TWI450526B - 在通信系統中處理信號的方法及系統 - Google Patents

在通信系統中處理信號的方法及系統 Download PDF

Info

Publication number
TWI450526B
TWI450526B TW096115276A TW96115276A TWI450526B TW I450526 B TWI450526 B TW I450526B TW 096115276 A TW096115276 A TW 096115276A TW 96115276 A TW96115276 A TW 96115276A TW I450526 B TWI450526 B TW I450526B
Authority
TW
Taiwan
Prior art keywords
matrix
module
ordered
stream
symbol
Prior art date
Application number
TW096115276A
Other languages
English (en)
Other versions
TW200814597A (en
Inventor
Joonsuk Kim
Sirikiat Lek Ariyavisitakul
Eric Ojard
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW200814597A publication Critical patent/TW200814597A/zh
Application granted granted Critical
Publication of TWI450526B publication Critical patent/TWI450526B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0656Cyclotomic systems, e.g. Bell Labs Layered Space-Time [BLAST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0631Receiver arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

在通信系統中處理信號的方法及系統
本發明涉及無線通信,更具體地說,涉及在多入多出(MIMO)系統中使用重新排序QRV-LST(layered space time,分層空時)檢測以進行有效處理的方法和系統。
在多入多出(MIMO)無線系統中,可以使用多個發射天線同時發射多個資料流程。MIMO接收器可以使用多個接收天線來分離(decouple)和檢測每個資料流程。用於MIMO傳輸的兩種主要方法包括奇異值分解(SVD)和分層空時(LST)處理,該LST也就是連續干擾消除(SIC)。
SVD能夠結合發射器天線陣列以及接收器天線陣列使用波束成形來創建虛擬通道或者固有通道(eigen channel),可通過這些通道發送多個資料流程而不會彼此干涉。LST/SIC能夠使用接收器天線陣列處理來檢測多個資料流程,每次檢測一個資料流程。對應每個檢測“層”,來自尚未檢測的流的干擾可以視為無效(nulled out),而來自已經檢測的流的干擾可以被消除或者減掉。
SVD中各個固有通道的信噪比(SNR)差異很大,這取決於MIMO通道矩陣的固有擴展(eigen-spread)。SVD同樣依賴自適應調制或者位元承載(bit loading),在具有較高SNR值的固有通道中獲得較大的資料傳輸速率,同時在具有較低SNR值的固有通道中支援較低的資料傳輸速率。在大多數調制類型不可用之時,SVD還將遭遇性能損失,不能達到各固有通道總和的峰值理論資料傳輸速率。例如,如果固有通道的最大資料傳輸速率要求1024 QAM調制類型,當因所要求的調制類型不可用而無法使用時,則不可能達到該最大資料傳輸速率。
LST/SIC方法也會因為誤差傳播(error propagation)而遭遇性能損失。例如,如果檢測到當前層出錯,這種誤差會蔓延到 其他層,增加了在隨後的層檢測到誤差的可能性。有一些方法例如垂直分層空時(VLST)可以通過對每個資料流程編碼來進行誤差防護。基於這種編碼處理,在解碼處理之後,可做出決定減去干擾。
另外,基於髒紙理論(dirty paper theory)的預編碼如Tomlinson-Harashima預編碼(THP)可用於在發射器端預消除干擾,不需要以更高的發射功率水平發射信號。THP方法可能會需要發射端知曉通道狀態。
比較本發明後續將要結合附圖介紹的系統,現有技術的其他局限性和弊端對於本領域的普通技術人員來說是顯而易見的。
本發明提供在多入多出(MIMO)系統中使用重新排序QRV-LST(分層空時)檢測以進行有效處理的方法和系統,如下面結合附圖以及申請專利範圍中所示和/或所述。
根據本發明的一方面,提供一種在通信系統中處理信號的方法,包括:接收多個有序信號,其中,每個有序接收信號包括包含在多個有序空間流中的資訊,每個空間流包括至少一個載頻;以及基於所述至少一個載頻的順序檢測包含在對應的一個有序空間流中的部分資訊的估算值。
優選地,所述方法還包括以指定的順序檢測當前有序空間流中的所述部分資訊的估算值,以及至少還檢測以下之一:前一空間流中所包含的前一部分資訊的和後一空間流中所包含的後一部分資訊的估算值。
優選地,所述指定的順序是根據所述至少一個載頻中的每一載頻而確定。
優選地,所述方法還包括基於以下至少一個矩陣來檢測所述資訊的估算值:通道估算矩陣、波束成形矩陣和轉置矩陣。
優選地,所述方法還包括為所述至少一個載頻中的每個載頻確定與所述通道估算矩陣、所述波束成形矩陣和所述轉置矩 陣中至少一個矩陣相關的對應值。
優選地,所述至少一個載頻中的每個載頻與用於接收所述多個有序接收信號的RF通道相關聯。
優選地,所述通道估算矩陣至少基於上三角矩陣或下三角矩陣之一來計算。
優選地,所述上三角矩陣和下三角矩陣包括大致相等的對角線項。
優選地,所述方法還包括通過計算以下兩項的差值來計算與第i個重新排序的空間流關聯的部分資訊的估算值:第一項:與第(N-i+1)個接收信號關聯的估算值,以及第二項:(i-1)個乘積的總和,其中每個乘積包括:第(N-j+1)個重新排序的空間流;和上三角矩陣和/或下三角矩陣中的第j行的第(N-i+1)個矩陣元素;將所計算的差值除以上三角矩陣或下三角矩陣的第(N-i+1)行中對角矩陣元素的值;其中,變數N表示重新排序的空間流中包含的空間流的數目;i和j表示標號,其取值範圍為1,2,...,N。
優選地,所述方法還包括通過將轉置矩陣進行轉置後乘以有序的多個空間流來確定重新排序的多個空間流。
根據本發明的另一方面,提供一種在通信系統中處理信號的系統,包括:能夠接收多個有序信號的電路,其中,每個有序接收信號包括包含在多個有序空間流中的資訊,每個空間流包括至少一個載頻;以及所述電路能夠基於所述至少一個載頻的順序檢測包含在對應的一個有序空間流中的部分資訊的估算值;所述電路能夠基於以下至少一個矩陣來檢測所述資訊的估算值:通道估算矩陣、波束成形矩陣和轉置矩陣;所述電路能夠為所述至少一個載頻中的每個載頻確定與所述通道估算矩陣、所述波束成形矩陣和所述轉置矩陣中至少一個矩陣相關的對應值。
優選地,所述電路能夠以指定的順序檢測當前有序空間流中的所述部分資訊的估算值,以及至少還檢測以下之一:前一 空間流中所包含的前一部分資訊的和後一空間流中所包含的後一部分資訊的估算值。
優選地,所述指定的順序是根據所述至少一個載頻中的每一載頻而確定。
優選地,所述至少一個載頻中的每個載頻與用於接收所述多個有序接收信號的RF通道相關聯。
優選地,所述通道估算矩陣至少基於上三角矩陣或下三角矩陣之一來計算。
優選地,所述上三角矩陣和下三角矩陣包括大致相等的對角線項。
優選地,所述電路能夠通過計算以下兩項的差值來計算與第i個重新排序的空間流關聯的部分資訊的估算值:第一項:與第(N-i+1)個接收信號關聯的估算值,以及第二項:(i-1)個乘積的總和,其中每個乘積包括:第(N-j+1)個重新排序的空間流;和上三角矩陣和/或下三角矩陣中的第j行的(N-i+1)個矩陣元素;將所計算的差值除以上三角矩陣或下三角矩陣的第(N-i+1)行中三角矩陣元素的值;其中,變數N表示重新排序的空間流中包含的空間流的數目;i和j表示標號,其取值範圍為1,2,...,N。
優選地,所述電路能夠通過將轉置矩陣進行轉置後乘以有序的多個空間流來確定重新排序的多個空間流。
比較本發明後續將要結合附圖介紹的系統,現有技術的其他局限性和弊端對於本領域的普通技術人員來說是顯而易見的。
本發明涉及多入多出(MIMO)通信系統中對重排QRV-LST(分層空時)檢測進行量化,以進行有效的處理的方法和系統。本發明的一些實施例能夠同時接收多個有序的信號。同時(concurrently)接收的每個有序信號可包括包含在有序的多個空間流(spatial stream)中的資訊。每個空間流可包括一個或多 個載頻或調(tone)。可以檢測出包含在對應的一個空間流中的資訊或者資料。可以為每個載頻確定檢測這些資訊的順序。
圖1是示例性的無線資料通信系統的框圖,本發明的實施例採用了該通信系統。參照圖1,示出了分佈系統(DS)110、擴展服務集(ESS)120和IEEE 802.x局域網(LAN)122。ESS 120可以包括第一基本服務集(BSS)102、第二基本服務集112。第一BSS 102可包括第一802.11 WLAN(無線局域網)站104,第二802.11 WLAN站106和接入點(AP)108。第二BSS 112可以包括第一802.11 WLAN站114、第二802.11 WLAN站116和接入點(AP)118。IEEE 802 LAN 122可以包括LAN站124和入口(portal)126。IEEE 802.11 WLAN站,或者IEEE 802.11 WLAN設備是與IEEE 802.11標準的至少一部分相相容的WLAN系統。
WLAN是一種通信網路環境,其包括可通過一個或多個上行和/或下行RF通道進行無線通信的多個WLAN設備。BSS 102或112可以是IEEE 802.11 WLAN的一部分,該IEEE 802.11 WLAN包括至少2個IEEE 802.11 WLAN站,如第一802.11 WLAN站104、第二802.11 WLAN站106和AP 108,它們可以是BSS 102的成員。BSS 102中的非AP站,即第一802.11 WLAN站104、第二802.11 WLAN站106,可以單獨與AP 108建立連接。AP如AP 108可以是乙太網交換器、網橋或WLAN中的其他設備。同樣,BSS 112中的非AP站,即第一802.11 WLAN站114、第二802.11 WLAN站116,可以單獨與AP 118建立連接。一旦第一802.11 WLAN站104和AP 108之間建立起連接,AP 108就將與第一802.11 WLAN站104相關的可抵達性資訊傳送給與ESS 120相連接的其他AP及入口,例如AP 118和入口126。隨後,WLAN站104將經由BSS 102無線傳輸資訊。接著,AP 118將與第一802.11 WLAN站104相關的可抵達性資訊傳送給BSS 112中的站。入口126(可以是乙太網交換器和LAN中的其他設備)將與第一802.11 WLAN站104相關的可抵達性資訊傳送給LAN 122中的站,如802 LAN站124。傳送與第一802.11 WLAN站104相關的可抵達性資訊使得不在BSS 102內、但與ESS 120相連接的WLAN站能夠與第一802.11 WLAN站104通信。
DS(分佈系統)110提供一種內部結構,該內部結構使一個BSS 102中的第一802.11 WLAN站104能夠與另一個BSS 112中的第一802.11 WLAN站114通信。DS 110還使一個BSS 102中的第一802.11 WLAN站104能夠與IEEE 802 LAN 122(如有線LAN)中的802 LAN站124進行通信。AP 108、AP 118或入口126給BSS 102、BSS 112或LAN 122中的站通過DS 110傳送資訊提供了一種途徑。BSS 102中的第一802.11 WLAN站104可以通過以下途徑將資訊無線傳送給BSS 112中的第一802.11 WLAN站114,首先第一802.11 WLAN站104將資訊無線發送給AP 108,AP 108再通過DS 110將該資訊發送給AP 118,然後AP 118將該資訊無線發送給BSS 112中的第一802.11 WLAN站114。BSS 102中的第一802.11 WLAN站104可以通過以下途徑將資訊無線傳送給LAN 122中的802 LAN站124,首先第一802.11 WLAN站104將資訊無線發送給AP 108,AP 108再通過DS 110將該資訊發送給入口126,然後入口126將該資訊發送給LAN 122中的802 LAN站124。DS 110可以使用無線通信(經由RF通道的)、有線通信(如IEEE 802乙太網)或者無線和有線通信的組合。
WLAN站或AP在傳輸資訊時可以使用一個或多個發射天線和一個或多個接收天線。使用多個發射天線和/或多個接收天線的WLAN站或AP稱為多入多出(MIMO)系統。
圖2是根據本發明的實施例所採用的典型MIMO系統的框圖。參見圖2,圖中示出了基帶處理器272、收發器274、RF前端280、多個接收天線276a,...,276n和多個發射天線278a,...,278n。收發器274包括處理器282、接收器284和發射器286。
處理器282可根據適用的通信標準來執行數位接收器和/或發射器的功能。這些功能包括但不限於,在相關協定參考模型中的較低層上執行的任務。所述任務還包括物理層會聚過程(PLCP)、物理介質依賴(PMD)功能和相關的層管理功能。基帶處理器272可根據適用的通信標準來實現功能。這些功能包括但不限於,與對通過接收器284接收的資料進行分析相關的任務,以及與生成將通過發射器286發射的資料相關的任務。這些任務還可以包括有關標準規定的介質訪問控制(MAC)層的功能。
接收器284可執行數位接收器功能,該功能包括但不限於快速傅立葉變換處理、波束成形處理、均衡、解映射、解調控制、解交錯、解鑿孔(depuncture)和解碼。發射器286可執行數位發射器的功能,包括但不限於:編碼、鑿孔(puncture)、交錯、映射、調制控制、反向快速傅立葉變換處理、波束成形處理。RF前端280通過天線276a、...、276n接收類比RF信號,將RF信號轉換為基帶,並生成與所接收的類比基帶信號對應的數位信號。該數位信號表示式可以是包含I和Q分量的複量。RF前端280還可以通過天線278a、...、278n發射類比RF信號,將數位基帶信號轉換為類比RF信號。
在操作中,處理器282接收來自接收器284的資料。處理器282將接收到的資料傳遞給基帶處理器272以進行分析和進一步處理。基帶處理器272可生成將由發射器286通過RF通道發射的資料。基帶處理器272可以將資料傳送給處理器282。處理器282生成多個位元(bits),這些位元將被傳遞給接收器284。處理器282可以產生控制信號,以便控制發射器286中調制處理操作和接收器中解調處理操作。
MIMO接收器能夠同時接收多個信號,每個信號可包括包含在多個空間流中的資訊。MIMO發射器能夠同時發射多個信號,每個信號可包括包含在多個空間流中的資訊。多個發射信號可同時從MIMO發射器發射出來,經由無線通信介質傳輸, 並作為多個接收信號由MIMO接收器同時接收。每個空間流可包括一個或多個載頻。這樣,一部分資訊與對應的多個空間流中的一個空間流相關聯。這部分資訊可由二進位資訊來表示,其中,在該二進位表示式中至少有部分位元與對應的一個或多個載頻相關聯。與單個載頻相關聯的那部分位元(bit)稱為碼元(symbol)。同時與多個載頻的集合相關聯的所有位元稱為正交頻分複用(OFDM)碼元(symbol)。多個載頻的集合可以稱為RF通道。
多個空間流可以按一定的方式排序,例如,對於指定的N個空間流(其中N表示空間流的總數)可以標識為第一空間流、第二空間流,...,第N空間流。類似地,也可以對多個發射信號、多個接收信號進行排序。有序的多個接收信號中,每個接收信號都對應於一個有序的發射信號。有序的多個發射信號可包括每個有序的空間流中的碼元的加權組合。對於有序的多個發射信號中指定的一個發射信號,用於組合碼元的權值隨著載頻的不同而變化。對於指定的載頻,用於組合碼元的權值隨著有序的多個發射空間流的不同而變化。與各個載頻相對應的多個權值可用波束成形矩陣來表示,其中每個權值可由波束成形矩陣中的矩陣元素來表示。
波束成形矩陣可以是三維矩陣,其中,第一維包括多個行。行的數目對應於有序的多個發射信號中發射信號的數量。每行對應於有序的多個發射信號中的一個發射信號。第二維包括多個列,列的數目對應於有序的多個空間流中空間流的數量。在指定的行中,每個列包括一個與有序的空間流中一個空間流對應的權值。行和列可定義一個二維波束成形矩陣,該二維波束成形矩陣包括與單個載頻相關聯的權值。第三維可包括多個二維的波束成形子矩陣,每個子矩陣包括與多個載頻集合中的對應載頻相關聯的權值。
在MIMO接收器上,對於指定的接收信號而言,有序的多個接收信號中的其他信號表現為干擾信號。在指定的接收信號 中,對於指定的包含著與指定空間流有關的資訊的碼元而言,與有序的多個空間流中的其他空間流關聯的碼元表現為干擾碼元。在分層空時(LST)MIMO通信系統中,有序的多個接收信號對應於多個層。在LST MIMO發射器上,每個二維波束成形子矩陣中的矩陣元素可構成上三角矩陣(upper diagonal matrix)或下三角矩陣(lower diagonal matrix)。上三角或下三角形式的矩陣使MIMO接收器能夠使用迫零(zero-forcing,簡稱ZF)法。
在ZF方法中,MIMO接收器能夠檢測指定空間流中第一碼元的估值,其不包括統計上顯著干擾的碼元。檢測完第一碼元的估值之後,MIMO接收器可檢測隨後的空間流中第二碼元的估值,其僅包括來自第一碼元的統計上的顯著干擾。在檢測了第一碼元的估值之後,就能夠確定第二碼元的估值。這個過程會繼續下去,並會檢測到當前空間流的當前碼元的估值,該當前碼元的估值包含著來自估值已經被確定的多個碼元的統計上顯著干擾。ZF法也可稱為連續干擾消除(SIC)。連續消除的處理導致所謂的碼元的可靠檢測。
在MIMO發射器上,包含已發射的第一碼元的空間流隨著載頻變化。例如,對於第一載頻,已發射的第一碼元可能與有序的多個空間流中的第一空間流關聯;而對於第二載頻,已發射的第一碼元可能與有序的多個空間流中的第二空間流關聯。結果,由於傳輸碼元的順序是基於載頻而變化的,這就要求MIMO接收器以對應的順序檢測有序的多個接收信號中的碼元。
在一些傳統的MIMO系統中,MIMO發射器使用的波束成形矩陣包括單個二維矩陣,其中,用於組合空間流的權值不隨著載頻發生變化。這就要求MIMO接收器使用SIC法首先檢測與同時接收的多個信號所包含的每個載頻的特定空間流關聯的碼元,再檢測與每個載頻中剩下的有序的空間流關聯的碼元。例如,要求MIMO接收器檢測每個載頻中有序的多個空 間流中的第一空間流的第一碼元。MIMO發射器會基於載頻改變用於發射所述第一碼元的空間流,這就要求MIMO接收器要臨時存儲或者緩存在接收到與特定空間流關聯的碼元之前接收的碼元。例如,對於同時接收的有序的多個信號所包含的指定載頻,如果MIMO發射器首先發射與第三空間流關聯的碼元,那麽,MIMO接收器需要緩存所接收的碼元,直到隨後接收到與第一空間流關聯的碼元為止。
這種緩存需求會導致在處理同時接收的有序的多個信號時反應時間延長。在上面的例子中,MIMO接收器嘗試避免緩存需求和/或嘗試先檢測與第三空間流關聯的碼元使反應時間延長,都會導致對碼元的檢測不可靠,因為所檢測的碼元可能包括干擾碼元,例如,來自第一和/或第二空間流的干擾。
本發明的一些實施例包括MIMO接收器對MIMO發射器作出回應,產生重新排序的空間流的方法和系統,其中,MIMO發射器使用了包括三維矩陣的波束成形矩陣。在該波束成形矩陣中,波束成形係數隨著不同載頻而改變。重新排序的多個空間流使得MIMO接收器能夠檢測包含在同時接收到的多個有序的信號中的每個載頻上的第一接收碼元。在本發明的一方面,MIMO接收器能夠可靠地檢測與同時接收到的多個信號關聯的每個載頻上的第一接收碼元,而不需要緩存所接收的與一個或多個載頻相關聯的碼元。示例性的MIMO發射器和/或MIMO接收器可包含在無線局域網(WLAN)站中。
圖3是本發明的一個實施例使用的波束成形的示意圖。參考圖3,圖中示出了移動發射終端302、移動接收終端322和多個RF通道342。移動發射終端302包括發射濾波係數模組V 304、第一空間流s1 306、第二空間流s2 308、第三空間流s3 310、以及多個發射天線312、314和316。移動接收終端322包括接收濾波係數模組Q* 324、第一目的流(destination stream)326、第二目的流328、第三目的流330以及多個接收天線332、334和336。例如,典型的移動終端可以是WLAN站104。對應的矩陣V可以與發射濾波係數模組V 304關聯。對應的矩陣Q* 可以與接收濾波係數模組Q* 324關聯。矩陣V和Q* 可用于進行波束成形和QRV-LST檢測。
在操作時中,發射天線312能夠發射信號x1 ,發射天線314能夠發射信號x2 、發射天線316能夠發射信號x3 。在波束成形操作中,每個發射信號x1 、x2 、x3 可以是有序的多個空間流s1 、s2 和s3 中至少一個的加權和的函數。可通過波束成形矩陣V確定權值:X=VSs 等式[1]
其中,X是3x1向量,表示有序的多個同時發射信號x1 、x2 和x3 ,例如:
Ss是3x1向量,表示有序的多個空間流s1 、s2 和s3 ,例如:
V是3x3矩陣,表示波束成形矩陣V,例如:
其中,每個矩陣元素vij [fk ]表示用於波束成形的權值。每個 矩陣元素vij [fk ]都於載頻fk 關聯,其中,fk 表示與RF通道關聯的多個載頻中的一個載頻,k表示下標,其取值範圍是:
其中,Nsc表示與RF通道關聯的載頻的數目,vij [f1 ]的值可能不等於vij [fm ]的值。
接收天線332能夠接收信號y1 ,接收天線334能夠接收信號y2 ,接收天線336能夠接收信號y3 。多個RF通道342可通過傳輸係數矩陣H在數學上表徵。傳輸係數矩陣H也稱為通道估算矩陣。
同時接收的多個有序信號y1 、y2 、y3 可表示為多個發射信號x1 、x2 、x3 與傳輸係數矩陣H的函數,如下面等式所示:Y=HX+N C 等式[5]
其中,Y可以是3x1向量,表示所接收的信號y1 、y2 和y3 ,例如:
H可以是3x3矩陣,表示傳輸係數矩陣,例如:
Nc可以是3x1向量,表示通信介質中存在的雜訊,例如:
對於QRV-LST檢測系統,可使用QRV分解表示矩陣H,如下等式:H=QRV* 等式[9]
其中Q和V表示酉矩陣,其中:QQ* =Q* Q=I 等式[10]
以及VV* =V* V=I 等式[11]
V* 表示波束成形矩陣V的埃爾米特轉置(Hermitian transpose),Q* 表示矩陣Q的埃爾米特轉置。矩陣R表示本發明一些實施例中的上三角矩陣或者下三角矩陣。與矩陣R關聯的每個矩陣元素都可以用實數表示。
本發明的一些實施例使用幾何平均分解(geometric mean decomposition,GMD),GMD也稱為統一通道分解(uniform channel decomposition,UCD)。在本發明使用GMD的實施例中,矩陣R中的對角矩陣元素可能是相等的,使rii =rjj ,其中,rii 表示第i個對角矩陣元素,rjj 表示與第j個對角矩陣元素關聯的值。
通過將等式[1]和等式[9]代入等式[5],可基於有序的多個空間流表示同時接收的多個有序信號,如以下等式:Y=QRV* VSS +NC 等式[12a]
Y=QRSS +NC 等式[12b]
有序的多個目的流,其中,i包括值1,2,...,N(N表示空間流的數目),可表示成目的流向量。目的流向量可表示成Nx1列向量,如下:
可基於有序的多個空間流來表示有序的多個目的流,如下等式所示:
其中,包含在目的流中的碼元的值可表示包含在空間流si 中的對應碼元的統計估值。
典型的NxN上三角矩陣R[fk ]可表示為三維矩陣,如下面的等式所示:
其中,每個rij [fk ]都與一個載頻fk 關聯,其中,fk 表示與RF通道關聯的其中一個載頻,k表示下標,k的取值範圍如等式[4a]所示。rij [f1 ]的值可能不等於rij [fm ]的值。
在本發明的一些實施例中,對於指定的載頻fk ,當MIMO發射器302首先發射第i空間流時,MIMO接收器322可檢測與第i空間流si 關聯的碼元,沒有與其他空間流關聯的碼元的干擾。這可以通過構造置換(permuted)波束成形矩陣來實現,如下面等式所示:
其中,Vi [fk ]表示等式[4]所示的波束成形V矩陣的第i列,P表示置換矩陣。典型的P矩陣可通過NxN矩陣來表示,其中,每列包括1個值等於1的元素以及包括N-1個值等於0的元素。此外,每行包括1個值等於1的元素以及包括N-1個值等於0的元素。例如,當P矩陣是單位矩陣:
置換波束成形矩陣可表示成下面的等式:
在本發明的一些實施例中,MIMO發射器在同時發射有序的多個信號X時,可使用置換波束成形矩陣。因此,等式[12a]可變換為以下等式:
Y=QRPS S +N C 等式[19b]
其中,有序的多個空間流SS 可表示成下面的等式:
等式[19a]和等式[19b]中矩陣乘積PSs表示重新排序的多個空間流Ss’:
在本發明的一些實施例中,MIMO接收器按照MIMO發射器發射碼元的順序,使用置換矩陣來檢測與多個重新排序的空間流中的每個空間流相關聯的碼元。這使得能夠進行可靠的QRV-LST檢測,不需要緩存與重新排序的其他空間流關聯的碼元。根據下面的等式,可基於有序的多個目的流來確定對應的重新排序目的流
相應地
其中,可根據下面的等式表示重新排序的多個目的流:
PT 表示置換矩陣P的轉置。
MIMO發射器會根據載頻改變置換矩陣P。例如,對於使用3個空間流且同時發射3個信號的MIMO發射器,與第一 載頻f1 關聯的置換矩陣P[f1 ]可表示成下面等式:
其中,MIMO發射器通過第一空間流s1 發射第一碼元,通過第二空間流s2 發射第二碼元,通過第三空間流s3 發射第三碼元。根據等式[21b]和[21c],對應的多個有序空間流可表示成下面的等式:
基於等式[19b],MIMO接收器能夠可靠地檢測與第一空間流關聯的第一碼元。在檢測第一碼元之後,MIMO接收器能夠可靠地檢測與第二空間流關聯的第二碼元。在檢測第一和第二碼元之後,MIMO接收器能夠可靠地檢測與第三空間流關聯的第三碼元。因為MIMO接收器可在第一時刻接收第一碼元,在接下來的第二時刻接收第二碼元,在隨後的第三時刻接收第三碼元,所以MIMO接收器能夠可靠地檢測第一碼元而不需要緩存第二和/或第三碼元。同理,MIMO接收器能夠可靠地檢測第二碼元而不需要緩存第一和/或第三碼元。MIMO接收器還能夠可靠地檢測第三碼元,而不需要緩存第一和/或第二碼元。
與第二載頻f2 關聯的置換矩陣P[f2 ],可表示成以下等式:
其中,MIMO發射器通過第三空間流s3 發射第一碼元,通過第一空間流s1 發射第二碼元,通過第二空間流s2 發射第三碼元。根據等式[21b]和[21c],對應的多個有序空間流可表示成下面的等式:
在這種情況下,MIMO接收器能夠可靠地檢測與第三空間流關聯的第一碼元。在檢測第一碼元之後,MIMO接收器能夠可靠地檢測與第一空間流關聯的第二碼元。在檢測第一和第二碼元之後,MIMO接收器能夠可靠地檢測與第二空間流關聯的第三碼元。因為MIMO接收器根據發射的順序來接收第一碼元、第二碼元和第三碼元,所以MIMO接收器能夠可靠地檢測第一碼元,而不需要緩存第二和第三碼元。同理,MIMO接收器能夠可靠地檢測第二碼元而不需要緩存第一和/或第三碼元。MIMO接收器還能夠可靠地檢測第三碼元,而不需要緩存第一和/或第二碼元。
與第三載頻f3 關聯的置換矩陣P[f3 ],可表示成以下等式:
其中,MIMO發射器通過第二空間流s2 發射第一碼元,通 過第三空間流s3 發射第二碼元,通過第一空間流s1 發射第三碼元。根據等式[21b]和[21c],對應的多個有序空間流可表示成下面的等式:
在這種情況下,MIMO接收器能夠可靠地檢測與第二空間流關聯的第一碼元。在檢測第一碼元之後,MIMO接收器能夠可靠地檢測與第三空間流關聯的第二碼元。在檢測第一和第二空間流之後,MIMO接收器能夠可靠地檢測與第一空間流關聯的第三碼元。因為MIMO接收器根據發射的順序來接收第一碼元、第二碼元和第三碼元,所以MIMO接收器能夠可靠地檢測第一碼元,而不需要緩存第二和第三碼元。同理,MIMO接收器能夠可靠地檢測第二碼元而不需要緩存第一和/或第三碼元。MIMO接收器還能夠可靠地檢測第三碼元,而不需要緩存第一和/或第二碼元。
圖4是根據本發明的一個實施例的LST MIMO系統中的收發器的示意圖,該收發器包括發射器和接收器。參考圖4,圖中示出了發射器400、處理器460、記憶體462、多個發射天線415a,...,415n、接收器401以及多個接收天線435a,...,435n。發射器400包括編碼模組402、鑿孔(puncture)模組404、空間剖析模組405、多個頻率交錯模組406a,...,406n、多個星群映射(constellation mapper)模組408a,...,408n、波束成形矩陣V模 組412、多個逆向快速傅立葉變換(IFFT)模組410a,...,410n、多個插入保護間隔(GI)視窗模組411a,...,411n以及多個帶數位-類比轉換的無線前端(REF/DAC)模組414a,...,414n。
接收器401包括多個帶類比-數位轉換的無線前端(RFE/ADC)434a,...,434n、多個移動(remove)GI視窗模組431a,...,431n、多個快速傅立葉變換(FFT)模組430a,...,430n、通道估算模組442、均衡模組432、多個加法模組444a,...,444n、多個星群解映射模組428a,...,428n、多個頻率解交錯模組426a,...,426n、空間交錯(interlacer)模組425、解鑿孔模組424以及解碼模組422。接收器401還包括編碼模組446、鑿孔模組448、頻率交錯模組450、映射模組452、矩陣減法模組454。
發射器400可包括合適的邏輯、電路和/或代碼,能夠同時發射多個有序信號,與發射器286基本相似。接收器401包括合適的邏輯、電路和/或代碼,能夠同時接收多個有序信號,與接收器284基本相似。
編碼模組402包括合適的邏輯、電路和/或代碼,能夠通過應用前向糾錯(FEC)技術例如二進位卷積碼(BCC)來轉換所接收的二進位輸入資料塊。應用FEC技術(也稱為“通道編碼”),在經由RF通道發射資料之前,通過向輸入資料添加冗餘資訊,可以提高接收端成功復原發射資料的能力。二進位輸入資料塊的位元的數目與轉換後資料塊中的位元的數目之比,稱為“編碼率”。編碼率R可用符號ib /tb 限定,其中,tb 表示總位元 數,其包括編碼位元組,而ib 表示位元組tb 中包含的資訊位元的數目。tb -ib 的位元數表示冗餘位元,冗餘位元使得接收器284能夠對資訊傳輸過程中所產生的誤差進行檢錯和糾錯,例如通過無線通信介質將資訊從發射器302傳輸到接收器322的過程中所引起的誤差。
冗餘位元數目的增加,使接收器對所接收的資訊位元中的誤差的檢測和糾正能力增加。冗餘位元數目的增加會增加tb 值,而不會增加資訊位元ib 的數目,從而降低了編碼率R。與較高的編碼率R相比,較低的編碼率R稱為“較健壯的”編碼率。較健壯的編碼率也相應于更強的誤差防護方案。因此,更健壯的誤差防護方案使接收器檢測與糾正所接收的資訊位元的誤差的能力更強。冗餘位元數目的減少會減少tb 值,而不會減少資訊位元ib 的數目,從而提高了編碼率R。與較低的編碼率R相比,較高的編碼率R稱為“較虛弱的”編碼率。
本發明不局限於BCC,本發明可採用任何一種編碼技術如Turbo編碼、低密度奇偶校驗(LDPC)編碼和/或各種塊編碼技術如裏德-所羅門(Reed-Solomon)FEC等。
鑿孔模組404包括合適的邏輯、電路和/或代碼,能夠從所接收的轉換二進位輸入資料塊中移除冗餘位元,從而改變所接收的編碼資料的編碼率。例如,對於所接收的基於編碼率R=1/2的BCC編碼的每個連續4位元的塊,接收資料可包括2個資訊位元和2個冗餘位元。例如,鑿孔模組304通過移除所接 收的4個位元中的1個冗餘位元,可將編碼率從R=1/2變化到R=2/3。
空間剖析模組405包括合適的邏輯、電路和/或代碼,能夠將與單個位元流關聯的資料位元塊分割成多個資料位元剖析塊,每個資料位元剖析塊都與對應的多個剖析位元流關聯。每個剖析位元流可稱為空間流。空間流包括可在MIMO系統中進行處理的可標識位元塊。
空間剖析模組405能夠接收與單個位元流bdb 關聯的資料位元塊,並生成多個剖析位元流bst [i],其中,i是標識多個剖析位元流中的特定剖析位元流的標號。標號i的取值範圍如下表示:
其中,NSS 表示空間流的數目,例如,NSS =2將表明MIMO系統包括2個空間流。
每個剖析位元流bst [i]可包括單個位元流bdb 中包含的部分位元。單個位元流bdb 可包括共同地包含於對應的多個剖析位元流中的多個位元。
本發明的一些實施例不局限於將單個位元流的位元分配到多個空間流的特定方法。例如,對於從單個位元流接收的NTOT 個位元的塊,空間剖析模組405將大約NTOT /NSS 個位元分為到NSS 個空間流中的每個空間流。例如,來自位元流bdb 的第一N TOT/NSS 個位元的塊將分配到空間流1,第二NTOT /NSS 個位元 的塊將分配到空間流2,第NSS NTOT /NSS 個位元的塊將分配到空間流NSS 。另外,來自位元流bdb 的第k位元(k表示與位元流bdb 關聯的資料位元塊中的位元的標號)將分配到空間流i,如下式所示:ki =floor(k/NSS )+k mod(NSS ) 等式[29]
其中,ki 表示分配到第i空間流的位元的標號,floor(x)表示不大於x的整數值,y mod(x)表示用x值對y取模(the modulus x value for y)。
頻率交錯模組406a包括合適的邏輯、電路和/或代碼,能夠重新排序與所接收的空間流關聯的位元塊中的位元的順序。在重新排列與所接收的空間流關聯的位元塊中的位元的順序時,頻率交錯模組406a可使用多次置換(permutations)。重排之後,與第i空間流bst [i]int 關聯的交錯的位元塊,可分為多個子塊bsub [fk ],其中標號fk 表示載頻。所述載頻可對應於多個載頻中的一個載頻,這些載頻能用於例如通過無線通信介質傳輸子塊中包含的位元表示(representation)。所述的位元表示也稱為碼元。每個子塊bsub [fk ]可包括塊bst [i]int 中的一部分位元。位元塊bst [i]int 可包括共同包含在對應的多個子塊bsub [fk ]中的多個位元,k的取值範圍與對應的RF通道有關。
頻率交錯模組406n包括合適的邏輯、電路和/或代碼,能夠重新排序與所接收的空間流關聯的位元塊中的位元的順序,如以上對頻率交錯模組406a所做討論。在本發明的一些 實施例中,頻率交錯模組406a,...,406n的數目等於空間流的數目NSS
星群映射模組408a包括合適的邏輯、電路和/或代碼,能夠將所接收的與空間流關聯的位元映射到一個或多個碼元。所接收的位元可以是基於FEC編碼者,可稱為編碼位元。星群映射模組408a能夠接收一個或多個編碼位元bsym [fk ],並基於與空間流關聯的調制類型生成碼元sym[fk ]。可基於調制類型確定與bsym [fk ]關聯的編碼位元的數量。碼元表示sym[fk ]可以是複數,包括同相分量(I)和正交分量(Q)。與一個或多個編碼位元bsym [fk ]關聯的每個碼元sym[fk ],可以與用於通過無線通信介質傳輸碼元表示的載頻fk 關聯,其中k是標識與第k載頻關聯的頻率的標號。
示例性調制類型包括二進位相移鍵控(BPSK)、正交相移鍵控(QPSK)、16級正交幅度調制(16 QAM)、64級正交幅度調制(64 QAM)和256級正交幅度調制(256 QAM)。對於BPSK調制類型,對於每個載頻fk ,與一個碼元關聯的編碼位元的數目可表示為:bsym [fk ]=1。對於QPSK調制類型,對於每個載頻fk ,與一個碼元關聯的編碼位元的數目可表示為:bsym [fk ]=2。對於16 QAM調制類型,對於每個載頻fk ,與一個碼元關聯的編碼位元的數目可表示為:bsym [fk ]=4。對於64 QAM調制類型,對於每個載頻fk ,與一個碼元關聯的編碼位元的數目可表示為:bsym [fk ]=6。對於256 QAM調制類型,對於每個載頻fk , 與一個碼元關聯的編碼位元的數目可表示為:bsym [fk ]=8。
空間流可包括多個載頻NSD ,例如20MHz的RF通道包括可用於傳輸編碼位元的NSD =56載頻,f-28 ,f-27 ,...,f-1 ,f1 ,...,f27 和f28 ,而40MHz的RF通道包括可用於傳輸編碼位元的NSD =112載頻,f-56 ,f-55 ,...,f-1 ,f1 ,...,f55 和f56 。在MIMO系統中,碼元sym[f-28 ],sym[f-27 ],...,sym[f-1 ],sym[f1 ],...,sym[f27 ],sym[f28 ],或者sym[f-56 ],sym[f-55 ],...,sym[f-1 ],sym[f1 ],...,sym[f55 ],sym[f56 ]共同稱為正交頻分複用(OFDM)碼元。與一個OFDM碼元關聯的編碼位元的數量NCBPS =NSD * bsym [fk ]。與該OFDM碼元關聯的資料位元的數目NDBPS =R* NSD * bsym [fk ],其中R稱為編碼率。
星群映射模組408n包括合適的邏輯、電路和/或代碼,能夠將所接收的與空間流關聯的位元映射到一個或多個碼元,如以上對星群映射模快408a所做討論。在本發明的一些實施例中,星群映射模組408a...408n的數量等於空間流的數量NSS
波束成形矩陣V模組412包括合適的邏輯、電路和/或代碼,能夠處理所接收的多個空間流,並生成對應的將由MIMO發射器302同時發射的多個信號。MIMO接收器322能夠接收包含在多個空間流中的資訊。所產生的每個對應信號都包括所接收的空間流的至少一部分的至少一個加權和。可計算對應於每個載頻fk 的加權和。波束成形矩陣V模組412能夠基於波束成形矩陣V生成對應的多個信號,所述波束成形矩陣V基 本上如等式[4]所示。
IFFT模組410a可包括合適的邏輯、電路和/或代碼,用於將信號從頻域表示X[f]轉換成時域表示X(t)。對應的時域信號包括多個OFDM碼元。可應用IFFT演算法將OFDM碼元計算成與對應信號X(t)相關聯的頻率分量。例如,當處理20MHz的RF通道時,IFFT模組410a能夠使用64點IFFT演算法:而在處理40MHz的RF通道時,可使用128點IFFT演算法。一種計算OFDM碼元的示例性方法可在IEEE標準802.11a-1999(R 2003)條款17.3.5.9中找到。
時域表示X(t)包括可多個由發射器302同時發射的信號xj (t)的時域表示,如下式所示:
其中,NTX 表示發射天線的數目。
多個信號xj (t)中每個信號都包括與MIMO發射器302同時發射的NTX 個信號中的第j個信號xj (t)關聯的多個OFDM碼元。OFDM碼元可以在同時發射的NTX 個信號中的第j個信號xj (t)中連續地發射。每個OFDM碼元可跨越一個時間段TSYM ,時間段TSYM 稱為碼元區間,例如TSYM =4微秒(us)。
IFFT模組410n包括合適的邏輯、電路和/或代碼,用於將信號的頻域表示X[f]轉換成時域表示X(t),如以上對IFFT模 組410a所做討論。在本發明的一些實施例中,IFFT模組410a,...,410n的數量等於所產生的信號的數量NTX
插入GI視窗模組411a包括合適的邏輯、電路和/或代碼,能夠在MIMO發射器302發射的多個信號xj (t)中的一個信號內插入保護間隔。保護間隔TGI ,表示當前OFDM碼元區間的末尾與下一個OFDM碼元區間的開始之間的時間間隔。當前OFDM碼元的碼元區間的末尾後可能具有保護間隔持續時間TGI ,例如TGI =0.8微秒,位於保護間隔持續時間後面的可能是對應於隨後的OFDM碼元的碼元區間。
插入GI模組411n包括合適的邏輯、電路和/或代碼,能夠在MIMO發射器302發射的多個信號xj (t)中一個信號內中插入保護間隔,如以上對插入GI模組411a所做討論。在本發明的一些實施例中,插入GI視窗模組411a,...,411n的數目等於生成的信號的數量NTX
RFE/DAC模組414a包括合適的邏輯、電路和/或代碼,能夠將所接收的信號轉換成類比RF信號。例如,所接收的信號包括I和Q分量。RFE/DAC模組414a能夠接收包含資訊或者資料的數位表示的基帶信號。RFE/DAC模組414a能夠使用這些資訊來生成類比RF信號,這些類比RF信號通過振幅、相位和/或頻率表徵。RFE/DAC模組414a能夠通過使用一個或多個RF載波信號對所接收的基帶信號進行調制來生成類比RF信號。經調制的信號可通過發射天線415a發射。例如,可 利用RFE/DAC模組414a生成20MHz的RF通道信號和/或40MHz的RF通道信號。
RFE/DAC模組414n包括合適的邏輯、電路和/或代碼,能夠將所接收的信號轉換成類比RF信號,如以上對RFE/DAC模組414a所做討論。RFE/DAC模組414n生成的調制信號可通過天線415n發射。在本發明的一些實施例中,RFE/DAC模組414a,...,414n的數量等於所產生的信號的數量NTX
RFE/ADC模組434a包括合適的邏輯、電路和/或代碼,能夠將所接收的類比RF信號轉換成基帶信號,所產生的基帶信號包括所接收的類比RF信號中包含的資訊或資料的數位表示。類比RF信號可通過接收天線435a接收。所接收的類比RF信號以振幅、相位和/或頻率來表徵。例如,數位表示可包括I和Q分量。RFE/ADC模組434a能夠使用一個或多個RF載波信號來解調所接收的類比RF信號。RFE/ADC模組434a通過使用低通濾波器和/或帶通濾波器對解調信號進行濾波,提取基帶信號。例如,RFE/ADC模組414a可用於接收20MHz的RF通道信號和/或40MHz的RF通道信號。
RFE/ADC模組434n包括合適的邏輯、電路和/或代碼,能夠將所接收的類比RF信號轉換成基帶信號,如以上對RFE/ADC模組434a所做討論。類比RF信號可通過天線435n接收。在本發明的一些實施例中,RFE/ADC模組434a,...,434n的數量等於所接收的信號的數量NRX
移除GI視窗模組431a包括合適的邏輯、電路和/或代碼,能夠移除MIMO接收器322接收的多個信號中的一個信號中的保護間隔。保護間隔TGI 如以上對插入GI視窗模組411a所做討論中的保護間隔。
移除GI視窗模組431n包括合適的邏輯、電路和/或代碼,能夠移除MIMO接收器322接收的多個信號中的一個信號中的保護間隔,如以上對移除GI視窗模組431a所做討論。在本發明的一些實施例中,移除GI視窗模組431a,...,431n的數量等於所接收的信號的數量NRX
FFT模組430a包括合適的邏輯、電路和/或代碼,能夠將信號的時域表示X(t)轉換成信號的頻域表示X(f)。信號X(t)和X(f)如以上對IFFT模組410a所做討論中提及。FFT模組430使用FFT演算法來將OFDM碼元的時域表示轉換成頻域表示,這種頻域表示包括多個碼元,其中每個碼元與載頻fk 相關聯。例如,當處理20MHz的RF通道時,FFT模組430a可以使用64點FFT演算法;而在處理40MHz的RF通道時,可以使用128點FFT演算法。
FFT模組430n包括合適的邏輯、電路和/或代碼,能夠將信號的時域表示X(t)轉換成信號的頻域表示X(f),如以上對FFT模組430a所做討論。在本發明的一些實施例中,FFT模組430a,...,430n的數量等於所接收的信號的數量NRX
通道估算模組442包括合適的邏輯、電路和/或代碼,能夠 使用包含在所接收信號中的前同步碼資訊來計算與通道估算矩陣H有關的值。通道估算矩陣H如等式[7]所示。前同步碼包括確定的資訊,如可適用的IEEE 802.11標準所制定的。MIMO發射器302能夠在同時發射的多個有序信號中的每個信號中傳輸前同步碼。接收到對應的同時接收的多個有序信號之後,MIMO接收器322估算與前同步碼資訊有關的值,將這些值與預期值比較。通道估算模組442基於這種比較計算出等式[7]所示的通道估算矩陣H中的係數hij 的值。
均衡模組432包括合適的邏輯、電路和/或代碼,用於計算多個被計算的流向量的估算值。被計算的信號向量包括多個已估算的信號值,如下式所示:
均衡模組432能夠使用計算出的、如等式[7]所示的通道估算矩陣H,和/或在通道估算矩陣H上執行如等式[9]所示QRV分解和/或GMD分解。均衡模組432在計算與被計算的信號向量有關的估算值時,會應用如等式[14a]所示的與接收濾波係數模組324相關的矩陣Q*
加法模組444a包括合適的邏輯、電路和/或代碼,能夠對與輸入信號對應數位表示進行二進位加法和/或二進位減法操作,以生成輸出信號,該輸出信號包括對應的輸入信號經加法 和/或減法操作後的二進位表示。在本發明的一些實施例中,加法模組444a接收2個輸入信號,並生成輸出信號,其中,該輸出信號包括這2個輸入信號的相減後的二進位表示。在這些實施例中,輸入信號中一個信號可表示與第i個被計算信號有關的估值,另一個輸入信號(可用於連續干擾消除(SIC))表示與第i至第j個目的流中一個或多個目的流有關的估算值,其中,j表示用於參考一個或多個目的流的標號。加法模組444a的輸出信號Zi 包括按照下式計算的二進位表示:
加法模組444n包括合適的邏輯、電路和/或代碼,能夠對與輸入信號對應數位表示進行二進位加法和/或二進位減法操作,以生成輸出信號,如以上對加法模組444a所討論。在本發明的一些實施例中,加法模組444a,...,444n的數量等於空間流的數量NSS
星群解映射模組428a包括合適的邏輯、電路和/或代碼,能夠基於調制類型,將所接收的與目的流有關的碼元轉換成對應的由所接收的碼元表示的位元。星群解映射模組428a可接收目的碼元d_sym[fk ],以及基於與目的流有關的調制類型,確定對應的二進位表示的位元c_bsym [fk ]。目的碼元d_sym[fk ]的表示可以是包含I和Q分量的複數。載頻fk 是與RF通道有關的多個載頻中的一個載頻,其中k是第k載頻有關的頻率的 標識。示例性調制類型、目的碼元d_sym[fk ]和對應的二進位表示c_bsym [fk ]之間對應關係,如以上對頻率交錯模組406a所做討論。
星群解映射模組428n包括合適的邏輯、電路和/或代碼,能夠基於調制類型,將所接收的與目的流有關的碼元轉換成對應的由所接收的碼元表示的位元,如以上對星群解映射模組428a所做討論。在本發明的一些實施例中,星群解映射模組428a,...,428n的數量等於空間流的數量NSS
頻率解交錯模組426a包括合適的邏輯、電路和/或代碼,能夠重排與所接收的目的流有關的位元塊中的位元的順序。頻率解交錯模組426a在重排與所接收的目的流有關的位元塊中的位元的順序時,使用多次置換。頻率解交錯模組426a能夠接收多個子塊c_bsub [fk ]中的位元,重排各個子塊的位元以形成對應的與第i目的流c_bst [i]int 有關的位元塊,其中標號fk 表示載頻。位元塊c_bst [i]int 包括多個共同包含在對應的多個子塊c_bsub [fk ]的多個位元,k的取值範圍與對應的RF通道有關。
頻率解交錯模組426n包括合適的邏輯、電路和/或代碼,能夠重排與所接收的目的流有關的位元塊中的位元的順序,如以上對頻率解交錯模組426a所做討論。在本發明的一些實施例中,頻率解交錯模組426a,...,426n的數量等於空間流的數量NSS
空間交錯模組425包括合適的邏輯、電路和/或代碼,能夠 將資料位元的多個剖析塊合併成與單個位元流有關的單個資料位元塊,其中,每個資料位元剖析塊都與對應的多個剖析位元流相關。每個剖析位元流都與一個目的流相關聯。
空間交錯模組425能夠接收多個剖析位元流c_bst [i],其中i是表示多個剖析位元流中某個特定剖析位元流的標號。標號i的取值範圍如以上對等式[28]所做討論相同。多個剖析位元流可合併成對應的單個位元流c_bdb 。單個位元流c_bdb 可包括多個共同包含在對應的多個位元流c_bst [i]中的多個位元。
本發明實施例不局限於特定的組合多個目的流中的位元以形成單個位元流的方法。例如,對於從單個位元流上接收的NTOT 個位元的塊,空間交錯模組425能夠從NSS 個目的流中的每個目的流中提取出約NTOT /NSS 個位元的塊。例如,可從剖析位元流c_bst [1]中獲取第一個NTOT /NSS 個位元的塊,從剖析位元流c_bst [2]中獲取第二個NTOT /NSS 個位元的塊,從剖析位元流c_bst [NSS ]中獲取第NSS 個NTOT /NSS 個位元的塊。
解鑿孔模組424包括合適的邏輯、電路和/或代碼,能夠向所接收的資料位元塊中插入空位元(null bit)。插入空位元可用來調整所接收的資料位元塊中包含的編碼資料的編碼率。調整後的編碼率可表示為一個確定的編碼率,例如R=1/2。例如,如果與所接收的資料位元塊有關的編碼率是R=3/4,解鑿孔模組424在所接收的資料位元塊中的每4位元的塊中插入2個空位元,以產生包括6個位元的解鑿孔資料塊,該解鑿孔資料 塊的編碼率為R=1/2。
解碼模組422包括合適的邏輯、電路和/或代碼,能夠將二進位資料的編碼塊恢復成未編碼的二進位資料。例如,解碼模組422能夠使用FEC來檢測和/或糾正所接收的二進位資料編碼塊中的誤差。檢測和/或糾正所接收的二進位資料的編碼塊中的誤差使接收器322能夠接收二進位資料塊,該二進位資料塊對應於發射器302通過無線通信介質342發射的二進位資料塊。
本發明的一些實施例使用多種FEC方法,例如基於BCC或LDPC的解碼、Turbo解碼和/或各種塊解碼技術如裏德-所羅門FEC。
矩陣減法模組454包括合適的邏輯、電路和/或代碼,能夠計算SIC向量,包括多個SIC輸入信號,如等式[32]所示。可以基於與多個有序目的流和/或多個重新排序目的流有關的估算值來計算該向量。
矩陣減法模組454使用上三角或者下三角矩陣R,如等式[15]所示。矩陣減法模組454基於矩陣R以及對應的單位元矩陣I,通過計算Hadamard乘積R.I能夠計算矩陣diag(R),其中,“.”是Hadamard乘積操作,矩陣diag(R)包括來自矩陣R的對角矩陣元素。矩陣減法模組454通過從矩陣R減去由Hardamard乘積形成的矩陣,可以計算剩餘矩陣RRES ,如下式所示: RRES =R-R.I 等式[33]
矩陣減法模組454通過計算剩餘矩陣與表示與多個有序目的流或者多個重新排序目的流相關的向量的乘積(multiplicative product),來計算SIC向量
編碼器446與以上所討論的編碼器402相同,鑿孔模組448與以上所討論的鑿孔模組404相同,頻率交錯模組450與以上所討論的頻率交錯模組406a相同,星群映射模組452與以上所討論的星群映射模組408a相同。
處理器460包括合適的邏輯、電路和/或代碼,能夠基於載頻fk 計算與波束成形因數Vfj [fk ]有關的值,如等式[4]所示。處理器460能夠計算對應於通道估算矩陣H的值,如等式[7]所示。處理器460可使等化器432在計算至少與一部分目的流有關的估算值時能夠選擇分解(decomposition)方法並執行所選擇的分解方法。在本發明的一些實施例中,處理器460能使等化器432計算一個或多個轉置矩陣P,如等式[17]所示,這使得接收器401能夠執行重新排序的QRV-LST檢測。
處理器460還能使發射器400根據適用的通信標準執行發射功能。處理器460也能使接收器401根據適用的通信標準執行接收功能。這些功能包括但不限於在相應的協定參考模型中的下層執行的任務如物理層(PHY)和介質訪問控制(MAC)層功能。例如,這些任務包括物理層功能如物理層會聚協定(PLCP)、物理介質依賴(PMD)和/或有關的層管理功能。
處理器460也能夠生成源資訊位元,和/或提取所存儲的源資訊位元,這些源資訊位元隨後被編碼、映射和傳輸例如通過無線介質傳輸。處理器460也能夠接收資訊位元和/或處理所接收的資訊位元。所處理的資訊位元可以被存儲,隨後至少一部分被運行在處理器460上的應用程式使用。所存儲的和/或所處理的資訊隨後被編碼、映射和傳輸,例如通過無線通信介質傳輸。
記憶體462包括合適的邏輯、電路和/或代碼,可用於存儲和/或提取資訊和/或表示資訊,例如位元的二進位表示。記憶體462能夠存儲源資訊位元。所存儲的源資訊位元可分配到記憶體462中的物理源以進行存儲。所存儲的源資訊位元隨後是可提取的。可通過記憶體462輸出所提取的源資訊位元,並將其傳輸到與記憶體462通信地直接連接和/或間接連接的其他器件、元件和/或子系統。記憶體462能夠保留所存儲的源資訊位元和/或讓所存儲的源資訊位元可用於隨後的提取,直到釋放分配給該記憶體的資源為止。可以基於從記憶體462刪除所存儲的源資訊位元的接收指令來釋放物理資源,或者基於將物理資源分配用於存儲隨後的二進位資訊的接收指令來釋放物理資源。記憶體462可以使用多種存儲介質技術如易失記憶體例如隨機存取記憶體(RAM)和/或永久性記憶體如電可擦除可編程唯讀記憶體(EEPROM)。
在發射器400的操作過程中,處理器460能夠計算一組波 束成形因數,波束成形V矩陣412使用所述波束成形因數來同時生成多個有序信號。通過組合至少一部分空間流,波束成形因數可用于生成多個有序信號中的每個信號。處理器460將指令傳輸到記憶體462,讓記憶體462提取所存儲的源資訊位元。所提取的源資訊位元可傳輸給編碼模組402。編碼模組402使用BCC來生成基於確定的編碼率的編碼資訊位元。鑿孔模組404接收包含編碼資訊位元的位元塊,改變位元塊的編碼率,例如應用更弱的編碼率。空間剖析模組塊405剖析位元塊,以將一部分位元塊分配到Nss個空間流中的每個空間流,例如Nss=3表示有3個空間流。
每個空間流的頻率交錯器406a能重新排列空間流中的位元順序。重排後的位元由載頻存儲,其中,多個載頻的集合構成RF通道,用於通過無線通信介質342傳輸資訊。對應的星群映射器408a將所存儲的位元組合以形成與載頻對應的一個或多個碼元。多個載頻的同時形成的碼元集合稱為OFDM碼元。
波束成形V矩陣412可基於波束成形因數,通過組合與至少一部分空間流關聯的碼元,同時生成多個有序信號。同時生成的多個有序信號中的每一個可以是基帶信號,該基帶信號包含組合成同時生成的多個信號中的多個碼元所包含的資訊的數位表示。與波束成形因數關聯的值隨著空間流、所生成的信號和/或載頻而變化。同時生成的信號的數目對應於發射天線 415a,...,415n的數量NTX 。例如,NTX =3表示有3個同時生成的信號。
對於多個同時生成的有序信號中的每個信號,IFFT模組410a將所生成的信號的頻域表示轉換成相應的時域表示。對應的插入GI視窗模組411a在連續OFDM碼元之間插入時間間隔,所述OFDM碼元由對應的生成信號傳輸。RFE/DAC模組414a將所生成的信號的數位表示轉換成類比表示。多個RFE/DAC模組414a,...,414n根據RF通道調制相應的生成信號,所述RF通道可用於通過無線通信介質傳輸包含在有序的多個同時生成信號中的資訊。
對於接收器401,處理器460能夠計算與通道估算矩陣H關聯的值,通道估算矩陣H可以被通道估算模組442使用。均衡模組432使用與H關聯的值、基於同時接收的多個信號計算包含在有序的多個目的流中的碼元的估算值。
多個RFE/ADC模組434a,...,434n可通過對應的多個接收天線435a,...,435n同時接收有序的多個類比RF信號。同時接收的信號的數目對應於接收天線435a,...,435n的數目NRX 。例如,對於NRX =3,表示同時接收3個信號。每個RFE/ADC模組434a將同時接收的類比RF信號中的一個轉換成基帶信號,該基帶信號包括對應的類比RF信號中包含的資訊的數位表示。RFE/ADC模組434a將RF信號解調成基帶信號,再將該信號從類比模式轉換到數位模式。每個基帶信號都包括多個 OFDM碼元,每個OFDM碼元由時間間隔分開。對應的移除GI視窗模組431a將移除所接收的每個基帶信號中用於分隔連續的OFDM碼元的時間間隔。
對應所接收的每個基帶信號,對應的FFT模組430a會將基帶信號中包含的時域表示的OFDM碼元轉換成頻域表示。頻域表示包括多個碼元,其中每個碼元都與RF通道的載頻關聯,所述RF通道用於通過無線通信通道傳輸所接收的OFDM碼元。每個碼元都包括OFDM碼元中包含的至少一部分資訊。
等化器模組432使用通道估算矩陣H來執行矩陣H的分解,例如基於QRV分解和/或GMD。均衡模組432使用多個有序的同時接收信號、矩陣H、矩陣H的分解版和/或置換矩陣P來計算有序的多個目的流和/或多個重新排序的目的流的估算值。接收器401上的目的流動數目對應於發射器400上空間流的數目。
在接收器401上,多個加法模組444a,...,444n、多個星群解映射模組428a,...,428n、多個頻率解交錯模組426a,...,426n、空間交錯器425、解鑿孔模組424、解碼器422、編碼器446、鑿孔模組448、頻率交錯器450、映射器452以及矩陣減法模組454構成了一個反饋環。在本發明的一些實施例中,反饋環能夠基於QRV-LST檢測可靠地檢測與每個目的流關聯的碼元的估算值。在本發明的一些實施例中,基於使用轉置矩陣P對碼元進行估算值可靠檢測不需要對之前從其他目的流接收的 碼元進行緩存。
每個星群解映射模組428a能夠接收與多個碼元關聯的位元,所述碼元與對應的目的流的OFDM碼元關聯。這些碼元與RF通道的一個載頻相關聯。星群解映射模組428能夠產生對應於每個碼元的一組位元。這些位元可根據載頻的順序存儲在目的流中。對應的頻率解交錯器426a能夠重新排序對應的目的流中的位元元的順序。
空間交錯器425能夠將有序的多個目的流中的位元合併成單個位元流。例如,空間交錯器425從當前目的流中選擇當前位元塊。當前塊中的位元的數目對應於對應的目的流的碼元中包含的位元的數目。空間交錯器425將選擇的當前位元塊輸出成單個位元流。空間交錯器425能夠從隨後的目的流中選擇隨後的位元塊。空間交錯器425能夠將選擇的隨後的位元塊輸出為單個位元流。各個目的流中從空間交錯器425輸出的位元的順序可基於發射器400發射對應的位元的順序確定。發射器400發射對應的位元的順序可基於空間剖析器405和/或多個頻率交錯模組406a,...,406n確定。
空間交錯器425能夠以變化的順序輸出多個目的流的位元,所述順序隨著與所述位元關聯的載頻而變化。例如,對於第一載頻,空間交錯器425會輸出來自第一目的流的位元,接著是第二目的流的位元,再接著是第三目的流的位元。對於第二載頻,空間交錯器425會輸出第三目的流的位元,接著是第 一目的流的位元,再接著是第二目的流的位元。對於第三載頻,空間交錯器425會輸出第二目的流的位元,接著是第三目的流的位元,再接著是第一目的流的位元。
解鑿孔模組424能夠接收來自空間交錯器425的單個位元流。解鑿孔模組424能夠插入空位元以改變單個位元流包含的位元塊的編碼率。解碼模組422能夠解碼單個位元流中的位元以提取未編碼資訊。解碼模組422可使用FEC檢測和/或糾正單個位元流中的誤碼。當FEC的分析表明位元的檢測值與預期值不相同時,就檢測出誤碼。可通過將檢測的位元值修正到對應的預期值來糾正誤碼。例如,解碼模組422例如維特比解碼器使用軟資訊來推出未編碼資訊的統計估算值。
解碼模組422會根據空間交錯器425將位元合併成單個位元流的順序來檢測位元值。因此,解碼模組422根據每個對應的載頻,連續地檢測與碼元關聯的位元值。
在LST系統中,解碼模組422將檢測碼元輸出到由編碼器446、鑿孔模組448、頻率交錯器450、映射器452和矩陣減法模組454構成的反饋路徑。矩陣減法模組454的輸出可輸入到多個加法模組444a,...,444n。
反饋環能夠使用當前的檢測碼元來檢測每個目的流的後續碼元。在一個可靠的QRV-LST檢測系統中,如果在目的流中接收到碼元而無其他的干擾碼元,或者已經可靠地計算出干擾碼元的估算值,就能可靠地檢測碼元。
在本發明的一些實施例中,使用多個加法器444a,...,444n來計算重新排序的N個目的流中第i個目的流關聯的碼元的估算值,按照下式計算:
其中,r(i)(j) 表示等式[15]中所示的矩陣R的第i行、第j列的矩陣元素,例如,j表示對應的之前檢測的與對應的目的流關聯的碼元的標號;表示多個信號中的一個信號由均衡模組432計算的估算值,如等式[31]所示。
在等式[34a]中,在重新排序的多個目的流中,與第一空間流關聯的碼元的估算值首先得到可靠的檢測,如下面等式所示:
隨後與第二空間流關聯的碼元的估算值得到可靠的檢測,如下面等式所示:
在本發明的一些實施例中,與有序的多個目的流關聯的估算值可以基於對應的多個重新排序的目的流來計算,例如,基於等式[21b]和[21c]。
本發明的各種實施例使用轉置矩陣P,使接收器401回應由於空間剖析器405和/或多個頻率交錯器406a,...,406n的運行 導致的發射器400發射位元的順序的變化,可靠地檢測多個有序的目的流中的碼元。
圖5是本發明的一個實施例中,對應於每個載頻,從MIMO發射器發射的位元的示例性順序。圖5中示出了第一碼元502、第二碼元504、第三碼元506。圖5示出了對應於20MHz RF通道中的每個載頻,MIMO發射器發射位元的順序,例如,該20MHz RF通道包括52個載頻或者音調。垂直軸表示載頻標號k,水平軸表示以時間為單位的編碼位元的順序。對於指定的載頻,從左到右表示的位元可在連續的時刻(time instant)編碼和發射。在圖5中,MIMO發射器使用3個空間流。圖5中使用的示例性調制類型是16 QAM。
第一碼元502包括4個位元,每個位元都在單獨的連續的時刻發射。對於標號k=1的載頻,可以首先發射第一碼元502;對於標號k=1的載頻,第二次發射第二碼元504;對於標號k=1的載頻,第三次發射第三碼元506。第一碼元502可以與第三空間流關聯,第二碼元504可以與第一空間流關聯,第三碼元506可以與第二空間流關聯。
在一些傳統的LST MIMO接收器中,直到已經檢測第二碼元504、第三碼元506之後,才能可靠地檢測第一碼元502。因此,第一碼元502將被緩存,直到已經可靠地檢測第二碼元504以及第三碼元506。但是,這要求將第一碼元502緩衝大概600個時間單位。
在本發明的一些實施例中,可以首先可靠地檢測第一碼元502,接著可靠地檢測第二碼元504,然後可靠地檢測第三碼元506。MIMO接收器的檢測順序與MIMO發射器發射碼元的順序相對應。
本發明的一些實施例能夠可靠地檢測與MIMO接收器上重新排序的多個目的流關聯的碼元的估算值。轉置矩陣可用於重構基於轉置矩陣P的有序的多個目的流。與接收器的有序的多個目的流關聯的碼元估算值包括與發射器400上有序的多個空間流關聯的對應碼元的估算。在本發明的一方面,有序的多個目的流可等效於有序的多個空間流。在本發明的另一方面,重新排序的多個目的流可等效于重新排序的多個空間流。MIMO接收器可以基於有序的多個目的流的順序組合接收資訊位元。接收資訊位元可存儲在記憶體462中,和/或由處理器460處理。
圖6是根據本發明的一個實施例中,QRV-LST檢測的示例性步驟。參考圖6,步驟602中,計算一個或多個轉置矩陣P。步驟604中,接收器401通過無線通信介質同時接收多個信號。在步驟606中,接收器401基於所計算的轉置矩陣產生重新排序的多個目的流。步驟608中,接收器401按照碼元的發射順序來依次檢測接收碼元的估算值。步驟610中,接收器401基於轉置矩陣產生有序的多個目的流。步驟612中,接收器按照有序的多個目的流的順序組合所接收的資訊位元。
為了在MIMO通信系統中進行有效處理,帶有QRV-LST檢測的系統包括接收器401,接收器401能夠接收有序的多個信號,其中每個有序的信號可以包括有序的多個空間流中包含的信號。每個空間流可包括一個或多個載頻。接收器401能夠按照一個或多個載頻的順序檢測包含在對應的一個空間流中的部分資訊的估算值。
接收器401能夠以指定的順序檢測有序的多個空間流中當前的一個空間流中的資訊部分的估算值,以及包含在前一個空間流中的前一部分資訊和/或後一個空間流中的後一部分資訊的估算值。可以為每個載頻確定上述指定的順序。
接收器401能夠基於通道估算矩陣、波束成形矩陣和/或轉置矩陣檢測資訊的估算值。對於每個載頻,接收器401能夠確定通道估算矩陣、波束成形矩陣和/或置換矩陣中的對應值。每個載頻與RF通道關聯,RF通道用於接收有序的多個接收信號。可以基於上三角矩陣和/或下三角矩陣計算通道估算矩陣。對於上三角和/或下三角矩陣,對角線項的值大致相等(The values for diagonal terms may be approximately equal for the upper diagonal matrix and/or lower diagonal matrix)。
通過計算第(N-i+1)接收信號關聯的估算值與(i-1)個乘積的總和之差,接收器401能夠計算與第i個重新排序的空間流關聯的部分資訊的估算值。每個乘積包括:重新排序的多個空間流中第(N-j+1)個空間流,上三角矩陣和/或下三角矩陣 中的第j行的第(N-i+1)個矩陣元素。計算所得的差值除以上三角矩陣和/或下三角矩陣第(N-i+1)行中對角矩陣元素的值。變數N表示重新排序的多個空間流中包含的空間流的數目;i和j表示標號,它們的取值範圍都是1至N。通過將轉置矩陣進行轉置後乘以有序的多個空間流,接收器401能夠確定重新排序的多個空間流。
本發明可以通過硬體、軟體,或者軟、硬體結合來實現。本發明可以在至少一個電腦系統中以集中方式實現,或者由分佈在幾個互連的電腦系統中的不同部分以分散方式實現。任何可以實現所述方法的電腦系統或其他設備都是可適用的。常用軟硬體的結合可以是安裝有電腦程式的通用電腦系統,通過安裝和執行所述程式控制電腦系統,使其按所述方法運行。在電腦系統中,利用處理器和存儲單元來實現所述方法。
本發明還可以通過電腦程式產品進行實施,所述套裝程式含能夠實現本發明方法的全部特徵,當其安裝到電腦系統中時,通過運行,可以實現本發明的方法。本文件中的電腦程式所指的是:可以採用任何程式語言、代碼或符號編寫的一組指令的任何表示式,該指令組使系統具有資訊處理能力,以直接實現特定功能,或在進行下述一個或兩個步驟之後實現特定功能:a)轉換成其他語言、編碼或符號;b)以不同的格式再現。
本發明是通過幾個具體實施例進行說明的,本領域技術人員應當明白,在不脫離本發明範圍的情況下,還可以對本發明 進行各種變換及等同替代。另外,針對特定情形或具體情況,可以對本發明做各種修改,而不脫離本發明的範圍。因此,本發明不局限於所公開的具體實施例,而應當包括落入本發明申請專利範圍內的全部實施方式。
儘管本文已經明確地描述了本發明的各功能和特徵的特殊組合,但是這些特徵和功能的其他組合同樣是可能的。
102‧‧‧第一基本服務集(BSS)
104‧‧‧第一802.11 WLAN(無線局域網)站
106‧‧‧第二802.11 WLAN站
108‧‧‧接入點(AP)
110‧‧‧分佈系統(DS)
112‧‧‧第二基本服務集
114‧‧‧第一802.11 WLAN站
116‧‧‧第二802.11 WLAN站
118‧‧‧接入點(AP)
120‧‧‧擴展服務集(ESS)
122‧‧‧IEEE 802.x局域網(LAN)
124‧‧‧LAN站
126‧‧‧入口(portal)
272‧‧‧基帶處理器
274‧‧‧收發器
276a,...,276n‧‧‧接收天線
278a,...,278n‧‧‧發射天線
280‧‧‧RF前端
282‧‧‧處理器
284‧‧‧接收器
286‧‧‧發射器
302‧‧‧移動發射終端
304‧‧‧發射濾波係數模組V
306‧‧‧第一空間流s1
308‧‧‧第二空間流s2
310‧‧‧第三空間流s3
312、314、316‧‧‧發射天線
322‧‧‧移動接收終端
324‧‧‧接收濾波係數模組Q *
326‧‧‧第一目的流(destination stream)
328‧‧‧第二目的流
330‧‧‧第三目的流
332、334、336‧‧‧接收天線
342‧‧‧RF通道
400‧‧‧發射器
401‧‧‧接收器
402‧‧‧編碼模組
404‧‧‧鑿孔(puncture)模組
405‧‧‧空間剖析模組
406a、...、406n‧‧‧頻率交錯模組
408a、...、408n‧‧‧星群映射(constellation mapper)模組
410a、...、410n‧‧‧逆向快速傅立葉變換(IFFT)模組
411a、...、411n‧‧‧插入保護間隔(GI)視窗模組
412‧‧‧波束成形矩陣V模組
414a、...、414n‧‧‧帶數位-類比轉換的無線前端(REF/DAC)模組
415a、...、415n‧‧‧發射天線
422‧‧‧解碼模組
424‧‧‧解鑿孔模組
425‧‧‧空間交錯(interlacer)模組
426a、...、426n‧‧‧頻率解交錯模組
428a、...、428n‧‧‧星群解映射模組
430a、...、430n‧‧‧快速傅立葉變換(FFT)模組
431a、...、431n‧‧‧視窗模組
432‧‧‧均衡模組
434a、...、434n‧‧‧帶類比-數位轉換的無線前端(RFE/ADC)
435a、...、435n‧‧‧接收天線
442‧‧‧移動(remove)GI通道估算模組
444a、...、444n‧‧‧加法模組
446‧‧‧編碼模組
448‧‧‧鑿孔模組
450‧‧‧頻率交錯模組
452‧‧‧映射模組
454‧‧‧矩陣減法模組
460‧‧‧處理器
462‧‧‧記憶體
502‧‧‧第一碼元
504‧‧‧第二碼元
506‧‧‧第三碼元
圖1是本發明的一個實施例使用的無線資料通信系統的示意圖;圖2是本發明的一個實施例使用的示例性MIMO系統的示意圖;圖3是本發明的一個實施例使用的MIMO通信系統中的分層空時通信的示意圖;圖4是本發明的一個實施例的LST MIMO系統中收發器的功能框圖,該收發器包括發射器和接收器;圖5是本發明的一個實施例中,多個載頻中的每個載頻上,從MIMO發射器發射的位元的示例性排序;圖6是根據本發明的一個實施例中,MIMO通信系統中重排QRV-LST檢測以進行有效處理的示例性步驟。
102‧‧‧第一基本服務集(BSS)
104‧‧‧第一802.11 WLAN(無線局域網)站
106‧‧‧第二802.11 WLAN站
108‧‧‧接入點(AP)
110‧‧‧分佈系統(DS)
112‧‧‧第二基本服務集
114‧‧‧第一802.11 WLAN站
116‧‧‧第二802.11 WLAN站
118‧‧‧接入點(AP)
120‧‧‧擴展服務集(ESS)
122‧‧‧IEEE 802.x局域網(LAN)
124‧‧‧LAN站
126‧‧‧入口(portal)

Claims (7)

  1. 一種在通信系統中處理信號的方法,其特徵在於,包括:接收多個有序信號,其中,每個有序接收信號包括包含在多個有序空間流中的資訊,每個空間流包括至少一個載頻;以及基於所述至少一個載頻的順序檢測包含在對應的一個有序空間流中的部分資訊的估算值;基於以下至少一個矩陣來檢測所述資訊的估算值:通道估算矩陣、波束成形矩陣和轉置矩陣;為所述至少一個載頻中的每個載頻確定與所述通道估算矩陣、所述波束成形矩陣和所述轉置矩陣中至少一個矩陣相關的對應值。
  2. 如申請專利範圍第1項所述的方法,其中,還包括以指定的順序檢測當前有序空間流中的所述部分資訊的估算值,以及至少還檢測以下之一:前一空間流中所包含的前一部分資訊的和後一空間流中所包含的後一部分資訊的估算值。
  3. 如申請專利範圍第2項所述的方法,其中,所述指定的順序是根據所述至少一個載頻中的每一載頻而確定。
  4. 如申請專利範圍第1項所述的方法,其中,所述至少一個載頻中的每個載頻與用於接收所述多個有序接收信號的RF通道相關聯。
  5. 一種在通信系統中處理信號的系統,其特徵在於,包括:能夠接收多個有序信號的電路,其中,每個有序接收信號包括包含在多個有序空間流中的資訊,每個空間流包括至少一個載頻;以及所述電路能夠基於所述至少一個載頻的順序檢測包含在對應的一個有序空間流中的部分資訊的估算值;所述電路能夠基於以下至少一個矩陣來檢測所述資訊的估算值:通道估算矩陣、波束成形矩陣和轉置矩陣;所述電路能夠為所述至少一個載頻中的每個載頻確定與 所述通道估算矩陣、所述波束成形矩陣和所述轉置矩陣中至少一個矩陣相關的對應值。
  6. 如申請專利範圍第5項所述的系統,其中,所述電路能夠以指定的順序檢測當前有序空間流中的所述部分資訊的估算值,以及至少還檢測以下之一:前一空間流中所包含的前一部分資訊的和後一空間流中所包含的後一部分資訊的估算值。
  7. 如申請專利範圍第6項所述的系統,其中,所述指定的順序是根據所述至少一個載頻中的每一載頻而確定。
TW096115276A 2006-05-04 2007-04-30 在通信系統中處理信號的方法及系統 TWI450526B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/417,688 US7991090B2 (en) 2006-05-04 2006-05-04 Method and system for reordered QRV-LST (layered space time) detection for efficient processing for multiple input multiple output (MIMO) communication systems

Publications (2)

Publication Number Publication Date
TW200814597A TW200814597A (en) 2008-03-16
TWI450526B true TWI450526B (zh) 2014-08-21

Family

ID=38371858

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096115276A TWI450526B (zh) 2006-05-04 2007-04-30 在通信系統中處理信號的方法及系統

Country Status (4)

Country Link
US (1) US7991090B2 (zh)
EP (1) EP1873931A2 (zh)
CN (1) CN101068124B (zh)
TW (1) TWI450526B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548592B2 (en) * 2004-07-02 2009-06-16 James Stuart Wight Multiple input, multiple output communications systems
US7738595B2 (en) * 2004-07-02 2010-06-15 James Stuart Wight Multiple input, multiple output communications systems
US8494084B1 (en) 2006-05-02 2013-07-23 Marvell International Ltd. Reuse of a matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system
US7680205B2 (en) * 2006-07-28 2010-03-16 Broadcom Corporation Method and system for transmitter beamforming for reduced complexity multiple input multiple output (MIMO) transceivers
US8223872B1 (en) * 2007-04-04 2012-07-17 Marvell International Ltd. Reuse of a matrix equalizer for the purpose of transmit beamforming in a wireless MIMO communication system
US8199841B1 (en) 2007-04-26 2012-06-12 Marvell International Ltd. Channel tracking in a wireless multiple-input multiple-output (MIMO) communication system
KR100986938B1 (ko) * 2007-04-26 2010-10-12 재단법인서울대학교산학협력재단 다중 입력 다중 출력 시스템의 부분 적응 송신 장치 및 방법
US20090129497A1 (en) * 2007-06-26 2009-05-21 Daniel Stopler Method, device and system of multi-input-multi-output wireless communication
KR101356936B1 (ko) * 2007-11-09 2014-01-29 삼성전자주식회사 폐루프 다중 입력 다중 출력 통신시스템에서 채널 분해 방법 및 장치
US8254359B2 (en) 2007-12-21 2012-08-28 Intel Corporation Recursive reduction of channel state feedback
US8773969B1 (en) 2009-03-24 2014-07-08 Marvell International Ltd. Multi-radio device for WLAN
US9226270B1 (en) * 2009-03-24 2015-12-29 Marvell International Ltd. Multi-radio device for WLAN
US10411846B1 (en) 2009-03-24 2019-09-10 Marvell International Ltd. Multi-radio device for WLAN
EP2491663B1 (en) * 2009-10-23 2015-07-29 Marvell World Trade Ltd. Training sequence indication for WLAN
CN101764772B (zh) * 2009-10-26 2013-07-31 广州杰赛科技股份有限公司 一种基于预编码的信道均衡方法及其通信系统
US8434336B2 (en) * 2009-11-14 2013-05-07 Qualcomm Incorporated Method and apparatus for managing client initiated transmissions in multiple-user communication schemes
US8891652B2 (en) * 2010-06-24 2014-11-18 Qualcomm Incorporated Structured MIMO codebook
AU2011271829B2 (en) 2010-07-01 2014-05-29 Lg Electronics Inc. Method and apparatus for transceiving a MIMO packet in a wireless LAN system
JP5578617B2 (ja) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US9647731B2 (en) * 2011-10-20 2017-05-09 Microelectronics Research & Development Corp. Reconfigurable network on a chip (NoC) radio through reduced instruction set computer (RISC) agents by overwriting program store for different phases of demodulation
CN103378882B (zh) * 2012-04-16 2018-04-27 中兴通讯股份有限公司 一种大规模天线系统控制信号发送方法及装置
CN103684657A (zh) * 2012-09-03 2014-03-26 夏普株式会社 预编码矩阵构造和索引值反馈方法及相关通信设备
WO2014112785A1 (ko) * 2013-01-18 2014-07-24 엘지전자 주식회사 간섭 제거 수신 방법 및 단말
US9979449B2 (en) 2015-10-21 2018-05-22 Marvell World Trade Ltd. Systems and methods for detecting data in a received multiple-input-multiple-output (MIMO) signal
WO2019034672A1 (en) * 2017-08-15 2019-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. NETWORK AND WIRELESS DEVICES
US10826649B1 (en) 2018-12-19 2020-11-03 Marvell Asia Pte, Ltd. WiFi receiver architecture
US11616671B1 (en) * 2022-01-10 2023-03-28 Qualcomm Incorporated Subcarrier mapping techniques for guard interval-based orthogonal frequency division multiplexing communications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151487A (en) * 1999-08-31 2000-11-21 Hughes Electronics Corporation Demodulation structure for fast fading cellular channels
US20040013212A1 (en) * 2002-07-17 2004-01-22 Jacob Benesty Method and apparatus for receiving digital wireless transmissions using multiple-antenna communication schemes
US6724809B2 (en) * 1999-10-19 2004-04-20 Interdigital Technology Corporation Parallel interference cancellation receiver for multiuser detection of CDMA signals
US20040242179A1 (en) * 2003-05-29 2004-12-02 Onggosanusi Eko N. Iterative detection in mimo systems
CN1706133A (zh) * 2002-10-16 2005-12-07 高通股份有限公司 多载波mimo系统传输方案

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
EP1779574A1 (en) * 2004-08-20 2007-05-02 Nokia Corporation System and method for precoding in a multiple-input multiple-output (mimo) system
EP1807959A1 (en) * 2004-11-05 2007-07-18 University Of Florida Research Foundation, Inc. Uniform channel decomposition for mimo communications
KR20060086673A (ko) * 2005-01-27 2006-08-01 학교법인연세대학교 Dblast시스템의 송신기 및 수신기
KR20060102050A (ko) * 2005-03-22 2006-09-27 고려대학교 산학협력단 다중입출력통신시스템을 위한 신호 검출 및 복호화 방법
US8180314B2 (en) * 2006-03-08 2012-05-15 Broadcom Corporation Method and system for utilizing givens rotation to reduce feedback information overhead
US7499439B2 (en) * 2005-06-03 2009-03-03 Alcatel-Lucent Usa Inc. Method for controlling transmission rates in a wireless communications system
US7668248B2 (en) * 2005-10-19 2010-02-23 Texas Instruments Incorporated High-performance LDPC coding for digital communications in a multiple-input, multiple-output environment
US7948959B2 (en) * 2005-10-27 2011-05-24 Qualcomm Incorporated Linear precoding for time division duplex system
US7702050B2 (en) * 2006-02-17 2010-04-20 Broadcom Corporation Method and system for an adaptive VBLAST receiver for wireless multiple input multiple output (MIMO) detection
US7685219B2 (en) * 2006-03-31 2010-03-23 Intel Corporation Parallel systolic CORDIC algorithm with reduced latency for unitary transform of complex matrices and application to MIMO detection
FI20075083A0 (fi) * 2007-02-06 2007-02-06 Nokia Corp Ilmaisumenetelmä ja -laite monivuo-MIMOa varten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6151487A (en) * 1999-08-31 2000-11-21 Hughes Electronics Corporation Demodulation structure for fast fading cellular channels
US6724809B2 (en) * 1999-10-19 2004-04-20 Interdigital Technology Corporation Parallel interference cancellation receiver for multiuser detection of CDMA signals
US20040013212A1 (en) * 2002-07-17 2004-01-22 Jacob Benesty Method and apparatus for receiving digital wireless transmissions using multiple-antenna communication schemes
CN1706133A (zh) * 2002-10-16 2005-12-07 高通股份有限公司 多载波mimo系统传输方案
US20040242179A1 (en) * 2003-05-29 2004-12-02 Onggosanusi Eko N. Iterative detection in mimo systems

Also Published As

Publication number Publication date
TW200814597A (en) 2008-03-16
CN101068124A (zh) 2007-11-07
US7991090B2 (en) 2011-08-02
EP1873931A2 (en) 2008-01-02
CN101068124B (zh) 2011-11-23
US20070258536A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
TWI450526B (zh) 在通信系統中處理信號的方法及系統
US8180314B2 (en) Method and system for utilizing givens rotation to reduce feedback information overhead
US8320283B2 (en) Method and system for utilizing givens rotation expressions for asymmetric beamforming matrices in explicit feedback information
KR101298307B1 (ko) 비동일한 변조 및 코딩 방식들을 통해 시공간 프로세싱을 구현하는 방법 및 장치
US8885465B2 (en) Method and system for utilizing tone grouping with givens rotations to reduce overhead associated with explicit feedback information
KR101234693B1 (ko) Mimo 전송을 위한 스피어 검출 및 레이트 선택을 위한 방법 및 장치
US7630350B2 (en) Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
CN101114863A (zh) 通信系统内处理信号的方法和系统
US7643444B2 (en) Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
KR101041945B1 (ko) 다중 안테나 시스템에서 신호 검출 장치 및 방법
US20060215781A1 (en) Method for detecting and decoding a signal in a MIMO communication system
CN111837370B (zh) 利用天线选择进行空间调制和空时分组编码的简化检测
US8995411B2 (en) Method and system for content-aware mapping/error protection using different spatial streams
JP2006518556A (ja) マルチキャリヤmimoシステムに関する伝送方法
KR20050058269A (ko) Mimo-ofdm 시스템에 대한 반복적인 검출 및 디코딩
JP2007228029A (ja) 無線通信システム及び受信装置
CN104753643B (zh) 一种基于信道状态信息的自适应交织方法及装置
JP4854610B2 (ja) 無線通信装置及び無線通信方法
KR101317402B1 (ko) 다중 입출력 시스템, 수신장치 및 신호 수신방법
RU2775837C2 (ru) Упрощенное обнаружение пространственной модуляции и пространственно-временного блочного кодирования с выбором антенн

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees