操作在電流不連續導通模式(discrete current mode,DCM)及電流連續導通模式(continuous current mode,CCM),其中第3圖至第9圖是以電流不連續導通模式做說明。Please refer to FIG. 2 to FIG. 9 . FIG. 2 is a schematic diagram for explaining input power PDC, output power PAC, alternating current IAC and alternating voltage VAC, and FIGS. 3 to 6 are diagrams illustrating three-phase single-phase monopole micro A schematic diagram of converter 100 in state I, and FIGS. 7-9 are schematic diagrams illustrating state III of three-turn single-phase monopole micro-converter 100. As shown in FIG. 2, state I is that input power PDC is greater than output power PAC, and state II is that input power PDC is less than output power PAC. Basically, the three-phase single-phase single-pole micro-converter 100 can operate at a fixed switching frequency, and can operate in a current discontinuous conduction mode (DCM) and a continuous continuous current mode (CCM), wherein 3 to 9 are illustrated by the current discontinuous conduction mode.

在狀態I中,輸入功率PDC可分為A區功率和C區功率,其中 C區功率是等於輸出功率PAC,而A區功率是為輸入功率PDC與輸出功率PAC的差值。因此,C區功率是通過第一開關1026、第二開關1044、第一二極體1046、第二二極體1048、第一電感1050、第二電容1062及換相器106傳送至市電AC。而A區功率則通過第三開關1084、第三二極體1086及第二電感1088儲存至第一電容1092。另外,在狀態I中,儲存至激磁電感1024的能量可以通過第五二極體1094回收至第一電容1092,避免第一線圈1022飽和。在狀態I中,因為輸入功率PDC大於輸出功率PAC,所以第四開關1096總是關閉,亦即主動功率解耦電路108是用以儲存輸入功率PDC與輸出功率PAC的差值(A區功率)。In state I, the input power PDC can be divided into A zone power and C zone power, where The power in the C zone is equal to the output power PAC, and the power in the A zone is the difference between the input power PDC and the output power PAC. Therefore, the C-zone power is transmitted to the mains AC through the first switch 1026, the second switch 1044, the first diode 1046, the second diode 1048, the first inductor 1050, the second capacitor 1062, and the inverter 106. The power of the A region is stored to the first capacitor 1092 through the third switch 1084, the third diode 1086, and the second inductor 1088. In addition, in state I, the energy stored to the magnetizing inductance 1024 can be recovered to the first capacitor 1092 through the fifth diode 1094 to avoid saturation of the first coil 1022. In state I, since the input power PDC is greater than the output power PAC, the fourth switch 1096 is always off, that is, the active power decoupling circuit 108 is used to store the difference between the input power PDC and the output power PAC (A-zone power). .

另外,第一脈衝寬度調變控制訊號FPWM、第二脈衝寬度調變控制訊號SPWM和第三脈衝寬度調變控制訊號TPWM是為頻率相同的高頻調變訊號(例如20KHz的調變訊號)。在狀態I中,三埠單相單極微換流器100在上述脈衝寬度調變控制訊號的一個切換週期裡可分成三個操作模式(模式I1、模式I2和模式I3),分別如第3圖至第6圖所示。In addition, the first pulse width modulation control signal FPWM, the second pulse width modulation control signal SPWM, and the third pulse width modulation control signal TPWM are high frequency modulation signals of the same frequency (for example, a 20 KHz modulation signal). In state I, the three-turn single-phase single-pole micro-converter 100 can be divided into three operation modes (mode I1, mode I2, and mode I3) in one switching cycle of the pulse width modulation control signal, respectively, as shown in FIG. As shown in Figure 6.

如第2圖和第3圖所示,在模式I1中,第二開關1044及第三開關1084同時開啟(ON),其中第二開關1044的開啟時間是由輸出功率PAC控制第一脈衝寬度調變控制訊號FPWM所決定(亦即第二開關1044的工作周期(duty cycle)是由輸出功率PAC決定),並將對應於C區功率的能量儲存至第一電感1050。另外,為了維持直流電 源110輸出最大功率,主動功率解耦電路108的第三開關1084的開啟時間是由輸入埠102的最大功率追蹤控制第二脈衝寬度調變控制訊號SPWM所決定(亦即第三開關1084的的工作周期是由輸入埠102的最大功率追蹤決定),並將對應於A區功率的能量儲存至第二電感1088。另外,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行一或(OR)邏輯運算所決定,且當第一開關1026開啟時,激磁電感1024亦會儲存輸入功率PDC的部分。As shown in FIG. 2 and FIG. 3, in mode I1, the second switch 1044 and the third switch 1084 are simultaneously turned on (ON), wherein the turn-on time of the second switch 1044 is controlled by the output power PAC to control the first pulse width. The variable control signal FPWM is determined (that is, the duty cycle of the second switch 1044 is determined by the output power PAC), and the energy corresponding to the power of the C zone is stored to the first inductor 1050. In addition, in order to maintain DC The source 110 outputs the maximum power, and the turn-on time of the third switch 1084 of the active power decoupling circuit 108 is determined by the maximum power tracking control of the input port 102 to control the second pulse width modulation control signal SPWM (ie, the third switch 1084). The duty cycle is determined by the maximum power tracking of the input port 102) and the energy corresponding to the power of the zone A is stored to the second inductor 1088. In addition, the turn-on time of the first switch 1026 is determined by an OR operation of the second switch 1044 and the turn-on time of the third switch 1084, and when the first switch 1026 is turned on, the magnetizing inductance 1024 is also The portion of the input power PDC is stored.

模式I2可分成二種子模式(子模式I2A和子模式I2B)。如第2圖和第4圖所示,在子模式I2A中,當上述脈衝寬度調變訊號的切換週期靠近交流電壓VAC的零交越點時,輸出功率PAC較低,所以第二開關1044關閉和第三開關1084開啟。此時,第一電感1050上所儲存的能量通過換相器106輸出至市電AC。因為第三開關1084開啟,所以對應於A區功率的能量繼續儲存至第二電感1088。和模式I1相同,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。Mode I2 can be divided into two seed modes (sub mode I2A and sub mode I2B). As shown in FIGS. 2 and 4, in the sub-mode I2A, when the switching period of the pulse width modulation signal is close to the zero crossing point of the AC voltage VAC, the output power PAC is low, so the second switch 1044 is turned off. And the third switch 1084 is turned on. At this time, the energy stored on the first inductor 1050 is output to the commercial AC through the inverter 106. Because the third switch 1084 is on, energy corresponding to the power of zone A continues to be stored to the second inductor 1088. Like mode I1, the turn-on time of first switch 1026 is determined by the turn-on time of second switch 1044 and the turn-on time or logic operation of third switch 1084.

如第2圖和第5圖所示,在子模式I2B中,當上述脈衝寬度調變訊號的切換週期靠近交流電壓VAC有效值(第2圖中的E點)時,輸出功率PAC較高,所以第二開關1044開啟和第三開關1084關閉。此時,第二電感1088上所儲存的能量通過第四二極體1090儲存至第一電容1092。和模式I1相同,第一開關1026的開啟時間是 由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。As shown in FIGS. 2 and 5, in the sub-mode I2B, when the switching period of the pulse width modulation signal is close to the effective value of the AC voltage VAC (point E in FIG. 2), the output power PAC is high. Therefore, the second switch 1044 is turned on and the third switch 1084 is turned off. At this time, the energy stored on the second inductor 1088 is stored to the first capacitor 1092 through the fourth diode 1090. Same as mode I1, the opening time of the first switch 1026 is It is determined by the on time of the second switch 1044 and the on time of the third switch 1084 or a logical operation.

如第2圖和第6圖所示,在模式I3中,第二開關1044及第三開關1084同時關閉,以及第一開關1026亦關閉。因為第二開關1044及第三開關1084同時關閉,所以第二電感1088上所儲存的能量通過第四二極體1090儲存至第一電容1092,以及第一電感1050所儲存的能量釋放至市電AC。另外,因為第一開關1026關閉,所以激磁電感1024所儲存的能量可通過第五二極體1094儲存至第一電容1092。和模式I1相同,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。As shown in FIGS. 2 and 6, in mode I3, the second switch 1044 and the third switch 1084 are simultaneously turned off, and the first switch 1026 is also turned off. Because the second switch 1044 and the third switch 1084 are simultaneously turned off, the energy stored on the second inductor 1088 is stored to the first capacitor 1092 through the fourth diode 1090, and the energy stored in the first inductor 1050 is released to the commercial AC. . In addition, because the first switch 1026 is turned off, the energy stored by the magnetizing inductance 1024 can be stored to the first capacitor 1092 through the fifth diode 1094. Like mode I1, the turn-on time of first switch 1026 is determined by the turn-on time of second switch 1044 and the turn-on time or logic operation of third switch 1084.

在狀態II中,輸出功率PAC可分為B區功率和D區功率,其中D區功率是等於輸入功率PDC,而B區功率是為輸出功率PAC與輸入功率PDC的差值。因此,在狀態II中,D區功率(亦即直流電源110的最大功率)通過第一開關1026、第二開關1044、第一二極體1046、第二二極體1048電感、第一電感1050、第二電容1062及換相器106傳送至市電AC,且B區功率是從狀態I儲存在第一電容1092的能量,通過第四開關1096、第二二極體1048和第一電感1050所提供。在狀態II中,因為輸出功率PAC大於輸入功率PDC,所以第三開關1084總是關閉以及第二開關1044總是開啟,亦即在狀態II中,主動功率解耦電路108是用以釋放在狀態I所儲存的輸入功率PDC與輸出功率PAC的差值(A區功率)。另外,在狀 態II中,儲存至激磁電感1024的能量亦可通過第五二極體1094回收至第一電容1092。在狀態II中,三埠單相單極微換流器100在上述脈衝寬度調變控制訊號的一個切換週期裡亦可分成三個操作模式(模式II1、模式II2和模式II3),分別如第7圖至第9圖所示。In state II, the output power PAC can be divided into B-zone power and D-zone power, wherein the D-zone power is equal to the input power PDC, and the B-zone power is the difference between the output power PAC and the input power PDC. Therefore, in state II, the power of the D zone (ie, the maximum power of the DC power source 110) passes through the first switch 1026, the second switch 1044, the first diode 1046, the second diode 1048, and the first inductor 1050. The second capacitor 1062 and the phase changer 106 are transmitted to the mains AC, and the power of the B zone is the energy stored in the first capacitor 1092 from the state I, through the fourth switch 1096, the second diode 1048 and the first inductor 1050. provide. In state II, because the output power PAC is greater than the input power PDC, the third switch 1084 is always off and the second switch 1044 is always on, that is, in state II, the active power decoupling circuit 108 is used to release the state. The difference between the input power PDC and the output power PAC stored in I (A-zone power). In addition, in the shape In state II, the energy stored in the magnetizing inductance 1024 can also be recovered to the first capacitor 1092 through the fifth diode 1094. In state II, the three-turn single-phase monopole micro-converter 100 can also be divided into three operation modes (mode II1, mode II2, and mode II3) in one switching cycle of the pulse width modulation control signal, respectively, as in the seventh Figure to Figure 9.

如第2圖和第7圖所示,在模式II1中,第一開關1026開啟,且第一開關1026的開啟時間是由輸入埠102的最大功率追蹤所決定。因為第一開關1026開啟,所以對應於輸入功率PDC的能量被儲存至第一電感1050。As shown in FIGS. 2 and 7, in mode II1, the first switch 1026 is turned on, and the turn-on time of the first switch 1026 is determined by the maximum power tracking of the input port 102. Because the first switch 1026 is turned on, energy corresponding to the input power PDC is stored to the first inductor 1050.

如第2圖和第8圖所示,在模式II2中,當第一開關1026關閉後,由於換相器106還需要輸出輸出功率PAC(亦即B區功率)至市電AC,所以B區功率將由第一電容1092在狀態I所儲存的能量通過第四開關1096提供,並儲存B區功率至第一電感1050。而激磁電感1024所儲存的能量透過第五二極體1094儲存至第一電容1092。第四開關1096的開啟時間是藉由輸入功率PDC與輸出功率PAC的差值(亦即B區功率)控制第三脈衝寬度調變控制訊號TPWM所決定。As shown in FIG. 2 and FIG. 8, in mode II2, after the first switch 1026 is turned off, since the inverter 106 also needs to output the output power PAC (that is, the power in the B zone) to the commercial AC, the power in the B zone is The energy stored by the first capacitor 1092 in state I is provided through the fourth switch 1096 and stores the B-zone power to the first inductor 1050. The energy stored by the magnetizing inductance 1024 is stored to the first capacitor 1092 through the fifth diode 1094. The turn-on time of the fourth switch 1096 is determined by controlling the third pulse width modulation control signal TPWM by the difference between the input power PDC and the output power PAC (ie, the power of the B zone).

如第2圖和第9圖所示,在模式II3中,當第一開關1026和第四開關1096皆關閉時,第一電感1050所儲存的能量被輸出至換相器106,以及激磁電感1024所儲存的能量透過第五二極體1094儲存至第一電容1092。As shown in FIGS. 2 and 9, in mode II3, when both the first switch 1026 and the fourth switch 1096 are turned off, the energy stored by the first inductor 1050 is output to the inverter 106, and the magnetizing inductance 1024. The stored energy is stored through the fifth diode 1094 to the first capacitor 1092.

請參照第1圖、第2圖、第3圖、第4圖、第5圖、第6圖、第7圖、第8圖、第9圖和第10圖,第10圖係為本發明的另一實施例說明一種三埠單相單極微換流器的操作方法之流程圖。第10圖之方法係利用第1圖的三埠單相單極微換流器100說明,詳細步驟如下:步驟1000:開始;步驟1002:輸入埠102接收及傳遞直流電源110的輸入功率PDC;步驟1004:輸入功率PDC是否大於換相器106所輸出的輸出功率PAC;如果是,進行步驟1006;如果否,進行步驟1016;步驟1006:從輸入埠102輸入的能量被儲存至調變埠104與主動功率解耦電路108;步驟1008:脈衝寬度調變訊號的切換週期是否靠近交流電壓VAC的零交越點;如果是,進行步驟1010;如果否,進行步驟1012;步驟1010:調變埠104所儲存的能量被輸出至換相器106,以及從輸入埠102輸入的能量被儲存至主動功率解耦電路108,跳至步驟1014;步驟1012:從輸入埠102輸入的能量被儲存至調變埠104,進行步驟1014; 步驟1014:調變埠104所儲存的能量被輸出至換相器106,以及輸入埠102的激磁電感1024所儲存的能量儲存至主動功率解耦電路108,跳回步驟1004;步驟1016:從輸入埠102輸入的能量被儲存至調變埠104;步驟1018:主動功率解耦電路108所儲存的能量被輸出至換相器106,以及被儲存至調變埠104;步驟1020:調變埠104所儲存的能量被輸出至換相器106,以及輸入埠102的激磁電感1024所儲存的能量儲存至主動功率解耦電路108,跳回步驟1004。1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , and 10 , Another embodiment illustrates a flow chart of a method of operation of a three-turn single phase single pole micro-converter. The method of FIG. 10 is illustrated by the three-turn single-phase single-pole micro-converter 100 of FIG. 1. The detailed steps are as follows: Step 1000: Start; Step 1002: Input 埠102 receives and transmits the input power PDC of the DC power source 110; 1004: whether the input power PDC is greater than the output power PAC output by the inverter 106; if yes, proceed to step 1006; if not, proceed to step 1016; step 1006: the energy input from the input port 102 is stored to the modulation buffer 104 and Active power decoupling circuit 108; Step 1008: Whether the switching period of the pulse width modulation signal is close to the zero crossing point of the AC voltage VAC; if yes, proceed to step 1010; if not, proceed to step 1012; Step 1010: Modulation 104 The stored energy is output to the inverter 106, and the energy input from the input port 102 is stored to the active power decoupling circuit 108, and the process proceeds to step 1014; step 1012: the energy input from the input port 102 is stored to the modulation埠104, proceed to step 1014; Step 1014: The energy stored in the modulation buffer 104 is output to the inverter 106, and the energy stored in the excitation inductance 1024 of the input port 102 is stored in the active power decoupling circuit 108, and the process returns to step 1004; Step 1016: Slave input The energy input by the 埠 102 is stored to the modulation 埠 104; Step 1018: The energy stored by the active power decoupling circuit 108 is output to the inverter 106 and stored to the modulation 埠 104; Step 1020: Modulation 埠 104 The stored energy is output to the inverter 106, and the energy stored by the magnetizing inductance 1024 of the input port 102 is stored to the active power decoupling circuit 108, and the process returns to step 1004.

在步驟1002中,輸入埠102是用以接收及傳遞直流電源110的輸入功率PDC,其中直流電源是可為一太陽能板,且輸入埠102具有最大功率追蹤的功能。在步驟1006(模式I1)中,如第2圖和第3圖所示,當第一脈衝寬度調變控制訊號FPWM和第二脈衝寬度調變控制訊號SPWM致能(亦即第二開關1044及第三開關1084同時開啟)時,從輸入埠102輸入的能量(亦即輸入功率PDC)被儲存至調變埠104與主動功率解耦電路108,其中第一脈衝寬度調變控制訊號FPWM的致能時間是由輸出功率PAC所決定。因此,調變埠104可根據第一脈衝寬度調變控制訊號FPWM,輸出一全波整流的弦波電流至換相器106,以及主動功率解耦電路108根據第二脈衝寬度調變控制訊號SPWM,儲存輸入功率PDC與輸出功率PAC的差值(A區功率)。另外,為了維持直流電源110輸出最大功率,第二脈衝寬度調變控制訊號SPWM的致能時間是由輸入埠102的最大功率 追蹤所決定。另外,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行一或邏輯運算所決定,且當第一開關1026開啟時,激磁電感1024亦會儲存輸入功率PDC的部分。在步驟1010(子模式I2A)中,如第2圖和第4圖所示,當上述脈衝寬度調變訊號(FPWM、SPWM和TPWM)的切換週期靠近交流電壓VAC的零交越點時,輸出功率PAC較低,所以第一脈衝寬度調變控制訊號FPWM去能和第二脈衝寬度調變控制訊號SPWM致能(亦即第二開關1044關閉和第三開關1084開啟)。此時,調變埠104所儲存的能量(第一電感1050上所儲存的能量)通過全波整流的弦波電流輸出至換相器106;因為第三開關1084開啟,所以從輸入埠102輸入的能量繼續儲存至主動功率解耦電路108內的第二電感1088。另外,和模式I1相同,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。在步驟1012(子模式I2B)中,如第2圖和第5圖所示,當上述脈衝寬度調變訊號的切換週期靠近交流電壓VAC有效值(第2圖中的E點)時,輸出功率PAC較高,所以第一脈衝寬度調變控制訊號FPWM致能和第二脈衝寬度調變控制訊號SPWM去能(亦即第二開關1044開啟和第三開關1084關閉)。此時,第二電感1088上所儲存的能量通過第四二極體1090儲存至第一電容1092,以及從輸入埠102輸入的能量(亦即輸入功率PDC)被儲存至調變埠104內的第一電感1050。和模式I1相同,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。在步驟1014(子模式I3)中,如第2圖和第6圖所示, 當第一脈衝寬度調變控制訊號FPWM和第二脈衝寬度調變控制訊號SPWM去能(亦即第二開關1044和第三開關1084皆關閉),以及第一開關1026亦關閉時,因為第二開關1044及第三開關1084同時關閉,所以調變埠104(第一電感1050)所儲存的能量釋放至換相器106,以及第二電感1088上所儲存的能量通過第四二極體1090儲存至第一電容1092。另外,因為第一開關1026關閉,所以激磁電感1024所儲存的能量可通過第五二極體1094儲存至主動功率解耦電路108(第一電容1092)。和模式I1相同,第一開關1026的開啟時間是由第二開關1044的開啟時間和第三開關1084的開啟時間執行或邏輯運算所決定。在步驟1016(子模式II1)中,如第2圖和第7圖所示,當輸入埠102致能和第三脈衝寬度調變控制訊號TPWM去能(亦即第一開關1026開啟且第四開關1096關閉)時,對應於輸入功率PDC的能量被儲存至調變埠104內的第一電感1050,其中第一開關1026的開啟時間是由輸入埠102的最大功率追蹤所決定。在步驟1018(子模式II2)中,如第2圖和第8圖所示,當輸入埠102去能和第三脈衝寬度調變控制訊號TPWM致能(亦即第一開關1026關閉且第四開關1096開啟)後,由於換相器106還需要輸出輸出功率PAC(亦即B區功率)至市電AC,所以B區功率將由主動功率解耦電路108內的第一電容1092在狀態I所儲存的能量通過第四開關1096提供,並儲存B區功率至調變埠104內的第一電感1050,其中第四開關1096的開啟時間是藉由輸入功率PDC與輸出功率PAC的差值(亦即B區功率)控制第三脈衝寬度調變控制訊號TPWM所決定。在步驟1018(子模式II3)中,如第2圖和第9圖所示,當輸入埠102和 第三脈衝寬度調變控制訊號TPWM皆去能(亦即第一開關1026和第四開關1096皆關閉)時,調變埠104內的第一電感1050所儲存的能量被輸出至換相器106,以及激磁電感1024所儲存的能量透過第五二極體1094儲存至主動功率解耦電路108內的第一電容1092。In step 1002, the input port 102 is used to receive and transmit the input power PDC of the DC power source 110, wherein the DC power source is a solar panel, and the input port 102 has the function of maximum power tracking. In step 1006 (mode I1), as shown in FIGS. 2 and 3, when the first pulse width modulation control signal FPWM and the second pulse width modulation control signal SPWM are enabled (ie, the second switch 1044 and When the third switch 1084 is simultaneously turned on, the energy input from the input port 102 (ie, the input power PDC) is stored to the modulation buffer 104 and the active power decoupling circuit 108, wherein the first pulse width modulation control signal FPWM is generated. The energy time is determined by the output power PAC. Therefore, the modulation 埠 104 can output a full-wave rectified sine wave current to the commutator 106 according to the first pulse width modulation control signal FPWM, and the active power decoupling circuit 108 modulates the control signal SPWM according to the second pulse width. The difference between the input power PDC and the output power PAC (A-zone power) is stored. In addition, in order to maintain the maximum power output of the DC power source 110, the enable time of the second pulse width modulation control signal SPWM is the maximum power of the input port 102. Tracking is determined. In addition, the turn-on time of the first switch 1026 is determined by performing an OR logic operation by the turn-on time of the second switch 1044 and the turn-on time of the third switch 1084, and when the first switch 1026 is turned on, the magnetizing inductance 1024 also stores the input. Part of the power PDC. In step 1010 (sub-mode I2A), as shown in FIGS. 2 and 4, when the switching period of the pulse width modulation signals (FPWM, SPWM, and TPWM) is close to the zero crossing point of the alternating voltage VAC, the output is The power PAC is low, so the first pulse width modulation control signal FPWM is disabled and the second pulse width modulation control signal SPWM is enabled (ie, the second switch 1044 is turned off and the third switch 1084 is turned on). At this time, the energy stored in the modulation buffer 104 (the energy stored on the first inductor 1050) is output to the inverter 106 through the full-wave rectified sine wave current; since the third switch 1084 is turned on, it is input from the input port 102. The energy continues to be stored to the second inductor 1088 within the active power decoupling circuit 108. In addition, as with mode I1, the turn-on time of the first switch 1026 is determined by the turn-on time of the second switch 1044 and the turn-on time or logic operation of the third switch 1084. In step 1012 (sub-mode I2B), as shown in FIGS. 2 and 5, when the switching period of the pulse width modulation signal is close to the effective value of the AC voltage VAC (point E in FIG. 2), the output power The PAC is higher, so the first pulse width modulation control signal FPWM enable and the second pulse width modulation control signal SPWM are disabled (ie, the second switch 1044 is on and the third switch 1084 is off). At this time, the energy stored on the second inductor 1088 is stored to the first capacitor 1092 through the fourth diode 1090, and the energy input from the input port 102 (ie, the input power PDC) is stored into the modulation buffer 104. The first inductor 1050. Like mode I1, the turn-on time of first switch 1026 is determined by the turn-on time of second switch 1044 and the turn-on time or logic operation of third switch 1084. In step 1014 (sub-mode I3), as shown in FIGS. 2 and 6, When the first pulse width modulation control signal FPWM and the second pulse width modulation control signal SPWM are disabled (that is, both the second switch 1044 and the third switch 1084 are turned off), and the first switch 1026 is also turned off, because the second The switch 1044 and the third switch 1084 are simultaneously turned off, so the energy stored by the modulation 埠 104 (the first inductor 1050) is released to the inverter 106, and the energy stored on the second inductor 1088 is stored by the fourth diode 1090. To the first capacitor 1092. Additionally, because the first switch 1026 is off, the energy stored by the magnetizing inductance 1024 can be stored by the fifth diode 1094 to the active power decoupling circuit 108 (first capacitor 1092). Like mode I1, the turn-on time of first switch 1026 is determined by the turn-on time of second switch 1044 and the turn-on time or logic operation of third switch 1084. In step 1016 (sub-mode II1), as shown in FIGS. 2 and 7, the input 埠102 enable and the third pulse width modulation control signal TPWM are disabled (ie, the first switch 1026 is turned on and the fourth When switch 1096 is off, the energy corresponding to input power PDC is stored to first inductance 1050 within modulation 埠 104, wherein the on time of first switch 1026 is determined by the maximum power tracking of input 埠 102. In step 1018 (sub-mode II2), as shown in FIGS. 2 and 8, the input 埠 102 de-energize and the third pulse width modulation control signal TPWM are enabled (ie, the first switch 1026 is turned off and the fourth After the switch 1096 is turned on, since the inverter 106 also needs to output the output power PAC (ie, the power in the B zone) to the mains AC, the power in the B zone will be stored in the state I by the first capacitor 1092 in the active power decoupling circuit 108. The energy is supplied through the fourth switch 1096, and stores the power of the B region to the first inductor 1050 in the modulation buffer 104. The turn-on time of the fourth switch 1096 is the difference between the input power PDC and the output power PAC (ie, The power of the B zone is controlled by the third pulse width modulation control signal TPWM. In step 1018 (sub-mode II3), as shown in FIGS. 2 and 9, when input 埠102 and When the third pulse width modulation control signal TPWM is de-energized (that is, both the first switch 1026 and the fourth switch 1096 are turned off), the energy stored in the first inductor 1050 in the modulation buffer 104 is output to the inverter 106. And the energy stored by the magnetizing inductance 1024 is stored through the fifth diode 1094 to the first capacitor 1092 in the active power decoupling circuit 108.

綜上所述,本發明所提供的三埠單相單極微換流器及其操作方法是利用調變埠根據第一脈衝寬度調變控制訊號,和主動功率解耦電路根據第二脈衝寬度調變控制訊號或第三脈衝寬度調變控制訊號,執行相對應的動作。如此,當輸入功率大於輸出功率時,三埠單相單極微換流器可儲存輸入功率和輸出功率的差值;當輸入功率小於輸出功率時,三埠單相單極微換流器可釋放輸入功率和輸出功率的差值至市電。因此,相較於先前技術,本發明具有較小體積、較長壽命及較高可靠度等優點。In summary, the three-phase single-phase single-pole micro-converter provided by the present invention and the operation method thereof are modulated by the modulation pulse according to the first pulse width, and the active power decoupling circuit is adjusted according to the second pulse width. The variable control signal or the third pulse width modulation control signal performs the corresponding action. Thus, when the input power is greater than the output power, the three-phase single-phase single-pole micro-converter can store the difference between the input power and the output power; when the input power is less than the output power, the three-phase single-phase single-pole micro-converter can release the input. The difference between power and output power to the mains. Therefore, the present invention has advantages such as a smaller volume, a longer life, and a higher reliability than the prior art.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧三埠單相單極微換流器100‧‧‧Three-Phase Single-Phase Single-Pole Micro-Converter

102‧‧‧輸入埠102‧‧‧ Input埠

104‧‧‧調變埠104‧‧‧调调

106‧‧‧換相器106‧‧‧Commutator

108‧‧‧主動功率解耦電路108‧‧‧Active power decoupling circuit

110‧‧‧直流電源110‧‧‧DC power supply

112‧‧‧穩壓電容112‧‧‧Steady capacitor

1022‧‧‧第一線圈1022‧‧‧First coil

1024‧‧‧激磁電感1024‧‧‧Magnetic inductance

1026‧‧‧第一開關1026‧‧‧First switch

1042‧‧‧第二線圈1042‧‧‧second coil

1044‧‧‧第二開關1044‧‧‧Second switch

1046‧‧‧第一二極體1046‧‧‧First Diode

1048‧‧‧第二二極體1048‧‧‧second diode

1050‧‧‧第一電感1050‧‧‧first inductance

1062‧‧‧第二電容1062‧‧‧second capacitor

1064‧‧‧第五開關1064‧‧‧ fifth switch

1066‧‧‧第六開關1066‧‧‧ sixth switch

1068‧‧‧第七開關1068‧‧‧ seventh switch

1070‧‧‧第八開關1070‧‧‧ eighth switch

1072‧‧‧第三電感1072‧‧‧ Third inductance

1082‧‧‧第三線圈1082‧‧‧third coil

1084‧‧‧第三開關1084‧‧‧third switch

1086‧‧‧第三二極體1086‧‧‧ Third Dipole

1088‧‧‧第二電感1088‧‧‧second inductance

1090‧‧‧第四二極體1090‧‧‧Fourth dipole

1092‧‧‧第一電容1092‧‧‧first capacitor

1094‧‧‧第五二極體1094‧‧‧ fifth diode

1096‧‧‧第四開關1096‧‧‧fourth switch

AC‧‧‧市電AC‧‧‧Power

A、B、C、D‧‧‧功率A, B, C, D‧‧‧ power

CS‧‧‧控制訊號CS‧‧‧Control signal

E‧‧‧點E‧‧‧ points

FPWM‧‧‧第一脈衝寬度調變控制訊號FPWM‧‧‧First pulse width modulation control signal

GND‧‧‧地端GND‧‧‧ ground

IAC‧‧‧交流電流IAC‧‧‧AC current

IDC‧‧‧直流電流IDC‧‧‧ DC current

PAC‧‧‧輸出功率PAC‧‧‧ output power

PDC‧‧‧輸入功率PDC‧‧‧ input power

SCS‧‧‧開關控制訊號SCS‧‧‧ switch control signal

SPWM‧‧‧第二脈衝寬度調變控制訊號SPWM‧‧‧Second pulse width modulation control signal

‧‧‧反相開關控制訊號 ‧‧‧Inverted switch control signal

TPWM‧‧‧第三脈衝寬度調變控制訊號TPWM‧‧‧3rd pulse width modulation control signal

VDC‧‧‧直流電壓VDC‧‧‧ DC voltage

VAC‧‧‧交流電壓VAC‧‧‧AC voltage

1000-1020‧‧‧步驟1000-1020‧‧ steps

第1圖是為本發明的一實施例說明一種三埠單相單極微換流器的示意圖。Fig. 1 is a schematic view showing a three-turn single-phase single-pole micro-converter according to an embodiment of the present invention.

第2圖是為說明輸入功率、輸出功率、交流電流與交流電壓的示意圖。Figure 2 is a schematic diagram for explaining input power, output power, alternating current, and alternating current voltage.

第3圖至第6圖是為說明三埠單相單極微換流器在狀態I的示意圖。Figures 3 through 6 are schematic diagrams illustrating the state of the three-turn single-phase monopole micro-converter in state I.

第7圖至第9圖是為說明三埠單相單極微換流器在狀態II的示意圖。Figures 7 through 9 are schematic diagrams illustrating the state of the three-turn single-phase monopole micro-converter in state II.

第10圖係為本發明的另一實施例說明一種三埠單相單極微換流器的操作方法之流程圖。Figure 10 is a flow chart showing a method of operating a three-turn single-phase single-pole micro-converter according to another embodiment of the present invention.

100‧‧‧三埠單相單極微換流器100‧‧‧Three-Phase Single-Phase Single-Pole Micro-Converter

102‧‧‧輸入埠102‧‧‧ Input埠

104‧‧‧調變埠104‧‧‧调调

106‧‧‧換相器106‧‧‧Commutator

108‧‧‧主動功率解耦電路108‧‧‧Active power decoupling circuit

110‧‧‧直流電源110‧‧‧DC power supply

112‧‧‧穩壓電容112‧‧‧Steady capacitor

1022‧‧‧第一線圈1022‧‧‧First coil

1024‧‧‧激磁電感1024‧‧‧Magnetic inductance

1026‧‧‧第一開關1026‧‧‧First switch

1042‧‧‧第二線圈1042‧‧‧second coil

1044‧‧‧第二開關1044‧‧‧Second switch

1046‧‧‧第一二極體1046‧‧‧First Diode

1048‧‧‧第二二極體1048‧‧‧second diode

1050‧‧‧第一電感1050‧‧‧first inductance

1062‧‧‧第二電容1062‧‧‧second capacitor

1064‧‧‧第五開關1064‧‧‧ fifth switch

1066‧‧‧第六開關1066‧‧‧ sixth switch

1068‧‧‧第七開關1068‧‧‧ seventh switch

1070‧‧‧第八開關1070‧‧‧ eighth switch

1072‧‧‧第三電感1072‧‧‧ Third inductance

1082‧‧‧第三線圈1082‧‧‧third coil

1084‧‧‧第三開關1084‧‧‧third switch

1086‧‧‧第三二極體1086‧‧‧ Third Dipole

1088‧‧‧第二電感1088‧‧‧second inductance

1090‧‧‧第四二極體1090‧‧‧Fourth dipole

1092‧‧‧第一電容1092‧‧‧first capacitor

1094‧‧‧第五二極體1094‧‧‧ fifth diode

1096‧‧‧第四開關1096‧‧‧fourth switch

AC‧‧‧市電AC‧‧‧Power

CS‧‧‧控制訊號CS‧‧‧Control signal

FPWM‧‧‧第一脈衝寬度調變控制訊號FPWM‧‧‧First pulse width modulation control signal

GMD‧‧‧地端GMD‧‧‧Location

IAC‧‧‧交流電流IAC‧‧‧AC current

IDC‧‧‧直流電流IDC‧‧‧ DC current

SCS‧‧‧開關控制訊號SCS‧‧‧ switch control signal

SPWM‧‧‧第二脈衝寬度調變控制訊號SPWM‧‧‧Second pulse width modulation control signal

‧‧‧反相開關控制訊號 ‧‧‧Inverted switch control signal

TPWM‧‧‧第三脈衝寬度調變控制訊號TPWM‧‧‧3rd pulse width modulation control signal

VDC‧‧‧直流電壓VDC‧‧‧ DC voltage

VAC‧‧‧交流電壓VAC‧‧‧AC voltage

Claims (25)

一種三埠單相單極微換流器,包含:一輸入埠,用以耦接於一直流電源,並接收及傳遞該直流電源的輸入功率;一調變埠,用以磁耦合該輸入埠,並根據該輸入功率,產生並輸出一全波整流的弦波電流,其中該調變埠包含:一第二線圈,具有一第一端,及一第二端,耦接於該地端;一第二開關,具有一第一端,耦接於該第二線圈的第一端,一第二端,用以接收該第一脈衝寬度調變控制訊號,及一第三端;一第一二極體,具有一第一端,耦接於該第二開關的第三端,及一第二端;一第二二極體,具有一第一端,耦接於該地端,及一第二端,耦接於該第一二極體的第二端;及一第一電感,具有一第一端,耦接於該第一二極體的第二端,及一第二端;一換相器,耦接於該調變埠,用以根據一開關控制訊號和一反相開關控制訊號,轉換該弦波電流成為一交流電流,並輸出該交流電流至一市電,其中該開關控制訊號和該反相開關控制訊號的頻率和該市電的頻率相同;及一主動功率解耦電路(Active Power Decoupling Circuit,APDC)埠,其中當該輸入功率大於該換相器所輸出的輸出功率 時,該調變埠根據一第一脈衝寬度調變控制訊號,輸出該全波整流的弦波電流至該換相器,以及該主動功率解耦電路根據一第二脈衝寬度調變控制訊號,儲存該輸入功率與該輸出功率的差值;當該輸入功率小於該輸出功率時,該調變埠根據該第一脈衝寬度調變控制訊號,輸出該弦波電流至該換相器,以及該主動功率解耦電路根據一第三脈衝寬度調變控制訊號,透過該調變埠輸出該差值至該換相器,其中該主動功率解耦電路包含:一第三線圈,具有一第一端,及一第二端,耦接於該第一二極體的第二端;一第三開關,具有一第一端,耦接於該第三線圈的第一端,一第二端,用以接收該第二脈衝寬度調變控制訊號,及一第三端;一第三二極體,具有一第一端,耦接於該第三開關的第三端,及一第二端;一第二電感,具有一第一端,耦接於該第三二極體的第二端,及一第二端,耦接於該第三線圈的第二端;一第四二極體,具有一第一端,及一第二端,耦接於該第三二極體的第二端;一第一電容,具有一第一端,耦接於該第二電感的第二端,及一第二端,耦接於該第四二極體的第一端;一第五二極體,具有一第一端,耦接於該第四二極體的第一端,及一第二端,耦接於該第三線圈的第一端;及 一第四開關,具有一第一端,耦接於該第五二極體的第一端,一第二端,用以接收該第三脈衝寬度調變控制訊號,及一第三端,耦接於該地端。 A three-phase single-phase single-pole micro-converter includes: an input port coupled to a DC power source and receiving and transmitting input power of the DC power source; and a modulation switch for magnetically coupling the input port, And generating and outputting a full-wave rectified sine wave current according to the input power, wherein the modulation 埠 includes: a second coil having a first end and a second end coupled to the ground end; The second switch has a first end coupled to the first end of the second coil, and a second end for receiving the first pulse width modulation control signal and a third end; The pole body has a first end coupled to the third end of the second switch, and a second end; a second diode having a first end coupled to the ground end, and a first end The second end is coupled to the second end of the first diode; and a first inductor has a first end coupled to the second end of the first diode, and a second end; a phase changer coupled to the modulation 埠 for converting a sine wave current into a cross according to a switch control signal and an inverting switch control signal Current, and outputting the alternating current to a mains, wherein the switch control signal and the frequency of the reverse switch control signal are the same as the frequency of the mains; and an active power decoupling circuit (APDC), wherein When the input power is greater than the output power output by the inverter Transmitting, according to a first pulse width modulation control signal, outputting the full-wave rectified sine wave current to the inverter, and the active power decoupling circuit modulating the control signal according to a second pulse width. Storing the difference between the input power and the output power; when the input power is less than the output power, the modulation 调 modulates the control signal according to the first pulse width, outputs the sine wave current to the inverter, and the The active power decoupling circuit outputs a difference to the inverter according to a third pulse width modulation control signal, wherein the active power decoupling circuit comprises: a third coil having a first end And a second end coupled to the second end of the first diode; a third switch having a first end coupled to the first end of the third coil and a second end Receiving the second pulse width modulation control signal, and a third terminal; a third diode having a first end coupled to the third end of the third switch, and a second end; a second inductor having a first end coupled to the third diode a second end, and a second end coupled to the second end of the third coil; a fourth diode having a first end and a second end coupled to the third diode a second end; a first capacitor having a first end coupled to the second end of the second inductor, and a second end coupled to the first end of the fourth diode; The fifth diode has a first end coupled to the first end of the fourth diode, and a second end coupled to the first end of the third coil; a fourth switch having a first end coupled to the first end of the fifth diode, a second end for receiving the third pulse width modulation control signal, and a third end coupled Connected to the ground. 如請求項1所述的三埠單相單極微換流器,其中該直流電源是為一太陽能板。 The three-phase single-phase monopolar micro-converter of claim 1, wherein the direct current power source is a solar panel. 如請求項2所述的三埠單相單極微換流器,其中該輸入埠具有一最大功率追蹤(maximum power point tracking)的功能。 A three-phase single-phase single-pole micro-converter as claimed in claim 2, wherein the input port has a function of maximum power point tracking. 如請求項3所述的三埠單相單極微換流器,其中該輸入埠包含:一第一線圈,具有一第一端,耦接於該直流電源的第一端,及一第二端,其中該直流電源的第二端是耦接於一地端;一激磁電感,具有一第一端,耦接於該直流電源的第一端,及一第二端,耦接於該第一線圈的第二端;及一第一開關,具有一第一端,耦接於該第一線圈的第二端,一第二端,用以接收一控制訊號,及一第三端,耦接於該地端。 The three-phase single-phase single-pole micro-converter according to claim 3, wherein the input port comprises: a first coil having a first end coupled to the first end of the DC power source, and a second end The second end of the DC power source is coupled to a ground end; a magnetizing inductor having a first end coupled to the first end of the DC power source and a second end coupled to the first end a second end of the coil; and a first switch having a first end coupled to the second end of the first coil, a second end for receiving a control signal, and a third end coupled At the end. 如請求項1所述的三埠單相單極微換流器,其中該換相器包含:一第二電容,具有一第一端,耦接於該第一電感的第二端,及一第二端,耦接於該地端;一第五開關,具有一第一端,耦接於該第二電容的第一端,一 第二端,用以接收該開關控制訊號,及一第三端;一第六開關,具有一第一端,耦接於該第二電容的第一端,一第二端,用以接收該反相開關控制訊號,及一第三端,耦接於該市電的第二端;一第七開關,具有一第一端,耦接於該第五開關的第三端,一第二端,用以接收該反相開關控制訊號,及一第三端,耦接於該地端;一第八開關,具有一第一端,耦接於該第六開關的第三端,一第二端,用以接收該開關控制訊號,及一第三端,耦接於該地端;及一第三電感,具有一第一端,耦接於該第五開關的第三端,及一第二端,耦接於該市電的第一端。 The three-phase single-phase single-pole micro-converter according to claim 1, wherein the inverter includes: a second capacitor having a first end coupled to the second end of the first inductor, and a first The second end is coupled to the ground end; a fifth switch has a first end coupled to the first end of the second capacitor, The second end is configured to receive the switch control signal, and a third end; a sixth switch having a first end coupled to the first end of the second capacitor and a second end for receiving the An inverting switch control signal, and a third end coupled to the second end of the mains; a seventh switch having a first end coupled to the third end of the fifth switch, a second end, The third switch is coupled to the ground end; the eighth switch has a first end coupled to the third end of the sixth switch, and a second end And a third end coupled to the ground end; and a third inductor having a first end coupled to the third end of the fifth switch, and a second The end is coupled to the first end of the utility. 如請求項5所述的三埠單相單極微換流器,另包含:一穩壓電容,具有一第一端,耦接於該直流電源的第一端,及一第二端,耦接於該直流電源的第二端,其中該穩壓電容是用以穩定該直流電源所提供的一直流電壓。 The three-phase single-phase single-pole micro-converter according to claim 5, further comprising: a voltage-stabilizing capacitor having a first end coupled to the first end of the DC power source and a second end coupled The second end of the DC power source, wherein the voltage stabilizing capacitor is used to stabilize the DC voltage provided by the DC power source. 如請求項6所述的三埠單相單極微換流器,其中該第二線圈的感應方向和該第三線圈的感應方向是和該第一線圈的感應方向相同。 The three-phase single-phase single-pole micro-converter according to claim 6, wherein the sensing direction of the second coil and the sensing direction of the third coil are the same as the sensing direction of the first coil. 如請求項6所述的三埠單相單極微換流器,其中該輸入功率是 等於該直流電壓與該直流電源所提供的一直流電流的乘積。 The three-phase single-phase single-pole micro-converter according to claim 6, wherein the input power is It is equal to the product of the DC voltage and the DC current provided by the DC power source. 如請求項6所述的三埠單相單極微換流器,其中該輸出功率是等於該交流電流與該市電的電壓的乘積。 A three-phase single-phase single-pole micro-converter as claimed in claim 6, wherein the output power is equal to a product of the alternating current and the voltage of the mains. 如請求項6所述的三埠單相單極微換流器,其中當該輸入功率大於該換相器所輸出的輸出功率時,該第四開關關閉,該第二開關的開啟時間是由該輸出功率控制該第一脈衝寬度調變控制訊號所決定,以及該第三開關的開啟時間是由該最大功率追蹤控制該第二脈衝寬度調變控制訊號所決定。 The three-phase single-phase single-pole micro-converter according to claim 6, wherein when the input power is greater than the output power output by the inverter, the fourth switch is turned off, and the opening time of the second switch is The output power is controlled by the first pulse width modulation control signal, and the opening time of the third switch is determined by the maximum power tracking control of the second pulse width modulation control signal. 如請求項10所述的三埠單相單極微換流器,其中當該第二開關和該第三開關開啟時,從該輸入埠輸入的能量被儲存至該第一電感與該第二電感。 The three-phase single-phase single-pole micro-converter according to claim 10, wherein when the second switch and the third switch are turned on, energy input from the input port is stored to the first inductor and the second inductor . 如請求項10所述的三埠單相單極微換流器,其中當該第二開關關閉和該第三開關開啟時,該第一電感所儲存的能量被輸出至該換相器,以及從該輸入埠輸入的能量被儲存至該第二電感。 The three-phase single-phase single-pole micro-converter according to claim 10, wherein when the second switch is turned off and the third switch is turned on, energy stored in the first inductor is output to the inverter, and The input 埠 input energy is stored to the second inductance. 如請求項10所述的三埠單相單極微換流器,其中當該第二開關開啟和該第三開關關閉時,該第二電感所儲存的能量透過該第四二極體儲存至該第一電容,以及從該輸入埠輸入的能量被儲存至該第一電感。 The three-phase single-phase single-pole micro-converter according to claim 10, wherein when the second switch is turned on and the third switch is turned off, energy stored in the second inductor is stored to the fourth diode A first capacitor, and energy input from the input port, are stored to the first inductor. 如請求項10所述的三埠單相單極微換流器,其中當該第二開關和該第三開關皆關閉時,該第一電感所儲存的能量被輸出至該換相器,該第二電感所儲存的能量透過該第四二極體儲存至該第一電容,以及該激磁電感所儲存的能量透過該第五二極體儲存至該第一電容。 The three-phase single-phase single-pole micro-converter according to claim 10, wherein when the second switch and the third switch are both closed, the energy stored by the first inductor is output to the inverter, the first The energy stored in the second inductor is stored to the first capacitor through the fourth diode, and the energy stored in the magnetizing inductor is stored to the first capacitor through the fifth diode. 如請求項11、12、13或14所述的三埠單相單極微換流器,其中該第一開關的開啟時間是由該第二開關的開啟時間和該第三開關的開啟時間執行一或邏輯運算所決定。 The three-phase single-phase single-pole micro-converter according to claim 11, wherein the opening time of the first switch is performed by an opening time of the second switch and an opening time of the third switch. Or logical operation. 如請求項6所述的三埠單相單極微換流器,其中當該輸入功率小於該換相器所輸出的輸出功率時,該第三開關關閉,該第二開關開啟,該第一開關的開啟時間是由該最大功率追蹤所決定,以及該第四開關開啟時間是藉由該輸入功率與該輸出功率的差值控制該第三脈衝寬度調變控制訊號所決定。 The three-phase single-phase single-pole micro-converter according to claim 6, wherein when the input power is less than the output power output by the inverter, the third switch is turned off, the second switch is turned on, and the first switch is The turn-on time is determined by the maximum power tracking, and the fourth switch turn-on time is determined by controlling the third pulse width modulation control signal by the difference between the input power and the output power. 如請求項16所述的三埠單相單極微換流器,其中當該第一開關開啟和該第四開關關閉時,從該輸入埠輸入的能量被儲存至該第一電感。 The three-turn single-phase single-pole micro-converter of claim 16, wherein when the first switch is turned on and the fourth switch is turned off, energy input from the input port is stored to the first inductor. 如請求項16所述的三埠單相單極微換流器,其中當該第一開關關閉和該第四開關開啟時,第一電容所儲存的能量透過該第四 開關被輸出至該換相器,以及被儲存至該第一電感。 The three-phase single-phase single-pole micro-converter according to claim 16, wherein when the first switch is turned off and the fourth switch is turned on, energy stored in the first capacitor passes through the fourth A switch is output to the inverter and stored to the first inductor. 如請求項16所述的三埠單相單極微換流器,其中當該第一開關和該第四開關皆關閉時,該第一電感所儲存的能量被輸出至該換相器,以及該激磁電感所儲存的能量透過該第五二極體儲存至該第一電容。 The three-phase single-phase single-pole micro-converter according to claim 16, wherein when the first switch and the fourth switch are both closed, the energy stored by the first inductor is output to the inverter, and the The energy stored by the magnetizing inductance is stored to the first capacitor through the fifth diode. 一種三埠單相單極微換流器的操作方法,該三埠單相單極微換流器包含一輸入埠、一調變埠、一換相器及一主動功率解耦電路,該操作方法包含:該輸入埠接收及傳遞一直流電源的輸入功率;當該輸入功率大於該換相器所輸出的輸出功率,以及一第一脈衝寬度調變控制訊號和一第二脈衝寬度調變控制訊號致能時,從該輸入埠輸入的能量被儲存至該調變埠與該主動功率解耦電路;當該輸入功率大於該換相器所輸出的輸出功率,以及該第一脈衝寬度調變控制訊號和該第二脈衝寬度調變控制訊號去能時,該調變埠所儲存的能量被輸出至該換相器,以及該輸入埠的激磁電感所儲存的能量儲存至該主動功率解耦電路;及當該輸入功率大於該換相器所輸出的輸出功率,以及該第一脈衝寬度調變控制訊號去能和該第二脈衝寬度調變控制訊號致能時,該調變埠所儲存的能量被輸出至該換相器,以及 從該輸入埠輸入的能量被儲存至該主動功率解耦電路。 A method for operating a three-turn single-phase single-pole micro-converter includes an input 埠, a modulation 埠, a phase changer, and an active power decoupling circuit, the operation method includes The input 埠 receives and transmits the input power of the DC power supply; when the input power is greater than the output power output by the inverter, and a first pulse width modulation control signal and a second pulse width modulation control signal When energy is enabled, the energy input from the input port is stored to the modulation transformer and the active power decoupling circuit; when the input power is greater than the output power output by the inverter, and the first pulse width modulation control signal And the second pulse width modulation control signal is de-energized, the energy stored in the modulation buffer is output to the inverter, and the energy stored in the excitation inductance of the input port is stored in the active power decoupling circuit; And when the input power is greater than the output power output by the inverter, and the first pulse width modulation control signal is enabled and the second pulse width modulation control signal is enabled, the modulation is stored Energy is output to the commutator, and The energy input from the input port is stored to the active power decoupling circuit. 如請求項20所述的操作方法,其中當該輸入功率大於該換相器所輸出的輸出功率時,該第一脈衝寬度調變控制訊號的致能時間是由該輸出功率所決定,以及該第二脈衝寬度調變控制訊號的致能時間是由該輸入埠的最大功率追蹤所決定。 The operation method of claim 20, wherein when the input power is greater than the output power output by the inverter, the enable time of the first pulse width modulation control signal is determined by the output power, and The enable time of the second pulse width modulation control signal is determined by the maximum power tracking of the input port. 一種三埠單相單極微換流器的操作方法,該三埠單相單極微換流器包含一輸入埠、一調變埠、一換相器及一主動功率解耦電路,該操作方法包含:該輸入埠接收及傳遞一直流電源的輸入功率;當該輸入功率大於該換相器所輸出的輸出功率,以及一第一脈衝寬度調變控制訊號和一第二脈衝寬度調變控制訊號致能時,從該輸入埠輸入的能量被儲存至該調變埠與該主動功率解耦電路;當該輸入功率大於該換相器所輸出的輸出功率,以及該第一脈衝寬度調變控制訊號和該第二脈衝寬度調變控制訊號去能時,該調變埠所儲存的能量被輸出至該換相器,以及該輸入埠的激磁電感所儲存的能量儲存至該主動功率解耦電路;及當該輸入功率大於該換相器所輸出的輸出功率,以及該第一脈衝寬度調變控制訊號致能和該第二脈衝寬度調變控制訊號去能時,從該輸入埠輸入的能量被儲存至該調變埠。 A method for operating a three-turn single-phase single-pole micro-converter includes an input 埠, a modulation 埠, a phase changer, and an active power decoupling circuit, the operation method includes The input 埠 receives and transmits the input power of the DC power supply; when the input power is greater than the output power output by the inverter, and a first pulse width modulation control signal and a second pulse width modulation control signal When energy is enabled, the energy input from the input port is stored to the modulation transformer and the active power decoupling circuit; when the input power is greater than the output power output by the inverter, and the first pulse width modulation control signal And the second pulse width modulation control signal is de-energized, the energy stored in the modulation buffer is output to the inverter, and the energy stored in the excitation inductance of the input port is stored in the active power decoupling circuit; And when the input power is greater than the output power output by the inverter, and the first pulse width modulation control signal enable and the second pulse width modulation control signal are deactivated, The energy is stored to the modulation port. 如請求項20、21或22所述的操作方法,其中該輸入埠的致能時間是由該第一脈衝寬度調變控制訊號的致能時間和該第二脈衝寬度調變控制訊號的致能時間執行一或邏輯運算所決定。 The operation method of claim 20, 21 or 22, wherein the enable time of the input port is an enable time of the first pulse width modulation control signal and an enable of the second pulse width modulation control signal The time is executed by one or logical operation. 一種三埠單相單極微換流器的操作方法,該三埠單相單極微換流器包含一輸入埠、一調變埠、一換相器及一主動功率解耦電路,該操作方法包含:該輸入埠接收及傳遞一直流電源的輸入功率;當該輸入功率小於該換相器所輸出的輸出功率,以及該輸入埠致能和一第三脈衝寬度調變控制訊號去能時,從該輸入埠輸入的能量被儲存至該調變埠;當該輸入功率小於該換相器所輸出的輸出功率,以及該輸入埠去能和該第三脈衝寬度調變控制訊號致能時,該主動功率解耦電路所儲存的能量被輸出至該換相器,以及被儲存至該調變埠;及當該輸入功率小於該換相器所輸出的輸出功率,以及該輸入埠和該第三脈衝寬度調變控制訊號皆去能時,該調變埠所儲存的能量被輸出至該換相器,以及該輸入埠的激磁電感所儲存的能量儲存至該主動功率解耦電路。 A method for operating a three-turn single-phase single-pole micro-converter includes an input 埠, a modulation 埠, a phase changer, and an active power decoupling circuit, the operation method includes The input 埠 receives and transmits the input power of the DC power supply; when the input power is less than the output power output by the inverter, and the input 埠 enable and a third pulse width modulation control signal are deactivated, The input 埠 input energy is stored to the modulation 埠; when the input power is less than the output power output by the inverter, and the input snagging energy and the third pulse width modulation control signal are enabled, The energy stored by the active power decoupling circuit is output to the inverter and stored to the modulation 埠; and when the input power is less than the output power output by the inverter, and the input 埠 and the third When the pulse width modulation control signal is de-energized, the energy stored in the modulation buffer is output to the inverter, and the energy stored in the excitation inductance of the input port is stored in the active power decoupling circuit. 如請求項24所述的操作方法,其中當該輸入功率小於該換相器所輸出的輸出功率時,該調變埠根據一第一脈衝寬度調變控制 訊號致能,該輸入埠的致能時間是由該輸入埠的最大功率追蹤所決定,以及該第三脈衝寬度調變控制訊號的致能時間是由該輸入功率與該換相器所輸出的輸出功率的差值所決定。 The operation method of claim 24, wherein when the input power is less than the output power output by the inverter, the modulation is controlled according to a first pulse width modulation The signal enable, the enable time of the input port is determined by the maximum power tracking of the input port, and the enable time of the third pulse width modulation control signal is output by the input power and the inverter The difference in output power is determined.
TW101119992A 2012-06-04 2012-06-04 Three-port single-phase single-stage micro-inverter and operation method thereof TWI454031B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101119992A TWI454031B (en) 2012-06-04 2012-06-04 Three-port single-phase single-stage micro-inverter and operation method thereof
CN201210276973.9A CN102820803B (en) 2012-06-04 2012-08-06 Three-port single-phase single-pole micro current converter and operating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101119992A TWI454031B (en) 2012-06-04 2012-06-04 Three-port single-phase single-stage micro-inverter and operation method thereof
CN201210276973.9A CN102820803B (en) 2012-06-04 2012-08-06 Three-port single-phase single-pole micro current converter and operating method thereof

Publications (2)

Publication Number Publication Date
TW201351856A TW201351856A (en) 2013-12-16
TWI454031B true TWI454031B (en) 2014-09-21

Family

ID=54835001

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119992A TWI454031B (en) 2012-06-04 2012-06-04 Three-port single-phase single-stage micro-inverter and operation method thereof

Country Status (2)

Country Link
CN (1) CN102820803B (en)
TW (1) TWI454031B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI478477B (en) * 2012-12-25 2015-03-21 Darfon Electronics Corp Three-port single-phase single-stage micro-inverter and operation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221267A1 (en) * 2006-03-23 2007-09-27 Pvi Solutions Inc. Method and apparatus for converting direct current to alternating current
TW201034354A (en) * 2008-12-20 2010-09-16 Azuray Technologies Inc Energy conversion systems with power control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693061B1 (en) * 2004-03-26 2005-09-07 サンケン電気株式会社 Switching power supply
JP5092023B2 (en) * 2009-02-06 2012-12-05 新電元工業株式会社 Current detection circuit and transformer current measurement system
CN202167863U (en) * 2010-11-17 2012-03-14 刘学军 Efficient and energy-saving self-circulating electronic load
CN102237691B (en) * 2011-07-06 2013-08-14 东北大学 Wind energy and solar energy grid-connected generation system and control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221267A1 (en) * 2006-03-23 2007-09-27 Pvi Solutions Inc. Method and apparatus for converting direct current to alternating current
TW201034354A (en) * 2008-12-20 2010-09-16 Azuray Technologies Inc Energy conversion systems with power control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yaow-Ming Chen and Chein-Yao Liao," Three-port flyback-type single-phase micro-inverter with active power decoupling circuit",Energy Conversion Congress and Exposition (ECCE),IEEE,2011,第501~506頁 *

Also Published As

Publication number Publication date
CN102820803A (en) 2012-12-12
TW201351856A (en) 2013-12-16
CN102820803B (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6103061B2 (en) Power feeding device and non-contact power feeding system
US11011936B2 (en) Single-stage transmitter for wireless power transfer
EP3337024B1 (en) Bidirectional resonant conversion circuit and converter
TWI445297B (en) Power supply
JP6079878B2 (en) Power feeding device and non-contact power feeding system
KR20130044647A (en) Power conversion device for resonance wireless power transfer system
Liu et al. A phase-shift soft-switching control strategy for dual active wireless power transfer system
TWI437410B (en) Buck power factor correcting systems
TWI542127B (en) Active buck power factor correction device
TWI481181B (en) Dc to ac power conversion apparatus and method thereof
KR101654490B1 (en) Converter and bi-directional converter
CN104094514A (en) Controlled rectifier with b2 bridge and only one switching device
TWM417719U (en) Bisynchronous Resonant Switching DC power supply
CN103208920A (en) Direct-current conversion device
CN106685242A (en) Single-stage alternating current to direct current converter
CN108370219A (en) Resonator system controller and Cycle by Cycle predict Sofe Switch
TWI506928B (en) Current source inverter and operation method thereof
CN104167938A (en) Pulsating current stabilizing control system
TWM365013U (en) Portable high-voltage power supply device
TWI454031B (en) Three-port single-phase single-stage micro-inverter and operation method thereof
CN102237815A (en) High-efficiency and reliable direct-current to alternating-current conversion circuit
CN101969302A (en) Novel switch resonant power ultrasonic generating circuit
TWI481180B (en) Dc-ac converter and conversion circuit
TWI478477B (en) Three-port single-phase single-stage micro-inverter and operation method thereof
CN101860245A (en) Medium-power two-stage three-phase static converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees