TWI446136B - Output constant current apparatus for a flyback power supplier and method thereof - Google Patents
Output constant current apparatus for a flyback power supplier and method thereof Download PDFInfo
- Publication number
- TWI446136B TWI446136B TW101114974A TW101114974A TWI446136B TW I446136 B TWI446136 B TW I446136B TW 101114974 A TW101114974 A TW 101114974A TW 101114974 A TW101114974 A TW 101114974A TW I446136 B TWI446136 B TW I446136B
- Authority
- TW
- Taiwan
- Prior art keywords
- current
- primary side
- voltage
- output
- value
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明係有關一種馳返式電源供應器的輸出定電流裝置,特別是關於一種減少腳位及元件的輸出定電流裝置。The present invention relates to an output constant current device for a flyback power supply, and more particularly to an output constant current device for reducing foot and component.
在馳返式電源供應器的設計中,輸出定電流(output constant current)是重要的項目,其可以應用在輸出電流限制保護功能以及LED應用中。圖1顯示具有輸出電流限制保護功能的馳返式電源供應器,其係藉由在變壓器TF1二次側的光耦合器(photo coupler)10、並聯調節器(shunt regulator)D1、感測電阻Rcs及電晶體Q1來限制輸出電流Io。圖2顯示用以驅動LED的馳返式電源供應器,其藉由在變壓器TF1二次側的光耦合器10及並聯調節器D1偵測LED串12的電流Io產生回授信號Icomp給控制器14以穩定電流Io。如圖1及圖2所示,傳統的輸出定電流方法需要在變壓器TF1的二次側使用高成本的光耦合器12及並聯調節器D1。In the design of the flyback power supply, the output constant current is an important item that can be applied to the output current limit protection function and LED applications. Figure 1 shows a flyback power supply with output current limit protection function by photo coupler 10 on the secondary side of transformer TF1, shunt regulator D1, sense resistor Rcs And transistor Q1 to limit the output current Io. 2 shows a flyback power supply for driving an LED, which generates a feedback signal Icomp to the controller by detecting the current Io of the LED string 12 at the photocoupler 10 and the shunt regulator D1 on the secondary side of the transformer TF1. 14 to stabilize the current Io. As shown in FIGS. 1 and 2, the conventional output constant current method requires the use of a high cost optical coupler 12 and a shunt regulator D1 on the secondary side of the transformer TF1.
為了降低成本,目前已經有許多輸出定電流方法可以從變壓器的一次側達成,例如美國專利號7,525,259所提出的輸出定電流方法。圖3顯示習知無需光耦合器的LED應用電路,其中控制器16切換與變壓器TF1的一次側線圈Lp串聯的開關M1以將輸入電壓Vin轉換為輸出電壓Vo給LED串12,假設圖3的電路係操作在不連續導通模式(Discontinuous Conduction Mode;DCM),而且變壓器TF1的一次側線圈Lp的匝數為Np,變壓器TF1的二次側線圈Ls的匝數為Ns,則一次側電流Ip及二次側電流Is分別如圖4的波形20及22所示,其中一次側電流Ip的峰值及谷值分別為Ipeak及0A,二次側電流Is的峰值及谷值分別為n×Ipeak及0A,n為Np/Ns,一次側電流Ip及二次側電流Is的峰值具有比例關係,而輸出電流Io為二次側電流Is的平均值,從圖4可知輸出電流In order to reduce costs, many output constant current methods have been available from the primary side of the transformer, such as the output constant current method proposed in U.S. Patent No. 7,525,259. 3 shows a conventional LED application circuit that does not require an optocoupler, wherein the controller 16 switches the switch M1 in series with the primary side coil Lp of the transformer TF1 to convert the input voltage Vin into an output voltage Vo to the LED string 12, assuming FIG. The circuit is operated in a discontinuous conduction mode (DCM), and the number of turns of the primary side coil Lp of the transformer TF1 is Np, and the number of turns of the secondary side coil Ls of the transformer TF1 is Ns, and the primary side current Ip and The secondary side current Is is shown in waveforms 20 and 22 of FIG. 4, respectively, wherein the peak and valley values of the primary side current Ip are Ipeak and 0A, respectively, and the peak and valley values of the secondary side current Is are n×Ipeak and 0A, respectively. , n is Np/Ns, the peak value of the primary side current Ip and the secondary side current Is has a proportional relationship, and the output current Io is the average value of the secondary side current Is, and the output current is known from FIG.
Io=(n×Ipeak×T1)/[2×(T1+T2+T3)]=(Np×Ipeak×T1)/(2×Ns×Tp1)=[Np/(2×Ns)]×Ipeak×(T1/Tp1), 公式1Io=(n×Ipeak×T1)/[2×(T1+T2+T3)]=(Np×Ipeak×T1)/(2×Ns×Tp1)=[Np/(2×Ns)]×Ipeak× (T1/Tp1), Equation 1
其中,Tp1等於T1+T2+T3,因此控制器16可以藉由偵測一次側電流Ip的峰值Ipeak取得輸出電流Io的資訊,進而達成輸出定電流。Wherein, Tp1 is equal to T1+T2+T3, so the controller 16 can obtain the information of the output current Io by detecting the peak value Ipeak of the primary side current Ip, thereby achieving the output constant current.
圖5顯示圖3的控制器16在DCM操作下用以達成輸出定電流的電路,其包括峰值電壓偵測器28經由腳位CS偵測電阻Rcs的電壓Vcs以產生並儲存與一次側電流Ip的峰值Ipeak具有比例關係的電壓Vpk1=Ipeak×Rcs,具有增益k的放大器26放大電壓Vpk1產生電壓Vpk2=k×Ipeak×Rcs。在二次側電流Is從峰值n×Ipeak降至谷值0A的期間T1,開關SW1被導通(turn on)而開關SW2被關閉(turn off),電壓Vpk2經電阻Rf1傳送至在腳位FB上的電容Cf1,在開關M1導通期間T2及二次側電流Is為零的期間T3,開關SW1被關閉而開關SW2被導通,電壓GND=0V傳送至電容Cf1,因此可以推得電容Cf1上電壓的平均值5 shows a circuit of the controller 16 of FIG. 3 for achieving a constant current output under DCM operation, which includes a peak voltage detector 28 detecting a voltage Vcs of a resistor Rcs via a pin CS to generate and store a primary side current Ip. The peak value Ipeak has a proportional voltage Vpk1 = Ipeak × Rcs, and the amplifier 26 having the gain k amplifies the voltage Vpk1 to generate a voltage Vpk2 = k × Ipeak × Rcs. During the period T1 when the secondary side current Is falls from the peak value n×Ipeak to the valley value 0A, the switch SW1 is turned on and the switch SW2 is turned off, and the voltage Vpk2 is transmitted to the pin FB via the resistor Rf1. In the capacitor Cf1, during the period T3 during which the switch M1 is turned on T2 and the secondary side current Is is zero, the switch SW1 is turned off and the switch SW2 is turned on, and the voltage GND=0V is transferred to the capacitor Cf1, so that the voltage on the capacitor Cf1 can be derived. average value
Vavg1=Ipeak×Rcs×(T1/Tp1)×k=(k×Rcs)×Ipeak×(T1/Tp1)。 公式2Vavg1 = Ipeak × Rcs × (T1/Tp1) × k = (k × Rcs) × Ipeak × (T1/Tp1). Formula 2
在公式1及公式2中,參數Np、Ns、k及Rcs皆為常數,所以輸出電流Io與平均值Vavg1具有比例關係,因此可以藉由平均值Vavg1來判斷輸出電流Io的值。具有轉導係數gm的轉導放大器24放大參考電壓Vref與平均值Vavg1之間的差值產生電流In Equations 1 and 2, since the parameters Np, Ns, k, and Rcs are constant, the output current Io has a proportional relationship with the average value Vavg1, so the value of the output current Io can be judged by the average value Vavg1. The transconductance amplifier 24 having the transduction coefficient gm amplifies the difference between the reference voltage Vref and the average value Vavg1 to generate a current
Icomp=gm×(Vref-Vavg1)=gm×[Vref-Ipeak×Rcs×(T1/Tp1)×k]=gm×Vref-(Ipeak×Rcs×k×gm)×(T1/Tp1), 公式3Icomp=gm×(Vref−Vavg1)=gm×[Vref−Ipeak×Rcs×(T1/Tp1)×k]=gm×Vref−(Ipeak×Rcs×k×gm)×(T1/Tp1), Equation 3
控制器16可以根據電流Icomp調整開關M1的工作週期比(duty ratio)T2/Tp1以使平均值Vavg1等於參考電壓Vref,進而使輸出電流Io穩定在目標值,其中該目標值由參考電壓Vref決定。在其他應用中,也可以使用平均值Vavg1來達成輸出電流限制保護功能。The controller 16 can adjust the duty ratio T2/Tp1 of the switch M1 according to the current Icomp such that the average value Vavg1 is equal to the reference voltage Vref, thereby stabilizing the output current Io at a target value, wherein the target value is determined by the reference voltage Vref . In other applications, the average value Vavg1 can also be used to achieve the output current limit protection function.
假設圖3的電路係操作在連續導通模式(Continuous Conduction Mode;CCM),則一次側電流Ip及二次側電流Is分別如圖6的波形30及32所示,其中一次側電流Ip的峰值及谷值分別為Ipeak及Ivally,二次側電流Is的峰值及谷值分別為n×Ipeak及n×Ivally,因此可得知輸出電流Assuming that the circuit of FIG. 3 operates in a continuous conduction mode (CCM), the primary side current Ip and the secondary side current Is are respectively shown in waveforms 30 and 32 of FIG. 6, wherein the peak value of the primary side current Ip and The peak values are Ipeak and Ivally, and the peak and valley values of the secondary current Is are n×Ipeak and n×Ivally, respectively, so the output current can be known.
Io=[n×(Ipeak+Ivally)×T1]/[2×(T1+T2)]=[Np×(Ipeak+Ivally)×T1]/(2×Ns×Tp2)=(Np×Iavg×T1)/(Ns×Tp2)=(Np/Ns)×Iavg×(T1/Tp2), 公式4Io=[n×(Ipeak+Ivally)×T1]/[2×(T1+T2)]=[Np×(Ipeak+Ivally)×T1]/(2×Ns×Tp2)=(Np×Iavg×T1 ) / (Ns × Tp2) = (Np / Ns) × Iavg × (T1/Tp2), Equation 4
其中,Iavg為一次側電流Ip的峰值及谷值的平均值(Ipeak+Ivally)/2,Tp2等於T1+T2。從公式4可知,控制器16可以藉由偵測一次側電流Ip的峰值及谷值的平均值Iavg取得輸出電流Io的資訊,進而達成輸出定電流。圖7顯示圖3的控制器16在CCM操作下用以達成輸出定電流的電路,其與圖5的電路同樣包括放大器24及26、電容Cf1、電阻Rf1以及開關SW1及SW2,但是以平均電壓偵測器34取代峰值電壓偵測器28。在開關M1導通期間T2,平均電壓偵測器34經腳位CS偵測電阻Rcs的電壓Vcs以產生並儲存電壓Vavg2,電壓Vavg2為電壓Vcs的峰值及谷值的平均值,由於電壓Vcs與一次側電流Ip具有比例關係,因此電壓Vavg2也與平均值Iavg具有比例關係。放大器26放大電壓Vavg2產生電壓Vavg3。在二次側電流Is從峰值n×Ipeak降至谷值n×Ivally的期間T1,開關SW1被導通(turn on)而開關SW2被關閉(turn off),電壓Vavg3經電阻Rf1傳送至電容Cf1,在開關M1導通期間T2,開關SW1被關閉而開關SW2被導通,電壓GND=0V傳送至電容Cf1,因此可以推得電容Cf1上電壓的平均值Where Iavg is the average value of the peak value and the bottom value of the primary side current Ip (Ipeak+Ivally)/2, and Tp2 is equal to T1+T2. As can be seen from Equation 4, the controller 16 can obtain the output current Io by detecting the peak value of the primary side current Ip and the average value Iavg of the valley value, thereby achieving an output constant current. 7 shows a circuit for the controller 16 of FIG. 3 to achieve a constant output current under CCM operation, which includes the amplifiers 24 and 26, the capacitor Cf1, the resistor Rf1, and the switches SW1 and SW2, but with the average voltage, as in the circuit of FIG. The detector 34 replaces the peak voltage detector 28. During the on-time period T2 of the switch M1, the average voltage detector 34 detects the voltage Vcs of the resistor Rcs via the pin CS to generate and store the voltage Vavg2. The voltage Vavg2 is the average value of the peak value and the valley value of the voltage Vcs, since the voltage Vcs is once The side current Ip has a proportional relationship, so the voltage Vavg2 is also proportional to the average value Iavg. The amplifier 26 amplifies the voltage Vavg2 to generate a voltage Vavg3. During a period T1 when the secondary side current Is falls from the peak value n×Ipeak to the valley value n×Ivally, the switch SW1 is turned on and the switch SW2 is turned off, and the voltage Vavg3 is transmitted to the capacitor Cf1 via the resistor Rf1. During the on-time period T2 of the switch M1, the switch SW1 is turned off and the switch SW2 is turned on, and the voltage GND=0V is transmitted to the capacitor Cf1, so that the average value of the voltage on the capacitor Cf1 can be derived.
Vavg1=Iavg×Rcs×(T1/Tp2)×k=(k×Rcs)×Iavg×(T1/Tp2)。 公式5Vavg1 = Iavg × Rcs × (T1/Tp2) × k = (k × Rcs) × Iavg × (T1/Tp2). Formula 5
在公式4及公式5中,參數Np、Ns、k及Rcs皆為常數,所以輸出電流Io與平均值Vavg1具有比例關係,因此可以藉由平均值Vavg1來判斷輸出電流Io的值。轉導放大器24放大參考電壓Vref與平均值Vavg1之間的差值產生電流In Equations 4 and 5, since the parameters Np, Ns, k, and Rcs are constant, the output current Io has a proportional relationship with the average value Vavg1, so the value of the output current Io can be judged by the average value Vavg1. The transconductance amplifier 24 amplifies the difference between the reference voltage Vref and the average value Vavg1 to generate a current
Icomp=gm×(Vref-Vavg1)=gm×[Vref-Iavg×Rcs×(T1/Tp2)×k]=gm×Vref-(Iavg×Rcs×k×gm)×(T1/Tp2), 公式6Icomp=gm×(Vref−Vavg1)=gm×[Vref−Iavg×Rcs×(T1/Tp2)×k]=gm×Vref−(Iavg×Rcs×k×gm)×(T1/Tp2), Equation 6
控制器16可以根據電流Icomp調整開關M1的工作週期比T2/Tp2以使平均值VaVg1等於參考電壓Vref,進而使輸出電流Io穩定在目標值。The controller 16 can adjust the duty cycle ratio T2/Tp2 of the switch M1 according to the current Icomp such that the average value VaVg1 is equal to the reference voltage Vref, thereby stabilizing the output current Io at the target value.
圖8顯示習知的平均電壓偵測器34,其包括開關SW3及由電阻Rf2及電容Cf2組成的濾波器36,在開關M1導通期間T2,開關SW3亦被導通以將電壓Vcs傳送至濾波器36,最後濾波器36輸出電壓Vcs的平均值Vavg2。圖9顯示習知的另一種平均電壓偵測器34,其包括開關SW4及SW5以及電容Ca1及Ca2,從圖6的波形30可知,在開關M1導通時,一次側電流Ip呈線性上升,也就是說,在開關M1導通且經過時間T2/2後,一次側電流Ip的值等於其峰值Ipeak及谷值Ivally的平均值Iavg=(Ipeak+Ivally)/2,故平均電壓偵測器34在開關M1導通時,同時導通開關SW4一段時間T2/2,以使電容Ca1取樣電壓Vcs的峰值及谷值的平均值Vavg2,接著關閉開關SW4並導通開關SW5,將電壓Vavg2儲存至電容Ca2,以使平均電壓偵測器34送出電壓Vavg2。8 shows a conventional average voltage detector 34 comprising a switch SW3 and a filter 36 consisting of a resistor Rf2 and a capacitor Cf2. During the turn-on of the switch M1, the switch SW3 is also turned on to transmit the voltage Vcs to the filter. 36. Finally, the filter 36 outputs an average value Vavg2 of the voltage Vcs. FIG. 9 shows another conventional average voltage detector 34 including switches SW4 and SW5 and capacitors Ca1 and Ca2. As can be seen from the waveform 30 of FIG. 6, when the switch M1 is turned on, the primary current Ip rises linearly. That is to say, after the switch M1 is turned on and the time T2/2 elapses, the value of the primary side current Ip is equal to the average value Iavg=(Ipeak+Ivally)/2 of its peak Ipeak and valley Ivally, so the average voltage detector 34 is When the switch M1 is turned on, the switch SW4 is turned on for a period of time T2/2, so that the capacitor Ca1 samples the peak value of the voltage Vcs and the average value Vavg2 of the valley value, then turns off the switch SW4 and turns on the switch SW5, and stores the voltage Vavg2 to the capacitor Ca2 to The average voltage detector 34 is caused to send a voltage Vavg2.
圖5及圖7的電路雖然可以由一次側取得輸出電流Io的資訊,但是需要額外的腳位FB及電容Cf1。因此,一種減少腳位及元件的輸出定電流裝置,乃為所冀。Although the circuits of FIGS. 5 and 7 can obtain the information of the output current Io from the primary side, an additional pin FB and a capacitor Cf1 are required. Therefore, a device for reducing the output of the pin and the component of the constant current is what it is.
本發明的目的之一,在於提出一種馳返式電源供應器的輸出定電流裝置及其方法。One of the objects of the present invention is to provide an output constant current device and a method thereof for a flyback power supply.
本發明的目的之一,在於提出一種減少腳位及元件的輸出定電流裝置及其方法。One of the objects of the present invention is to provide an output constant current device and method for reducing pin and component.
本發明的目的之一,在於提出一種可以使用在定電壓系統的輸出定電流裝置及其方法。One of the objects of the present invention is to provide an output constant current device and method thereof that can be used in a constant voltage system.
根據本發明,一種馳返式電源供應器的輸出定電流裝置包括電流感測器、電流源及開關。該電流感測器感測變壓器的一次側電流產生感測信號,其中該感測信號與該一次側電流的峰值或該一次側電流的峰值及谷值的平均值具有比例關係。該電流源根據該感測信號產生第一電流,其中該第一電流與該一次側電流的峰值或該一次側電流的峰值及谷值的平均值具有比例關係。該開關連接在該電流源及該輸出定電流裝置的輸出端之間,在該變壓器的二次側電流由峰值降至谷值的期間,該開關被導通以將該第一電流送至該輸出端,其中該輸出端上的第二電流的平均值與該馳返式電源供應器的輸出電流具有比例關係。According to the present invention, an output constant current device of a flyback power supply includes a current sensor, a current source, and a switch. The current sensor senses a primary side current generating sensing signal of the transformer, wherein the sensing signal is proportional to a peak value of the primary side current or an average of peaks and valleys of the primary side current. The current source generates a first current according to the sensing signal, wherein the first current has a proportional relationship with a peak value of the primary side current or an average value of peaks and valleys of the primary side current. The switch is connected between the current source and the output of the output constant current device, and during a period when the secondary side current of the transformer drops from a peak to a valley, the switch is turned on to send the first current to the output The end, wherein the average value of the second current on the output is proportional to the output current of the flyback power supply.
根據本發明,一種應用在馳返式電源供應器達成輸出定電流的方法包括感測該變壓器的一次側電流產生感測信號,其中該感測信號與該一次側電流的峰值或該一次側電流的峰值及谷值的平均值具有比例關係;根據該感測信號產生與該一次側電流的峰值或該一次側電流的峰值及谷值的平均值具有比例關係的第一電流;以及在該變壓器的二次側電流由峰值降至谷值的期間,輸出該第一電流以產生平均值與該馳返式電源供應器的輸出電流具有比例關係的第二電流以供達成輸出定電流。According to the present invention, a method for achieving an output constant current in a flyback power supply includes sensing a primary side current generating sense signal of the transformer, wherein the sense signal and a peak of the primary side current or the primary side current a peak relationship between the peak value and the valley value; generating a first current proportional to a peak value of the primary side current or an average value of the peak value and the bottom value of the primary side current according to the sensing signal; and the transformer During the period from the peak to the bottom of the secondary current, the first current is output to generate a second current having an average value proportional to the output current of the flyback power supply for achieving an output constant current.
本發明的輸出定電流裝置及其方法無需額外的腳位及電容,因而可以降低成本。再者,本發明的輸出定電流裝置及其方法可以使用在定電壓系統中。The output constant current device and method of the present invention eliminates the need for additional pins and capacitances, thereby reducing cost. Furthermore, the output constant current device of the present invention and its method can be used in a constant voltage system.
圖10顯示使用本發明的輸出定電流裝置的馳返式電源供應器,其類似於圖3的馳返式電源供應器,但是其中的控制器16使用本發明的輸出定電流裝置,因此無需腳位FB及電容Cf1便可達成輸出定電流。當圖10的馳返式電源供應器操作在DCM時,變壓器TF1的一次側電流Ip及二次側電流Is分別如圖4的波形20及22所示。圖11顯示圖10的馳返式電源供應器操作在DCM時,輸出定電流裝置46的實施例,其包括電流源50、電流感測器56及開關SW6。參照圖4、圖10及圖11,輸出定電流裝置46的電流感測器56經腳位CS偵測與一次側電流Ip具有比例關係的電壓Vcs產生與一次側電流Ip的峰值Ipeak具有比例關係的感測信號Vpk2,在此實施例中,電流感測器56包括具有增益k的放大器26及峰值電壓偵測器28,峰值電壓偵測器28經腳位CS偵測電壓Vcs的峰值以產生及儲存與一次側電流Ip的峰值Ipeak具有比例關係的電壓Vpk1=Ipeak×Rcs,放大器26放大電壓Vpk1產生感測信號Vpk2=k×Ipeak×Rcs。輸出定電流裝置46的電流源50根據感測信號Vpk2產生與一次側電流Ip的峰值Ipeak具有比例關係的電流I1,在此實施例中,電流源50包括由電晶體M5、M6、M7及M8組成的電流鏡52以及電壓電流轉換器54,其中電壓電流轉換器54包括電晶體M9、電阻R2及運算放大器55,運算放大器55將感測信號Vpk2施加至電阻R2上以產生電流I3=Vpk2/R2,電流鏡52再鏡射電流I3產生電流I1。連接在電流鏡52及輸出定電流裝置46的輸出端48之間的開關SW6,在二次側電流Is由峰值下降至谷值的期間T1被導通,使電流I1輸出至輸出端48,故輸出端48上的電流I2的平均值Figure 10 shows a flyback power supply using the output constant current device of the present invention, which is similar to the flyback power supply of Figure 3, but wherein the controller 16 uses the output constant current device of the present invention, so no foot is needed Bit FB and capacitor Cf1 can achieve output constant current. When the flyback power supply of FIG. 10 operates in DCM, the primary side current Ip and the secondary side current Is of the transformer TF1 are respectively shown in waveforms 20 and 22 of FIG. 11 shows an embodiment of the output constant current device 46 of the flyback power supply of FIG. 10 operating at DCM, including a current source 50, a current sensor 56, and a switch SW6. Referring to FIG. 4, FIG. 10 and FIG. 11, the current sensor 56 outputting the constant current device 46 detects that the voltage Vcs proportional to the primary side current Ip is proportional to the peak value Ipeak of the primary side current Ip via the pin CS. The sensing signal Vpk2, in this embodiment, the current sensor 56 includes an amplifier 26 having a gain k and a peak voltage detector 28, and the peak voltage detector 28 detects the peak value of the voltage Vcs via the pin CS to generate And storing a voltage Vpk1=Ipeak×Rcs proportional to the peak value Ipeak of the primary side current Ip, and the amplifier 26 amplifies the voltage Vpk1 to generate a sensing signal Vpk2=k×Ipeak×Rcs. The current source 50 of the output constant current device 46 generates a current I1 proportional to the peak value Ipeak of the primary side current Ip according to the sensing signal Vpk2. In this embodiment, the current source 50 includes the transistors M5, M6, M7 and M8. The current mirror 52 and the voltage current converter 54 are composed of a voltage current converter 54 including a transistor M9, a resistor R2 and an operational amplifier 55. The operational amplifier 55 applies a sensing signal Vpk2 to the resistor R2 to generate a current I3=Vpk2/ R2, current mirror 52 re-mirror current I3 produces current I1. The switch SW6 connected between the current mirror 52 and the output terminal 48 of the output constant current device 46 is turned on during the period T1 when the secondary side current Is falls from the peak value to the bottom value, and the current I1 is output to the output terminal 48, so the output Average value of current I2 at terminal 48
I2_avg=I1×(T1/Tp1), 公式7I2_avg=I1×(T1/Tp1), Equation 7
假設電流I1等於電流I3,則公式7可以修改為Assuming that current I1 is equal to current I3, Equation 7 can be modified to
I2_avg=I3×(T1/Tp1)=(Vpk2/R2)×(T1/Tp1)=(k×Ipeak×Rcs/R2)×(T1/Tp1)=(k×Rcs/R2)×Ipeak×(T1/Tp1), 公式8I2_avg=I3×(T1/Tp1)=(Vpk2/R2)×(T1/Tp1)=(k×Ipeak×Rcs/R2)×(T1/Tp1)=(k×Rcs/R2)×Ipeak×(T1 /Tp1), Equation 8
在公式1及公式8中,參數Np、Ns、k、Rcs及R2皆為常數,所以輸出電流Io與平均值I2_avg具有比例關係,因此藉由平均值I2_avg可以取得輸出電流Io的資訊。In Equations 1 and 8, the parameters Np, Ns, k, Rcs, and R2 are all constant, so the output current Io has a proportional relationship with the average value I2_avg. Therefore, the information of the output current Io can be obtained by the average value I2_avg.
在圖11中,電流源40提供電流Iref2以決定輸出電流Io的目標值,電流源40包括由電晶體M3及M4組成的電流鏡42及電壓電流轉換器44,電壓電流轉換器44包括電晶體M2、電阻R1及運算放大器45,其中運算放大器45將參考電壓Vref施加至電阻R1以產生電流Iref1=Vref/R1,電流鏡42鏡射電流Iref1產生電流Iref2。電流源40提供的電流Iref2及輸出定電流裝置46產生的電流I2決定經腳位COMP流向電容Ccomp的電流Icomp,電流Icomp等於電流Iref2與電流I2的平均值I2_avg之間的差值,換言之,電流Icomp可以看作輸出電流Io與目標值的差值,控制器16根據電流Icomp調整開關M1的工作週期比T2/Tp1以使平均值I2_avg等於電流Iref2,進而使輸出電流Io穩定在目標值。假設電流Iref1等於電流Iref2,電流I1等於電流I3,電阻R1及R2的電阻值皆等於1/gm,則電流In FIG. 11, current source 40 provides current Iref2 to determine a target value for output current Io, current source 40 includes current mirror 42 and voltage current converter 44 comprised of transistors M3 and M4, and voltage current converter 44 includes a transistor. M2, a resistor R1 and an operational amplifier 45, wherein the operational amplifier 45 applies a reference voltage Vref to the resistor R1 to generate a current Iref1=Vref/R1, and the current mirror 42 mirrors the current Iref1 to generate a current Iref2. The current Iref2 provided by the current source 40 and the current I2 generated by the output constant current device 46 determine the current Icomp flowing to the capacitor Ccomp via the pin COMP. The current Icomp is equal to the difference between the current Iref2 and the average value I2_avg of the current I2, in other words, the current Icomp can be regarded as the difference between the output current Io and the target value, and the controller 16 adjusts the duty ratio T2/Tp1 of the switch M1 according to the current Icomp so that the average value I2_avg is equal to the current Iref2, thereby stabilizing the output current Io at the target value. Assume that the current Iref1 is equal to the current Iref2, the current I1 is equal to the current I3, and the resistance values of the resistors R1 and R2 are equal to 1/gm, then the current
Icomp=Iref2-I2_avg=gm×Vref-(Ipeak×Rcs×k×gm)×(T1/Tp1), 公式9Icomp=Iref2-I2_avg=gm×Vref-(Ipeak×Rcs×k×gm)×(T1/Tp1), Equation 9
公式9與公式3相同,故此實施例中的電流Icomp確實可以用來穩定輸出電流Io。Equation 9 is the same as Equation 3, so the current Icomp in this embodiment can be used to stabilize the output current Io.
圖12顯示圖10的馳返式電源供應器操作在CCM時,輸出定電流裝置46的實施例,其同樣包括電流源50、電流感測器56及開關SW6,但是在電流感測器56中,使用平均電壓偵測器34取代峰值電壓偵測器28。當圖10的馳返式電源供應器操作在CCM時,變壓器TF1的一次側電流Ip及二次側電流IS分別如圖6的波形30及32所示。參照圖6、圖10及圖12,電流感測器56的平均電壓偵測器34經腳位CS偵測與一次側電流Ip具有比例關係的電壓Vcs以產生電壓Vavg2,電壓Vavg2為電壓Vcs的峰值及谷值的平均值,一次側電流Ip的峰值及谷值分別為Ipeak及Ivally,故電壓12 shows an embodiment of the output constant current device 46 when the flyback power supply of FIG. 10 is operated at the CCM, which also includes the current source 50, the current sensor 56, and the switch SW6, but in the current sensor 56. The peak voltage detector 28 is replaced with an average voltage detector 34. When the flyback power supply of FIG. 10 operates at CCM, the primary side current Ip and the secondary side current IS of the transformer TF1 are respectively shown in waveforms 30 and 32 of FIG. Referring to FIG. 6, FIG. 10 and FIG. 12, the average voltage detector 34 of the current sensor 56 detects a voltage Vcs proportional to the primary side current Ip via the pin CS to generate a voltage Vavg2, and the voltage Vavg2 is a voltage Vcs. The average value of the peak value and the bottom value, the peak value and the bottom value of the primary side current Ip are Ipeak and Ivally, respectively, so the voltage
Vavg2=Rcs×(Ipeak+Ivally)/2=Rcs×Iavg, 公式10Vavg2=Rcs×(Ipeak+Ivally)/2=Rcs×Iavg, Equation 10
其中,Iavg=(Ipeak+Ivally)/2。具有增益k的放大器26放大電壓Vavg2產生感測信號Vavg3=k×Rcs×Iavg,電流源50的電壓電流轉換器54根據感測信號Vavg3產生電流I3=Vavg3/R2,電流鏡52鏡射電流I3產生電流I1。在二次側電流Is由峰值下降至谷值的期間T1,開關SW6被導通以使電流I1輸出至輸出定電流裝置46的輸出端48,因此輸出端48上電流I2的平均值Among them, Iavg=(Ipeak+Ivally)/2. The amplifier 26 having the gain k amplifies the voltage Vavg2 to generate a sensing signal Vavg3=k×Rcs×Iavg, and the voltage-current converter 54 of the current source 50 generates a current I3=Vavg3/R2 according to the sensing signal Vavg3, and the current mirror 52 mirrors the current I3. A current I1 is generated. During a period T1 during which the secondary side current Is drops from the peak to the valley value, the switch SW6 is turned on to output the current I1 to the output terminal 48 of the output constant current device 46, so the average value of the current I2 at the output terminal 48
I2_avg=I1×(T1/Tp2), 公式11I2_avg=I1×(T1/Tp2), Equation 11
假設電流I1等於電流I3,則公式11可修改為Assuming that current I1 is equal to current I3, Equation 11 can be modified to
I2_avg=I3×(T1/Tp2)=(Vavg3/R2)×(T1/Tp2)=(k×Rcs×Iavg/R2)×(T1/Tp2)=(k×Rcs/R2)×Iavg×(T1/Tp2), 公式12I2_avg=I3×(T1/Tp2)=(Vavg3/R2)×(T1/Tp2)=(k×Rcs×Iavg/R2)×(T1/Tp2)=(k×Rcs/R2)×Iavg×(T1 /Tp2), Equation 12
在公式4及公式12中,參數Np、Ns、k、Rcs及R2皆為常數,所以輸出電流Io與平均值I2_avg具有比例關係,因此藉由平均值I2_avg可以取得輸出電流Io的資訊。在圖12的控制器16中,電流源40提供電流Ifef2與電流I2決定電流Icomp=Iref2-I2_avg,電流Icomp可以看作輸出電流Io與目標值的差值,控制器16根據電流Icomp調整開關M1的工作週期比T2/Tp1以使平均值I2_avg等於電流Iref2,進而使輸出電流Io穩定在目標值。假設電流Iref1等於電流Iref2,電流I1等於電流I3,電阻R1及R2的電阻值皆等於1/gm,則電流In Equations 4 and 12, the parameters Np, Ns, k, Rcs, and R2 are all constant, so the output current Io has a proportional relationship with the average value I2_avg. Therefore, the information of the output current Io can be obtained by the average value I2_avg. In the controller 16 of FIG. 12, the current source 40 provides the current Ifef2 and the current I2 determines the current Icomp=Iref2-I2_avg, the current Icomp can be regarded as the difference between the output current Io and the target value, and the controller 16 adjusts the switch M1 according to the current Icomp. The duty cycle ratio T2/Tp1 is such that the average value I2_avg is equal to the current Iref2, thereby stabilizing the output current Io at the target value. Assume that the current Iref1 is equal to the current Iref2, the current I1 is equal to the current I3, and the resistance values of the resistors R1 and R2 are equal to 1/gm, then the current
Icomp=Iref2-I2_avg=gm×Vref-(Iavg×Rcs×k×gm)×(T1/Tp1), 公式13Icomp=Iref2-I2_avg=gm×Vref-(Iavg×Rcs×k×gm)×(T1/Tp1), Equation 13
公式13與公式6相同,故此實施例中的電流Icomp確實可以用來穩定輸出電流Io。Equation 13 is the same as Equation 6, so the current Icomp in this embodiment can be used to stabilize the output current Io.
圖11及圖12的實施例也可以用來達成輸出電流限制保護功能,例如,當電流I2的平均值I2_avg等於電流Iref2時,即電流Icomp為零時,表示輸出電流Io達到預設上限,控制器16將關閉或降低輸出電流Io以保護電路。The embodiment of FIG. 11 and FIG. 12 can also be used to achieve an output current limiting protection function. For example, when the average value I2_avg of the current I2 is equal to the current Iref2, that is, when the current Icomp is zero, it indicates that the output current Io reaches a preset upper limit, and the control is performed. The device 16 will turn off or reduce the output current Io to protect the circuit.
本發明的輸出定電流裝置46可以應用在定電壓系統中。圖13顯示具有輸出定電壓功能的馳返式電源供應器,其使用光耦合器10及並聯調節器(shunt regulator)D1由變壓器TF1的二次側來偵測輸出電壓Vo產生與輸出電壓Vo相關的回授信號Ifb至控制器16的腳位COMP。圖14顯示圖13的控制器16,其與圖12的電路同樣包括電流源40及輸出定電流裝置46,當圖13的馳返式電源供應器操作在定電壓模式時,此時控制器16的動作乃由光耦合器10所主宰,亦即回授信號Ifb>>電流I2,腳位COMP的電壓主要由回授信號Ifb控制,故腳位COMP的電壓隨輸出電壓Vo變化,因而可以用來達成輸出定電壓功能。當圖13的馳返式電源供應器操作在定電流模式時,此時因操作在較低的Vo,所以光耦合器10所輸出的電流Ifb=0,因此電流I2控制腳位COMP的電壓,由於電流I2的平均值I2_avg與輸出電流Io相關,故腳位COMP的電壓隨輸出電流Io變化,因而可以用來達成輸出定電流功能。The output constant current device 46 of the present invention can be used in a constant voltage system. Figure 13 shows a flyback power supply with an output constant voltage function, which uses the optocoupler 10 and the shunt regulator D1 to detect the output voltage Vo from the secondary side of the transformer TF1, which is related to the output voltage Vo. The feedback signal Ifb to the pin COMP of the controller 16. 14 shows the controller 16 of FIG. 13 which, like the circuit of FIG. 12, includes a current source 40 and an output constant current device 46. When the flyback power supply of FIG. 13 is operated in a constant voltage mode, the controller 16 at this time The action is dominated by the optocoupler 10, that is, the feedback signal Ifb>>current I2, the voltage of the pin COMP is mainly controlled by the feedback signal Ifb, so the voltage of the pin COMP varies with the output voltage Vo, so it can be used To achieve the output constant voltage function. When the flyback power supply of FIG. 13 operates in the constant current mode, at this time, since the operation is at a lower Vo, the current Ifb=0 output by the photocoupler 10, so the current I2 controls the voltage of the pin COMP. Since the average value I2_avg of the current I2 is related to the output current Io, the voltage of the pin COMP varies with the output current Io, and thus can be used to achieve the output constant current function.
圖15顯示由變壓器TF1的一次側達成輸出定電壓功能的馳返式電源供應器,其藉由輔助線圈La偵測輸出電壓Vo以產生與輸出電壓Vo相關的回授信號Vfb至控制器16的腳位ZCD/FB。圖16顯示圖15的控制器16,其與圖12的電路同樣包括電流源40及輸出定電流裝置46,此外更包括輸出定電壓裝置60,輸出定電壓裝置60包括由電容Ch及開關SW7組成的取樣及維持電路用以取樣回授信號Vfb,誤差放大器62根據取樣的回授信號Vfb與參考電壓Vbg之間的差值控制電晶體M10上的電流Ifb,以使電流Ifb隨輸出電壓Vo變化。當圖15的馳返式電源供應器操作在定電壓模式時,此時控制器16的動作乃由輸出定電壓裝置60所主宰,亦即電流Ifb>>電流I2,腳位COMP的電壓主要由電流Ifb控制,故腳位COMP的電壓隨輸出電壓Vo變化,因而可以用來達成輸出定電壓功能。當圖15的馳返式電源供應器操作在定電流模式時,此時因Vfb<Vbg,所以Ifb=0,電流I2控制腳位COMP的電壓,由於電流I2的平均值I2_avg與輸出電流Io相關,故腳位COMP的電壓隨輸出電流Io變化,因而可以用來達成輸出定電流功能。15 shows a flyback power supply that achieves an output constant voltage function by the primary side of the transformer TF1, which detects the output voltage Vo by the auxiliary coil La to generate a feedback signal Vfb related to the output voltage Vo to the controller 16. Pin ZCD/FB. 16 shows the controller 16 of FIG. 15 , which includes a current source 40 and an output constant current device 46 as well as the circuit of FIG. 12 , and further includes an output constant voltage device 60 including a capacitor Ch and a switch SW 7 . The sampling and maintaining circuit is for sampling the feedback signal Vfb, and the error amplifier 62 controls the current Ifb on the transistor M10 according to the difference between the sampled feedback signal Vfb and the reference voltage Vbg, so that the current Ifb varies with the output voltage Vo. . When the flyback power supply of FIG. 15 is operated in the constant voltage mode, the action of the controller 16 is dominated by the output constant voltage device 60, that is, the current Ifb>>current I2, and the voltage of the pin COMP is mainly The current Ifb is controlled, so the voltage of the pin COMP varies with the output voltage Vo, and thus can be used to achieve the output constant voltage function. When the flyback power supply of Fig. 15 is operated in the constant current mode, at this time, since Vfb < Vbg, Ifb = 0, the current I2 controls the voltage of the pin COMP, and the average value I2_avg of the current I2 is related to the output current Io. Therefore, the voltage of the pin COMP varies with the output current Io, and thus can be used to achieve the output constant current function.
10...光耦合器10. . . Optocoupler
12...LED串12. . . LED string
14...控制器14. . . Controller
16...控制器16. . . Controller
20...一次側電流Ip20. . . Primary current Ip
22...二次側電流Istwenty two. . . Secondary current Is
24...轉導放大器twenty four. . . Transduction amplifier
26...放大器26. . . Amplifier
28...峰值電壓偵測器28. . . Peak voltage detector
30...一次側電流Ip30. . . Primary current Ip
32...二次側電流Is32. . . Secondary current Is
34...平均電壓偵測器34. . . Average voltage detector
36...濾波器36. . . filter
40...電流源40. . . Battery
42...電流鏡42. . . Current mirror
44...電壓電流轉換器44. . . Voltage to current converter
45...運算放大器45. . . Operational Amplifier
46...輸出定電流裝置46. . . Output constant current device
48...輸出定電流裝置的輸出端48. . . Output output of the constant current device
50...電流源50. . . Battery
52...電流鏡52. . . Current mirror
54...電壓電流轉換器54. . . Voltage to current converter
55...運算放大器55. . . Operational Amplifier
56...電流感測器56. . . Current sensor
60...輸出定電壓裝置60. . . Output constant voltage device
62...誤差放大器62. . . Error amplifier
圖1顯示具有輸出電流限制保護功能的馳返式電源供應器;Figure 1 shows a flyback power supply with output current limit protection;
圖2顯示用以驅動LED的馳返式電源供應器;Figure 2 shows a flyback power supply for driving an LED;
圖3顯示習知無需光耦合器的LED應用電路;Figure 3 shows a conventional LED application circuit that does not require an optocoupler;
圖4顯示圖3電路在DCM操作時的一次側電流Ip及二次側電流Is的波形;4 shows waveforms of the primary side current Ip and the secondary side current Is of the circuit of FIG. 3 during DCM operation;
圖5顯示圖3的控制器在DCM操作下用以達成輸出定電流的電路;Figure 5 shows the circuit of Figure 3 for achieving a constant output current under DCM operation;
圖6顯示圖3電路在CCM操作時的一次側電流Ip及二次側電流Is的波形;6 shows waveforms of the primary side current Ip and the secondary side current Is of the circuit of FIG. 3 during CCM operation;
圖7顯示圖3的控制器在CCM操作下用以達成輸出定電流的電路;7 shows a circuit of the controller of FIG. 3 for achieving a constant output current under CCM operation;
圖8顯示習知的平均電壓偵測器;Figure 8 shows a conventional average voltage detector;
圖9顯示習知的另一種平均電壓偵測器;Figure 9 shows another conventional average voltage detector;
圖10顯示使用本發明的輸出定電流裝置的馳返式電源供應器;Figure 10 shows a flyback power supply using the output constant current device of the present invention;
圖11顯示本發明輸出定電流裝置的第一實施例;Figure 11 shows a first embodiment of the output constant current device of the present invention;
圖12顯示本發明輸出定電流裝置的第二實施例;Figure 12 shows a second embodiment of the output constant current device of the present invention;
圖13顯示具有輸出定電壓功能的馳返式電源供應器;Figure 13 shows a flyback power supply with an output constant voltage function;
圖14顯示圖13的控制器;Figure 14 shows the controller of Figure 13;
圖15顯示由變壓器TF1的一次側達成輸出定電壓功能的馳返式電源供應器;以及Figure 15 shows a flyback power supply that achieves an output constant voltage function by the primary side of the transformer TF1;
圖16顯示圖15的控制器。Figure 16 shows the controller of Figure 15.
16...控制器16. . . Controller
26...放大器26. . . Amplifier
28...峰值電壓偵測器28. . . Peak voltage detector
40...電流源40. . . Battery
42...電流鏡42. . . Current mirror
44...電壓電流轉換器44. . . Voltage to current converter
45...運算放大器45. . . Operational Amplifier
46...輸出定電流裝置46. . . Output constant current device
48...輸出定電流裝置的輸出端48. . . Output output of the constant current device
50...電流源50. . . Battery
52...電流鏡52. . . Current mirror
54...電壓電流轉換器54. . . Voltage to current converter
55...運算放大器55. . . Operational Amplifier
56...電流感測器56. . . Current sensor
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101114974A TWI446136B (en) | 2012-04-26 | 2012-04-26 | Output constant current apparatus for a flyback power supplier and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101114974A TWI446136B (en) | 2012-04-26 | 2012-04-26 | Output constant current apparatus for a flyback power supplier and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201344385A TW201344385A (en) | 2013-11-01 |
TWI446136B true TWI446136B (en) | 2014-07-21 |
Family
ID=49990201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101114974A TWI446136B (en) | 2012-04-26 | 2012-04-26 | Output constant current apparatus for a flyback power supplier and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI446136B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI489758B (en) * | 2013-12-03 | 2015-06-21 | Grenergy Opto Inc | Power controller, power supply and control method capable of brownin and brownout detection |
TWI521853B (en) | 2014-12-24 | 2016-02-11 | 力林科技股份有限公司 | Flyback-based power conversion apparatus |
-
2012
- 2012-04-26 TW TW101114974A patent/TWI446136B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201344385A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI568159B (en) | Flyback power converter and control circuit and control method thereof | |
TWI426693B (en) | Switching regulator and control circuit and control method thereof | |
US7480159B2 (en) | Switching-mode power converter and pulse-width-modulation control circuit with primary-side feedback control | |
TWI596874B (en) | System controller and method for a power converter | |
US8599581B2 (en) | Primary-side regulated modulation controller with improved transient response and audile noise | |
US7642762B2 (en) | Current source with indirect load current signal extraction | |
TWI474598B (en) | System and method for switching frequency and peak current regulation of a power converter | |
US8698419B2 (en) | Circuits and methods for driving light sources | |
TWI400990B (en) | Led driving circuit and controller with temperature compensation | |
TWI573380B (en) | A system controller and method for adjusting the output current of a power conversion system | |
TWI424670B (en) | System and method for switching power supply converters | |
TWI320990B (en) | Loading variation compensation circuit for a switching-mode power converter, and switching-mode power converter and conversion using the same | |
US20150249391A1 (en) | Dc-dc converter and dc-dc converter system thereof | |
US7511971B2 (en) | Constant voltage circuit for power adapter | |
TWI470912B (en) | Power factor correction (pfc) power conversion apparatus and power conversion method thereof | |
US20100026270A1 (en) | Average input current limit method and apparatus thereof | |
TW201325304A (en) | Systems and methods for regulating led currents | |
JP2010115105A (en) | Controller used in power factor control (pfc) converter and method for controlling pfc circuit | |
JP2005300376A (en) | Voltage detection circuit, power supply device and semiconductor device | |
US20120262079A1 (en) | Circuits and methods for driving light sources | |
US9966857B2 (en) | AC-to-DC power converter and control method and control integrated circuit thereof | |
US8742743B2 (en) | Switching control circuit | |
US8724349B2 (en) | Apparatus and method for output voltage calibration of a primary feedback flyback power module | |
TWI774209B (en) | Power converter with over temperature protection compensation | |
WO2021238571A1 (en) | Voltage regulating apparatus, chip, power supply, and electronic device |