TWI448102B - Channel interleaving method, channel interleaver and channel encoding apparatus - Google Patents

Channel interleaving method, channel interleaver and channel encoding apparatus Download PDF

Info

Publication number
TWI448102B
TWI448102B TW098146393A TW98146393A TWI448102B TW I448102 B TWI448102 B TW I448102B TW 098146393 A TW098146393 A TW 098146393A TW 98146393 A TW98146393 A TW 98146393A TW I448102 B TWI448102 B TW I448102B
Authority
TW
Taiwan
Prior art keywords
bits
blocks
sub
bit
block
Prior art date
Application number
TW098146393A
Other languages
Chinese (zh)
Other versions
TW201110607A (en
Inventor
Ciou Ping Wu
Pei Kai Liao
Yu Hao Chang
Yih Shen Chen
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW201110607A publication Critical patent/TW201110607A/en
Application granted granted Critical
Publication of TWI448102B publication Critical patent/TWI448102B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

通道交錯方法、通道交錯器與通道編碼裝置 Channel interleaving method, channel interleaver and channel coding device 相關申請之交叉引用 Cross-reference to related applications

本申請依據35 U.S.C.§119要求如下優先權:編號為61/141,831,申請日為2008/12/31,名稱為Interleaver design for error correction code”之美國臨時申請;編號為61/149,716,申請日為2009/2/4,名稱為“Bit Grouping Design for Error Correction Code”之美國臨時申請;編號為61/154,027,申請日為2009/2/20,名稱為“Bit Grouping Design for Error Correction Code”之美國臨時申請;編號為61/163,941,申請日為2009/3/27,名稱為“Bit Grouping Design for Error Correction Code”之美國臨時申請。其主題於此一併作為參考。 This application claims priority under 35 USC § 119: US Provisional Application No. 61/141,831, filed on December 12, 2011, entitled "Interleaver design for error correction code"; number 61/149,716, application date is 2009/2/4, US Provisional Application entitled "Bit Grouping Design for Error Correction Code"; number 61/154,027, filing date is 2009/2/20, US name "Bit Grouping Design for Error Correction Code" Temporary application; US Provisional Application No. 61/163,941, filed on Jan. 3/27, entitled "Bit Grouping Design for Error Correction Code", the subject of which is hereby incorporated by reference.

本發明之實施例有關於用於錯誤更正碼之交錯器設計,且特別有關於用於通道交錯之基於符號調變星座圖之排列。 Embodiments of the present invention relate to interleaver designs for error correction codes, and more particularly to permutation-based constellation-based arrangements for channel interleaving.

大部分錯誤更正碼(Error Correction Code,ECC)被設計以更正隨機通道錯誤(random channel error)。解碼器性能通常受到一連串的通道錯誤之影響。將錯誤更正碼中的位元交錯,可以打亂一連串的通道錯誤來提高性能。於發送端,通道交錯打亂已編碼位元,使連續的通道衰落(fading)之影響分布於整個編碼區塊(coding block)上, 且因此於接收端,一個編碼區塊中,突發通道錯誤之長度大大降低。 Most Error Correction Codes (ECC) are designed to correct random channel errors. Decoder performance is often affected by a series of channel errors. Interleaving the bits in the error correction code can upset a series of channel errors to improve performance. At the transmitting end, the channel interleaving scrambles the encoded bits, so that the effects of continuous channel fading are distributed over the entire coding block. Therefore, at the receiving end, the length of the burst channel error is greatly reduced in one coding block.

第1圖(先前技術)係於IEEE 802.16e無線系統中採取之用於通道編碼之交錯方案之方塊圖。於IEEE 802.16e無線系統中,迴旋渦輪碼(Convolutional Turbo Code,以下簡稱為CTC)交錯器被用於通道編碼。如第1圖所示,CTC交錯器11包含位元分離模組(bit separation module)12、次區塊交錯器(subblock interleaver)13、以及位元分組模組(bit-grouping module)14。位元分離模組12自CTC編碼器接收所有已編碼位元且將所述已編碼位元分布至多個資訊次區塊(information subblock)A與B,以及多個奇偶校驗次區塊(parity subblock)Y1、Y2、W1與W2。次區塊交錯器13獨立地交錯所有次區塊。位元分組模組14多工(multiplex)已交錯次區塊且將其重新組合(regroup)至次區塊A、B、Y與W。 Figure 1 (Prior Art) is a block diagram of an interleaving scheme for channel coding taken in an IEEE 802.16e wireless system. In the IEEE 802.16e wireless system, a Convolutional Turbo Code (CTC) interleaver is used for channel coding. As shown in FIG. 1, the CTC interleaver 11 includes a bit separation module 12, a subblock interleaver 13, and a bit-grouping module 14. The bit separation module 12 receives all coded bits from the CTC encoder and distributes the coded bits to a plurality of information subblocks A and B, and a plurality of parity subblocks (parity) Subblock) Y1, Y2, W1 and W2. The secondary block interleaver 13 independently interleaves all of the secondary blocks. The bit grouping module 14 multiplexes the interleaved sub-blocks and regroups them into sub-blocks A, B, Y, and W.

於IEEE 802.16e中,待交錯位元之整個次區塊被寫入位址範圍為0至所述待交錯位元之數目減1(N-1)之陣列(array),且已交錯位元以排定順序(permuted order)讀出,其中第i位元自位址ADi(i=0...N-1)讀出。次區塊交錯器13之公式如下: In IEEE 802.16e, the entire sub-block of the bit to be interleaved is written to an array having an address range of 0 to the number of bits to be interleaved minus 1 (N-1), and the interleave bits are interleaved. Read out in a permuted order, where the i-th bit is read from the address AD i (i = 0...N-1). The formula of the secondary block interleaver 13 is as follows:

其中,Tk為假定(tentative)輸出位址,m與J為次區塊交錯器參數,BROm(y)表示y之位元-反轉之m-位元值(亦即,BRO3(6)=3)。若Tk小於N,則ADi=Tk,且i與k各增加1;否則丟棄Tk且僅增加k。重複上述次區塊 交錯程序,直至獲得所有N個交錯器輸出位址。 Where T k is the tentative output address, m and J are the sub-block interleaver parameters, and BRO m( y) represents the y-bit-inverted m-bit value (ie, BRO 3 ( 6) = 3). If T k is less than N, then AD i =T k and i and k are each incremented by one; otherwise T k is discarded and only k is added. The above-described sub-block interleaving procedure is repeated until all N interleaver output addresses are obtained.

接著,於發送端,已交錯位元被調變(modulated)然後發送。於接收端,已接收位元被解調變(de-modulated)、解交錯(de-interleaved),然後由CTC解碼器將其解碼。於高階調變方案(例如,16正交幅度調變(Quadrature Amplitude Modulation,以下簡稱為QAM)與64QAM,其調變符號承載(carry)超過兩個位元)中,因為於一個調變符號中具有多個不同位元可靠性(bit reliabilities)之位準,故不同位元具有不同錯誤機率(error probabilities)。其結果是,使用具有高階調變之IEEE 802.16e CTC交錯方案時會出現兩個問題。第一,基於次區塊交錯方程式(1),於每一次區塊中,相鄰之已編碼位元映射於調變符號中具有相同位元可靠性的位準。此問題亦意指為如第1圖所示之區塊內連續性(intra-block continuity),其中次區塊A中之相鄰已編碼位元0、1、2皆映射於高位元可靠性H。第二,因為每一次區塊係基於相同之交錯方程式來交錯,不同次區塊中之具有相同索引(index)之多個位元被映射於調變符號中具有相同位元可靠性的位準。此問題亦意指為如第1圖所示之區塊間連續性(inter-block continuity),其中不同次區塊A與B中之相同位元93皆映射於低位元可靠性L。 Then, at the transmitting end, the interleaved bits are modulated and then transmitted. At the receiving end, the received bits are de-modulated, de-interleaved, and then decoded by the CTC decoder. In the high-order modulation scheme (for example, 16 Quadrature Amplitude Modulation (QAM) and 64QAM, the modulation symbol carries more than two bits) because it is in a modulation symbol. With multiple levels of bit reliabilities, different bits have different error probabilities. As a result, two problems arise when using the IEEE 802.16e CTC interleaving scheme with high-order modulation. First, based on the sub-block interleaving equation (1), in each block, adjacent coded bits are mapped to levels in the modulation symbols having the same bit reliability. This problem is also referred to as intra-block continuity as shown in Figure 1, where adjacent coded bits 0, 1, and 2 in the secondary block A are mapped to high bit reliability. H. Second, because each block is interleaved based on the same interleaving equation, multiple bits with the same index in different sub-blocks are mapped to the levels of the same bit reliability in the modulated symbols. . This problem is also referred to as inter-block continuity as shown in FIG. 1, in which the same bit 93 in different sub-blocks A and B is mapped to the low-order reliability L.

第2圖(先前技術)為更詳細之區塊內連續性問題之示意圖。第2圖包含於次區塊交錯之後之次區塊A之示意圖以及16QAM之符號調變星座圖(constellation map)21。已交錯次區塊A被提供至使用選定調變方案之符號映射器 (symbol mapper)。於16QAM調變方案中,每一調變符號承載四個位元b0b1b2b3,其中b0與b2具有高位元可靠性H,以及b1與b3具有低位元可靠性L。如第2圖所示,基於次區塊交錯方程式(1),次區塊A中之相鄰位元皆映射於相同位元可靠性的位準。例如,位元0-31、96-160皆映射於H,以及位元32-95、161-191皆映射於L。 Figure 2 (Prior Art) is a more detailed diagram of the continuity problem within the block. Figure 2 contains a schematic diagram of sub-block A after sub-block interleaving and a 16QAM symbolization constellation map 21. Interleaved sub-block A is provided to the symbol mapper using the selected modulation scheme (symbol mapper). In the 16QAM modulation scheme, each modulation symbol carries four bits b0b1b2b3, where b0 and b2 have high bit reliability H, and b1 and b3 have low bit reliability L. As shown in FIG. 2, based on the sub-block interleaving equation (1), adjacent bits in the sub-block A are mapped to the level of the same bit reliability. For example, bits 0-31, 96-160 are all mapped to H, and bits 32-95, 161-191 are mapped to L.

第3圖(先前技術)係更詳細之區塊間連續性問題之示意圖。第3圖包含CTC編碼器31與64QAM之符號調變星座圖32。CTC編碼器31接收(take)一對輸入位元A與B且逐集(set-by-set)產生已編碼位元集A、B、Y1、W1、Y2與W2。每一已編碼位元集被交錯且被提供至使用選定調變方案之符號映射器。於64QAM中,每一調變符號承載六個位元b0b1b2b3b4b5,其中b0與b3具有高位元可靠性H、b1與b4具有中間可靠性M、以及b2與b5具有低位元可靠性L。如第3圖所示,因為所有次區塊基於相同之交錯方程式進行交錯,相同已編碼位元集映射於相同位元可靠性的位準。例如,次區塊A與B二者中之相同位元93皆映射於L。 Figure 3 (Prior Art) is a more detailed diagram of the problem of continuity between blocks. Figure 3 contains the symbol modulation constellation 32 of the CTC encoder 31 and 64QAM. The CTC encoder 31 takes a pair of input bits A and B and sets-by-set produces the encoded bit sets A, B, Y1, W1, Y2 and W2. Each set of encoded bits is interleaved and provided to a symbol mapper using the selected modulation scheme. In 64QAM, each modulation symbol carries six bits b0b1b2b3b4b5, where b0 and b3 have high bit reliability H, b1 and b4 have intermediate reliability M, and b2 and b5 have low bit reliability L. As shown in Figure 3, because all sub-blocks are interleaved based on the same interleave equation, the same set of encoded bits is mapped to the same bit reliability level. For example, the same bit 93 of both sub-blocks A and B is mapped to L.

由於區塊內與區塊間連續性問題,IEEE 802.16e通道交錯器產生突發錯誤位元,解碼器性能受到影響。因此,需要避免每一次區塊中之相鄰已編碼位元映射於調變符號中具有相同位元可靠性之位準,且避免不同次區塊中之具有相同索引之多個已編碼位元映射於具有相同位元可靠性之位準之技術方案。 The IEEE 802.16e channel interleaver generates burst error bits due to continuity issues within the block and between blocks, and decoder performance is affected. Therefore, it is necessary to avoid that adjacent coded bits in each block are mapped to the level of the same bit reliability in the modulation symbol, and avoid multiple coded bits having the same index in different sub-blocks. A technical solution that maps to the level of reliability of the same bit.

有鑒於此,特提供以下技術方案:一種通道交錯器,包含新的基於符號調變星座圖之排列模組。通道交錯器首先接收自前向錯誤更正編碼器產生之多個已編碼位元集。已編碼位元被分布至多個次區塊且每一次區塊包含多個相鄰位元。次區塊交錯器交錯每一次區塊且輸出多個已交錯位元。基於符號調變星座圖之排列模組重排已交錯位元且輸出多個已重排位元。已重排位元被提供至符號映射器,為避免自前向錯誤更正編碼器產生的同一編碼位元集中之多個連續編碼位元映射於調變符號中具有相同位元可靠性之位準。此外,亦避免每一次區塊之多個相鄰位元映射於具有相同位元可靠性之位準,以實現符號調變星座圖多樣性且提高接收端之解碼性能。 In view of this, the following technical solutions are provided: a channel interleaver including a new permutation module based on a symbol modulation constellation. The channel interleaver first receives a plurality of encoded bit sets generated from the forward error correction encoder. The coded bits are distributed to a plurality of secondary blocks and each time block contains a plurality of adjacent bits. The secondary block interleaver interleaves each block and outputs a plurality of interleaved bits. The arrangement module based on the symbol modulation constellation rearranges the interleaved bits and outputs a plurality of rearranged bits. The rearranged bits are provided to the symbol mapper to avoid mapping of a plurality of consecutively encoded bits in the same set of coded bits generated by the forward error correction encoder to the level of the same bit reliability in the modulated symbols. In addition, it is also avoided that multiple adjacent bits of each block are mapped to levels having the same bit reliability to achieve symbol modulation constellation diversity and improve decoding performance at the receiving end.

於一實施例中,基於符號調變星座圖之排列模組對已交錯位元執行區塊式打亂(指以區塊為單位打亂已交錯的位元)。於一實例中,基於符號調變星座圖之排列模組藉由對選定數目之次區塊循環移位選定數目之位元來打亂已交錯位元。於另一實例中,基於符號調變星座圖之排列模組藉由對選定數目之次區塊調換選定數目之位元來打亂已交錯位元。 In one embodiment, the permutation module based on the symbol modulation constellation performs block-type scrambling on the interleaved bits (meaning the interleaved bits are scrambled in units of blocks). In one example, the permutation module based on the symbol modulation constellation scrambles the interleaved bits by cyclically shifting the selected number of sub-blocks by a selected number of bits. In another example, the permutation module based on the symbol modulation constellation scrambles the interleaved bits by swapping a selected number of bits for the selected number of sub-blocks.

於另一實施例中,基於符號調變星座圖之排列模組對已交錯位元執行單元式打亂(指以單元為單位打亂已交錯的位元)。於一實例中,基於符號調變星座圖之排列模組首先將每一次區塊分割為多個單元,然後藉由對每一次區塊之選定數目之單元循環移位選定之位元來打亂已交錯位 元。於一實例中,基於符號調變星座圖之排列模組首先將每一次區塊分割為多個單元,然後藉由對每一次區塊之選定數目之單元調換選定數目之位元來打亂已交錯位元。 In another embodiment, the permutation module based on the symbol modulation constellation performs unit scrambling on the interleaved bits (referring to scramble the interleaved bits in units of cells). In an example, the permutation module based on the symbol modulation constellation first divides each block into a plurality of cells, and then scrambles by cyclically shifting the selected bits for a selected number of cells of each block. Interlaced bit yuan. In an example, the permutation module based on the symbol modulation constellation first divides each block into a plurality of cells, and then upsets by switching a selected number of cells for a selected number of cells of each block. Interleaved bits.

以上所述之通道交錯方法、通道交錯器與通道編碼裝置可實現符號調變星座圖之多樣性且於接收端提高解碼器性能。 The channel interleaving method, channel interleaver and channel coding apparatus described above can realize diversity of symbol modulation constellation diagrams and improve decoder performance at the receiving end.

其他實施例與優點將於下文中作詳細說明。本發明內容並非作為本發明的限制。本發明由申請專利範圍界定。 Other embodiments and advantages will be described in detail below. This Summary is not intended to be a limitation of the invention. The invention is defined by the scope of the patent application.

下文將參考所附圖式對本發明實施例作詳細說明。 The embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第4圖係依本發明之實施例之發送編碼器(transmitter-encoder)41與接收解碼器(receiver-decoder)51之方塊圖。發送編碼器41包含前向錯誤更正(Forward Error Correction,以下簡稱為FEC)編碼器42、通道交錯器43、符號映射器(symbol mapper)45、調變模組40以及發送天線(transmitting antenna)66。通道交錯器43更包含位元分離模組46、次區塊交錯器47、位元分組模組48以及基於符號調變星座圖之排列模組49。相似地,接收解碼器51包含FEC解碼器(FEC decoder)52、通道解交錯器(channel de-interleaver)53、符號解映射器(symbol de-mapper)55、解調變模組(demodulation module)50、以及接收天線(receiving antenna)76。通道解交錯器53更包含位元解分離模組(bit de-separation module)56、次區塊解交錯器(subblock de-interleaver)57、位元解分組模 組(bit de-grouping module)58以及基於符號調變星座圖之解排列模組(constellation-based de-permutation module)59。於發送端,自FEC編碼器42之多個已編碼位元集(sets of encoded bits)101被交錯,映射且調變為發送符號(transmission symbol)102,然後由天線66發送。於接收端,天線76接收之接收符號103被解調變、解映射且解交錯為解碼器輸入位元104以由FEC解碼器52解碼。 Figure 4 is a block diagram of a transmitter-encoder 41 and a receiver-decoder 51 in accordance with an embodiment of the present invention. The transmit encoder 41 includes a Forward Error Correction (hereinafter referred to as FEC) encoder 42, a channel interleaver 43, a symbol mapper 45, a modulation module 40, and a transmitting antenna 66. . The channel interleaver 43 further includes a bit separation module 46, a secondary block interleaver 47, a bit grouping module 48, and an arrangement module 49 based on a symbol modulation constellation. Similarly, the receiving decoder 51 includes an FEC decoder (52), a channel de-interleaver 53, a symbol de-mapper 55, and a demodulation module. 50. And a receiving antenna 76. The channel deinterleaver 53 further includes a bit de-separation module 56, a subblock de-interleaver 57, and a bit de-packet mode. A bit de-grouping module 58 and a constellation-based de-permutation module 59. At the transmitting end, a plurality of sets of encoded bits 101 from the FEC encoder 42 are interleaved, mapped and modulated into a transmission symbol 102, which is then transmitted by the antenna 66. At the receiving end, the received symbols 103 received by the antenna 76 are demodulated, demapped, and deinterleaved into decoder input bits 104 for decoding by the FEC decoder 52.

於一實施例中,通道交錯器43包含基於符號調變星座圖之排列模組49以實現符號調變星座圖之多樣性,用於提高解碼器對抗突發通道錯誤之性能。位元分離模組46自FEC編碼器接收多個已編碼位元集101且將其分布至多個資訊次區塊與奇偶校驗次區塊。次區塊交錯器47獨立地交錯每一次區塊。位元分組模組48多工已交錯位元且將已交錯位元105重新組合至第二次區塊集。本發明並不限制初始(initial)多個次區塊集之數目必須與第二多個次區塊集之數目相同,其中第二多個次區塊集係產生於重新組合之後。依設計之考量,第二多個次區塊集之數目可不同於初始多個次區塊集之數目。基於符號調變星座圖之排列模組49分割(可選)且將已交錯位元105打亂為已重排位元106。藉由打亂已交錯位元105,可避免每一已編碼位元集101中之多個連續編碼位元透過符號映射器45映射於調變符號中具有相同位元可靠性之位準。此外,藉由分割且打亂已交錯位元105,亦可避免一個次區塊中之多個相鄰位元映射於調變符號中具有相同位元可靠性之位準。因此,於接收端,此基於符號調變星座圖之排列可實現符號調變 星座圖之多樣性且提高解碼器性能。 In one embodiment, the channel interleaver 43 includes an arrangement module 49 based on a symbol modulation constellation to achieve diversity of symbol modulation constellations for improving the performance of the decoder against burst channel errors. The bit separation module 46 receives a plurality of encoded bit sets 101 from the FEC encoder and distributes them to a plurality of information sub-blocks and parity sub-blocks. The secondary block interleaver 47 independently interleaves each block. The bit grouping module 48 multiplexes the interleaved bits and recombines the interleaved bits 105 into the second sub-block set. The present invention does not limit the number of initial multiple secondary block sets to be the same as the number of second multiple secondary block sets, wherein the second plurality of secondary block sets are generated after recombination. The number of the second plurality of sub-block sets may be different from the number of the initial plurality of sub-block sets, depending on design considerations. The permutation module 49 based on the symbol modulation constellation is segmented (optional) and the interleaved bit 105 is scrambled into the rearranged bit 106. By scrambling the interleaved bit 105, a plurality of consecutively encoded bits in each encoded bit set 101 can be prevented from being mapped through the symbol mapper 45 to a level having the same bit reliability in the modulated symbol. In addition, by dividing and scrambling the interleaved bit 105, it is also possible to prevent a plurality of adjacent bits in a sub-block from being mapped to the level of the same bit reliability in the modulated symbol. Therefore, at the receiving end, this arrangement based on the symbol modulation constellation can achieve symbol modulation The diversity of constellation diagrams and improved decoder performance.

基於符號調變星座圖之排列有兩種基本類型,一種稱為區塊式打亂(block-wise scrambling),而另一種稱為單元式打亂(unit-wise scrambling)。下文將詳細描述每一基於符號調變星座圖之排列類型。 There are two basic types of symbol-based constellation constellation arrangements, one called block-wise scrambling and the other called unit-wise scrambling. The permutation type of each symbol-based modulation constellation will be described in detail below.

區塊式打亂 Block disruption

第5A圖係第4圖所示之通道交錯器43之第一實施例之通道交錯器61之方塊圖。於第5A圖之實例中,通道交錯器61之設計係基於先前技術(background)部分之第1圖所示之IEEE 802.16e通道交錯器11。通道交錯器61包含位元分離模組62、次區塊交錯器63、以及位元分組模組64。此外,通道交錯器61包含新的基於符號調變星座圖之排列模組65。 Fig. 5A is a block diagram of the channel interleaver 61 of the first embodiment of the channel interleaver 43 shown in Fig. 4. In the example of Figure 5A, the channel interleaver 61 is designed based on the IEEE 802.16e channel interleaver 11 shown in Figure 1 of the prior art portion. The channel interleaver 61 includes a bit separation module 62, a secondary block interleaver 63, and a bit grouping module 64. In addition, the channel interleaver 61 includes a new permutation module 65 based on the symbol modulation constellation.

第5B圖是第5A圖之通道交錯器61執行之使用區塊式打亂方案之通道交錯之流程圖。首先,FEC編碼器42產生多個已編碼位元集101(步驟201)。於IEEE 802.16e中,採用CTC編碼器作為FEC編碼器42。於CTC編碼中,每兩個輸入位元被編碼以產生六個已編碼位元(亦即,兩個資訊位元A與B以及四個奇偶校驗位元Y1、Y2、W1、與W2)。因此,一次提供編碼器輸入位元100之兩個位元至CTC編碼器42,CTC編碼器42連續編碼產生多個已編碼位元集101,CTC編碼器42一次產生六個位元,其中所述六個位元形成一個已編碼位元集。接著,多個已編碼位元集101被位元分離模組62分布至六個次區塊(步驟 202)。所述六個次區塊包含兩個資訊次區塊A與B以及四個奇偶校驗次區塊Y1、Y2、W1與W2。然後,每一所述六個次區塊被次區塊交錯器63獨立地交錯(步驟203)。次區塊交錯器63之公式由先前技術部分描述之次區塊交錯方程式(1)給出。位元分組模組64將每一已交錯次區塊多工,其中資訊次區塊A與B保持不變,奇偶校驗次區塊Y1與Y2被多工且重新組合至次區塊Y,以及奇偶校驗次區塊W1與W2被多工且重新組合至次區塊W(步驟204)。在多工且將每一已交錯次區塊重新組合至多個已交錯位元105之後,已交錯位元105被基於符號調變星座圖之排列模組65以區塊式打亂(步驟205)。於打亂之後,已重排位元106由符號映射器45映射,以使於發送之前,每一已編碼位元集101中之所有六個位元映射於調變符號中具有不同可靠性之位準(步驟208)。 Figure 5B is a flow diagram of the channel interleaving using the block scrambling scheme performed by the channel interleaver 61 of Figure 5A. First, the FEC encoder 42 generates a plurality of encoded bit sets 101 (step 201). In IEEE 802.16e, a CTC encoder is employed as the FEC encoder 42. In CTC coding, every two input bits are encoded to produce six coded bits (ie, two information bits A and B and four parity bits Y1, Y2, W1, and W2). . Therefore, two bits of the encoder input bit 100 are provided at one time to the CTC encoder 42, which continuously encodes a plurality of encoded bit sets 101, and the CTC encoder 42 generates six bits at a time. The six bits form a set of encoded bits. Then, the plurality of encoded bit sets 101 are distributed by the bit separation module 62 to six sub-blocks (steps) 202). The six sub-blocks include two information sub-blocks A and B and four parity sub-blocks Y1, Y2, W1 and W2. Then, each of the six sub-blocks is independently interleaved by the sub-block interleaver 63 (step 203). The formula of the sub-block interleaver 63 is given by the sub-block interleaving equation (1) described in the prior art section. The bit grouping module 64 multiplexes each of the interleaved sub-blocks, wherein the information sub-blocks A and B remain unchanged, and the parity sub-blocks Y1 and Y2 are multiplexed and recombined into the sub-block Y, And the parity sub-blocks W1 and W2 are multiplexed and recombined into the sub-block W (step 204). After multiplexing and reassembling each interleaved sub-block into a plurality of interleaved bits 105, the interleaved bit 105 is tiled in a block-based manner based on the symbol modulation constellation arrangement module 65 (step 205) . After scrambling, the rearranged bit 106 is mapped by the symbol mapper 45 such that all six bits in each encoded bit set 101 are mapped to different modulations in the modulated symbols prior to transmission. Level (step 208).

於第5A圖之實例中,基於符號調變星座圖之排列模組65藉由對選定數量之次區塊循環移位選定數量之位元來執行區塊式打亂。首先,自四個次區塊A、B、Y與W中選擇一數量之次區塊(亦即,第5B圖之步驟206)。選定數量之次區塊係根據調變階數、FEC區塊大小(Nep)、以及編碼方案來決定。於本特例中,選擇資訊次區塊B與奇偶校驗次區塊W。接著,每一選定次區塊被循環左移位一數量之位元(亦即,第5B圖之步驟207)。每一次區塊待移位之位元數目的選擇必需使FEC編碼器42產生之每一已編碼位元集101映射於調變符號中具有不同位元可靠性之位準。於本特例中,次區塊B與次區塊W移位k位元, 其中當FEC區塊大小Nep等於調變階數之倍數時,k設定為整數1,否則k設定為0。於64QAM(調變階數為六)之實例中,若Nep等於6之倍數,k設定為1,否則k設定為0。對選定數量之次區塊,藉由循環左移位(circularly left-shift)選定數目的位元,於接收端可實現符號調變星座圖之多樣性以提高解碼器性能。 In the example of FIG. 5A, the permutation constellation-based permutation module 65 performs block scrambling by cyclically shifting a selected number of sub-blocks by a selected number of bits. First, a number of sub-blocks are selected from four sub-blocks A, B, Y, and W (i.e., step 206 of Figure 5B). The selected number of sub-blocks are determined according to the modulation order, the FEC block size (Nep), and the coding scheme. In this particular example, the information sub-block B and the parity sub-block W are selected. Next, each selected sub-block is cyclically shifted left by a number of bits (i.e., step 207 of Figure 5B). The selection of the number of bits to be shifted per block must be such that each encoded bit set 101 generated by the FEC encoder 42 is mapped to a level of different bit reliability in the modulated symbols. In this special case, the sub-block B and the sub-block W are shifted by k bits, Wherein when the FEC block size Nep is equal to a multiple of the modulation order, k is set to an integer of 1, otherwise k is set to zero. In the example of 64QAM (the modulation order is six), if Nep is equal to a multiple of 6, k is set to 1, otherwise k is set to zero. For a selected number of sub-blocks, by circularly left-shifting a selected number of bits, the diversity of the symbol-modulated constellation can be implemented at the receiving end to improve decoder performance.

第6A圖說明如何透過基於符號調變星座圖之排列實現符號調變星座圖之多樣性之示意圖。第6A圖包含CTC編碼器42、具有基於符號調變星座圖之排列之通道交錯器43以及符號映射器45之簡圖。CTC編碼器42自編碼器輸入位元100逐集產生已編碼位元集101。如第6A圖所示,一次提供編碼器輸入位元A與B之兩個位元至CTC編碼器42,且每兩個編碼器位元被編碼以每次六個位元輸出一個已編碼位元集,包含六個位元A、B、Y1、Y2、W1與W2。例如,輸入A之第一位元與輸入B之第一位元於一時刻被提供至CTC編碼器42。於CTC編碼之後,於另一時刻連續編碼且產生第一已編碼位元集,且第一已編碼位元集分別包含A、B、Y1、Y2、W1與W2之第一位元。換言之,A、B、Y1、Y2、W1與W2之第n位元被產生以於相應時刻形成第n已編碼位元集。通道交錯器43將多個已編碼位元集分布、交錯以及打亂為已重排位元106。藉由符號映射器45,已重排位元106映射於調變符號。於第6A圖之實例中,使用64QAM調變方案。每一調變符號承載六個位元b0b1b2b3b4b5,其中b0與b3具有高位元可靠性H,b1與b4具有中間可靠性M,以及b2與b5具有低位元 可靠性L。 Figure 6A illustrates a schematic diagram of how the diversity of the symbol modulation constellation is achieved by the arrangement of the symbol-based modulation constellation. FIG. 6A includes a simplified diagram of a CTC encoder 42, a channel interleaver 43 having an arrangement based on a symbol modulation constellation, and a symbol mapper 45. The CTC encoder 42 produces an encoded set of bits 101 from the encoder input bit 100. As shown in FIG. 6A, two bits of the encoder input bits A and B are provided to the CTC encoder 42 at a time, and each two encoder bits are encoded to output an encoded bit every six bits. The metaset contains six bits A, B, Y1, Y2, W1 and W2. For example, the first bit of input A and the first bit of input B are provided to CTC encoder 42 at a time. After the CTC encoding, the first encoded bit set is continuously encoded and generated at another time, and the first encoded bit set includes the first bit of A, B, Y1, Y2, W1 and W2, respectively. In other words, the nth bit of A, B, Y1, Y2, W1, and W2 is generated to form the nth encoded bit set at the corresponding time. Channel interleaver 43 distributes, interleaves, and scrambles the plurality of encoded bit sets into reordered bits 106. The rearranged bit 106 is mapped to the modulated symbol by the symbol mapper 45. In the example of Figure 6A, a 64QAM modulation scheme is used. Each modulation symbol carries six bits b0b1b2b3b4b5, where b0 and b3 have high bit reliability H, b1 and b4 have intermediate reliability M, and b2 and b5 have low bits Reliability L.

於第6A圖之特例中,自CTC編碼器43產生一個已編碼位元集“Y1、W1、A、B、Y2與W2”,每一所述六個位元分別映射於“L、M、M、H、H、L”。因此,64QAM調變符號之所有三個位元可靠性之位準L、M與H皆被映射,其中每兩個位元映射於位元可靠性之一個位準。此外,兩個資訊位元與四個奇偶校驗位元亦映射於具有不同位元可靠性之位準,以實現符號調變星座圖之多樣性。在其他一些實例中,相同集之六個已編碼位元並不總是映射於調變符號中所有具有不同位元可靠性之位準。然而,藉由對選定的次區塊循環左移位選定數目之位元,相同已編碼位元集中之至少一些連續編碼位元並非映射於調變符號中具有相同位元可靠性之位準。 In the special case of FIG. 6A, an encoded bit set "Y1, W1, A, B, Y2, and W2" is generated from the CTC encoder 43, and each of the six bits is mapped to "L, M, respectively. M, H, H, L". Therefore, the levels L, M, and H of all three bit reliability of the 64QAM modulation symbol are mapped, where each two bits are mapped to a level of bit reliability. In addition, two information bits and four parity bits are also mapped to levels with different bit reliability to achieve diversity of symbol modulation constellations. In other instances, the six encoded bits of the same set are not always mapped to all levels of the modulated symbols that have different bit reliability. However, by cyclically shifting the selected number of bits to the selected secondary block, at least some of the consecutively encoded bits in the same encoded bit set are not mapped to the level of the same bit reliability in the modulated symbol.

如先前技術部分第3圖所示,因為所有次區塊基於相同交錯方程式來交錯,具有相同索引編碼位元映射於具有相同位元可靠性之位準。此問題意指為區塊間連續性。然而,於第6A圖之實例中,次區塊B、W1與W2已經左移位k個位元,且當Nep等於調變階數之倍數時,k等於整數1。例如,對於64QAM,當Nep=576或1960時,k=1,且調變階數等於6。因此,藉由對選定次區塊循環移位選定數目之位元,可避免區塊間連續性之問題,同一已編碼位元集中之連續編碼位元可映射於調變符號中具有不同位元可靠性之位準以實現符號調變星座圖之多樣性。 As shown in the third section of the prior art, since all the sub-blocks are interleaved based on the same interleave equation, the same index-encoded bits are mapped to the level having the same bit reliability. This problem means continuity between blocks. However, in the example of FIG. 6A, the secondary blocks B, W1, and W2 have been shifted left by k bits, and when Nep is equal to a multiple of the modulation order, k is equal to the integer 1. For example, for 64QAM, when Nep=576 or 1960, k=1, and the modulation order is equal to 6. Therefore, by cyclically shifting the selected number of bits by the selected sub-block, the problem of continuity between blocks can be avoided, and successively coded bits in the same coded bit set can be mapped to different bits in the modulation symbol. The level of reliability is used to achieve the diversity of symbol-modulated constellations.

第6B圖說明在接收端如何利用符號調變星座圖之多樣性進行解碼操作之示意圖。第6B圖包含解碼器輸入位元 104與FEC解碼器52之圖示。如第6B圖所示,解碼器輸入位元104包含多個解碼位元集;經過發送端之交錯、映射、調變以及接收端之解調變、解映射與解交錯的過程後,每一解交錯位元集等效(equivalent)於每一已編碼位元集。每一解交錯位元集提供至FEC解碼器52且逐集解碼。因為每一解交錯位元集具有如每一已編碼位元集之符號調變星座圖的多樣性,因此,降低通道所造成的錯誤位元長度,可提高接收端之解碼性能。 Figure 6B illustrates a schematic diagram of how the decoding operation can be performed at the receiving end using the diversity of the symbol modulation constellation. Figure 6B contains the decoder input bits An illustration of 104 and FEC decoder 52. As shown in FIG. 6B, the decoder input bit 104 includes a plurality of sets of decoding bits; after the interleaving, mapping, modulation, and demodulation, demapping, and deinterleaving processes at the transmitting end, each The deinterleaved bit set is equivalent to each encoded bit set. Each set of deinterleaved bits is provided to FEC decoder 52 and decoded on a per-set basis. Since each de-interlaced bit set has a diversity of symbol-modulated constellations such as each encoded bit set, reducing the error bit length caused by the channel can improve the decoding performance of the receiving end.

第7圖是第4圖所示之通道交錯器43之第二實施例之通道交錯器71之方塊圖。通道交錯器71包含位元分離模組72、次區塊交錯器73、位元分組模組74以及基於符號調變星座圖之排列模組75。通道交錯器71與第5A圖之通道交錯器61非常相似。然而,於次區塊W1與W2被提供至位元分組模組74之前,其順序被反轉。因此,基於符號調變星座圖之排列模組75選擇三個次區塊B、Y與W,而不是兩個次區塊B與W以藉由移位來執行打亂。次區塊Y循環左移位一個位元,而次區塊B與W循環左移位k個位元,其中當FEC區塊大小Nep等於調變階數之倍數時,k被設定為整數1,且否則k被設定為0。儘管次區塊W1與W2之順序被反轉,對於每一已編碼位元集,藉由對選定數目之次區塊移位選定數量之位元,同樣可實現符號調變星座圖之多樣性。 Fig. 7 is a block diagram of the channel interleaver 71 of the second embodiment of the channel interleaver 43 shown in Fig. 4. The channel interleaver 71 includes a bit separation module 72, a sub-block interleaver 73, a bit grouping module 74, and an arrangement module 75 based on a symbol modulation constellation. Channel interleaver 71 is very similar to channel interleaver 61 of Figure 5A. However, before the sub-blocks W1 and W2 are supplied to the bit grouping module 74, the order is reversed. Therefore, the permutation module 75 based on the symbol modulation constellation selects three sub-blocks B, Y, and W instead of the two sub-blocks B and W to perform scrambling by shifting. The sub-block Y is shifted left by one bit, and the sub-block B and W are left shifted by k bits, wherein k is set to integer 1 when the FEC block size Nep is equal to a multiple of the modulation order. And otherwise k is set to 0. Although the order of the sub-blocks W1 and W2 is reversed, for each encoded bit set, the diversity of the symbol-modulated constellation can also be achieved by shifting the selected number of sub-blocks by a selected number of bits. .

第8圖係第4圖所示之通道交錯器43之第三實施例之通道交錯器81之方塊圖。通道交錯器81包含位元分離模組82、次區塊交錯器83、位元分組模組84與基於符號 調變星座圖之排列模組85。通道交錯器81與第5A圖之通道交錯器61亦非常相似。然而,基於符號調變星座圖之排列模組85藉由調換而不是移位來執行區塊式打亂。首先,自四個次區塊A、B、Y與W選擇一數量之次區塊。選定數量之次區塊係基於調變階數、FEC區塊大小(Nep)以及編碼方案來決定。於本特例中,選擇資訊次區塊B與奇偶校驗次區塊W。接著,區塊式調換每一選定次區塊。區塊式調換包含調換具有N個位元之選定次區塊之第i位元與第(N-i+1)位元,其中i為自1至N/2之運行索引。對FEC編碼器產生之每一已編碼位元集,調換選定數量之次區塊,可實現符號調變星座圖之多樣性以提高解碼性能。 Fig. 8 is a block diagram showing a channel interleaver 81 of the third embodiment of the channel interleaver 43 shown in Fig. 4. The channel interleaver 81 includes a bit separation module 82, a secondary block interleaver 83, a bit grouping module 84, and a symbol based The array module 85 of the modulation constellation. Channel interleaver 81 is also very similar to channel interleaver 61 of Figure 5A. However, the permutation module based on the symbol modulation constellation 85 performs block scrambling by swapping instead of shifting. First, a number of sub-blocks are selected from four sub-blocks A, B, Y, and W. The selected number of sub-blocks are determined based on the modulation order, the FEC block size (Nep), and the coding scheme. In this particular example, the information sub-block B and the parity sub-block W are selected. Next, each selected sub-block is swapped. The block swap includes swapping the i-th bit and the (N-i+1)th bit of the selected sub-block having N bits, where i is a running index from 1 to N/2. For each of the encoded bit sets generated by the FEC encoder, swapping the selected number of sub-blocks, the diversity of the symbol modulation constellation can be realized to improve the decoding performance.

單元式打亂 Unit disruption

除區塊式打亂之外,單元式打亂為另一種基於符號調變星座圖之排列方案,用於通道交錯器以實現符號調變星座圖之多樣性以及提高解碼器性能。第9A圖是第4圖所示之通道交錯器43之第四實施例之通道交錯器91之方塊圖。通道交錯器91包含位元分離模組92、次區塊交錯器93、位元分組模組94以及基於符號調變星座圖之排列模組95。基於符號調變星座圖之排列模組95對已交錯位元105執行單元式打亂而不是執行區塊式打亂,且輸出多個已重排位元106。 In addition to block scrambling, cell scrambling is another permutation scheme based on symbol-modulated constellation for channel interleaver to achieve symbolic modulation constellation diversity and improved decoder performance. Fig. 9A is a block diagram of the channel interleaver 91 of the fourth embodiment of the channel interleaver 43 shown in Fig. 4. The channel interleaver 91 includes a bit separation module 92, a secondary block interleaver 93, a bit grouping module 94, and an array module 95 based on a symbol modulation constellation. The permutation constellation-based permutation module 95 performs unitized scrambling on the interleaved bit 105 instead of performing block-type scrambling, and outputs a plurality of rearranged bit elements 106.

第9B圖是第9A圖之通道交錯器91執行使用單元式打亂方案通道交錯之流程圖。首先,位元分離模組92將自FEC編碼器之多個已編碼位元集101分布至六個次區塊(步 驟301)。六個次區塊包含兩個資訊次區塊A與B,以及四個奇偶校驗次區塊Y1、Y2、W1與W2。每一所述六個次區塊內包含多個相鄰位元。然後,次區塊交錯器93獨立地交錯每一所述六個次區塊(步驟302)。位元分組模組94更將每一已交錯次區塊多工,其中資訊次區塊A與B保持不變,奇偶校驗次區塊Y1與Y2被多工且重新組合至次區塊Y,以及奇偶校驗次區塊W1與W2被多工且重新組合至次區塊W(步驟303)。在多工與重新組合每一已交錯次區塊至多個已交錯位元105之後,已交錯位元105利用基於符號調變星座圖之排列模組95被單元式打亂來產生已重排位元106,以實現符號調變星座圖之多樣性(步驟304)。 Figure 9B is a flow diagram of the channel interleaver 91 of Figure 9A performing channel interleaving using a unitized scrambling scheme. First, the bit separation module 92 distributes the plurality of encoded bit sets 101 from the FEC encoder to six sub-blocks (steps). Step 301). The six sub-blocks contain two information sub-blocks A and B, and four parity sub-blocks Y1, Y2, W1 and W2. Each of the six sub-blocks includes a plurality of adjacent bits. Sub-block interleaver 93 then independently interleaves each of the six sub-blocks (step 302). The bit grouping module 94 further multiplexes each of the interleaved sub-blocks, wherein the information sub-blocks A and B remain unchanged, and the parity sub-blocks Y1 and Y2 are multiplexed and recombined into the sub-block Y. And the parity sub-blocks W1 and W2 are multiplexed and recombined into the sub-block W (step 303). After multiplexing and recombining each of the interleaved sub-blocks into a plurality of interleaved bits 105, the interleaved bit 105 is unitarily scrambled using the symbol modulation constellation-based permutation module 95 to produce the rearranged bits. Element 106 is implemented to implement the diversity of the symbol modulation constellation (step 304).

單元式打亂進一步包含一些步驟。首先,每一次區塊被分割為多個單元(步驟305)。接著,自每一次區塊選擇一數量之單元(步驟306)。最後,藉由移位或者調換來打亂選定單元(步驟307)。於第9A圖之實例中,每一次區塊分割為兩個單元:第一與第二單元。對於次區塊A與Y,選擇打亂第二單元,以及對於次區塊B與W,選擇打亂第一單元。然後每一選定單元循環左移位一個位元。於一實施例中,對於每一次區塊,對選定數目之單元進行單元式打亂,可實現符號調變星座圖之多樣性以提高接收端解碼器性能。 Unit disruption further includes some steps. First, each block is divided into a plurality of units (step 305). Next, a number of units are selected from each block (step 306). Finally, the selected unit is shuffled by shifting or swapping (step 307). In the example of Figure 9A, each block is divided into two units: a first unit and a second unit. For the secondary blocks A and Y, the second unit is selected to be scrambled, and for the secondary blocks B and W, the first unit is selected to be scrambled. Each selected unit is then shifted left by one bit. In one embodiment, for each block, cell scrambling is performed on a selected number of cells to achieve diversity of symbol modulation constellation to improve receiver decoder performance.

第10圖說明如何通過第9A圖所示之基於符號調變星座圖之排列模組95於每一次區塊中實現符號調變星座圖之多樣性之示意圖。第10圖包含次區塊交錯與打亂前後的 次區塊A之簡圖。首先,將多個已編碼位元集101分布至多個次區塊,且每一次區塊包含多個相鄰位元,例如次區塊A之“188、189、190、191”。然後每一次區塊被通道交錯器91交錯與打亂為已重排位元106。已重排位元106被符號映射器45映射於調變符號。於第10圖之實例中,16QAM調變方案被應用。使用16QAM,每一調變符號承載四個位元b0b1b2b3;其中b0與b2具有高位元可靠性H,以及b1與b3具有低位元可靠性L。 Figure 10 illustrates a schematic diagram of how the diversity of the symbol modulation constellation is implemented in each block by the permutation constellation 95 based on the symbol modulation constellation shown in Figure 9A. Figure 10 contains the sub-block interleaving and before and after the disruption A simplified diagram of the secondary block A. First, a plurality of encoded bit sets 101 are distributed to a plurality of sub-blocks, and each block contains a plurality of adjacent bits, such as "188, 189, 190, 191" of the sub-block A. Each block is then interleaved and scrambled by the channel interleaver 91 into the rearranged bit 106. The rearranged bit 106 is mapped to the modulation symbol by the symbol mapper 45. In the example of Figure 10, a 16QAM modulation scheme is applied. With 16QAM, each modulation symbol carries four bits b0b1b2b3; where b0 and b2 have high bit reliability H, and b1 and b3 have low bit reliability L.

如先前技術部分第2圖所示,使用IEEE 802.16e通道交錯器11,由於所採取之次區塊交錯方案,次區塊A之相鄰位元(亦即,“188、189、190、191”)映射於相同位元可靠性(亦即,“L”),此問題意指為區塊內連續性。然而,於第10圖之實例中,因為次區塊分割為兩個單元,且僅選擇兩個單元其中之一來打亂,因此可避免次區塊A之相鄰位元(亦即,“188、189、190、191”)映射於調變符號中相同位元可靠性之位準。實際上,次區塊A之相鄰位元映射於具有不同位元可靠性之位準(亦即,“LHLH”)。因此,可避免區塊內連續性以提高解碼器性能。此外,因為選擇不同次區塊之不同單元用來打亂,亦可避免區塊間連續性。 As shown in FIG. 2 of the prior art, using the IEEE 802.16e channel interleaver 11, adjacent bits of the secondary block A (i.e., "188, 189, 190, 191" due to the sub-block interleaving scheme adopted. ") is mapped to the same bit reliability (ie, "L"), and this problem is meant to be intra-block continuity. However, in the example of FIG. 10, since the secondary block is divided into two units, and only one of the two units is selected to be scrambled, neighboring bits of the secondary block A can be avoided (ie, " 188, 189, 190, 191") maps the level of the same bit reliability in the modulation symbol. In fact, the neighboring bits of the secondary block A are mapped to levels having different bit reliability (i.e., "LHLH"). Therefore, intra-block continuity can be avoided to improve decoder performance. In addition, because different units of different sub-blocks are selected for scrambling, inter-block continuity can also be avoided.

第11圖係第4圖所示之通道交錯器43之第五實施例之通道交錯器111之方塊圖。通道交錯器111包含位元分離模組112、次區塊交錯器113、位元分組模組114以及基於符號調變星座圖之排列模組115。通道交錯器111與第9A圖之通道交錯器91非常相似。然而,基於符號調變星座圖之排列模組115藉由調換而不是移位來執行單元式打 亂。首先,將每一次區塊分割為一數量之單元。接著,選擇一數量之單元。選定數目之單元係基於調變階數、FEC區塊大小(Nep)以及選定之區塊之位置來決定。最後,調換每一選定單元。所述調換包含將具有N個位元之選定單元之第i位元與第(N-i+1)位元調換,其中i為自1至N/2之運行索引。 Fig. 11 is a block diagram showing a channel interleaver 111 of the fifth embodiment of the channel interleaver 43 shown in Fig. 4. The channel interleaver 111 includes a bit separation module 112, a secondary block interleaver 113, a bit grouping module 114, and an arrangement module 115 based on a symbol modulation constellation. Channel interleaver 111 is very similar to channel interleaver 91 of Figure 9A. However, the permutation module based on the symbol modulation constellation performs unit typing by swapping instead of shifting Chaos. First, each block is divided into a number of units. Next, select a quantity of units. The selected number of cells is determined based on the modulation order, the FEC block size (Nep), and the location of the selected block. Finally, swap each selected unit. The swapping includes swapping an ith bit of the selected cell having N bits with a (N-i+1)th bit, where i is a run index from 1 to N/2.

於第11圖之實例中,次區塊A與B被分割為N/3個單元,且次區塊Y與W被分割為2*N/3個單元,其中每一單元包含三個位元。對於次區塊A與Y,選擇前(first)N/6個與N/3個單元,且於每一選定單元中,調換第一個位元與最後一個位元。對於次區塊B與W,選擇最後N/6個與N/3個單元,且對每一選定單元,調換第一個位元與最後一個位元。藉由將次區塊分割為多個單元且調換選定單元內的位元,對於自FEC編碼器產生之每一已編碼位元集以及每一次區塊中之相鄰位元,可實現符號調變星座圖之多樣性。 In the example of FIG. 11, the secondary blocks A and B are divided into N/3 units, and the secondary blocks Y and W are divided into 2*N/3 units, each of which contains three bits. . For the secondary blocks A and Y, the first (first) N/6 and N/3 units are selected, and in each selected unit, the first bit and the last bit are swapped. For the secondary blocks B and W, the last N/6 and N/3 units are selected, and for each selected unit, the first and last bits are swapped. By dividing the secondary block into multiple units and swapping the bits within the selected unit, symbolic tuning can be implemented for each encoded bit set generated from the FEC encoder and adjacent bits in each block. Change the diversity of the constellation.

模擬結果 Simulation result

第12A圖與第12B圖係使用不同交錯方案(option)之通道交錯器性能之模擬結果之圖示。於第12A圖中,FEC區塊大小Nep為960,調變為64QAM以及碼率(code rate)為1/3。於第12B圖中,FEC區塊大小Nep為960,調變為64QAM以及碼率為1/2。如第12A圖與第12B圖所示,所有提出之通道交錯器之訊雜比(SNR)的效能(outperform)比原始(original)IEEE 802.16e通道交錯器好大約2dB(目 標區塊錯誤率(BLER)為0.01)。當碼率為1/3時,使用區塊式打亂方案之通道交錯器之性能相似於使用單元式打亂方案之通道交錯器。然而,當碼率為1/2時,使用單元式打亂方案之通道交錯器之性能超出使用區塊式打亂方案之通道交錯器大約0.1~0.3dB。因為於每一次區塊中,單元式打亂方案以增大(increased)複雜度為代價獲得符號調變星座圖之多樣性,從而提供更佳性能。 Figures 12A and 12B are graphical representations of simulation results for channel interleaver performance using different interleaving schemes. In Fig. 12A, the FEC block size Nep is 960, the modulation is changed to 64QAM, and the code rate is 1/3. In Fig. 12B, the FEC block size Nep is 960, the modulation is changed to 64QAM, and the code rate is 1/2. As shown in Figures 12A and 12B, the signal-to-noise ratio (SNR) performance of all proposed channel interleavers is about 2 dB better than the original IEEE 802.16e channel interleaver. The block error rate (BLER) is 0.01). When the code rate is 1/3, the performance of the channel interleaver using the block scrambling scheme is similar to that of the channel interleaver using the unit scrambling scheme. However, when the code rate is 1/2, the performance of the channel interleaver using the unitized scrambling scheme exceeds the channel interleaver using the block-type scrambling scheme by about 0.1 to 0.3 dB. Because in each block, the unitized scrambling scheme obtains the diversity of the symbol modulation constellation at the expense of increased complexity, thereby providing better performance.

其他實施例 Other embodiments

第13A、13B與13C圖係第4圖所示之通道交錯器43之其他不同實施例之示意圖。於第13A圖之實例中,位元分離模組46自FEC編碼器42接收多個已編碼位元集101且分布已編碼位元至多個資訊次區塊與奇偶校驗次區塊。次區塊交錯器47獨立地交錯所有次區塊。位元分組模組48將已交錯次區塊多工且將其重新組合至多個次區塊。基於符號調變星座圖之排列模組自位元分組模組48接收已交錯位元105且打亂已交錯位元至已重排位元106。於第13B圖之實例中,基於符號調變星座圖之排列模組49自次區塊交錯器47接收已交錯位元105且打亂已交錯位元至已重排位元106。接著位元分組模組48將已重排位元106多工且將其重新組合至多個次區塊。於第13C圖之實例中,位元分組模組48與基於符號調變星座圖之排列模組49一起實施為單個位元分組模組。 Figures 13A, 13B and 13C are schematic views of other different embodiments of the channel interleaver 43 shown in Figure 4. In the example of FIG. 13A, bit separation module 46 receives a plurality of encoded bit sets 101 from FEC encoder 42 and distributes the encoded bits to a plurality of information sub-blocks and parity sub-blocks. The secondary block interleaver 47 independently interleaves all of the secondary blocks. The bit grouping module 48 multiplexes the interleaved sub-blocks and reassembles them into a plurality of sub-blocks. The alignment module based on the symbol modulation constellation receives the interleaved bit 105 and scrambles the interleaved bit to the rearranged bit 106. In the example of FIG. 13B, the permutation constellation based array module 49 receives the interleaved bit 105 from the sub-block interleaver 47 and scrambles the interleaved bit to the rearranged bit 106. The bit grouping module 48 then multiplexes the rearranged bit 106 and reassembles it into a plurality of sub-blocks. In the example of FIG. 13C, the bit grouping module 48 is implemented as a single bit grouping module together with the symbol modulation constellation based array module 49.

儘管本發明係以特定實施例描述其目的,本發明並不僅限於此。例如,第4圖之FEC編碼器42可不為CTC編 碼器而是其他類型之編碼器。此外,第4圖之符號映射器45可不使用16QAM或64QAM來映射已重排位元至調變符號。因此,於不脫離本發明申請專利範圍界定之範圍之情況下,可實行各種修飾、改編以及已描述之實施例之各種特性之組合。 Although the present invention is described in terms of specific embodiments, the invention is not limited thereto. For example, the FEC encoder 42 of FIG. 4 may not be programmed for CTC. The encoder is another type of encoder. Furthermore, the symbol mapper 45 of FIG. 4 may map the rearranged bits to the modulated symbols without using 16QAM or 64QAM. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments may be practiced without departing from the scope of the invention.

11‧‧‧交錯器 11‧‧‧Interlacer

21、32‧‧‧符號調變星座圖 21, 32‧‧‧ symbol modulation constellation

31、42‧‧‧編碼器 31, 42‧‧‧ encoder

40‧‧‧調變模組 40‧‧‧Transformation Module

41‧‧‧發送編碼器 41‧‧‧Send encoder

45‧‧‧符號映射器 45‧‧‧symbol mapper

43、61、71、81、91、111‧‧‧通道交錯器 43, 61, 71, 81, 91, 111‧‧‧ channel interleaver

12、46、62、72、82、92、112‧‧‧位元分離模組 12, 46, 62, 72, 82, 92, 112‧‧‧ bit separation modules

13、47、63、73、83、93、113‧‧‧次區塊交錯器 13, 47, 63, 73, 83, 93, 113 ‧ ‧ block interleaver

14、48、64、74、84、94、114‧‧‧位元分組模組 14, 48, 64, 74, 84, 94, 114‧‧ ‧ bit grouping modules

49、65、75、85、95、115‧‧‧基於符號調變星座圖之排列模組 49, 65, 75, 85, 95, 115‧‧‧ Alignment modules based on symbolic modulation constellation

50‧‧‧解調變模組 50‧‧‧Demodulation Module

51‧‧‧接收解碼器 51‧‧‧Receiver decoder

52‧‧‧FEC解碼器 52‧‧‧FEC decoder

53‧‧‧通道解交錯器 53‧‧‧Channel Deinterleaver

55‧‧‧符號解映射器 55‧‧‧ Symbol Demapper

56‧‧‧位元解分離模組 56‧‧‧ bit dissociation module

57‧‧‧次區塊解交錯器 57‧‧‧Subblock deinterlacer

58‧‧‧位元解分組模組 58‧‧‧ bit deblocking module

59‧‧‧基於符號調變星座圖之解排列模組 59‧‧‧Decoding module based on symbol modulation constellation

66‧‧‧發送天線 66‧‧‧Send antenna

76‧‧‧接收天線 76‧‧‧Receiving antenna

100‧‧‧編碼器輸入位元 100‧‧‧Encoder input bit

101‧‧‧已編碼位元集 101‧‧‧coded bit set

102‧‧‧發送符號 102‧‧‧Send symbol

103‧‧‧接收符號 103‧‧‧ receiving symbols

104‧‧‧解碼器輸入位元 104‧‧‧Decoder input bit

105‧‧‧已交錯位元 105‧‧‧ Interleaved bits

106‧‧‧已重排位元 106‧‧‧Reordered bits

201、202、203、204、205、206、207、208‧‧‧步驟 201, 202, 203, 204, 205, 206, 207, 208 ‧ ‧ steps

301、302、303、304、305、306、307‧‧‧步驟 301, 302, 303, 304, 305, 306, 307 ‧ ‧ steps

所附圖式用來闡釋本發明之實施例,其中相似標號指示相似組件。 The accompanying drawings are used to illustrate the embodiments of the invention

第1圖(先前技術)係IEEE 802.16e無線系統中採取之通道編碼交錯方案之方塊圖。 Figure 1 (Prior Art) is a block diagram of a channel coding interleaving scheme employed in an IEEE 802.16e wireless system.

第2圖(先前技術)係在次區塊交錯後的次區塊圖與16QAM符號調變星座圖示意圖。 Figure 2 (previous technique) is a schematic diagram of a sub-block map and a 16QAM symbol modulation constellation after sub-block interleaving.

第3圖(先前技術)係CTC編碼器與64QAM符號調變星座圖之示意圖。 Figure 3 (Prior Art) is a schematic diagram of a CTC encoder and a 64QAM symbol modulation constellation.

第4圖係依本發明實施例之發送編碼器與接收解碼器之方塊圖。 Figure 4 is a block diagram of a transmit encoder and a receive decoder in accordance with an embodiment of the present invention.

第5A圖係第4圖之通道交錯器之第一實施例之方塊圖。 Figure 5A is a block diagram of a first embodiment of the channel interleaver of Figure 4.

第5B圖是通道交錯器執行區塊式打亂方案的通道交錯流程圖。 Figure 5B is a flow diagram of the channel interleaving of the channel interleaver performing a block scrambling scheme.

第6A圖係於發送端如何透過基於符號調變星座圖之排列模組對每一已編碼位元集實現符號調變星座圖之多樣性之示意圖。 Figure 6A is a diagram showing how the diversity of the symbol modulation constellation is implemented for each encoded bit set through the permutation module based on the symbol modulation constellation.

第6B圖係於接收端如何利用符號調變星座圖之多樣 性提高解碼性能之示意圖。 Figure 6B shows how the symbolic modulation constellation is used at the receiving end. Schematic diagram of improving decoding performance.

第7圖係第4圖之通道交錯器之第二實施例之方塊圖。 Figure 7 is a block diagram of a second embodiment of the channel interleaver of Figure 4.

第8圖係第4圖之通道交錯器之第三實施例之方塊圖。 Figure 8 is a block diagram of a third embodiment of the channel interleaver of Figure 4.

第9A圖係第4圖之通道交錯器之第四實施例之方塊圖。 Figure 9A is a block diagram of a fourth embodiment of the channel interleaver of Figure 4.

第9B圖是通道交錯器執行單元式打亂方案的通道交錯流程圖。 Figure 9B is a flow diagram of the channel interleaving of the channel interleaver performing a unitized scrambling scheme.

第10圖係於每一次區塊中如何透過基於符號調變星座圖之排列模組實現符號調變星座圖之多樣性之示意圖。 Figure 10 is a schematic diagram of how the diversity of the symbol-modulated constellation is realized by the permutation module based on the symbol-modulated constellation in each block.

第11圖係第4圖之通道交錯器之第五實施例之方塊圖。 Figure 11 is a block diagram of a fifth embodiment of the channel interleaver of Figure 4.

第12A與12B圖係通道交錯器性能之模擬結果之示意圖。 A schematic diagram of the simulation results of the channel interleaver performance of Figures 12A and 12B.

第13A、13B與13C圖係第4圖之通道交錯器之依一新的實例之不同實施例之方塊圖。 Figures 13A, 13B and 13C are block diagrams of different embodiments of a new embodiment of the channel interleaver of Figure 4.

40‧‧‧調變模組 40‧‧‧Transformation Module

41‧‧‧發送編碼器 41‧‧‧Send encoder

42‧‧‧編碼器 42‧‧‧Encoder

43‧‧‧通道交錯器 43‧‧‧Channel Interleaver

45‧‧‧符號映射器 45‧‧‧symbol mapper

46‧‧‧位元分離模組 46‧‧‧ bit separation module

47‧‧‧次區塊交錯器 47‧‧‧Subblock Interleaver

48‧‧‧位元分組模組 48‧‧‧ bit grouping module

49‧‧‧基於符號調變星座圖之排列模組 49‧‧‧Arrangement module based on symbol modulation constellation

50‧‧‧解調變模組 50‧‧‧Demodulation Module

51‧‧‧接收解碼器 51‧‧‧Receiver decoder

52‧‧‧FEC解碼器 52‧‧‧FEC decoder

53‧‧‧通道解交錯器 53‧‧‧Channel Deinterleaver

55‧‧‧符號解映射器 55‧‧‧ Symbol Demapper

56‧‧‧位元解分離模組 56‧‧‧ bit dissociation module

57‧‧‧次區塊解交錯器 57‧‧‧Subblock deinterlacer

58‧‧‧位元解分組模組 58‧‧‧ bit deblocking module

59‧‧‧基於符號調變星座圖之解排列模組 59‧‧‧Decoding module based on symbol modulation constellation

66‧‧‧發送天線 66‧‧‧Send antenna

76‧‧‧接收天線 76‧‧‧Receiving antenna

100‧‧‧編碼器輸入位元 100‧‧‧Encoder input bit

101‧‧‧已編碼位元集 101‧‧‧coded bit set

102‧‧‧發送符號 102‧‧‧Send symbol

103‧‧‧接收符號 103‧‧‧ receiving symbols

104‧‧‧解碼器輸入位元 104‧‧‧Decoder input bit

105‧‧‧已交錯位元 105‧‧‧ Interleaved bits

106‧‧‧已重排位元 106‧‧‧Reordered bits

Claims (64)

一種通道交錯方法,包含:將多個已編碼位元集分布至第一多個次區塊,其中該多個已編碼位元集之每一者包含由一前向錯誤更正編碼器產生之多個位元;交錯該多個次區塊之每一者且輸出多個已交錯位元;以及重排該多個已交錯位元且輸出多個已重排位元,其中該多個已重排位元被提供至一符號映射器,且避免相同已編碼位元集之多個連續編碼位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel interleaving method includes: distributing a plurality of encoded bit sets to a first plurality of sub-blocks, wherein each of the plurality of encoded bit sets includes a majority generated by a forward error correction encoder a bit bit; interleaving each of the plurality of sub-blocks and outputting a plurality of interleaved bits; and rearranging the plurality of interleaved bits and outputting a plurality of rearranged bits, wherein the plurality of are already heavy The ranking elements are provided to a symbol mapper, and a plurality of consecutively encoded bits of the same encoded bit set are prevented from being mapped to a level of the same bit reliability in a modulated symbol to implement a symbol modulation constellation Diversity. 如申請專利範圍第1項所述之通道交錯方法,其中該多個已編碼位元集之每一者中的該多個位元映射於該調變符號中具有不同位元可靠性之位準。 The channel interleaving method of claim 1, wherein the plurality of bits in each of the plurality of encoded bit sets are mapped to a level of different bit reliability in the modulated symbol . 如申請專利範圍第1項所述之通道交錯方法,其中該多個已編碼位元集之每一者中的該多個位元包含一第一數目之資訊位元,且其中該第一數目之資訊位元不映射於該調變符號中具有相同位元可靠性之位準。 The channel interleaving method of claim 1, wherein the plurality of bits of each of the plurality of encoded bit sets comprise a first number of information bits, and wherein the first number The information bits are not mapped to the level of the same bit reliability in the modulation symbol. 如申請專利範圍第1項所述之通道交錯方法,其中該重排該多個已交錯位元更包含:將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊;自該第二多個次區塊中選擇一數量之次區塊;以及對該選定次區塊之每一者循環移位一數量之位元。 The channel interleaving method of claim 1, wherein the rearranging the plurality of interleaved bits further comprises: multiplexing the plurality of interleaved bits and interleaving the plurality of multiplexed bits The plurality of sub-blocks are grouped into a second plurality of sub-blocks; a number of sub-blocks are selected from the second plurality of sub-blocks; and each of the selected sub-blocks is cyclically shifted by a number of bits. 如申請專利範圍第1項所述之通道交錯方法,其中 該重排該多個已交錯位元更包含:將該多個已交錯位元分組至一第二多個次區塊;自該第二多個次區塊中選擇一數量之次區塊;以及對該選定次區塊之每一者循環移位一數量之位元。 The channel interleaving method according to claim 1, wherein The rearranging the plurality of interleaved bits further comprises: grouping the plurality of interleaved bits into a second plurality of sub-blocks; selecting a quantity of the sub-blocks from the second plurality of sub-blocks; And cyclically shifting a number of bits for each of the selected sub-blocks. 如申請專利範圍第4項所述之通道交錯方法,其中選定之該數量之次區塊係基於調變階數、前向錯誤更正區塊大小、以及編碼方案來決定。 The channel interleaving method of claim 4, wherein the selected number of sub-blocks are determined based on a modulation order, a forward error correction block size, and a coding scheme. 如申請專利範圍第4項所述之通道交錯方法,其中,為該選定次區塊之每一者決定已移位之該數量之位元,以使由該前向錯誤更正編碼器產生之該多個已編碼位元集之每一者映射於該調變符號中具有不同位元可靠性之位準。 The channel interleaving method of claim 4, wherein the number of shifted bits is determined for each of the selected sub-blocks to be generated by the forward error correction encoder Each of the plurality of encoded bit sets is mapped to a level of different bit reliability in the modulated symbol. 如申請專利範圍第1項所述之通道交錯方法,更包含:自該多個次區塊中選擇一數量之次區塊;以及對該選定次區塊之每一者執行一區塊式調換。 The channel interleaving method of claim 1, further comprising: selecting a quantity of the second block from the plurality of sub-blocks; and performing a block swapping for each of the selected sub-blocks . 如申請專利範圍第8項所述之通道交錯方法,其中選定之該數量之次區塊係基於調變階數、前向錯誤更正區塊大小、以及編碼方案來決定。 The channel interleaving method of claim 8, wherein the selected number of sub-blocks are determined based on a modulation order, a forward error correction block size, and a coding scheme. 如申請專利範圍第8項所述之通道交錯方法,其中該區塊式調換包含將具有N個位元之一選定之次區塊之第i位元與第(N-i+1)個位元調換,其中i為自1至N/2之一運行索引。 The channel interleaving method of claim 8, wherein the block type switching comprises ith bit and (N-i+1)th bit of a sub-block selected by one of N bits. Meta-switching, where i is an index running from one of 1 to N/2. 如申請專利範圍第1項所述之通道交錯方法,更包含: 將該多個已交錯位元或者該多個已重排位元多工。 For example, the channel interleaving method described in claim 1 of the patent scope further includes: The plurality of interleaved bits or the plurality of rearranged bits are multiplexed. 一種通道交錯器,包含:一位元分離器,用於將多個已編碼位元集分布至第一多個次區塊,其中該多個已編碼位元集之每一者包含由一前向錯誤更正編碼器產生之多個位元;一次區塊交錯器,用於交錯該多個次區塊之每一者且輸出多個已交錯位元;以及一基於符號調變星座圖之排列模組,用於重排該多個已交錯位元且輸出多個已重排位元,其中該多個已重排位元被提供至一符號映射器,以避免相同已編碼位元集中之多個連續編碼位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel interleaver comprising: a bit splitter for distributing a plurality of encoded bit sets to a first plurality of sub-blocks, wherein each of the plurality of encoded bit sets comprises a a plurality of bits generated by the error correction encoder; a primary block interleaver for interleaving each of the plurality of sub-blocks and outputting a plurality of interleaved bits; and an arrangement based on a symbol modulation constellation a module for rearranging the plurality of interleaved bits and outputting a plurality of rearranged bits, wherein the plurality of rearranged bits are provided to a symbol mapper to avoid the same encoded bit set A plurality of consecutively encoded bits are mapped to a level of the same bit reliability in a modulated symbol to achieve diversity of the symbol modulated constellation. 如申請專利範圍第12項所述之通道交錯器,其中該多個已編碼位元集之每一者中之該多個位元映射於該調變符號中具有不同位元可靠性之位準。 The channel interleaver of claim 12, wherein the plurality of bits in each of the plurality of coded bit sets are mapped to a level of different bit reliability in the modulation symbol . 如申請專利範圍第12項所述之通道交錯器,其中該多個已編碼位元集之每一者中之該多個位元包含一第一數目之資訊位元,且其中該第一數目之資訊位元不被映射於該調變符號中具有相同位元可靠性之位準。 The channel interleaver of claim 12, wherein the plurality of bits of each of the plurality of encoded bit sets comprise a first number of information bits, and wherein the first number The information bits are not mapped to the level of the same bit reliability in the modulation symbol. 如申請專利範圍第12項所述之通道交錯器,更包含:一位元分組模組,用於將該多個已交錯位元分組至一第二多個次區塊,其中該基於符號調變星座圖之排列模組自該第二多個次區塊中選擇一數量之次區塊,然後對該選定次區塊之每一者循環移位一數量之位元。 The channel interleaver according to claim 12, further comprising: a one-bit packet module, configured to group the plurality of interleaved bits into a second plurality of sub-blocks, wherein the symbol-based modulation The arranging module of the constellation constellation selects a number of sub-blocks from the second plurality of sub-blocks, and then cyclically shifts a number of bits for each of the selected sub-blocks. 如申請專利範圍第12項所述之通道交錯器,更包含:一位元分組模組,用於多工該多個已交錯位元且將該多個已多工之已交錯位元分組至一第二多個次區塊,其中該基於符號調變星座圖之排列模組自該第二多個次區塊中選擇一數量之次區塊,然後對該選定次區塊之每一者循環移位一數量之位元。 The channel interleaver according to claim 12, further comprising: a one-bit packet module, configured to multiplex the plurality of interleaved bits and group the plurality of multiplexed interleaved bits to a second plurality of sub-blocks, wherein the permutation constellation-based permutation module selects a quantity of sub-blocks from the second plurality of sub-blocks, and then each of the selected sub-blocks Cycle through a number of bits. 如申請專利範圍第16項所述之通道交錯器,其中選定之該數量之次區塊係基於前向錯誤更正區塊大小、調變階數、以及編碼方案來決定。 The channel interleaver of claim 16, wherein the selected number of sub-blocks are determined based on a forward error correction block size, a modulation order, and a coding scheme. 如申請專利範圍第16項所述之通道交錯器,其中為該選定次區塊之每一者決定已移位之該數量之位元,使該前向錯誤更正編碼器產生之該多個已編碼位元集之每一者映射於該調變符號中具有不同位元可靠性之位準。 The channel interleaver of claim 16, wherein the number of shifted bits is determined for each of the selected sub-blocks, so that the forward error corrects the plurality of generated by the encoder Each of the set of coded bits is mapped to a level of different bit reliability in the modulated symbol. 如申請專利範圍第12項所述之通道交錯器,其中該基於符號調變星座圖之排列模組自該多個次區塊中選擇一數量之次區塊,然後對該選定次區塊之每一者執行一區塊式調換。 The channel interleaver according to claim 12, wherein the symbol modulation constellation-based array module selects a quantity of the second block from the plurality of sub-blocks, and then selects the second sub-block. Each performs a block swap. 如申請專利範圍第19項所述之通道交錯器,其中選定之該數量之次區塊係基於前向錯誤更正區塊大小、調變階數、以及編碼方案來決定。 The channel interleaver of claim 19, wherein the selected number of sub-blocks are determined based on a forward error correction block size, a modulation order, and a coding scheme. 如申請專利範圍第19項所述之通道交錯器,其中該區塊式調換包含將具有N個位元之一選定之次區塊之第i位元與第(N-i+1)位元調換,其中i為自1至N/2之一運行索引。 The channel interleaver of claim 19, wherein the block switching comprises an i-th bit and an (N-i+1)th bit of a sub-block having one of N bits selected. Swap, where i is the index from one of 1 to N/2. 如申請專利範圍第12項所述之通道交錯器,更包含:一位元分組模組,用於將該多個已交錯位元或者該多個已重排位元多工。 The channel interleaver according to claim 12, further comprising: a one-bit packet module, configured to multiplex the plurality of interleaved bits or the plurality of rearranged bits. 一種通道編碼裝置,包含:一編碼器,用於執行前向錯誤更正編碼且輸出多個已編碼位元集,其中該多個已編碼位元集之每一者包含分布至一第一多個次區塊之多個位元;以及一交錯器,用於交錯該第一多個次區塊之每一者且輸出多個已交錯位元,以降低因突發的通道錯誤而造成錯誤碼字的長度,其中該交錯器亦用於重排該多個已交錯位元且輸出多個已重排位元,其中該多個已重排位元被提供至一符號映射器,以避免相同已編碼位元集中之多個連續編碼位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel coding apparatus includes: an encoder for performing forward error correction coding and outputting a plurality of coded bit sets, wherein each of the plurality of coded bit sets includes a first to a plurality of coded bit sets a plurality of bits of the sub-block; and an interleaver for interleaving each of the first plurality of sub-blocks and outputting a plurality of interleaved bits to reduce an error code caused by a burst channel error The length of the word, wherein the interleaver is also used to rearrange the plurality of interleaved bits and output a plurality of rearranged bits, wherein the plurality of rearranged bits are provided to a symbol mapper to avoid the same A plurality of consecutively encoded bits in the encoded bit set are mapped to a level of the same bit reliability in a modulated symbol to achieve diversity of the symbol modulated constellation. 如申請專利範圍第23項所述之通道編碼裝置,其中該多個已編碼位元集之每一者中之該多個位元映射於該調變符號中具有不同位元可靠性之位準。 The channel coding apparatus of claim 23, wherein the plurality of bits in each of the plurality of coded bit sets are mapped to a level of different bit reliability in the modulation symbol . 如申請專利範圍第23項所述之通道編碼裝置,其中該多個已編碼位元集之每一者中之該多個位元包含一第一數目之資訊位元且其中該第一數目之資訊位元不被映射於該調變符號中具有相同位元可靠性之位準。 The channel coding apparatus of claim 23, wherein the plurality of bits of each of the plurality of coded bit sets comprise a first number of information bits and wherein the first number is The information bits are not mapped to the level of the same bit reliability in the modulation symbol. 如申請專利範圍第23項所述之通道編碼裝置,其中該編碼器包含一迴旋渦輪碼編碼器。 The channel encoding device of claim 23, wherein the encoder comprises a convoluted turbo code encoder. 如申請專利範圍第23項所述之通道編碼裝置,其 中重排該多個已交錯位元之該交錯器包含一基於符號調變星座圖之排列模組,該基於符號調變星座圖之排列模組選擇一數量之已交錯位元且循環移位該選定數目之已交錯位元。 a channel coding device as described in claim 23, The interleaver that rearranges the plurality of interleaved bits includes a permutation module based on a symbol modulation constellation, and the permutation module based on the symbol modulation constellation selects a quantity of interleaved bits and cyclically shifts The selected number of interleaved bits. 如申請專利範圍第23項所述之通道編碼裝置,其中重排該多個已交錯位元之該交錯器包含一基於符號調變星座圖之排列模組,該基於符號調變星座圖之排列模組選擇一數量之該第一多個次區塊且對該選定次區塊之每一者執行區塊式調換。 The channel coding apparatus of claim 23, wherein the interleaver that rearranges the plurality of interleaved bits comprises an arrangement module based on a symbol modulation constellation, the arrangement of the symbol-based modulation constellation The module selects a quantity of the first plurality of secondary blocks and performs block switching for each of the selected secondary blocks. 如申請專利範圍第23項所述之通道編碼裝置,其中重排該多個已交錯位元之該交錯器包含一位元分組模組,該位元分組模組用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊,其中一基於符號調變星座圖之排列模組自該第二多個次區塊中選擇一數量之已交錯位元且循環移位該選定數目之已交錯位元。 The channel encoding device of claim 23, wherein the interleaver that rearranges the plurality of interleaved bits comprises a one-bit packet module, the bit grouping module is configured to interleave the plurality of interleaved modules Bit multiplexing and grouping the plurality of multiplexed interleaved bits into a second plurality of sub-blocks, wherein an array module based on the symbol modulation constellation is from the second plurality of sub-blocks A number of interleaved bits are selected and the selected number of interleaved bits are cyclically shifted. 如申請專利範圍第23項所述之通道編碼裝置,其中重排該多個已交錯位元之該交錯器包含一位元分組模組,該位元分組模組用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊,其中一基於符號調變星座圖之排列模組自該第二多個次區塊中選擇一數量之次區塊且對該選定次區塊之每一者執行區塊式調換。 The channel encoding device of claim 23, wherein the interleaver that rearranges the plurality of interleaved bits comprises a one-bit packet module, the bit grouping module is configured to interleave the plurality of interleaved modules Bit multiplexing and grouping the plurality of multiplexed interleaved bits into a second plurality of sub-blocks, wherein an array module based on the symbol modulation constellation is from the second plurality of sub-blocks A number of secondary blocks are selected and block swapping is performed for each of the selected secondary blocks. 一種通道交錯方法,包含:將前向錯誤更正編碼器產生之多個已編碼位元集分 布至一第一多個次區塊,其中每一次區塊包含多個相鄰位元;交錯該第一多個次區塊之每一者且輸出多個已交錯位元;以及重排該多個已交錯位元且輸出多個已重排位元,其中該多個已重排位元被提供至一符號映射器,以避免每一次區塊之該多個相鄰位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel interleaving method comprising: integrating a plurality of encoded bits generated by a forward error correction encoder Deploying to a first plurality of sub-blocks, wherein each block includes a plurality of adjacent bits; interleaving each of the first plurality of sub-blocks and outputting a plurality of interleaved bits; and rearranging the a plurality of interleaved bits and outputting a plurality of rearranged bits, wherein the plurality of rearranged bits are provided to a symbol mapper to prevent the plurality of adjacent bits of each block from being mapped to one The level of the same bit reliability in the modulation symbol is used to achieve the diversity of the symbol modulation constellation. 如申請專利範圍第31項所述之通道交錯方法,其中亦避免相同已編碼位元集之多個連續編碼位元映射於該調變符號中具有相同位元可靠性位準。 The channel interleaving method of claim 31, wherein a plurality of consecutive coded bits of the same coded bit set are also prevented from being mapped to the same bit reliability level in the modulation symbol. 如申請專利範圍第31項所述之通道交錯方法,其中該重排更包含:將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊;將該第二多個次區塊之每一者分割為多個單元;對於該第二多個次區塊之每一者,自該多個單元中選擇一數量之單元;以及對於該第二多個次區塊之每一者,對該選擇一數量之單元之每一者循環移位一數量之位元。 The channel interleaving method of claim 31, wherein the rearranging further comprises: multiplexing the plurality of interleaved bits and grouping the plurality of multiplexed interleaved bits into a second plurality a secondary block; dividing each of the second plurality of secondary blocks into a plurality of units; and for each of the second plurality of secondary blocks, selecting a quantity of units from the plurality of units; And for each of the second plurality of sub-blocks, each of the selected number of units is cyclically shifted by a number of bits. 如申請專利範圍第31項所述之通道交錯方法,其中該重排更包含:將該多個已交錯位元分割為多個單元;自該多個單元中選擇一數量之單元;以及對該選擇一數量之單元之每一者循環移位一數量之 位元。 The channel interleaving method of claim 31, wherein the rearranging further comprises: dividing the plurality of interleaved bits into a plurality of units; selecting a quantity of units from the plurality of units; Selecting each of the number of units to cyclically shift a quantity Bit. 如申請專利範圍第33項所述之通道交錯方法,其中選擇之該數量之單元係基於調變階數、前向錯誤更正區塊大小、以及該第二多個次區塊之每一者位置來決定。 The channel interleaving method of claim 33, wherein the number of units selected is based on a modulation order, a forward error correction block size, and each of the second plurality of sub-blocks. To decide. 如申請專利範圍第33項所述之通道交錯方法,其中已移位之該數量之位元係基於調變階數、前向錯誤更正區塊大小、以及該選擇一數量之單元之位置來決定。 The channel interleaving method of claim 33, wherein the shifted number of bits is determined based on a modulation order, a forward error correction block size, and a location of the selected number of cells. . 如申請專利範圍第33項所述之通道交錯方法,其中,16正交幅度調變之調變方案係被使用,每一次區塊被分割為兩個單元,以及自每一次區塊之該兩個單元中選擇一單元,以將該單元移位一個位元。 The channel interleaving method according to claim 33, wherein a 16-quadrant modulation modulation scheme is used, each block is divided into two units, and the two blocks from each block. One of the cells is selected to shift the cell by one bit. 如申請專利範圍第33項所述之通道交錯方法,其中,64正交幅度調變之調變方案係被使用,每一次區塊被分割為三個單元,且自每一次區塊之該三個單元中選擇兩個單元,以及將該選擇的兩個單元中一個單元移位一個位元且將另一單元移位兩個位元。 The channel interleaving method described in claim 33, wherein a 64-quadrant modulation modulation scheme is used, each block is divided into three units, and the three blocks from each block Two cells are selected from the cells, and one of the selected two cells is shifted by one bit and the other cell is shifted by two bits. 如申請專利範圍第31項所述之通道交錯方法,其中該重排更包含:將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊;將該第二多個次區塊之每一次區塊分割為多個單元;自該多個單元中選擇一數量之單元;以及對於該第二多個次區塊之每一次區塊,對該選擇一數量之單元之每一者執行一單元式調換。 The channel interleaving method of claim 31, wherein the rearranging further comprises: multiplexing the plurality of interleaved bits and grouping the plurality of multiplexed interleaved bits into a second plurality a secondary block; dividing each of the second plurality of secondary blocks into a plurality of units; selecting a quantity of units from the plurality of units; and for each of the second plurality of secondary blocks The block performs a unit exchange for each of the selected number of units. 如申請專利範圍第31項所述之通道交錯方法,其 中該重排更包含:將該第一多個次區塊之每一次區塊分割為多個單元;自該多個單元中選擇一數量之單元;以及對於該第一多個次區塊之每一次區塊,對該選擇一數量之單元之每一者執行一單元式調換。 a channel interleaving method as described in claim 31 of the patent application, The rearrangement further includes: dividing each of the first plurality of sub-blocks into a plurality of units; selecting a quantity of units from the plurality of units; and for the first plurality of sub-blocks Each time block, a unit exchange is performed for each of the selected number of units. 如申請專利範圍第39項所述之通道交錯方法,其中選定之該數量之單元係基於調變階數、前向錯誤更正區塊大小、以及該第二多個次區塊之每一者位置被決定。 The channel interleaving method of claim 39, wherein the number of units selected is based on a modulation order, a forward error correction block size, and each of the second plurality of sub-blocks. was decided. 如申請專利範圍第39項所述之通道交錯方法,其中該單元式調換包含將具有N個位元之一選定單元之第i位元與第(N-i+1)位元調換,其中i為自1至N/2之一運行索引。 The channel interleaving method of claim 39, wherein the unit switching comprises transposing an ith bit having a selected one of N bits with a (N-i+1)th bit, wherein Run the index from one of 1 to N/2. 如申請專利範圍第39項所述之通道交錯方法,其中,16正交幅度調變之調變方案係被使用,且具有N個位元之該第二多個次區塊之每一次區塊被分割為N/2個單元,每一單元包含二個位元,以及調換每一選定單元之第一個位元與最後一個位元。 The channel interleaving method of claim 39, wherein a 16-quadrant modulation modulation scheme is used, and each of the second plurality of sub-blocks having N bits is used. It is divided into N/2 units, each unit contains two bits, and the first bit and the last bit of each selected unit are swapped. 如申請專利範圍第39項所述之通道交錯方法,其中,64正交幅度調變之調變方案係被使用,且具有N個位元之該第二多個次區塊之每一次區塊被分割為N/3個單元,每一單元包含三個位元,以及調換每一選定單元之第一個位元與最後一個位元。 The channel interleaving method of claim 39, wherein the 64 quadrature amplitude modulation modulation scheme is used, and each of the second plurality of sub-blocks having N bits is used. It is divided into N/3 units, each unit contains three bits, and the first bit and the last bit of each selected unit are swapped. 一種通道交錯器,包含:一位元分離器,用於將一前向錯誤更正編碼器產生之多個已編碼位元集分布至第一多個次區塊,其中每一次區 塊包含多個相鄰位元;一次區塊交錯器,用於交錯該多個次區塊之每一者且輸出多個已交錯位元;以及一基於符號調變星座圖之排列模組,用於重排該多個已交錯位元且輸出多個已重排位元,其中該多個已重排位元被提供至一符號映射器,以避免每一次區塊中之該多個相鄰位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel interleaver comprising: a one-bit splitter for distributing a plurality of encoded bit sets generated by a forward error correction encoder to a first plurality of sub-blocks, wherein each time zone The block includes a plurality of adjacent bits; a primary block interleaver for interleaving each of the plurality of secondary blocks and outputting a plurality of interleaved bits; and an array module based on a symbol modulation constellation, Re-arranging the plurality of interleaved bits and outputting a plurality of rearranged bits, wherein the plurality of rearranged bits are provided to a symbol mapper to avoid the plurality of phases in each block The adjacent bit maps to the level of the same bit reliability in a modulation symbol to achieve the diversity of the symbol modulation constellation. 如申請專利範圍第45項所述之通道交錯器,其中亦避免相同已編碼位元集之多個連續編碼位元映射於該調變符號中具有位元可靠性之位準。 The channel interleaver of claim 45, wherein a plurality of consecutive coded bits of the same coded bit set are also prevented from being mapped to a level of bit reliability in the modulation symbol. 如申請專利範圍第45項所述之通道交錯器,其中該基於符號調變星座圖之排列模組將該第一多個次區塊之每一次區塊分割為多個單元,自該多個單元選擇一數量之單元,以及對於該第一多個次區塊之每一次區塊,對該選定單元之每一者循環移位一數量之位元。 The channel interleaver according to claim 45, wherein the permutation module based on the symbol modulation constellation divides each block of the first plurality of sub-blocks into a plurality of units, from the plurality of The unit selects a number of units, and for each of the first plurality of sub-blocks, cyclically shifts each of the selected units by a number of bits. 如申請專利範圍第45項所述之通道交錯器,更包含:一位元多工器,用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊,其中該基於符號調變星座圖之排列模組將該第二多個次區塊之每一次區塊分割為多個單元,自該多個單元中選擇一數量之單元,以及對於該第二多個次區塊之每一次區塊,對該選定單元之每一者循環移位一數量之位元。 The channel interleaver according to claim 45, further comprising: a one-bit multiplexer for multiplexing the plurality of interleaved bits and grouping the plurality of multiplexed interleaved bits And a second plurality of sub-blocks, wherein the permutation module based on the symbol modulation constellation divides each of the second plurality of sub-blocks into a plurality of units, and selects one of the plurality of units A unit of quantity, and for each block of the second plurality of sub-blocks, cyclically shifting a number of bits for each of the selected units. 如申請專利範圍第48項所述之通道交錯器,其中 選定之該數量之單元係基於調變階數、前向錯誤更正區塊大小、以及該第二多個次區塊之每一次區塊位置來決定。 A channel interleaver as described in claim 48, wherein The number of units selected is determined based on the modulation order, the forward error correction block size, and each block position of the second plurality of secondary blocks. 如申請專利範圍第48項所述之通道交錯器,其中已移位之該數量之位元係基於調變階數、前向錯誤更正區塊大小、以及該選定單元之位置來決定。 The channel interleaver of claim 48, wherein the shifted number of bits is determined based on a modulation order, a forward error correction block size, and a location of the selected unit. 如申請專利範圍第48項所述之通道交錯器,其中,16正交幅度調變之調變方案係被使用,且每一次區塊被分割為兩個單元,以及自該第二多個次區塊之每一次區塊之該兩個單元中選擇一單元,以將該單元移位一個位元。 The channel interleaver of claim 48, wherein a 16-quadrant modulation modulation scheme is used, and each block is divided into two units, and from the second plurality of times One of the two cells of each block of the block is selected to shift the cell by one bit. 如申請專利範圍第48項所述之通道交錯器,其中,64正交幅度調變之調變方案係被使用,每一次區塊被分割為三個單元,且自該第二多個次區塊之每一次區塊之該三個單元中選擇兩個單元,以及將該選擇的兩個單元中一個單元移位一個位元且將另一單元移位兩個位元。 The channel interleaver of claim 48, wherein a 64 quadrature amplitude modulation modulation scheme is used, each block is divided into three units, and from the second plurality of sub-regions Two of the three cells of each block of the block are selected, and one of the selected two cells is shifted by one bit and the other cell is shifted by two bits. 如申請專利範圍第45項所述之通道交錯器,其中該基於符號調變星座圖之排列模組將該第一多個次區塊之每一次區塊分割為多個單元,自該多個單元中選擇一數量之單元,以及對於該第一多個次區塊之每一次區塊,對該選定單元之每一者執行一單元式調換。 The channel interleaver according to claim 45, wherein the permutation module based on the symbol modulation constellation divides each block of the first plurality of sub-blocks into a plurality of units, from the plurality of A unit of the number is selected in the unit, and for each of the blocks of the first plurality of sub-blocks, a unit exchange is performed for each of the selected units. 如申請專利範圍第45項所述之通道交錯器,更包含:一位元分組模組,用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊,其中該基於符號調變星座圖之排列模組將該第二多個次區塊之每一次區塊分割為多個單元,自該多個單元中選擇一數 量之單元,以及對於該第二多個次區塊之每一次區塊,對該選定單元之每一者執行一單元式調換。 The channel interleaver according to claim 45, further comprising: a one-bit packet module for multiplexing the plurality of interleaved bits and grouping the plurality of multiplexed interleaved bits And a second plurality of sub-blocks, wherein the permutation module based on the symbol modulation constellation divides each of the second plurality of sub-blocks into a plurality of units, and selects one of the plurality of units number A unit of quantities, and for each block of the second plurality of sub-blocks, performs a unitary swap for each of the selected units. 如申請專利範圍第54項所述之通道交錯器,其中選定之該數量之單元係基於調變階數、前向錯誤更正區塊大小、以及該第二多個次區塊之每一次區塊位置來決定。 The channel interleaver of claim 54, wherein the selected number of units is based on a modulation order, a forward error correction block size, and each block of the second plurality of sub-blocks. Position to decide. 如申請專利範圍第54項所述之通道交錯器,其中,該單元式調換包含調換具有N個位元之一選定單元之第i位元與第(N-i+1)位元,其中i為自1至N/2之一運行索引。 The channel interleaver of claim 54, wherein the unit exchange comprises transposing an ith bit and a (N-i+1)th bit of a selected one of N bits, wherein Run the index from one of 1 to N/2. 如申請專利範圍第54項所述之通道交錯器,其中,64正交幅度調變之調變方案係被使用,且具有N個位元之每一次區塊被分割為N/3個單元,每一單元包含三個位元,以及調換每一選定單元之第一個位元與最後一個位元。 The channel interleaver according to claim 54, wherein a 64-quadrant modulation modulation scheme is used, and each block having N bits is divided into N/3 units, Each cell contains three bits and the first bit and the last bit of each selected cell are swapped. 一種通道編碼裝置,包含:一編碼器,用於執行前向錯誤更正編碼且輸出多個已編碼位元集,其中該多個已編碼位元集之每一者被分布至第一多個次區塊,且每一次區塊包含多個相鄰位元;以及一交錯器,用於交錯該多個次區塊之每一者且輸出多個已交錯位元以降低因突發的通道錯誤而造成錯誤碼字的長度,其中該交錯器亦用於重排該多個已交錯位元且輸出多個已重排位元,該多個已重排位元被提供至一符號映射器,以避免每一次區塊中之該多個相鄰位元映射於一調變符號中具有相同位元可靠性之位準,以實現符號調變星座圖之多樣性。 A channel encoding apparatus comprising: an encoder for performing forward error correction encoding and outputting a plurality of encoded bit sets, wherein each of the plurality of encoded bit sets is distributed to a first plurality of times a block, and each block includes a plurality of adjacent bits; and an interleaver for interleaving each of the plurality of sub-blocks and outputting a plurality of interleaved bits to reduce channel errors due to bursts And causing the length of the error codeword, wherein the interleaver is further configured to rearrange the plurality of interleaved bits and output a plurality of rearranged bits, the plurality of rearranged bits being provided to a symbol mapper, The plurality of adjacent bits in each block are prevented from being mapped to a level of the same bit reliability in a modulation symbol to achieve diversity of the symbol modulation constellation. 如申請專利範圍第58項所述之通道編碼裝置,其中,亦避免相同已編碼位元集中之多個連續編碼位元映射於該調變符號中具有相同位元可靠性之位準。 The channel coding apparatus according to claim 58, wherein a plurality of consecutive coding bits in the same coded bit set are also prevented from being mapped to the level of the same bit reliability in the modulation symbol. 如申請專利範圍第58項所述之通道編碼裝置,其中該編碼器包含一迴旋渦輪碼編碼器。 The channel encoding device of claim 58, wherein the encoder comprises a cyclotron turbo code encoder. 如申請專利範圍第58項所述之通道編碼裝置,其中該交錯器包含一基於符號調變星座圖之排列模組,用於將該第一多個次區塊之每一次區塊分割為多個單元,選擇一個或多個單元,以及對於該第一多個次區塊之每一次區塊,對該選定單元之每一者循環移位一數量之位元。 The channel coding apparatus of claim 58, wherein the interleaver comprises an arrangement module based on a symbol modulation constellation for dividing each block of the first plurality of sub-blocks into multiple Units, selecting one or more units, and for each of the first plurality of sub-blocks, cyclically shifting each of the selected units by a number of bits. 如申請專利範圍第58項所述之通道編碼裝置,其中該交錯器包含一位元分組模組,用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個次區塊;以及一基於符號調變星座圖之排列模組,用於將該第二多個次區塊之每一次區塊分割為多個單元,選擇一個或多個單元,且對於該第二多個次區塊之每一次區塊,對該選定單元之每一者循環移位一數量之位元。 The channel coding apparatus of claim 58, wherein the interleaver comprises a one-bit packet module for multiplexing the plurality of interleaved bits and interleaving the plurality of multiplexed bits Meta-grouping to a second plurality of sub-blocks; and an arranging module based on the symbol-modulated constellation for dividing each of the second plurality of sub-blocks into a plurality of units, selecting one or a plurality of units, and for each of the second plurality of sub-blocks, each of the selected units is cyclically shifted by a number of bits. 如申請專利範圍第58項所述之通道編碼裝置,其中該交錯器包含一基於符號調變星座圖之排列模組,用於將該第一多個次區塊之每一次區塊分割為多個單元,選擇一個或多個單元,以及對於該第一多個次區塊之每一次區塊,對該選定單元之每一者執行一單元式調換。 The channel coding apparatus of claim 58, wherein the interleaver comprises an arrangement module based on a symbol modulation constellation for dividing each block of the first plurality of sub-blocks into multiple Units, selecting one or more units, and performing a unitary swap for each of the selected units for each of the first plurality of sub-blocks. 如申請專利範圍第58項所述之通道編碼裝置,其中該交錯器包含一位元分組模組,用於將該多個已交錯位元多工且將該多個已多工之已交錯位元分組至一第二多個 次區塊;以及一基於符號調變星座圖之排列模組,用於將該第二多個次區塊之每一次區塊分割為多個單元,選擇一個或多個單元,且對於該第二多個次區塊之每一次區塊,對該選定單元之每一者執行一單元式調換。 The channel coding apparatus of claim 58, wherein the interleaver comprises a one-bit packet module for multiplexing the plurality of interleaved bits and interleaving the plurality of multiplexed bits Meta-grouping to a second multiple a sub-block; and an arrangement module based on the symbol modulation constellation for dividing each of the second plurality of sub-blocks into a plurality of units, selecting one or more units, and for the Each of the two plurality of sub-blocks performs a unit exchange for each of the selected units.
TW098146393A 2008-12-31 2009-12-31 Channel interleaving method, channel interleaver and channel encoding apparatus TWI448102B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US14183108P 2008-12-31 2008-12-31
US14971609P 2009-02-04 2009-02-04
US15402709P 2009-02-20 2009-02-20
US16394109P 2009-03-27 2009-03-27
US12/655,522 US8468396B2 (en) 2008-12-31 2009-12-30 Channel interleaver having a constellation-based block-wise permuation module
US12/655,521 US8799735B2 (en) 2008-12-31 2009-12-30 Channel interleaver having a constellation-based unit-wise permuation module

Publications (2)

Publication Number Publication Date
TW201110607A TW201110607A (en) 2011-03-16
TWI448102B true TWI448102B (en) 2014-08-01

Family

ID=42286394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098146393A TWI448102B (en) 2008-12-31 2009-12-31 Channel interleaving method, channel interleaver and channel encoding apparatus

Country Status (6)

Country Link
US (2) US8468396B2 (en)
EP (1) EP2384552A4 (en)
JP (1) JP2012513177A (en)
CN (2) CN102187593B (en)
TW (1) TWI448102B (en)
WO (1) WO2010075804A1 (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101216102B1 (en) * 2009-02-02 2012-12-26 엘지전자 주식회사 Apparatus and method for transmitting signal using bit grouping in wireless communication system
US8214696B2 (en) * 2009-02-02 2012-07-03 Lg Electronics Inc. Apparatus and method for transmitting signal using bit grouping in wireless communication system
EP2424143A1 (en) * 2009-04-24 2012-02-29 Panasonic Corporation Wireless communication device and wireless communication method
US8423861B2 (en) * 2009-11-19 2013-04-16 Lsi Corporation Subwords coding using different interleaving schemes
US8621289B2 (en) 2010-07-14 2013-12-31 Lsi Corporation Local and global interleaving/de-interleaving on values in an information word
EP2706667A1 (en) * 2010-09-13 2014-03-12 Hughes Network Systems, LLC Method and apparatus for a parameterized interleaver design process
US8402324B2 (en) 2010-09-27 2013-03-19 Lsi Corporation Communications system employing local and global interleaving/de-interleaving
KR101551919B1 (en) 2010-10-22 2015-09-09 한국전자통신연구원 Method of transmitting data block in wireless communication system and transmitter
US8976876B2 (en) 2010-10-25 2015-03-10 Lsi Corporation Communications system supporting multiple sector sizes
US8782320B2 (en) 2010-11-09 2014-07-15 Lsi Corporation Multi-stage interconnection networks having fixed mappings
US8588223B2 (en) 2010-11-09 2013-11-19 Lsi Corporation Multi-stage interconnection networks having smaller memory requirements
US9423878B2 (en) 2011-01-06 2016-08-23 Blackberry Limited Electronic device and method of displaying information in response to a gesture
US9766718B2 (en) 2011-02-28 2017-09-19 Blackberry Limited Electronic device and method of displaying information in response to input
US9015641B2 (en) 2011-01-06 2015-04-21 Blackberry Limited Electronic device and method of providing visual notification of a received communication
US9465440B2 (en) 2011-01-06 2016-10-11 Blackberry Limited Electronic device and method of displaying information in response to a gesture
US9477311B2 (en) 2011-01-06 2016-10-25 Blackberry Limited Electronic device and method of displaying information in response to a gesture
US9471145B2 (en) 2011-01-06 2016-10-18 Blackberry Limited Electronic device and method of displaying information in response to a gesture
WO2012112872A1 (en) 2011-02-17 2012-08-23 Massachusetts Institute Of Technology Rateless and rated coding using spinal codes
US9213421B2 (en) 2011-02-28 2015-12-15 Blackberry Limited Electronic device and method of displaying information in response to detecting a gesture
EP2518923A1 (en) * 2011-04-26 2012-10-31 Panasonic Corporation Bit permutation patterns for BICM with LDPC codes of rate 2/5 and QAM constellations
EP2518922A1 (en) * 2011-04-26 2012-10-31 Panasonic Corporation Bit permutation patterns for BICM with LDPC codes of rate 1/3 and QAM constellations
US8601340B2 (en) * 2011-07-25 2013-12-03 Cortina Systems, Inc. Time varying data permutation apparatus and methods
EP2618532A1 (en) * 2012-01-19 2013-07-24 Panasonic Corporation Improved Component Interleaving for Rotated Constellations
US9619038B2 (en) 2012-01-23 2017-04-11 Blackberry Limited Electronic device and method of displaying a cover image and an application image from a low power condition
US9058168B2 (en) 2012-01-23 2015-06-16 Blackberry Limited Electronic device and method of controlling a display
US9397786B2 (en) * 2012-02-20 2016-07-19 Tyco Electronics Subsea Communications Llc System and method including modified bit-interleaved coded modulation
US9160399B2 (en) 2012-05-24 2015-10-13 Massachusetts Institute Of Technology System and apparatus for decoding tree-based messages
US9690476B2 (en) 2013-03-14 2017-06-27 Blackberry Limited Electronic device and method of displaying information in response to a gesture
US9191246B2 (en) * 2013-03-15 2015-11-17 Jonathan Kanter Combined turbo decoding and turbo equalization techniques
US9608851B2 (en) 2013-03-15 2017-03-28 Jonathan Kanter Turbo decoding techniques
US9507495B2 (en) 2013-04-03 2016-11-29 Blackberry Limited Electronic device and method of displaying information in response to a gesture
US9270412B2 (en) * 2013-06-26 2016-02-23 Massachusetts Institute Of Technology Permute codes, iterative ensembles, graphical hash codes, and puncturing optimization
US9337935B2 (en) 2013-09-08 2016-05-10 Tyco Electronics Subsea Communications Llc Coded modulation for small step-size variable spectral efficiency
US9407398B2 (en) 2013-09-08 2016-08-02 Tyco Electronics Subsea Communications Llc System and method using cascaded single partity check coding
CN104753653B (en) * 2013-12-31 2019-07-12 中兴通讯股份有限公司 A kind of method, apparatus and reception side apparatus of solution rate-matched
US9602137B2 (en) * 2014-02-19 2017-03-21 Samsung Electronics Co., Ltd. Transmitting apparatus and interleaving method thereof
CN103905150B (en) * 2014-03-07 2017-11-17 深圳清华大学研究院 Adaptive transmission method and system based on bit division multiplexing
US10135467B2 (en) 2016-06-08 2018-11-20 Echelon Corporation Methods and systems for applying an improved interleaver for modems operating on power grid
JP6308314B1 (en) * 2017-02-22 2018-04-11 Nttエレクトロニクス株式会社 Error correction apparatus, error correction method, and communication apparatus
JP2020516117A (en) 2017-03-22 2020-05-28 アイディーエーシー ホールディングス インコーポレイテッド Sub-block interleaving for polar coding systems, procedures and signaling
US10833710B2 (en) 2017-06-29 2020-11-10 Cisco Technology, Inc. Bandwidth efficient FEC scheme supporting uneven levels of protection
US10601629B2 (en) 2017-08-09 2020-03-24 Futurewei Technologies, Inc. Virtual lookup table for probabilistic constellation shaping

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048311A1 (en) * 2000-04-11 2002-04-25 Applied Materials, Inc. Correction of wafer temperature drift in a plasma reactor based upon continuous wafer temperature measurements using an in-situ wafer temperature optical probe
US20040240590A1 (en) * 2000-09-12 2004-12-02 Cameron Kelly Brian Decoder design adaptable to decode coded signals using min* or max* processing
EP2003836A2 (en) * 2007-06-15 2008-12-17 Samsung Electronics Co., Ltd Apparatus and method for transmitting and receiving data in a mobile communication system

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6430722B1 (en) * 1998-01-23 2002-08-06 Hughes Electronics Corporation Forward error correction scheme for data channels using universal turbo codes
US7242726B2 (en) * 2000-09-12 2007-07-10 Broadcom Corporation Parallel concatenated code with soft-in soft-out interactive turbo decoder
US6738370B2 (en) * 2001-08-22 2004-05-18 Nokia Corporation Method and apparatus implementing retransmission in a communication system providing H-ARQ
KR100630143B1 (en) 2002-09-30 2006-09-29 삼성전자주식회사 Method and apparatus for receiving and deshuffling shuffled data in high-rate packet data telecommunication system
US6904550B2 (en) * 2002-12-30 2005-06-07 Motorola, Inc. Velocity enhancement for OFDM systems
KR100770902B1 (en) 2004-01-20 2007-10-26 삼성전자주식회사 Apparatus and method for generating and decoding forward error correction codes of variable rate by using high rate data wireless communication
KR101131323B1 (en) 2004-11-30 2012-04-04 삼성전자주식회사 Apparatus and method for channel interleaving in a wireless communication system
US7643444B2 (en) * 2005-03-10 2010-01-05 Broadcom Corporation Method and system for parsing bits in an interleaver for adaptive modulations in a multiple input multiple output (MIMO) wireless local area network (WLAN) system
CN101218747B (en) 2005-05-04 2012-09-05 诺基亚公司 Method and apparatus for providing enhanced channel interleaving
US20090022079A1 (en) 2005-05-04 2009-01-22 Fei Frank Zhou Method and apparatus for providing enhanced channel interleaving
CN100574168C (en) * 2006-03-09 2009-12-23 华为技术有限公司 Dispatching information transmission method among the E-DCH
BRPI0717952A2 (en) 2006-11-06 2013-11-05 Qualcomm Inc MIMO TRANSMISSION PASSWORD CODE LEVEL
CN101242234B (en) * 2007-02-07 2011-08-10 华为技术有限公司 Data interweaving method and device
CN101282192B (en) * 2007-04-03 2011-09-21 中兴通讯股份有限公司 Method for encoding mixed automatic retransmission channel
JP4788650B2 (en) 2007-04-27 2011-10-05 ソニー株式会社 LDPC decoding apparatus, decoding method thereof, and program
KR101435830B1 (en) 2007-06-20 2014-08-29 엘지전자 주식회사 Method of performing interleaving
JP5086013B2 (en) 2007-09-13 2012-11-28 日本電信電話株式会社 Quantum entangled photon pair generator
JP2009116204A (en) 2007-11-09 2009-05-28 Hitachi Displays Ltd Liquid crystal display device
EA021906B1 (en) * 2007-11-26 2015-09-30 Сони Корпорейшн Data processing device and data processing method
WO2009116204A1 (en) * 2008-03-18 2009-09-24 ソニー株式会社 Data processing device and data processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048311A1 (en) * 2000-04-11 2002-04-25 Applied Materials, Inc. Correction of wafer temperature drift in a plasma reactor based upon continuous wafer temperature measurements using an in-situ wafer temperature optical probe
US20040240590A1 (en) * 2000-09-12 2004-12-02 Cameron Kelly Brian Decoder design adaptable to decode coded signals using min* or max* processing
EP2003836A2 (en) * 2007-06-15 2008-12-17 Samsung Electronics Co., Ltd Apparatus and method for transmitting and receiving data in a mobile communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"New bit-rearrangement method to enhance HARQ performance", IEEE C802.16m-08/1144r1, 2008-09-05 *

Also Published As

Publication number Publication date
CN102187593B (en) 2015-07-29
TW201110607A (en) 2011-03-16
US20100169738A1 (en) 2010-07-01
EP2384552A1 (en) 2011-11-09
JP2012513177A (en) 2012-06-07
CN104869087A (en) 2015-08-26
US8799735B2 (en) 2014-08-05
WO2010075804A1 (en) 2010-07-08
CN104869087B (en) 2019-08-30
US8468396B2 (en) 2013-06-18
US20100169722A1 (en) 2010-07-01
CN102187593A (en) 2011-09-14
EP2384552A4 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
TWI448102B (en) Channel interleaving method, channel interleaver and channel encoding apparatus
CA2263669C (en) Transmission of digital signals by orthogonal frequency division multiplexing
US7523382B2 (en) Apparatus and method for generating and decoding forward error correction codes having variable rate in a high-rate wireless data communication system
CN107733567B (en) Parallel bit interleaver
US20180302108A1 (en) Apparatus and method for communicating data over a communication channel
US7729438B2 (en) Interleaver design for IEEE 802.11n standard
AU2005267809A1 (en) System and method for interleaving
US8386903B2 (en) Bit reverse interleaving methods for QAM modulation in a wireless communication system
KR101805536B1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2013001706A1 (en) Wireless transceiver device, communication system and channel-coding processing method used in same device and system
WO2008130168A1 (en) Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal
JP2010508690A (en) Single carrier block transmission with Trellis Coded Modulation (TCM), Multilevel Coded Modulation (MLCM) and Bit Interleaved MLCM (BIMLCM)
KR20040035297A (en) Apparatus and method for transmission of digital broadcasting system having the composition error correction coding function
US8261135B2 (en) Interleaving method and communication device
KR20040035296A (en) Apparatus and method for transmission of digital broadcasting system which has the inner interleaver of improving structure
WO2008147138A1 (en) Method of transmitting and receiving a signal and apparatus for transmitting and receiv0ing a signal
AU2003200323B2 (en) Transmission of digital signals by orthogonal frequency division multiplexing
Pooja et al. Design and performance analysis of FEC schemes in OFDM communication system
Khalili Design and Simulation of Coded-Modulation Using Turbo Trellis Coding and Multi-Layer Modulations
KR20100105222A (en) Apparatus and method for interleaving in communication system
JP2011024258A (en) Interleaving method and communication device