TWI453894B - Low voltage bandgap reference (bgr) circuit - Google Patents
Low voltage bandgap reference (bgr) circuit Download PDFInfo
- Publication number
- TWI453894B TWI453894B TW100143015A TW100143015A TWI453894B TW I453894 B TWI453894 B TW I453894B TW 100143015 A TW100143015 A TW 100143015A TW 100143015 A TW100143015 A TW 100143015A TW I453894 B TWI453894 B TW I453894B
- Authority
- TW
- Taiwan
- Prior art keywords
- capacitor
- prediction
- voltage
- transistor
- processing
- Prior art date
Links
Landscapes
- Amplifiers (AREA)
Description
本發明係有關一種能階參考位準(bandgap reference,BGR)電路,特別是關於一種具有低電壓及相關性雙取樣(correlated double sampling,CDS)的能階參考位準電路。 The present invention relates to a bandgap reference (BGR) circuit, and more particularly to an energy level reference level circuit having a low voltage and correlated double sampling (CDS).
參考電壓電路(voltage reference)係用以產生不受負載影響的固定電壓。能階電路為參考電壓電路之一種,其產生的固定參考電壓值約相當於矽之電子能階(大約為1.2伏特),且所產生的參考電壓幾乎不受溫度的影響。 A voltage reference is used to generate a fixed voltage that is unaffected by the load. The energy level circuit is a type of reference voltage circuit that produces a fixed reference voltage value that is approximately equivalent to the electronic energy level of 矽 (about 1.2 volts), and the resulting reference voltage is hardly affected by temperature.
第一B圖顯示傳統能階參考位準(bandgap reference,BGR)電路。能階參考位準電路1包括兩個電晶體Q1、Q2,分別串接至電流源I1及電流源I2。電晶體Q1的端電壓為VEB,其具有約-1.5mV/K之負溫度係數,如第一B圖中所示,而兩電晶體Q1、Q2的電壓差△VEB具有+0.087mV/K之正溫度係數,兩電壓值乘以對應之係數再相加後便產生與溫度獨立之能階參考位準電壓,其係由電阻R2/R1之電阻比與電晶體Q1、Q2之面積比來決定。其中電流源I1及電流源I2受控於一訊號源電路(signal source circuit,SSC), 如第一A圖所示。 The first B diagram shows a conventional energy level reference level (BGR) circuit. The energy level reference level circuit 1 includes two transistors Q 1 , Q 2 connected in series to the current source I 1 and the current source I 2 , respectively. The terminal voltage of the transistor Q 1 is V EB , which has a negative temperature coefficient of about -1.5 mV / K, as shown in the first B picture, and the voltage difference ΔV EB of the two transistors Q 1 , Q 2 has + The positive temperature coefficient of 0.087mV/K, the two voltage values are multiplied by the corresponding coefficients and then added to generate a temperature independent reference level voltage, which is the resistance ratio of the resistor R 2 /R 1 and the transistor Q 1 , the area ratio of Q 2 is determined. The current source I 1 and the current source I 2 are controlled by a signal source circuit (SSC), as shown in FIG.
低電壓操作係製程技術進展之趨勢,尤其在行動電池操作產品裡特別明顯地需要低參考電壓。但當電源電壓小於1.5V之下時,在常見的能隙參考電路裡是很難穩定操作的。主要原因在於在低電壓操作下,只能使用低增益值的放大器,如此導致較嚴重的偏移情況而輸出不精準的能階參考位準電壓。 The trend of low voltage operating system technology, especially in mobile battery operated products, requires a particularly low reference voltage. However, when the power supply voltage is less than 1.5V, it is difficult to operate stably in the common bandgap reference circuit. The main reason is that in low-voltage operation, only low-gain amplifiers can be used, which results in a more severe offset and an inaccurate energy-level reference level.
因此,亟需提出一種新穎的能階參考位準電路,期能在低電壓操作下,校正低增益放大器的增益誤差,以產生更精準的能階參考位準電壓。 Therefore, it is urgent to propose a novel energy level reference level circuit, which can correct the gain error of the low gain amplifier under low voltage operation to produce a more accurate energy level reference level voltage.
鑑於上述,本發明實施例的目的之一在於提出一種能階參考位準電路,其能在低電壓操作下,校正低增益放大器的增益誤差,以產生更精準的能階參考位準電壓,進而提升能階參考位準電路的整體效率。 In view of the above, one of the objects of embodiments of the present invention is to provide an energy level reference level circuit capable of correcting a gain error of a low gain amplifier under low voltage operation to generate a more accurate energy level reference level voltage, thereby Improve the overall efficiency of the energy level reference level circuit.
本發明係揭示一種低電壓能階參考位準(bandgap reference)電路,其包含一第一電流源、一第一電晶體、一第二電流源、一第二電晶體、一運算放大器(operational amplifier)、一第一電容組、一第二電容組、一補償電容以及複數個開關。第一電晶體的共集極端係電性串接至第一電流源,而第二電晶體的共集極端係電性串接至第二電流源。第一電容組係用來在一預測階段(predictive phase)儲存第一電晶體的一第一參考電壓。第二電容組在預測階段時係耦接於運算放大器的負輸入端,用來產生運算放大器的一偏移電壓(offset voltage),其中偏移電壓具有一偏移量(offset)。補償電容係耦接於運算放大器的 負輸入端,用來在預測階段時儲存此偏移量。複數個開關係用來切換預測階段以及一放大階段。其中,在放大階段時,補償電容耦接於運算放大器的負輸入端以及第一電容組之間,以抵消偏移量,進而使運算放大器能輸出精準的一能階參考位準電壓。 The present invention discloses a low voltage energy level reference bitgap reference circuit including a first current source, a first transistor, a second current source, a second transistor, and an operational amplifier. a first capacitor group, a second capacitor group, a compensation capacitor, and a plurality of switches. The common collector of the first transistor is electrically connected in series to the first current source, and the common collector of the second transistor is electrically connected in series to the second current source. The first capacitor set is used to store a first reference voltage of the first transistor in a predictive phase. The second capacitor group is coupled to the negative input terminal of the operational amplifier during the prediction phase, and is used to generate an offset voltage of the operational amplifier, wherein the offset voltage has an offset. The compensation capacitor is coupled to the operational amplifier Negative input used to store this offset during the prediction phase. A plurality of open relationships are used to switch between the prediction phase and an amplification phase. The compensation capacitor is coupled between the negative input terminal of the operational amplifier and the first capacitor group to offset the offset, so that the operational amplifier can output a precise one-level reference level voltage.
本發明更揭示一種低電壓能階參考位準(bandgap reference)電路,其包含一電流源、一第一電晶體、一第二電晶體、一運算放大器、一第一電容組、一第一預測電容、一第二預測電容、一補償電容及複數個開關。第一電晶體的共集極端電性串接至電流源,而第二電晶體的共集極端電性串接至電流源。第一電容組係用來在一預測階段(predictive phase)儲存第一電晶體的一第一參考電壓。第一預測電容在預測階段時耦接於運算放大器的負輸入端及一輸出端之間,用來在一放大階段時儲存運算放大器所輸出的一能階參考位準電壓,並產生運算放大器的一偏移電壓(offset voltage),其中偏移電壓具有一偏移量(offset)。第二預測電容在預測階段時耦接於一預設電位而被重置。補償電容係耦接於運算放大器的負輸入端,用來在預測階段儲存偏移量。複數個開關係用來切換預測階段以及放大階段。其中,第二電晶體在預測階段時不連接至電流源,且在放大階段時,補償電容耦接於運算放大器的負輸入端以及第一電容組和第二預測電容之間,以抵消偏移量,進而使運算放大器能輸出精準的能階參考位準電壓。 The present invention further discloses a low voltage energy level reference bitgap reference circuit including a current source, a first transistor, a second transistor, an operational amplifier, a first capacitor group, and a first prediction. A capacitor, a second predictive capacitor, a compensation capacitor, and a plurality of switches. The common set of the first transistor is electrically connected in series to the current source, and the common collector of the second transistor is electrically connected in series to the current source. The first capacitor set is used to store a first reference voltage of the first transistor in a predictive phase. The first prediction capacitor is coupled between the negative input terminal and the output terminal of the operational amplifier during the prediction phase, and is configured to store an energy level reference level voltage output by the operational amplifier during an amplification phase, and generate an operational amplifier An offset voltage, wherein the offset voltage has an offset. The second predicted capacitance is reset by being coupled to a predetermined potential during the prediction phase. The compensation capacitor is coupled to the negative input of the operational amplifier for storing the offset during the prediction phase. A plurality of open relationships are used to switch between the prediction phase and the amplification phase. The second transistor is not connected to the current source during the prediction phase, and the compensation capacitor is coupled between the negative input terminal of the operational amplifier and the first capacitor group and the second prediction capacitor to offset the offset during the amplification phase. The amount, which in turn enables the op amp to output a precise energy level reference level voltage.
M1‧‧‧第一MOS M 1 ‧‧‧First MOS
M2‧‧‧第二MOS M 2 ‧‧‧Second MOS
Q1‧‧‧第一電晶體 Q 1 ‧‧‧First transistor
Q2‧‧‧第二電晶體 Q 2 ‧‧‧Second transistor
VEB‧‧‧Q1的端電壓 Terminal voltage of V EB ‧‧‧Q1
△VEB‧‧‧Q1、Q2的電壓差 ΔV EB ‧‧‧Q1, Q2 voltage difference
M1‧‧‧第一MOS M 1 ‧‧‧First MOS
M2‧‧‧第二MOS M 2 ‧‧‧Second MOS
Q1‧‧‧第一電晶體 Q 1 ‧‧‧First transistor
Q2‧‧‧第二電晶體 Q 2 ‧‧‧Second transistor
21‧‧‧第一電容組 21‧‧‧First Capacitor Group
Cf‧‧‧第一處理電容 C f ‧‧‧first processing capacitor
Cs‧‧‧第二處理電容 C s ‧‧‧second processing capacitor
Cd‧‧‧第三處理電容 C d ‧‧‧third processing capacitor
23‧‧‧第二電容組 23‧‧‧Second capacitor group
Cs_p‧‧‧第一預測電容 C s_p ‧‧‧first predicted capacitance
Cf_p‧‧‧第二預測電容 C f_p ‧‧‧second predictive capacitance
Cd_p‧‧‧第三預測電容 C d_p ‧‧‧third predictive capacitance
25‧‧‧運算放大器 25‧‧‧Operational Amplifier
VOS‧‧‧偏移電壓 V OS ‧‧‧ offset voltage
C1‧‧‧補償電容 C 1 ‧‧‧Compensation capacitor
Vbg‧‧‧能階參考位準電壓 V bg ‧‧‧ energy level reference level voltage
CLoad‧‧‧維持電容 C Load ‧‧‧Support Capacitor
Cd_1‧‧‧第一預測電容 C d_1 ‧‧‧first predicted capacitance
Cd_2‧‧‧第二預測電容 C d_2 ‧‧‧second predictive capacitance
第一A圖及第一B圖係為傳統能階參考位準電路。 The first A picture and the first B picture are conventional energy level reference level circuits.
第二圖係為本發明一實施例之能階參考位準電路之電路圖。 The second figure is a circuit diagram of an energy level reference level circuit according to an embodiment of the present invention.
第三A圖係為在預測階段時,本發明一實施例之能階參考位準電路之電路圖。 The third A diagram is a circuit diagram of the energy level reference level circuit of an embodiment of the present invention at the prediction stage.
第三B圖係為在放大階段時,本發明一實施例之能階參考位準電路之電路圖。 The third B diagram is a circuit diagram of the energy level reference level circuit of an embodiment of the present invention in the amplification stage.
第四A圖係為在預測階段時,本發明另一實施例之能階參考位準電路之電路圖。 The fourth A diagram is a circuit diagram of the energy level reference level circuit of another embodiment of the present invention at the prediction stage.
第四B圖係為在放大階段時,本發明另一實施例之能階參考位準電路之電路圖。 The fourth B diagram is a circuit diagram of the energy level reference level circuit of another embodiment of the present invention in the amplification stage.
第五A-五D圖係為本發明又一實施例之能階參考位準電路之電路圖。 The fifth A-five D diagram is a circuit diagram of an energy level reference level circuit according to still another embodiment of the present invention.
首先,請參考第二圖,係為本發明一實施例之能階參考位準(bandgap reference,BGR)電路2之電路圖。如第二圖所示,能階參考位準電路2包括一第一電流源I1(可由一第一電阻R1、一第一MOS(M1)所組成)、一第一電晶體Q1、一第二電流源I2(可由一第二電阻R2、一第二MOS(M2)所組成)、一第二電晶體Q2、一運算放大器(operational amplifier)25、一第一電容組21以及一第二電容組23。第一電晶體Q1係電性串接至第一電流源I1,而第二電晶體Q2係電性串接至第二電流源I2。一具體實施例中,第一電晶體Q1以及第二電晶體Q2係為二極體連接型態(diode-connected),且第一電晶體Q1與第二電晶體Q2係具有1:M之面積比,其中此M值係大於1。 First, please refer to the second figure, which is a circuit diagram of a bandgap reference (BGR) circuit 2 according to an embodiment of the present invention. As shown in the second figure, the energy level reference level circuit 2 includes a first current source I 1 (which may be composed of a first resistor R 1 and a first MOS (M 1 )), and a first transistor Q 1 . a second current source I 2 (which may be composed of a second resistor R 2 and a second MOS (M 2 )), a second transistor Q 2 , an operational amplifier 25, and a first capacitor Group 21 and a second capacitor group 23. The first transistor Q 1 is electrically connected in series to the first current source I 1 , and the second transistor Q 2 is electrically connected in series to the second current source I 2 . In a specific embodiment, the first transistor Q 1 and the second transistor Q 2 are diode-connected, and the first transistor Q 1 and the second transistor Q 2 have 1 : Area ratio of M, where the M value is greater than one.
為了校正低增益運算放大器25的增益誤差(gain error),本發明使用相關性雙取樣(correlated double sampling,CDS)的技術來解決,其使用兩組電容組21、23預測電壓偏移量,再控制兩組電容組21、23在不同時間進行預測及訊號處理,以抵消運算放大器25的增益誤差。一具體實施例中,能階參考位準電路2至少具有預測階段以及放大階段等兩個時鐘相(clock phase),並由電路中的開關(圖中未示)來對其切換。 In order to correct the gain error of the low gain operational amplifier 25, the present invention uses a correlated double sampling (CDS) technique that uses two sets of capacitor banks 21, 23 to predict the voltage offset, and then The two sets of capacitor groups 21, 23 are controlled to perform prediction and signal processing at different times to cancel the gain error of the operational amplifier 25. In a specific embodiment, the energy level reference level circuit 2 has at least two clock phases, such as a prediction phase and an amplification phase, and is switched by a switch (not shown) in the circuit.
第三A圖係為在預測階段時,本發明一實施例之能階參考位準電路2之電路圖。如第三A圖所示,第一電流源I1和第一電流源I2係以所流經的電流表示。第一電容組21係實際用來處理訊號源以產生能係參考電路,其包括一第一處理電容Cf、一第二處理電容Cs及一第三處理電容Cd;而第二電容組23係用來預測運算放大器25的偏移量(offset)以進行補償,其包括一第一預測電容Cs_p、一第二預測電容Cf_p及一第三預測電容Cd_p。 The third A diagram is a circuit diagram of the energy level reference level circuit 2 of an embodiment of the present invention at the prediction stage. As shown in the third A diagram, the first current source I 1 and the first current source I 2 are represented by the current flowing through. The first capacitor group 21 is actually used to process the signal source to generate the energy reference circuit, which includes a first processing capacitor C f , a second processing capacitor C s and a third processing capacitor C d ; and the second capacitor group 23 system is used to predict the operational amplifier offset (offset) 25 to compensate, comprising a first prediction capacitor C s_p, predicted a second and a third capacitor C f_p predicted capacitor C d_p.
具體來說,在進入預測階段時,第一處理電容Cf及第二處理電容Cs係電性並聯,並耦接於第一電晶體Q1的共集極端(collector),以儲存第一電晶體Q1共集極的端電壓,即為第一參考電壓VQ1。第三處理電容Cd係耦接於一預設電位而被重置(reset)。具體來說,該預設電位可以是接地端(在單端電路(Single Ended Circuit)中)或共模(common)電位(在雙端的差動電路(Double Ended Differential Circuit)中),但不以揭露者為限。 Specifically, when entering the prediction phase, the first processing capacitor C f and the second processing capacitor C s are electrically connected in parallel and coupled to a common collector of the first transistor Q 1 to store the first The terminal voltage of the common collector of the transistor Q 1 is the first reference voltage VQ 1 . The third processing capacitor C d is coupled to a predetermined potential and is reset. Specifically, the preset potential may be a ground terminal (in a single ended circuit) or a common potential (in a double ended differential circuit), but not The exposer is limited.
在預測階段時,第一預測電容Cs_p係耦接於第二電晶體Q2的共集極端以及第三預測電容Cd_p之間,且第二預測電容Cf_p係電性並聯於第三預測電容Cd_p。補償電容C1之一端係耦接於運算放大器25的負輸入端以及第一預測電容Cs_p、第二預測電容Cf_p、第三預測電容Cd_p之間,且補償電容C1之另一端耦接於預設電位。第二電容組23係用來產生運算放大器25具有偏移量(offset)的偏移電壓(offset voltage)VOS,並由補償電容C1儲存此偏移量。其中操作原理請詳見台灣專利申請案號,第100115437號,於此將不予以贅述。 When the prediction stage, the first capacitor C s_p prediction system coupled between the second transistor Q 2 and the common collector terminal of the third prediction capacitance C d_p, second and third prediction in the prediction based capacitance C f_p electrically connected in parallel Capacitor C d_p . One end of the compensation capacitor C 1 is coupled to the negative input line of the operational amplifier 25 and the first prediction of the capacitor C s_p, the capacitance between the second predicted C f_p, third prediction capacitance C d_p, compensation capacitor C and the other end coupled Connected to the preset potential. The second capacitor group 23 for generating an operational amplifier 25 based offset voltage (offset voltage) having an offset (offset) of V OS, is stored by the compensation capacitor C 1 of this offset. For details, please refer to the Taiwan Patent Application No. 100115437, which will not be repeated here.
第三B圖係為在放大階段時,本發明一實施例之能階參 考位準電路2之電路圖。如第三B圖所示,當進入放大階段時,便將第一電容組21和第二電容組23對稱地切換。具體來說,在放大階段時,控制補償電容C1耦接於運算放大器25的負輸入端以及第一處理電容Cf、第二處理電容Cs及第三處理電容Cd之間,以使用在預測階段儲存的偏移量來補償偏移電壓VOS,進而避免運算放大器25的增益誤差。如此一來,運算放大器25便能輸出精準的能階參考位準電壓Vbg,其不會因為電壓源VDD的改變而飄移。 The third B diagram is a circuit diagram of the energy level reference level circuit 2 of an embodiment of the present invention in the amplification stage. As shown in the third B diagram, when entering the amplification phase, the first capacitor group 21 and the second capacitor group 23 are symmetrically switched. Specifically, in the amplification phase, the control compensation capacitor C 1 is coupled between the negative input terminal of the operational amplifier 25 and the first processing capacitor C f , the second processing capacitor C s , and the third processing capacitor C d to be used. The offset stored in the prediction phase compensates for the offset voltage V OS , thereby avoiding the gain error of the operational amplifier 25. In this way, the operational amplifier 25 can output a precise energy level reference level voltage V bg which does not drift due to the change of the voltage source VDD.
另外,在放大階段時,第二處理電容Cs係被控制耦接於第二電晶體Q2的共集極端以及第一處理電容Cf之間。由於在預測階段時,第二處理電容Cs儲存了第二電晶體Q1的共集極的端電壓,因此在放大階段時,第二處理電容Cs便儲存了第一電晶體Q1共集極的端電壓(第一參考電壓)與第二電晶體Q2共集極的端電壓的電壓差,即△VQ(第二參考電壓)。運算放大器25具有一輸出端,且在放大階段時,第一處理電容Cf係串接於第二處理電容Cs以及運算放大器25之輸出端之間。由於在預測階段時,第一處理電容Cf儲存的電荷量為Cf*VQ1,因此此時第一處理電容Cf儲存的電荷量變成Cf*VQ1+Cs*△VQ,其中第一處理電容Cf的電容值可視為第一參考電壓VQ1之負溫度係數,且第二處理電容Cs的電容值可視為第二參考電壓△VQ之正溫度係數。第一處理電容Cf上的電荷量係與溫度獨立的,因此能產生溫度獨立之能階參考位準電壓Vbg。 In addition, during the amplification phase, the second processing capacitor C s is controlled to be coupled between the common collector terminal of the second transistor Q 2 and the first processing capacitor C f . Since the prediction stage, the second process stored capacitance C s second transistor Q common collector terminal voltage electrode 1, so at the time of amplification phase, a second capacitor C s will process the stored first transistor Q 1 Total The voltage difference between the terminal voltage of the collector (the first reference voltage) and the terminal voltage of the common collector of the second transistor Q 2 , that is, ΔVQ (second reference voltage). The operational amplifier 25 has an output terminal, and in the amplification phase, the first processing capacitor C f is connected in series between the second processing capacitor C s and the output terminal of the operational amplifier 25 . Since the amount of charge stored by the first processing capacitor C f is C f *VQ 1 during the prediction phase, the amount of charge stored by the first processing capacitor C f at this time becomes C f *VQ 1 +C s *ΔVQ, wherein The capacitance value of the first processing capacitor C f can be regarded as the negative temperature coefficient of the first reference voltage VQ 1 , and the capacitance value of the second processing capacitor C s can be regarded as the positive temperature coefficient of the second reference voltage ΔVQ . The amount of charge on the first processing capacitor Cf is temperature independent and therefore produces a temperature independent energy level reference level voltage Vbg .
值得一提的是,目前產生的能階參考位準電壓Vbg雖與溫度無關,但其值仍略大,為了符合低電壓環境操作,在放大階段時,已重置的第三處理電容Cd被控制電性並聯於第一處理電容Cf,用來均分第一處理電 容Cf上的電荷量,以降低能階參考位準電壓Vbg。藉由調整第三處理電容Cd之電容值,可依需求產生不同的能階參考位準電壓Vbg,因此能增加電路應用的彈性。 It is worth mentioning that the current energy level reference level voltage V bg is independent of temperature, but its value is still slightly larger. In order to comply with low voltage environment operation, the third processing capacitor C has been reset during the amplification phase. d is controlled to be electrically connected in parallel to the first processing capacitor C f for equally dividing the amount of charge on the first processing capacitor C f to reduce the energy level reference level voltage V bg . By adjusting the capacitance value of the third processing capacitor C d , different energy level reference level voltages V bg can be generated according to requirements, thereby increasing the flexibility of the circuit application.
在放大階段時,第二電容組23係與第一電容組21對稱地操作,意即控制第一預測電容Cs_p及第二預測電容Cf_p電性並聯,並耦接於第一電晶體Q1,且控制第三預測電容Cd_p耦接於預設電位而被重置。 When amplification stage, a second capacitor group 23 operating system 21 symmetrically with the first capacitor bank, which means control the first prediction of the second capacitor C s_p predicted capacitor C f_p and electrically connected in parallel and coupled to the first transistor Q 1 and controlling the third prediction capacitor C d_p to be coupled to the preset potential and being reset.
接著,請參考第四A、四B圖,係分別為在預測,放大階段時,本發明另一實施例之能階參考位準電路2之電路圖。由於上面的實施例中,兩階段所產生的能階參考位準電壓Vbg是不相同的,不適合連續操作,因此在本實施例中特別增加一維持電容CLoad,如圖所示,其耦接於運算放大器25的輸出端,用來穩定能階參考位準電壓Vbg之輸出。具體來說,在預測階段時,維持電容CLoad將運算放大器25的輸出斷開,以控制能階參考位準電壓Vbg維持在維持電容CLoad;而在放大階段時,維持電容CLoad才開始儲存電壓,如此運算放大器25之輸出端不會因切換階段而被干擾,進而維持較為穩定的輸出。 Next, please refer to FIG. 4A and FIG. 4B, which are circuit diagrams of the energy level reference level circuit 2 of another embodiment of the present invention in the prediction and amplification stages, respectively. In the above embodiment, the energy level reference level voltage V bg generated by the two stages is different and is not suitable for continuous operation. Therefore, in this embodiment, a sustain capacitor C Load is added , as shown in the figure. Connected to the output of the operational amplifier 25, used to stabilize the output of the energy level reference level voltage V bg . Specifically, during the prediction phase, the sustain capacitor C Load disconnects the output of the operational amplifier 25 to maintain the energy level reference level voltage V bg maintained at the sustain capacitor C Load ; while in the amplification phase, the capacitor C Load is maintained. The storage voltage is started so that the output of the operational amplifier 25 is not disturbed by the switching phase, thereby maintaining a relatively stable output.
最後,請參考第五A-五D圖,其為本發明又一實施例之能階參考位準電路之電路圖。雖與第三A-三B圖之電路機制類似,本實施例僅須一個電流源I及兩個預測電容(第一預測電容Cd_1及第二預測電容Cd_2),分別在預測階段和放大階段切換兩預測電容以儲存能階參考位準電壓Vbg。具體來說,在預測階段時,第一預測電容Cd_1耦接於運算放大器25的負輸入端及輸出端之間,其儲存了在放大階段時(第五A圖),運算放大器25所輸出的 能階參考位準電壓Vbg。 Finally, please refer to the fifth A-figure D diagram, which is a circuit diagram of an energy level reference level circuit according to still another embodiment of the present invention. Although similar to the circuit mechanism of the third A-B diagram, this embodiment only needs one current source I and two prediction capacitors (the first prediction capacitor C d_1 and the second prediction capacitor C d_2 ), respectively in the prediction phase and amplification. The two predictive capacitors are switched in stages to store the energy level reference level voltage V bg . Specifically, in the prediction phase, the first prediction capacitor C d_1 is coupled between the negative input terminal and the output terminal of the operational amplifier 25, and is stored in the amplification phase (fifth A picture), and the output of the operational amplifier 25 is output. The energy level reference level voltage V bg .
如第五B圖所示,於預測階段時,第二電晶體Q2不會連接至電流源I,同樣地,第一處理電容Cf及第二處理電容Cs係電性並聯,並耦接於第一電晶體Q1的共集極端,以儲存第一電晶體Q1共集極的端電壓,且補償電容C1會儲存運算放大器25的偏移電壓VOS。 As shown in FIG. 5B, during the prediction phase, the second transistor Q 2 is not connected to the current source I. Similarly, the first processing capacitor C f and the second processing capacitor C s are electrically connected in parallel and coupled. a first transistor connected to a common collector terminal of Q, to store a first transistor Q 1 common collector terminal voltage, and the compensation capacitor C 1 stores the operational amplifier offset voltage V OS 25 of.
接著,進入放大階段時,如第五C圖所示,第二處理電容Cs係被控制耦接於第二電晶體Q2的共集極端以及第一處理電容Cf之間,且第一預測電容Cd_1及第二預測電容Cd_2亦對稱地切換。具體來說,在放大階段時,已重置的第二預測電容Cd_2被控制電性並聯於第一處理電容Cf,用來均分第一處理電容Cf上的電荷量,以降低能階參考位準電壓Vbg。此時,便第二預測電容Cd_2儲存了運算放大器25所輸出的能階參考位準電壓Vbg,如第五D圖所示。如此循環切換第一預測電容Cd_1及第二預測電容Cd_2,便可獲得溫度獨立且無偏移量之能階參考位準電壓Vbg。 Then, when entering the amplification phase, as shown in FIG. 5C, the second processing capacitor C s is controlled to be coupled between the common collector terminal of the second transistor Q 2 and the first processing capacitor C f , and first The predicted capacitance C d_1 and the second predicted capacitance C d_2 are also switched symmetrically. Specifically, in the amplification phase, the reset second prediction capacitor C d_2 is electrically connected in parallel to the first processing capacitor C f for equally dividing the amount of charge on the first processing capacitor C f to reduce the energy level. Reference level voltage V bg . At this time, the second prediction capacitor C d_2 stores the energy level reference level voltage V bg outputted from the operational amplifier 25 as shown in the fifth D diagram. By cyclically switching the first prediction capacitor C d_1 and the second prediction capacitor C d_2 , a temperature-independent and offset-free energy level reference level voltage V bg can be obtained.
根據上述實施例,本發明所提出的低電壓能階參考位準電路,係使用相關性雙取樣的技術,利用兩組電容組在不同時間預測並補償電壓偏移量,以能在低電壓操作下,校正低增益放大器的增益誤差,如此一來,所產生的能階參考位準電壓不但與溫度獨立,也不受電壓源改變而飄移,進而提升能階參考位準電路的整體效率。 According to the above embodiment, the low voltage energy level reference level circuit proposed by the present invention uses the correlation double sampling technique to predict and compensate the voltage offset at different times by using two sets of capacitor groups to operate at a low voltage. Then, the gain error of the low gain amplifier is corrected, so that the generated energy level reference level voltage is not only independent of temperature, but also drifts without being changed by the voltage source, thereby improving the overall efficiency of the energy level reference level circuit.
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。 The above description is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the invention should be included in the following Within the scope of the patent application.
Q1‧‧‧第一電晶體 Q 1 ‧‧‧First transistor
Q2‧‧‧第二電晶體 Q 2 ‧‧‧Second transistor
21‧‧‧第一電容組 21‧‧‧First Capacitor Group
Cf‧‧‧第一處理電容 C f ‧‧‧first processing capacitor
Cs‧‧‧第二處理電容 C s ‧‧‧second processing capacitor
Cd‧‧‧第三處理電容 C d ‧‧‧third processing capacitor
23‧‧‧第二電容組 23‧‧‧Second capacitor group
Cs_p‧‧‧第一預測電容 C s_p ‧‧‧first predicted capacitance
Cf_p‧‧‧第二預測電容 C f_p ‧‧‧second predictive capacitance
Cd_p‧‧‧第三預測電容 C d_p ‧‧‧third predictive capacitance
25‧‧‧運算放大器 25‧‧‧Operational Amplifier
VOS‧‧‧偏移電壓 V OS ‧‧‧ offset voltage
C1‧‧‧補償電容 C 1 ‧‧‧Compensation capacitor
Vbg‧‧‧能階參考位準電壓 V bg ‧‧‧ energy level reference level voltage
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100143015A TWI453894B (en) | 2011-11-23 | 2011-11-23 | Low voltage bandgap reference (bgr) circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100143015A TWI453894B (en) | 2011-11-23 | 2011-11-23 | Low voltage bandgap reference (bgr) circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201322425A TW201322425A (en) | 2013-06-01 |
TWI453894B true TWI453894B (en) | 2014-09-21 |
Family
ID=49032492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100143015A TWI453894B (en) | 2011-11-23 | 2011-11-23 | Low voltage bandgap reference (bgr) circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI453894B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI739266B (en) * | 2020-01-06 | 2021-09-11 | 瑞昱半導體股份有限公司 | Compensation method for voltage drop using additional power mesh and circuit system thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352972A (en) * | 1991-04-12 | 1994-10-04 | Sgs-Thomson Microelectronics, S.R.L. | Sampled band-gap voltage reference circuit |
US6507179B1 (en) * | 2001-11-27 | 2003-01-14 | Texas Instruments Incorporated | Low voltage bandgap circuit with improved power supply ripple rejection |
TW200700956A (en) * | 2005-06-17 | 2007-01-01 | Ite Tech Inc | Bandgap reference circuit |
TW200814079A (en) * | 2006-09-13 | 2008-03-16 | Hynix Semiconductor Inc | Band gap reference circuit and temperature information output apparatus using the same |
TW200819949A (en) * | 2006-10-19 | 2008-05-01 | Faraday Tech Corp | Supply-independent biasing circuit |
-
2011
- 2011-11-23 TW TW100143015A patent/TWI453894B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352972A (en) * | 1991-04-12 | 1994-10-04 | Sgs-Thomson Microelectronics, S.R.L. | Sampled band-gap voltage reference circuit |
US6507179B1 (en) * | 2001-11-27 | 2003-01-14 | Texas Instruments Incorporated | Low voltage bandgap circuit with improved power supply ripple rejection |
TW200700956A (en) * | 2005-06-17 | 2007-01-01 | Ite Tech Inc | Bandgap reference circuit |
TW200814079A (en) * | 2006-09-13 | 2008-03-16 | Hynix Semiconductor Inc | Band gap reference circuit and temperature information output apparatus using the same |
TW200819949A (en) * | 2006-10-19 | 2008-05-01 | Faraday Tech Corp | Supply-independent biasing circuit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI739266B (en) * | 2020-01-06 | 2021-09-11 | 瑞昱半導體股份有限公司 | Compensation method for voltage drop using additional power mesh and circuit system thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201322425A (en) | 2013-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6038516B2 (en) | Voltage regulator | |
US7391264B2 (en) | Amplifier | |
KR102124241B1 (en) | Linear regulator | |
CN102158070B (en) | Electronic circuit with enhanced power supply rejection | |
US8680925B2 (en) | Amplifier arrangement and method for operating an amplifier arrangement | |
US9958890B2 (en) | Bias-starving circuit with precision monitoring loop for voltage regulators with enhanced stability | |
US9209822B2 (en) | A/D converter and semiconductor integrated circuit | |
US9146570B2 (en) | Load current compesating output buffer feedback, pass, and sense circuits | |
CN207198220U (en) | Voltage comparator | |
CN110673682B (en) | Digital low dropout regulator and control method thereof | |
JP2008197749A (en) | Series regulator circuit | |
JP5814542B2 (en) | Oscillator circuit | |
TWI453894B (en) | Low voltage bandgap reference (bgr) circuit | |
JP2007233657A (en) | Amplifier, step-down regulator using it, and operational amplifier | |
WO2009096192A1 (en) | Buffer circuit and image sensor chip comprising the same, and image pickup device | |
US9075424B2 (en) | Compensation scheme to improve the stability of the operational amplifiers | |
TWI396063B (en) | A low dropout regulator without esr compensation | |
JP2005316788A (en) | Power supply circuit | |
CN109933117B (en) | Reference voltage generator | |
US10126773B2 (en) | Circuit and method for providing a secondary reference voltage from an initial reference voltage | |
US9195249B2 (en) | Adaptive phase-lead compensation with Miller Effect | |
WO2021159693A1 (en) | Digital-to-analog conversion circuit | |
US20080231372A1 (en) | Dynamic biasing amplifier apparatus, dynamic biasing apparatus and method | |
JP2005073155A (en) | Phase compensation circuit | |
JP2009260490A (en) | Differential amplifier circuit and power supply circuit using the same |