TWI449315B - Fly back power supply apparatus and digital control circuit and driving method thereof - Google Patents
Fly back power supply apparatus and digital control circuit and driving method thereof Download PDFInfo
- Publication number
- TWI449315B TWI449315B TW100118702A TW100118702A TWI449315B TW I449315 B TWI449315 B TW I449315B TW 100118702 A TW100118702 A TW 100118702A TW 100118702 A TW100118702 A TW 100118702A TW I449315 B TWI449315 B TW I449315B
- Authority
- TW
- Taiwan
- Prior art keywords
- value
- power supply
- supply device
- duty cycle
- control signal
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明是有關於一種返馳式電源供應裝置,且特別是有關於一種返馳式電源供應裝置的數位控制電路及驅動方法。The present invention relates to a flyback power supply device, and more particularly to a digital control circuit and a driving method for a flyback power supply device.
目前作為交流/直流(AC to DC)轉換的電源供應裝置,主要區分為線性式和切換式電源供應裝置兩種技術,線性式電源供應裝置是使用大電流變壓器,體積大且重量重,無法直接安裝在電路板上,且轉換效率低。而由於功率切換開關元件製程技術之進步,加上各種不同轉換器電路拓樸之變化運用,使得切換式電源供應器已經成為電源供應器之主要技術。尤其現今電腦、電器設備及電子儀器等產品,不斷推陳出新,皆需求電源供應器之穩定、高效率及低成本,更加使得切換式電源供應器成為電源供應器之技術主流,常見的切換式電源供應裝置有推挽式(Push Pull)、返馳式(Fly back)等類型。At present, as a power supply device for AC/DC conversion, it is mainly divided into two types of linear and switched power supply devices. The linear power supply device uses a large current transformer, which is bulky and heavy, and cannot be directly It is mounted on the board and has low conversion efficiency. Due to the advancement of the process technology of the power switching device and the change of various converter circuit topologies, the switching power supply has become the main technology of the power supply. In particular, today's computer, electrical equipment and electronic equipment, etc., continue to innovate, all require the stability, high efficiency and low cost of the power supply, making the switching power supply the mainstream of the power supply technology, the common switching power supply The device has a push pull type, a fly back type, and the like.
其中,傳統的反馳式(Fly-Back)電源電路前端為由脈衝寬度調變積體電路(Pulse Width Modulation IC,PWM IC)所產生的脈衝寬度調變訊號來控制後級的變壓器,其中脈衝寬度調變訊號為藉由電阻和電容所產生的頻率來決定其工作週期。利用此種方式產生的控制訊號不但頻率不很準確,且通常工作週期最高只能達到50%左右,因而造成反馳式電源電路無法輸出符合實際應用需求的高電壓。Wherein, the front end of the traditional Fly-Back power supply circuit is a pulse width modulation signal generated by a Pulse Width Modulation IC (PWM IC) to control the transformer of the latter stage, wherein the pulse The width modulation signal determines the duty cycle of the frequency generated by the resistor and capacitor. The control signal generated by this method not only has a frequency that is not very accurate, but usually the working cycle can only reach about 50%, which causes the reverse power supply circuit to fail to output a high voltage that meets the actual application requirements.
本發明提供一種返馳式電源供應裝置及其數位控制電路與驅動方法,可使返馳式電源供應裝置輸出符合實際應用需求的高電壓。The invention provides a flyback power supply device and a digital control circuit and a driving method thereof, which can enable a flyback power supply device to output a high voltage that meets practical application requirements.
本發明提出一種返馳式電源供應裝置的數位控制電路,包括一循環計數單元、一第一比較單元、一第二比較單元以及一控制訊號產生單元。其中循環計數單元重複自一最小預設值計數至一最大預設值,以產生一循環計數值。第一比較單元耦接循環計數單元,判斷循環計數單元目前的循環計數值是否等於一啟動設定值,以得到一第一比較結果。第二比較單元耦接循環計數單元,判斷循環計數單元目前的循環計數值是否等於一工作週期設定值,以得到一第二比較結果。控制訊號產生單元耦接第一比較單元與第二比較單元,依據第一比較結果與第二比較結果輸出一控制訊號,以控制返馳式電源供應裝置之一功率開關元件的導通狀態。The invention provides a digital control circuit for a flyback power supply device, comprising a cycle counting unit, a first comparison unit, a second comparison unit and a control signal generation unit. The loop counting unit repeatedly counts from a minimum preset value to a maximum preset value to generate a loop count value. The first comparison unit is coupled to the loop counting unit to determine whether the current loop count value of the loop counting unit is equal to an activation setting value to obtain a first comparison result. The second comparison unit is coupled to the cycle counting unit to determine whether the current cycle count value of the cycle counting unit is equal to a duty cycle setting value to obtain a second comparison result. The control signal generating unit is coupled to the first comparing unit and the second comparing unit, and outputs a control signal according to the first comparison result and the second comparison result to control the conductive state of the power switching element of one of the flyback power supply devices.
本發明更提出一種返馳式電源供應裝置,包括一變壓器、一功率開關元件、一整流二極體、一電容以及一數位控制電路。其中變壓器具有一一次側線圈以及一二次側線圈,一次側線圈之第一端耦接一輸入電壓。功率開關元件,耦接於一次側線圈之第二端與一接地之間。整流二極體,之陽極與陰極分別耦接二次側線圈之第一端與返馳式電源供應裝置之輸出端,二次側線圈之第二端耦接接地。電容耦接於返馳式電源供應裝置之輸出端與接地之間。數位控制電路耦接功率開關元件。其中數位控制電路包括一循環計數單元、一第一比較單元、一第二比較單元以及一控制訊號產生單元。其中循環計數單元重複自一最小預設值計數至一最大預設值,以產生一循環計數值。第一比較單元耦接循環計數單元,判斷循環計數單元目前的循環計數值是否等於一啟動設定值,以得到一第一比較結果。第二比較單元耦接循環計數單元,判斷循環計數單元目前的循環計數值是否等於一工作週期設定值,以得到一第二比較結果。控制訊號產生單元耦接第一比較單元與第二比較單元,依據第一比較結果與第二比較結果輸出一控制訊號,以控制返馳式電源供應裝置之一功率開關元件的導通狀態。The invention further provides a flyback power supply device comprising a transformer, a power switching element, a rectifying diode, a capacitor and a digital control circuit. The transformer has a primary side coil and a secondary side coil, and the first end of the primary side coil is coupled to an input voltage. The power switching element is coupled between the second end of the primary side coil and a ground. The anode and the cathode are respectively coupled to the first end of the secondary side coil and the output end of the flyback power supply device, and the second end of the secondary side coil is coupled to the ground. The capacitor is coupled between the output of the flyback power supply device and the ground. The digital control circuit is coupled to the power switching element. The digital control circuit includes a loop counting unit, a first comparing unit, a second comparing unit, and a control signal generating unit. The loop counting unit repeatedly counts from a minimum preset value to a maximum preset value to generate a loop count value. The first comparison unit is coupled to the loop counting unit to determine whether the current loop count value of the loop counting unit is equal to an activation setting value to obtain a first comparison result. The second comparison unit is coupled to the cycle counting unit to determine whether the current cycle count value of the cycle counting unit is equal to a duty cycle setting value to obtain a second comparison result. The control signal generating unit is coupled to the first comparing unit and the second comparing unit, and outputs a control signal according to the first comparison result and the second comparison result to control the conductive state of the power switching element of one of the flyback power supply devices.
在本發明之一實施例中,控制訊號產生單元更偵測工作週期設定值是否被改變,若工作週期設定值被改變,則將工作週期設定值更新為改變過後的工作週期設定值。In an embodiment of the invention, the control signal generating unit further detects whether the duty cycle set value is changed. If the duty cycle set value is changed, the duty cycle set value is updated to the changed duty cycle set value.
在本發明之一實施例中,當循環計數單元目前的循環計數值等於啟動設定值時,功率開關元件受控於控制訊號而被導通,當循環計數單元目前的循環計數值等於工作週期設定值時,功率開關元件受控於控制訊號而被斷開。In an embodiment of the invention, when the current cycle count value of the cycle counting unit is equal to the startup set value, the power switching element is controlled by the control signal, and the current cycle count value of the cycle counting unit is equal to the duty cycle set value. When the power switching element is controlled by the control signal, it is turned off.
在本發明之一實施例中,上述之返馳式電源供應裝置的數位控制電路,更包括一暫存單元,其耦接第二比較單元以及控制訊號產生單元,用以暫存工作週期設定值。In an embodiment of the present invention, the digital control circuit of the flyback power supply device further includes a temporary storage unit coupled to the second comparison unit and the control signal generating unit for temporarily storing the duty cycle setting value. .
本發明亦提出一種返馳式電源供應裝置的驅動方法,包括下列步驟。重複自一最小預設值計數至一最大預設值,以產生一循環計數值。判斷目前的循環計數值是否等於最小預設值一啟動設定值,以得到一第一比較結果。判斷目前的循環計數值是否等於一工作週期設定值,以得到一第二比較結果。依據第一比較結果與第二比較結果輸出一控制訊號,以控制返馳式電源供應裝置之一功率開關元件的導通狀態。The invention also proposes a driving method of the flyback power supply device, which comprises the following steps. The repetition is counted from a minimum preset value to a maximum preset value to generate a cycle count value. It is determined whether the current cycle count value is equal to the minimum preset value-starting set value to obtain a first comparison result. It is determined whether the current cycle count value is equal to a duty cycle set value to obtain a second comparison result. And outputting a control signal according to the first comparison result and the second comparison result to control an on state of the power switching element of one of the flyback power supply devices.
在本發明之一實施例中,上述之返馳式電源供應裝置的驅動方法,更包括偵測工作週期設定值是否被改變,若工作週期設定值被改變,則將工作週期設定值更新為改變過後的工作週期設定值。In an embodiment of the present invention, the driving method of the flyback power supply device further includes detecting whether the duty cycle setting value is changed, and if the duty cycle setting value is changed, updating the duty cycle setting value to change. The duty cycle setting afterwards.
在本發明之一實施例中,上述依據第一比較結果與第二比較結果輸出控制訊號,以控制功率開關元件的導通狀態的步驟包括下列步驟。判斷目前的循環計數值是等於啟動設定值,亦或是等於工作週期設定值。若目前的循環計數值等於啟動設定值,功率開關元件受控於控制訊號而被導通。若目前的循環計數值等於工作週期設定值,功率開關元件受控於控制訊號而被斷開。In an embodiment of the invention, the step of outputting the control signal according to the first comparison result and the second comparison result to control the conduction state of the power switching element includes the following steps. It is judged whether the current cycle count value is equal to the startup set value or equal to the duty cycle set value. If the current cycle count value is equal to the start setpoint, the power switch element is turned on by the control signal. If the current cycle count value is equal to the duty cycle set value, the power switch element is turned off by the control signal.
在本發明之一實施例中,上述之工作週期設定值大於最小預設值且小於最大預設值。In an embodiment of the invention, the working cycle setting value is greater than a minimum preset value and less than a maximum preset value.
在本發明之一實施例中,上述之最小預設值為0,最大預設值為100。In an embodiment of the invention, the minimum preset value is 0, and the maximum preset value is 100.
基於上述,本發明依據使用者輸入之工作週期設定值與循環計數單元計數之循環計數值來決定控制訊號的工作週期,進而調整返馳式電源供應裝置的輸出電壓,使返馳式電源供應裝置得以輸出符合實際應用需求的高電壓。Based on the above, the present invention determines the duty cycle of the control signal according to the duty cycle setting value input by the user and the cycle count value of the cycle counting unit count, thereby adjusting the output voltage of the flyback power supply device, so that the flyback power supply device It is possible to output a high voltage that meets the needs of the actual application.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1繪示為本發明一實施例之返馳式電源供應裝置的示意圖。請參照圖1,返馳式電源供應裝置100包括一變壓器102、一功率開關元件104、一整流二極體D1、一電容C1以及一數位控制電路106。其中變壓器102具有一一次側線圈102A以及一二次側線圈102B,一次側線圈102A之第一端與第二端分別耦接一輸入電壓Vin與功率開關元件104。二次側線圈102B之第一端與第二端則分別耦接整流二極體D1的陽極與接地GND,而整流二極體D1的陰極耦接至返馳式電源供應裝置100的輸出端。電容C1耦接於返馳式電源供應裝置100的輸出端與接地GND之間。另外,功率開關元件104更耦接至數位控制電路106與接地GND。其中,功率開關元件104可例如以雙極性接面電晶體(Bipolar Junction Transistor,BJT)或場效電晶體(Field Effect Transistor,FET)來實施,然並不以此為限。FIG. 1 is a schematic diagram of a flyback power supply device according to an embodiment of the invention. Referring to FIG. 1 , the flyback power supply device 100 includes a transformer 102 , a power switching component 104 , a rectifying diode D1 , a capacitor C1 , and a digital control circuit 106 . The transformer 102 has a primary side coil 102A and a secondary side coil 102B. The first end and the second end of the primary side coil 102A are respectively coupled to an input voltage Vin and a power switching element 104. The first end and the second end of the secondary side coil 102B are respectively coupled to the anode of the rectifying diode D1 and the ground GND, and the cathode of the rectifying diode D1 is coupled to the output end of the flyback power supply device 100. The capacitor C1 is coupled between the output end of the flyback power supply device 100 and the ground GND. In addition, the power switching element 104 is further coupled to the digital control circuit 106 and the ground GND. The power switching element 104 can be implemented, for example, by a Bipolar Junction Transistor (BJT) or a Field Effect Transistor (FET), but is not limited thereto.
數位控制電路106用以依據使用者所輸入的一工作週期設定值X來產生一可調週期的控制訊號S1,以控制功率開關元件104的導通狀態。其中控制訊號S1的工作週期隨使用者所輸入之工作週期設定值X的數值不同而有所變化。舉例來說,可設計當輸入之工作週期設定值X之數值為Y時,控制訊號S1的工作週期為Y%,其中Y為自然數,且1≦Y≦99。The digital control circuit 106 is configured to generate an adjustable period of control signal S1 according to a duty cycle setting value X input by the user to control the conduction state of the power switching element 104. The duty cycle of the control signal S1 varies depending on the value of the duty cycle setting value X input by the user. For example, it can be designed that when the value of the input duty cycle setting value X is Y, the duty cycle of the control signal S1 is Y%, where Y is a natural number and 1≦Y≦99.
變壓器102的一次側線圈102A具有隔離、變壓與儲能的功能,當功率開關元件104處於導通狀態時,電壓將供應予一次側線圈102A,一次側線圈102A將感應並儲存能量,而在處於非導通狀態時,將所儲存的能量傳遞給二次側線圈102B。整流二極體D1用以將二次側線圈102B的電壓轉換為直流電,再經過電容C1濾除漣波成分而輸出電流I1至輸出負載(未繪示),而於返馳式電源供應裝置100的輸出端產生輸出電壓Vout。其中當功率開關元件104處於導通狀態時,一次側線圈102A上的感應電流變化量△I+ 可如下列式子所示:The primary side coil 102A of the transformer 102 has the functions of isolation, voltage transformation and energy storage. When the power switching element 104 is in the conducting state, the voltage will be supplied to the primary side coil 102A, and the primary side coil 102A will sense and store energy while being at In the non-conducting state, the stored energy is transferred to the secondary side coil 102B. The rectifying diode D1 is configured to convert the voltage of the secondary side coil 102B into a direct current, and then filter the chopping component through the capacitor C1 to output the current I1 to an output load (not shown), and the flyback power supply device 100 The output produces an output voltage Vout. When the power switching element 104 is in the on state, the amount of induced current change ΔI + on the primary side coil 102A can be as follows:
其中L為一次側線圈102A的電感值(亦等於二次側線圈102B的電感值),T1 為功率開關元件104的導通時間。另外,當功率開關元件104處於非導通狀態時,二次側線圈102B上的感應電流變化量△I- 可如下列式子所示:Where L is the inductance value of the primary side coil 102A (also equal to the inductance value of the secondary side coil 102B), and T 1 is the conduction time of the power switching element 104. Further, when the power switching element 104 is in a non-conducting state, the induced current variation on the secondary side coil 102B △ I - may be as shown in the following equation:
其中T2 為功率開關元件104的非導通時間。由於一次側線圈102A之感應電流變化量△I+ 將等於二次側線圈102B上的感應電流變化量△I- ,因此可得出輸出電壓Vout如下列式子所示:Where T 2 is the non-conduction time of the power switching element 104. Since the induced current variation of the primary side coil 102A △ I + will equal the amount of change in the induced current on the secondary side coil 102B △ I -, and therefore the output voltage Vout can be derived as shown in the following formula:
其中D代表控制訊號S1的工作週期。由此可知,藉由調整控制訊號S1的工作週期即可調整返馳式電源供應裝置100的輸出電壓Vout。也就是說使用者可透過調整輸入數位控制電路106之工作週期設定值X,即可調整返馳式電源供應裝置100的輸出電壓Vout。舉例來說,假設輸入電壓Vin之值為110伏特(V),而使用者所輸入的工作週期設定值X為99,此時控制訊號S1的工作週期將被調整為99%,亦即D之值等於0.99,可得到輸出電壓Vout之值為10890V。如上所述,本實施例藉由輸入數位控制電路106之工作週期設定值X,即可任意調整控制訊號S1的工作週期,進而調整返馳式電源供應裝置100的輸出電壓Vout,改善習知技術利用脈衝寬度調變訊號作為功率開關元件104控制訊號時,所造成之無法輸出符合實際應用需求的高電壓的問題。Where D represents the duty cycle of the control signal S1. It can be seen that the output voltage Vout of the flyback power supply device 100 can be adjusted by adjusting the duty cycle of the control signal S1. That is to say, the user can adjust the output voltage Vout of the flyback power supply device 100 by adjusting the duty cycle setting value X of the input digital control circuit 106. For example, suppose the value of the input voltage Vin is 110 volts (V), and the duty cycle setting value X input by the user is 99. At this time, the duty cycle of the control signal S1 is adjusted to 99%, that is, D The value is equal to 0.99, and the value of the output voltage Vout is 10890V. As described above, in the embodiment, by inputting the duty cycle setting value X of the digital control circuit 106, the duty cycle of the control signal S1 can be arbitrarily adjusted, thereby adjusting the output voltage Vout of the flyback power supply device 100, and improving the conventional technology. When the pulse width modulation signal is used as the power switching element 104 control signal, it is impossible to output a high voltage that meets the practical application requirements.
詳細來說,數位控制電路106的實施方式可如圖2所示,圖2繪示為本發明一實施例之數位控制電路的示意圖。請參照圖2,在本實施例中數位控制電路106包括一循環計數單元202、一第一比較單元204、一第二比較單元206以及一控制訊號產生單元208。其中循環計數單元202耦接第一比較單元204與第二比較單元206,控制訊號產生單元208耦接第一比較單元204與第二比較單元206。循環計數單元202用以依據一重置訊號SR1與一時脈訊號CLK重複自一最小預設值計數至一最大預設值,以產生一循環計數值。舉例來說,在本實施例中最小預設值為0,而最大預設值為100,亦即循環計數單元202可自0計數至100,然後再回到0開始重新計數,如此不斷地循環重覆計數。另外,上述時脈訊號CLK的週期可例如藉由石英振盪器來決定。此外,第一比較單元204接收一啟動設定值W,第二比較單元206接收一使用者所輸入的工作週期設定值X。其中,啟動設定值W係由數位控制電路106內部自行產生的。在本實施例中啟動設定值等於最小預設值,即本實施例中啟動設定值為0,然實際應用上並不以此為限,使用者可依實際情形設定啟動設定值之大小。In detail, the implementation of the digital control circuit 106 can be as shown in FIG. 2. FIG. 2 is a schematic diagram of a digital control circuit according to an embodiment of the present invention. Referring to FIG. 2, in the embodiment, the digital control circuit 106 includes a loop counting unit 202, a first comparing unit 204, a second comparing unit 206, and a control signal generating unit 208. The loop counting unit 202 is coupled to the first comparing unit 204 and the second comparing unit 206. The control signal generating unit 208 is coupled to the first comparing unit 204 and the second comparing unit 206. The loop counting unit 202 is configured to count from a minimum preset value to a maximum preset value according to a reset signal SR1 and a clock signal CLK to generate a loop count value. For example, in this embodiment, the minimum preset value is 0, and the maximum preset value is 100, that is, the loop counting unit 202 can count from 0 to 100, and then return to 0 to start counting again, so that the loop is continuously circulated. Repeat the count. In addition, the period of the above-mentioned clock signal CLK can be determined, for example, by a quartz oscillator. In addition, the first comparison unit 204 receives an activation set value W, and the second comparison unit 206 receives a duty cycle set value X input by the user. The startup set value W is generated by the digital control circuit 106 itself. In this embodiment, the startup setting value is equal to the minimum preset value, that is, the startup setting value is 0 in the embodiment, but the actual application is not limited thereto, and the user can set the size of the startup setting value according to the actual situation.
第一比較單元204用以比較循環計數單元202目前的循環計數值與啟動設定值W,以判斷循環計數單元202目前的循環計數值是否等於啟動設定值W,而得到一第一比較結果,而第二比較單元206則用以比較循環計數單元202目前的循環計數值與使用者所輸入的工作週期設定值X,以判斷循環計數單元202目前的循環計數值是否等於使用者所輸入的工作週期設定值X,而得到一第二比較結果。另外,控制訊號產生單元208則依據第一比較結果與第二比較結果輸出控制訊號S1至功率開關元件104,以控制功率開關元件104的導通狀態。The first comparison unit 204 is configured to compare the current cycle count value of the loop counting unit 202 with the startup set value W to determine whether the current cycle count value of the loop counting unit 202 is equal to the startup set value W, and obtain a first comparison result. The second comparison unit 206 is configured to compare the current cycle count value of the cycle counting unit 202 with the duty cycle set value X input by the user to determine whether the current cycle count value of the cycle counting unit 202 is equal to the duty cycle input by the user. Set the value X to get a second comparison result. In addition, the control signal generating unit 208 outputs the control signal S1 to the power switching element 104 according to the first comparison result and the second comparison result to control the conduction state of the power switching element 104.
其中當循環計數單元202目前的循環計數值等於啟動設定值W時,控制訊號產生單元208會在下一個循環計數值(亦即下一個時脈訊號CLK來時),輸出一個數位高邏輯準位的控制訊號S1,功率開關元件104將因而受控於控制訊號S1而被導通,而當循環計數單元202目前的循環計數值等於使用者所輸入的工作週期設定值X時,控制訊號產生單元208則會在下一個循環計數值(亦即下一個時脈訊號CLK來時),輸出一個數位低邏輯準位的控制訊號S1,功率開關元件104將因而受控於控制訊號S1而被斷開。換言之,當循環計數值為大於啟動設定值W且小於等於工作週期設定值X時,功率開關元件104為導通,而當循環計數值為大於工作週期設定值X且小於等於最大預設值時,功率開關元件104為斷開。而由於控制訊號S1的工作週期小於100%,因此使用者所輸入的工作週期設定值X必須大於最小預設值且小於最大預設值,換言之,工作週期設定值X必須為大於0且小於100,即1≦X≦99的數值,方能被數位控制電路106所接收,否則X將被視為無效的數值,而不被數位控制電路106所接受。另外,在每次控制訊號產生單元208依據第一比較結果與第二比較結果輸出控制訊號S1後,控制訊號產生單元208皆會偵測使用者所輸入的工作週期設定值X是否改變,若工作週期設定值X被改變,控制訊號產生單元208將第二比較單元206所接收的工作週期設定值X更新為改變過後的工作週期設定值X,以使返馳式電源供應裝置100的輸出電壓Vout可隨著工作週期設定值X的改變而變化,讓使用者依實際需求隨時調整返馳式電源供應裝置100的輸出電壓Vout。When the current cycle count value of the cycle counting unit 202 is equal to the startup set value W, the control signal generating unit 208 outputs a digital high logic level at the next cycle count value (ie, when the next clock signal CLK comes). The control signal S1, the power switching element 104 will thus be controlled by the control signal S1, and when the current cycle count value of the cycle counting unit 202 is equal to the duty cycle setting value X input by the user, the control signal generating unit 208 At the next cycle count value (i.e., when the next clock signal CLK comes), a digital low logic level control signal S1 is output, and the power switching element 104 is thus controlled to be disconnected by the control signal S1. In other words, when the cycle count value is greater than the startup set value W and less than or equal to the duty cycle set value X, the power switching element 104 is turned on, and when the cycle count value is greater than the duty cycle set value X and less than or equal to the maximum preset value, Power switching element 104 is open. Since the duty cycle of the control signal S1 is less than 100%, the duty cycle setting value X input by the user must be greater than the minimum preset value and less than the maximum preset value. In other words, the duty cycle setting value X must be greater than 0 and less than 100. That is, the value of 1≦X≦99 can be received by the digital control circuit 106, otherwise X will be regarded as an invalid value and is not accepted by the digital control circuit 106. In addition, after each control signal generating unit 208 outputs the control signal S1 according to the first comparison result and the second comparison result, the control signal generating unit 208 detects whether the duty cycle setting value X input by the user changes, if the work The cycle set value X is changed, and the control signal generating unit 208 updates the duty cycle set value X received by the second comparing unit 206 to the changed duty cycle set value X to cause the output voltage Vout of the flyback power supply device 100. It can be changed according to the change of the duty cycle setting value X, and the user can adjust the output voltage Vout of the flyback power supply device 100 at any time according to actual needs.
圖3繪示為圖2實施例之循環計數值與控制訊號S1的波形示意圖。請參照圖3,舉例來說,假設在圖2實施例中使用者所輸入的工作週期設定值X為6,而當控制訊號為高邏輯準位時功率開關元件104為導通狀態。則當循環計數單元目前的循環計數值為0時,因其等於啟動設定值W,故控制訊號S1會在下一個時脈訊號CLK來時(也就是循環計數值等於1時),輸出一個數位高邏輯準位,是以由圖3可看出,當循環計數值等於1時,控制訊號S1輸出一個數位高邏輯準位,亦即控制功率開關元件104為導通。同理,當循環計數單元計數到6時,因目前的循環計數值等於工作週期設定值X,故控制訊號S1會在下一個時脈訊號CLK來時(也就是循環計數值等於7時),輸出一個數位低邏輯準位,是以由圖3可看出,當循環計數值等於7時,控制訊號S1輸出一個數位低邏輯準位,亦即控制功率開關元件104為斷開。由此可知,在每個循環計數單元202由0計數至100的期間內,在1至6的期間內控制訊號S1為高邏輯準位,亦即控制訊號S1的工作週期為6%。依此類推,若使用者將工作週期設定值X改變為其他數值(例如78),則控制訊號S1的工作週期亦會變為對應的工作週期(78%)。FIG. 3 is a schematic diagram showing the waveform of the loop count value and the control signal S1 in the embodiment of FIG. 2. Referring to FIG. 3, for example, it is assumed that the duty cycle setting value X input by the user in the embodiment of FIG. 2 is 6, and the power switching element 104 is in an on state when the control signal is at the high logic level. When the current cycle count value of the loop counting unit is 0, since it is equal to the startup set value W, the control signal S1 will output a digit when the next clock signal CLK comes (that is, when the loop count value is equal to 1). The logic level is as shown in FIG. 3. When the loop count value is equal to 1, the control signal S1 outputs a digital high logic level, that is, the power switching element 104 is controlled to be turned on. Similarly, when the loop counting unit counts to 6, since the current loop count value is equal to the duty cycle set value X, the control signal S1 will be output when the next clock signal CLK comes (that is, when the loop count value is equal to 7), the output A digital low logic level, as can be seen from FIG. 3, when the cycle count value is equal to 7, the control signal S1 outputs a digital low logic level, that is, the power switching element 104 is controlled to be off. It can be seen that during the period from 0 to 100 in each cycle counting unit 202, the control signal S1 is at a high logic level during the period of 1 to 6, that is, the duty cycle of the control signal S1 is 6%. Similarly, if the user changes the duty cycle setting value X to another value (for example, 78), the duty cycle of the control signal S1 also changes to the corresponding duty cycle (78%).
圖4繪示為本發明另一實施例之數位控制電路的示意圖。請參照圖4,本實施例之數位控制電路400與圖2之數位控制電路106的不同之處在於,本實施例之數位控制電路400更包括一暫存單元402,其耦接第二比較單元206以及控制訊號產生單元208。暫存單元402用以儲存使用者所輸入的工作週期設定值X,第二比較單元206自暫存單元402獲取工作週期設定值X,第一比較單元204接收一啟動設定值W,以進行目前的循環計數值、啟動設定值W及工作週期設定值X之間的比較。其中,啟動設定值W係由數位控制電路400內部自行產生的。在本實施例中啟動設定值W係來自於循環計數單元202且等於最小預設值,即本實施例中啟動設定值為0。另外,控制訊號產生單元208亦透過偵測暫存單元402中所儲存的工作週期設定值X來判斷使用者所輸入的工作週期設定值X是否改變,以將第二比較單元206所使用的工作週期設定值X更新為改變過後的工作週期設定值X。除了上述差異外,數位控制電路400的運作方式類似於數位控制電路106的運作方式,本領域具通常知識者應可藉由上述實施例的教示推知數位控制電路400的運作方式,因此在此不再贅述。4 is a schematic diagram of a digital control circuit according to another embodiment of the present invention. Referring to FIG. 4, the digital control circuit 400 of the present embodiment is different from the digital control circuit 106 of FIG. 2 in that the digital control circuit 400 of the present embodiment further includes a temporary storage unit 402 coupled to the second comparison unit. 206 and control signal generating unit 208. The temporary storage unit 402 is configured to store the duty cycle setting value X input by the user, the second comparison unit 206 obtains the duty cycle setting value X from the temporary storage unit 402, and the first comparison unit 204 receives a startup setting value W to perform the current A comparison between the cycle count value, the start setpoint value W, and the duty cycle setpoint value X. The startup set value W is generated by the digital control circuit 400 itself. In this embodiment, the startup set value W is from the loop counting unit 202 and is equal to the minimum preset value, that is, the startup setting value is 0 in this embodiment. In addition, the control signal generating unit 208 also determines whether the duty cycle setting value X input by the user is changed by detecting the duty cycle setting value X stored in the temporary storage unit 402 to change the work used by the second comparing unit 206. The cycle set value X is updated to the duty cycle set value X after the change. In addition to the above differences, the operation of the digital control circuit 400 is similar to the operation of the digital control circuit 106. Those skilled in the art should be able to infer the operation of the digital control circuit 400 by the teachings of the above embodiments, and therefore Let me repeat.
圖5繪示為本發明一實施例之返馳式電源供應裝置的驅動方法流程圖。請參照圖5,綜上所述,返馳式電源供應裝置的驅動方法可包括下列步驟。首先,重複自一最小預設值計數至一最大預設值,以產生一循環計數值(步驟S502)。接著,比較目前的循環計數值與一啟動設定值,以判斷目前的循環計數值是否等於啟動設定值,而得到一第一比較結果(步驟S504)。其中啟動設定值等於最小預設值。然後,比較目前的循環計數值與使用者輸入的一工作週期設定值,以判斷目前的循環計數值是否等於使用者輸入的工作週期設定值,而得到一第二比較結果(步驟S506)。其中工作週期設定值大於最小預設值且小於最大預設值。之後再依據第一比較結果與第二比較結果輸出一控制訊號,以控制返馳式電源供應裝置之一功率開關元件的導通狀態(步驟S508)。然後再回到步驟S504,進行目前的循環計數值與啟動設定值之間的比較。FIG. 5 is a flow chart showing a driving method of a flyback power supply device according to an embodiment of the present invention. Referring to FIG. 5, in summary, the driving method of the flyback power supply device may include the following steps. First, the counting from a minimum preset value to a maximum preset value is repeated to generate a loop count value (step S502). Next, the current cycle count value and a start set value are compared to determine whether the current cycle count value is equal to the start set value, and a first comparison result is obtained (step S504). The startup set value is equal to the minimum preset value. Then, the current cycle count value is compared with a duty cycle set value input by the user to determine whether the current cycle count value is equal to the duty cycle set value input by the user, and a second comparison result is obtained (step S506). The work cycle set value is greater than the minimum preset value and less than the maximum preset value. Then, a control signal is output according to the first comparison result and the second comparison result to control the conduction state of the power switching element of one of the flyback power supply devices (step S508). Then, returning to step S504, a comparison between the current cycle count value and the startup set value is performed.
詳細來說,步驟S508的步驟包括下列步驟。首先,判斷目前的循環計數值是等於啟動設定值(狀態A),亦或是等於工作週期設定值(狀態B)(步驟S510),若目前的循環計數值等於啟動設定值,則在下一個循環計數值(亦即下一個時脈訊號CLK來時)開始將功率開關元件設定為導通狀態(步驟S512),並回到到步驟S504,進行目前的循環計數值與啟動設定值之間的比較;若目前的循環計數值等於工作週期設定值,則在下一個循環計數值(亦即下一個時脈訊號CLK來時)開始將功率開關元件設定為非導通狀態(步驟S514),並進入到步驟S504,進行目前的循環計數值與啟動設定值之間的比較。In detail, the step of step S508 includes the following steps. First, it is judged that the current cycle count value is equal to the startup set value (state A), or equal to the duty cycle set value (state B) (step S510), and if the current cycle count value is equal to the startup set value, then in the next cycle The count value (that is, when the next clock signal CLK comes) starts to set the power switching element to the on state (step S512), and returns to step S504 to perform a comparison between the current cycle count value and the startup set value; If the current cycle count value is equal to the duty cycle set value, the power switch element is set to the non-conduction state at the next cycle count value (ie, when the next clock signal CLK comes) (step S514), and proceeds to step S504. , a comparison between the current cycle count value and the start set value.
圖6繪示為本發明另一實施例之返馳式電源供應裝置的驅動方法流程圖。請參照圖6,本實施例之返馳式電源供應裝置的驅動方法與圖5實施例之返馳式電源供應裝置的驅動方法的不同之處在於,本實施例在步驟S508後更執行步驟S602,亦即偵測工作週期設定值是否被改變(步驟S602),若工作週期設定值未被改變,則回到步驟S504,進行目前的循環計數值與啟動設定值之間的比較;若工作週期設定值被改變,則將工作週期設定值更新為改變過後的工作週期設定值(步驟S604),並回到步驟S504,進行目前的循環計數值與啟動設定值之間的比較。如此便可使返馳式電源供應裝置的輸出電壓隨著工作週期設定值的改變而變化,讓使用者依實際需求隨時調整返馳式電源供應裝置的輸出電壓。6 is a flow chart showing a driving method of a flyback power supply device according to another embodiment of the present invention. Referring to FIG. 6 , the driving method of the flyback power supply device of the embodiment is different from the driving method of the flyback power supply device of the embodiment of FIG. 5 in that the embodiment further performs step S602 after step S508. , that is, whether the detection duty cycle setting value is changed (step S602), if the duty cycle setting value is not changed, then returning to step S504, performing a comparison between the current cycle count value and the startup setting value; When the set value is changed, the duty cycle set value is updated to the changed duty cycle set value (step S604), and the process returns to step S504 to perform a comparison between the current cycle count value and the start set value. In this way, the output voltage of the flyback power supply device changes with the change of the set value of the duty cycle, so that the user can adjust the output voltage of the flyback power supply device at any time according to actual needs.
綜上所述,本發明利用第一、第二比較單元來比較啟動設定值、使用者輸入之工作週期設定值以及循環計數單元計數之循環計數值,並依據其比較結果來決定控制訊號的邏輯準位,進而調整控制訊號的工作週期,使返馳式電源供應裝置得以輸出符合實際應用需求的高電壓。In summary, the present invention utilizes the first and second comparison units to compare the startup set value, the user-entered duty cycle set value, and the loop count value of the loop count unit count, and determines the logic of the control signal based on the comparison result. The level is adjusted to adjust the duty cycle of the control signal, so that the flyback power supply device can output a high voltage that meets the actual application requirements.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100...返馳式電源供應裝置100. . . Flyback power supply device
102...變壓器102. . . transformer
104...功率開關元件104. . . Power switching element
106、400...數位控制電路106, 400. . . Digital control circuit
102A...一次側線圈102A. . . Primary side coil
102B...二次側線圈102B. . . Secondary side coil
202...循環計數單元202. . . Cycle counting unit
204...第一比較單元204. . . First comparison unit
206...第二比較單元206. . . Second comparison unit
208...控制訊號產生單元208. . . Control signal generating unit
402...暫存單元402. . . Staging unit
D1...整流二極體D1. . . Rectifier diode
C1...電容C1. . . capacitance
Vin...輸入電壓Vin. . . Input voltage
GND...接地GND. . . Ground
S1...控制訊號S1. . . Control signal
X...工作週期設定值X. . . Work cycle setting
Vout...輸出電壓Vout. . . The output voltage
SR1...重置訊號SR1. . . Reset signal
CLK...時脈訊號CLK. . . Clock signal
S502~S514、S602~S604...返馳式電源供應裝置的驅動方法步驟S502~S514, S602~S604. . . Driving method steps of the flyback power supply device
圖1繪示為本發明一實施例之返馳式電源供應裝置的示意圖。FIG. 1 is a schematic diagram of a flyback power supply device according to an embodiment of the invention.
圖2繪示為本發明一實施例之數位控制電路的示意圖。2 is a schematic diagram of a digital control circuit according to an embodiment of the invention.
圖3繪示為圖2實施例之循環計數值與控制訊號S1的波形示意圖。FIG. 3 is a schematic diagram showing the waveform of the loop count value and the control signal S1 in the embodiment of FIG. 2.
圖4繪示為本發明另一實施例之數位控制電路的示意圖。4 is a schematic diagram of a digital control circuit according to another embodiment of the present invention.
圖5繪示為本發明一實施例之返馳式電源供應裝置的驅動方法流程圖。FIG. 5 is a flow chart showing a driving method of a flyback power supply device according to an embodiment of the present invention.
圖6繪示為本發明另一實施例之返馳式電源供應裝置的驅動方法流程圖。6 is a flow chart showing a driving method of a flyback power supply device according to another embodiment of the present invention.
106...數位控制電路106. . . Digital control circuit
202...循環計數單元202. . . Cycle counting unit
204...第一比較單元204. . . First comparison unit
206...第二比較單元206. . . Second comparison unit
208...控制訊號產生單元208. . . Control signal generating unit
S1...控制訊號S1. . . Control signal
X...工作週期設定值X. . . Work cycle setting
SR1...重置訊號SR1. . . Reset signal
CLK...時脈訊號CLK. . . Clock signal
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100118702A TWI449315B (en) | 2011-05-27 | 2011-05-27 | Fly back power supply apparatus and digital control circuit and driving method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100118702A TWI449315B (en) | 2011-05-27 | 2011-05-27 | Fly back power supply apparatus and digital control circuit and driving method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201249087A TW201249087A (en) | 2012-12-01 |
TWI449315B true TWI449315B (en) | 2014-08-11 |
Family
ID=48138917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100118702A TWI449315B (en) | 2011-05-27 | 2011-05-27 | Fly back power supply apparatus and digital control circuit and driving method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI449315B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104622A (en) * | 1997-04-30 | 2000-08-15 | Fidelix Y.K. | Power supply apparatus for reduction of power consumption |
TW201008368A (en) * | 2008-08-14 | 2010-02-16 | Nat Chi Nan Cuniversity | Light mixing control system for LEDs |
TWI324430B (en) * | 2006-10-03 | 2010-05-01 | System General Corp | Start-up circuit with feedforward compensation for power converters |
TW201034353A (en) * | 2008-11-14 | 2010-09-16 | Semiconductor Components Ind | Quasi-resonant power supply controller and method therefor |
TW201034358A (en) * | 2009-03-06 | 2010-09-16 | Grenergy Opto Inc | Minimum on-time reduction method, device and system using the same |
TW201101691A (en) * | 2009-06-16 | 2011-01-01 | Grenergy Opto Inc | Method and device to detect the voltage of quasi-resonant wave trough |
-
2011
- 2011-05-27 TW TW100118702A patent/TWI449315B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104622A (en) * | 1997-04-30 | 2000-08-15 | Fidelix Y.K. | Power supply apparatus for reduction of power consumption |
TWI324430B (en) * | 2006-10-03 | 2010-05-01 | System General Corp | Start-up circuit with feedforward compensation for power converters |
TW201008368A (en) * | 2008-08-14 | 2010-02-16 | Nat Chi Nan Cuniversity | Light mixing control system for LEDs |
TW201034353A (en) * | 2008-11-14 | 2010-09-16 | Semiconductor Components Ind | Quasi-resonant power supply controller and method therefor |
TW201034358A (en) * | 2009-03-06 | 2010-09-16 | Grenergy Opto Inc | Minimum on-time reduction method, device and system using the same |
TW201101691A (en) * | 2009-06-16 | 2011-01-01 | Grenergy Opto Inc | Method and device to detect the voltage of quasi-resonant wave trough |
Also Published As
Publication number | Publication date |
---|---|
TW201249087A (en) | 2012-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7602154B2 (en) | Phase compensation driving scheme for synchronous rectifiers | |
KR101425668B1 (en) | Frequency modulation device and switch mode power supply using the same | |
TWI478470B (en) | Switch power controller and method of operating switch power | |
US7272024B2 (en) | Synchronized rectification circuit and switching power supply device | |
JP6767867B2 (en) | Resonant power converter and control method | |
US9504105B2 (en) | On-time control for switched mode power supplies | |
KR101403544B1 (en) | A snubber capacitor generating an auxiliary power supply voltage | |
CN103825468A (en) | Control circuit of flyback power converter | |
JP2009529312A (en) | Supply circuit and device having supply circuit | |
JP2009106038A (en) | Switching power supply unit | |
WO2014034531A1 (en) | Switching power supply apparatus | |
JP2015180127A5 (en) | ||
TWI608693B (en) | Voltage detection method and circuit and switching power supply with voltage detection circuit | |
TWI380570B (en) | Resonant lossless circuit for providing a low operating voltage in power converter | |
Kovacevic et al. | A VHF interleaved self-oscillating resonant SEPIC converter with phase-shift burst-mode control | |
WO2019111504A1 (en) | Switching power supply device control method, switching power supply device, and control circuit for same | |
JP2011097732A (en) | Step-up/down circuit | |
JP2013070509A (en) | Power unit and light emitting element drive device | |
US9655175B2 (en) | Off-time control for switched mode power supplies | |
TW202119745A (en) | Boost converter | |
TWI547083B (en) | Control circuit of power converter and related method | |
JP2004104645A (en) | Triangular wave generating device, pulse width modulation signal generating device and external synchronization/internal synchronization/asynchronization switching device | |
TWI449315B (en) | Fly back power supply apparatus and digital control circuit and driving method thereof | |
KR100966965B1 (en) | Dc/dc converter with multi-output | |
TWI795258B (en) | Gate driver circuit for a power supply voltage converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |