TWI445012B - Memory circuit - Google Patents
Memory circuit Download PDFInfo
- Publication number
- TWI445012B TWI445012B TW096111335A TW96111335A TWI445012B TW I445012 B TWI445012 B TW I445012B TW 096111335 A TW096111335 A TW 096111335A TW 96111335 A TW96111335 A TW 96111335A TW I445012 B TWI445012 B TW I445012B
- Authority
- TW
- Taiwan
- Prior art keywords
- state
- inverter
- inverters
- feedback loop
- memory circuit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1084—Data input buffers, e.g. comprising level conversion circuits, circuits for adapting load
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1087—Data input latches
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1093—Input synchronization
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/22—Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management
Landscapes
- Static Random-Access Memory (AREA)
- Logic Circuits (AREA)
Description
此申請案係與美國專利申請序列號碼第11/396,114 號相關,其係由R.Masleid et al.在2006/03/31 所提交而名為“Multi-Write Memory Circuit with Multiple Data Inputs”(具有多重資料輸入之多重寫入記憶體電路),代理人案號第TRAN-P491號,讓渡給本發明之讓受人,以及係藉由參照使彼等之全文合併進此說明書內。This application is related to U.S. Patent Application Serial No. 11/396,114 , entitled "Multi-Write Memory Circuit with Multiple Data Inputs" by R. Masleid et al., 2006/03/31 . The multiple-input memory circuit of the multiple data input, the agent's case number TRAN-P491, is assigned to the assignee of the present invention, and the full text of them is incorporated into this specification by reference.
本說明書所說明之實施例,係論及電子電路,特別是記憶體電路。此書面文件揭示了至少一些具有一個資料輸入和一個時鐘輸入之多重寫入記憶體電路。The embodiments described in this specification relate to electronic circuits, particularly memory circuits. This written document reveals at least some of the multiple write memory circuits with one data input and one clock input.
大體而言,一個記憶體電路係一種電路類型,其輸出端係取決於至該電路之輸入和該電路之先前狀態(該輸入前之狀態)兩者。一個包含在一個記憶體電路中之狀態儲存回授迴路,可容許一個先前之輸入,連同一個當前之輸入,一起影響當前之輸出。一個可縮短用以確保上述回授迴路中之新狀態所需要的時間之記憶體電路,將會是有利的。In general, a memory circuit is a type of circuit whose output depends on both the input to the circuit and the previous state of the circuit (the state before the input). A state storage feedback loop contained in a memory circuit that allows a previous input, together with a current input, to affect the current output. It would be advantageous to have a memory circuit that shortens the time required to ensure a new state in the feedback loop described above.
本說明書所說明之實施例,係與不同類型之記憶體電 路相關。在一個實施例中,一個記憶體電路,係具有一個耦合至一個時鐘輸入和一個資料輸入之狀態儲存回授迴路。該資料輸入係在多重點處被導入該回授迴路內,以及係自該等點平行地傳播至上述回授迴路內之其他點。The embodiments described in this specification are related to different types of memory Road related. In one embodiment, a memory circuit has a state storage feedback loop coupled to a clock input and a data input. The data input is introduced into the feedback loop at multiple points of focus, and is propagated in parallel from the points to other points within the feedback loop.
廣意而言,此書面文件係揭示在下文中。所說明係各種類型之記憶體電路。一個記憶體電路,可能包含有一個耦合至一個時鐘輸入和一個資料輸入之狀態儲存回授迴路。該資料輸入係在多重點處被導入該回授迴路內,以及係自該等點平行地傳播至該回授迴路內之其他點。Broadly speaking, this written document is disclosed below. Various types of memory circuits are illustrated. A memory circuit may contain a state storage feedback loop coupled to a clock input and a data input. The data input is introduced into the feedback loop at multiple points of focus, and is propagated in parallel from the points to other points within the feedback loop.
該等合併進本說明書內且形成其一部分之附圖,係例示本發明之實施例,以及連同其之說明,係用來解釋本發明之原理。此說明內容所參照之繪圖,不應被理解為按比例繪製,除非有明確述。BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG Drawings referenced in this description are not to be construed as being drawn to scale unless otherwise specified.
第1和2圖係例示一個依據本發明之記憶電路的實施例,其係具有一個資料輸入和一個時鐘輸入,以及具有減低之最小保持電壓;第3和4圖係例示一個依據本發明之三態反相器的實施例;第5、6、7、和8圖係例示一個依據本發明之多重寫入記憶體電路的實施例,其係具有一個資料輸入和一個時鐘輸入,以及具有減低之最小保持電壓;第9和10圖係例示一個依據本發明之記憶體電路的實施例,其係具有第一和第二資料輸入,以及具有減低之最小保持電壓;第11、12、13、14、15、和16圖係例示一個依據本發明之多重寫入記憶體電路的實施例,其係具有第一和第二資料輸入,以及具有減低之最小保持電壓;第17圖係一種依據本發明之一個實施例用以將狀態寫至一個具有一個資料輸入和一個時鐘輸入且具有減低之最小保持電壓的記憶體電路之方法的流程圖;而第18圖則係一種依據本發明之一個實施例用以將狀態寫入一個具有第一和第二資料輸入且具有減低之最小保持電壓的記憶體電路之方法的流程圖。1 and 2 illustrate an embodiment of a memory circuit in accordance with the present invention having a data input and a clock input, and having a reduced minimum holding voltage; FIGS. 3 and 4 illustrate a third embodiment in accordance with the present invention. Embodiments of the state inverter; Figures 5, 6, 7, and 8 illustrate an embodiment of a multiple write memory circuit in accordance with the present invention having a data input and a clock input, and having a reduced Minimum holding voltage; Figures 9 and 10 illustrate an embodiment of a memory circuit in accordance with the present invention having first and second data inputs and having a reduced minimum holding voltage; 11, 12, 13, 14 15, and 16 are diagrams illustrating an embodiment of a multiple write memory circuit in accordance with the present invention having first and second data inputs and having a reduced minimum holding voltage; FIG. 17 is a diagram in accordance with the present invention A flowchart of a method for writing a state to a memory circuit having a data input and a clock input and having a reduced minimum hold voltage; and Figure 18 Department of one embodiment for writing a state having a first and a second input and having minimum data flowchart of a method of reducing the memory circuit in accordance with one of the holding voltage of the present invention.
茲將詳細論及本發明之各種實施例,彼等之範例係例示在所附諸圖中。雖然本發明在說明上係配合此等實施例,理應瞭解的是,彼等並非意圖使本發明受限於此等實施例。相反的是,本發明係意使涵蓋彼等之替代方案、修飾體、和等價體,彼等可能包含在本發明如所附申請專利範圍所界定之精神和範圍內。此外,在本發明以下之詳細說明中,很多特定之細節在列舉上,係為提供本發明之完全瞭解。然而,本技藝之一般從業人員理應理解的是,本發明在實行上,可能並不需要此等特定之細節。在其他之實例中,一些習見之方法、程序、組件、和電路尚未詳加說明,以期不致不當地混淆本發明之特徵。Various embodiments of the invention are discussed in detail, and examples thereof are illustrated in the accompanying drawings. While the invention has been described with respect to the embodiments, it is understood that the invention is not intended to limit the invention. Rather, the invention is intended to cover alternatives, modifications, and equivalents, and may be included within the spirit and scope of the invention as defined by the appended claims. In addition, in the following detailed description of the invention, the invention However, it will be understood by one of ordinary skill in the art that the present invention may not require such specific details. In other instances, some of the methods, procedures, components, and circuits have not been described in detail so as not to unnecessarily obscure the features of the present invention.
一些依據本發明之記憶體電路,可能係被實現為邏輯閂或正反器。大體而言,本說明書所說明之記憶體電路,係一些可儲存一個位元之裝置。Some memory circuits in accordance with the present invention may be implemented as logic latches or flip-flops. In general, the memory circuit described in this specification is a device that can store one bit.
第1圖係一個依據本發明之實施例的記憶體電路10之示意圖,其係具有一個資料輸入端D、一個控制輸入(例如,時鐘輸入clk)、和一個輸出端Q-bar。與一個傳統式記憶體電路相比較,上述電路10之狀態儲存回授迴路14,係包含有一些附加元件;該等附加元件可能係集體被稱作一種冗餘元件。特言之,除反相器15和三態反相器18之外,該回授迴路14係包含有反相器16和17。此等反相器16和17,可影響上述電路在統計上和電氣上之行為,以及特別是在統計上降低上述電路10之最小保持電壓(Vmin),其中,Vmin係一個類似電路10等記憶體電路能成功保持狀態所處之最小電壓。降低Vmin亦可能使待命電壓降低,以及結果可能降低待命漏電流和待命電壓。此外,降低Vmin可能降低上述電路10之靈敏度,其可能會在製造期間發生電晶體失配。而且,與一個傳統式記憶體電路相比較,該電路10有利的是具有一個較大之靜態雜訊裕度(SNM)。1 is a schematic diagram of a memory circuit 10 in accordance with an embodiment of the present invention having a data input D, a control input (eg, clock input clk), and an output Q-bar. In contrast to a conventional memory circuit, the state of the circuit 10 described above stores the feedback loop 14 and includes some additional components; these additional components may collectively be referred to as a redundant component. In particular, the feedback loop 14 includes inverters 16 and 17 in addition to the inverter 15 and the tri-state inverter 18. These inverters 16 and 17 can affect the statistical and electrical behavior of the above-described circuits, and in particular statistically reduce the minimum holding voltage (Vmin) of the above-described circuit 10, wherein Vmin is a memory such as a circuit 10 The body circuit can successfully maintain the minimum voltage at which the state is located. Reducing Vmin can also reduce the standby voltage and, as a result, reduce the standby leakage current and standby voltage. Furthermore, lowering Vmin may reduce the sensitivity of the above described circuit 10, which may cause transistor mismatch during manufacturing. Moreover, the circuit 10 advantageously has a larger static noise margin (SNM) than a conventional memory circuit.
第2圖係一個依據本發明之另一實施例的記憶體電路20之示意圖,其係具有一個資料輸入D、一個時鐘輸入clk、和一個輸出端Q-bar。與第1圖之回授迴路14相比較,該電路20之狀態儲存回授迴路27,係包含有一些附加之元件。特言之,除反相器21和三態反相器26之外,該回授迴路27,係包含有反相器21、22、23、和24。上述回授迴路27相對於回授迴路14之加長長度,可強化上文所提及之優點。2 is a schematic diagram of a memory circuit 20 in accordance with another embodiment of the present invention having a data input D, a clock input clk, and an output terminal Q-bar. In contrast to the feedback loop 14 of Figure 1, the state of the circuit 20 stores the feedback loop 27, which includes additional components. In other words, in addition to the inverter 21 and the tristate inverter 26, the feedback loop 27 includes inverters 21, 22, 23, and 24. The lengthening of the feedback loop 27 described above relative to the feedback loop 14 enhances the advantages mentioned above.
第3圖係一個依據本發明之三狀態反相器30的實施例之示意圖。此種三態反相器30,係包含有多重之p-型裝置和多重之n-型裝置(電晶體)。該等p-型裝置係被配置來使輸出昇壓(適度地),以及該等n-型裝置係配置使輸出降壓。結果,該三態反相器30之驅動能力,係低於一個傳統式反相器之驅動能力。Figure 3 is a schematic illustration of an embodiment of a three state inverter 30 in accordance with the present invention. Such a tri-state inverter 30 includes multiple p-type devices and multiple n-type devices (transistors). The p-type devices are configured to boost the output (moderately), and the n-type device configurations depressurize the output. As a result, the driving ability of the tri-state inverter 30 is lower than that of a conventional inverter.
在第3圖之範例中,該三態反相器30,係包含有兩個p-型裝置32和33和兩個n-型裝置34和35。該等裝置32和35之閘極,係使耦合至該輸入。上述裝置33之閘極,係使耦合至該輸入。上述裝置33之閘極,係使耦合至一個反相器31之輸出,後者可接收一個致能信號,以及上述裝置34之閘極,亦使耦合至該致能輸入。在第3圖之範例中,當該致能信號為高邏輯位準時,其輸出便會被驅動。In the example of FIG. 3, the tri-state inverter 30 includes two p-type devices 32 and 33 and two n-type devices 34 and 35. The gates of the devices 32 and 35 are coupled to the input. The gate of device 33 described above is coupled to the input. The gate of device 33 is coupled to an output of an inverter 31 which receives an enable signal and the gate of device 34 and is coupled to the enable input. In the example of Figure 3, when the enable signal is at a high logic level, its output is driven.
第4圖係一個依據本發明之另一個實施例的三態反相器40之示意圖。在第4圖之範例中,該三態反相器40,係包含有兩個p-型裝置42和43和兩個n-型裝置44和45。該等裝置42和45之閘極,係使耦合至該輸入。上述裝置44之閘極,係使耦合至一個反相器41之輸出,後者可接收一個解能信號,以及上述裝置43之閘極,亦使耦合至該解能輸入。在第4圖之範例中,當該解能信號為低邏輯位準時,其輸出便會被驅動。Figure 4 is a schematic illustration of a tri-state inverter 40 in accordance with another embodiment of the present invention. In the example of Figure 4, the tri-state inverter 40 includes two p-type devices 42 and 43 and two n-type devices 44 and 45. The gates of the devices 42 and 45 are coupled to the input. The gate of device 44 is coupled to an output of an inverter 41 which receives a de-energized signal and the gate of device 43 and is coupled to the de-energized input. In the example of Figure 4, when the dissolvable signal is at a low logic level, its output is driven.
第5圖係一個多重寫入記憶體電路50之示意圖,其係具有一個資料輸入D、一個時鐘輸入clk、和一個輸出端Q-bar。該電路50之狀態儲存回授迴路51,係包含有一個串聯耦合之反相器52、三態反相器53、反相器54、和三態反相器55。該等反相器54和三態反相器55,構成了一個可降低上述電路50之最小保持電壓的冗餘元件。該電路50可能被稱作一個多重寫入四聯Vmin邏輯閂。Figure 5 is a schematic diagram of a multiple write memory circuit 50 having a data input D, a clock input clk, and an output Q-bar. The state of the circuit 50 stores the feedback loop 51, which includes an inverter 52 coupled in series, a tristate inverter 53, an inverter 54, and a tristate inverter 55. The inverters 54 and the three-state inverters 55 constitute a redundant component that reduces the minimum holding voltage of the circuit 50 described above. This circuit 50 may be referred to as a multiple write quad Vmin logic latch.
該等三態反相器53和55,各係具有一個時鐘輸入,其在第5圖之實施例中,可提供一個解能信號,給該等三態反相器53和55。上述三態反相器53之資料輸入係耦合至上述反相器52之輸出,以及上述三態反相器55之資料輸入,係耦合至上述反相器54之輸出。該等三態反相器53和55,可依據一個時鐘信號之狀態,分別緩衝儲存上述接收自該等反相器52和54之狀態。The tristate inverters 53 and 55, each having a clock input, in the embodiment of Fig. 5, provide a dissolving signal to the tristate inverters 53 and 55. The data input of the tristate inverter 53 is coupled to the output of the inverter 52, and the data input of the tristate inverter 55 is coupled to the output of the inverter 54. The three-state inverters 53 and 55 buffer the states received from the inverters 52 and 54 respectively according to the state of a clock signal.
在一個實施例中,一個三態反相器56,係耦合在該等資料輸入D與反相器54之間,以及一個三態反相器57,係耦合在該等資料輸入D與反相器52之間。該等三態反相器56和57,各係具有一個時鐘輸入,其在第5圖之實施例中,可提供一個致能信號,給該等三態反相器56和57。In one embodiment, a tri-state inverter 56 is coupled between the data input D and the inverter 54, and a tri-state inverter 57 coupled to the data input D and inverted. Between the 52. The three-state inverters 56 and 57 each have a clock input which, in the embodiment of Fig. 5, provides an enable signal to the three-state inverters 56 and 57.
重要的是,依據本發明之當前實施例,該資料輸入信號D,係平行地由該等反相器52和反相器54來感測。亦即,依據本發明之當前實施例,該資料輸入D,係在被標記為A和B之多重點處,而非僅在一個點處,使平行地寫入(或使驅動或載入)該回授迴路51內。上述回授迴路51之剩餘部分的更新,便會自每個點A和B處平行地前進。Importantly, in accordance with the current embodiment of the present invention, the data input signal D is sensed in parallel by the inverters 52 and inverters 54. That is, in accordance with the current embodiment of the present invention, the data input D is written at a plurality of points marked A and B, rather than at only one point, enabling parallel writing (or driving or loading). This feedback loop 51 is inside. The update of the remainder of the feedback loop 51 described above proceeds in parallel from each of points A and B.
上述電路10(第1圖)之回授迴路14,係與第5圖中之回授迴路51相類似。然而,與電路50相反的是,資料係僅在一個點處,使寫至上述電路10之回授迴路14,以及因而上述更新回授迴路14所需要之時間,基本上為一個輸入信號環繞回授迴路14傳播所耗費之時間。上述之回授迴路14,係使在四次反向中被更新,而該回授迴路51,係使在兩次反向中被更新。結果,更新回授迴路51之時間,大約為更新回授迴路14所需要之時間;理應認清的是,由於加增之寄生側向負荷所致,在一個較長之回授迴路中,可能會喪失某些速度。The feedback loop 14 of the above circuit 10 (Fig. 1) is similar to the feedback loop 51 of Fig. 5. However, contrary to circuit 50, the data is only at one point, so that the time required to write to feedback loop 14 of circuit 10 described above, and thus the update feedback loop 14, is essentially an input signal wraparound. The time it takes to pass the loop 14 to propagate. The feedback loop 14 described above is updated in four reversals, and the feedback loop 51 is updated in two reversals. As a result, the time to update the feedback loop 51 is approximately the time required to update the feedback loop 14; it should be recognized that due to the increased parasitic lateral load, in a longer feedback loop, it is possible Some speed will be lost.
大體而言,依據本發明之實施例,一個減低Vmin式記憶體電路之狀態儲存回授迴路,可在較少之時間內被更新。因此,依據本發明之實施例,上述用以確保記憶體電路內之一個新狀態所需要的時間(例如,保持時間、建置時間、或某種其他度量)會被降低,藉以就此點而論,提昇該等減低Vmin式記憶體電路之性能。In general, in accordance with an embodiment of the present invention, a state-return feedback loop that reduces the Vmin-type memory circuit can be updated in less time. Thus, in accordance with an embodiment of the present invention, the time required to ensure a new state within the memory circuit (e.g., hold time, build time, or some other measure) is reduced, thereby relying on this point To improve the performance of these reduced Vmin memory circuits.
第6、7、和8圖係一個依據本發明之多寫入記憶體電路的其他實施例之示意圖,其係具有一個資料輸入和一個時鐘輸入,以及具有減低之最小保持電壓。在第6圖中,一個記憶體電路60之狀態儲存回授迴路61,係包含有一個串聯耦合反相器62、三態反相器63、反相器64、三態反相器65、反相器66、和三態反相器67。此等反相器64、三態反相器65、反相器66、和三態反相器67,構成了一個可使該電路60之最小保持電壓降低的冗餘元件。該電路60可能被稱作一個多重寫入六聯Vmin邏輯閂。Figures 6, 7, and 8 are schematic views of other embodiments of a multi-write memory circuit in accordance with the present invention having a data input and a clock input, and having a reduced minimum hold voltage. In Fig. 6, a state of the memory circuit 60 stores the feedback loop 61, which includes a series coupled inverter 62, a tristate inverter 63, an inverter 64, a tristate inverter 65, and a counter. A phaser 66, and a tri-state inverter 67. These inverters 64, tristate inverters 65, inverters 66, and tristate inverters 67 form a redundant component that reduces the minimum holding voltage of the circuit 60. This circuit 60 may be referred to as a multiple write six-link Vmin logic latch.
該等三態反相器63、65、和67,各具有一個時鐘輸入,其在第6圖之實施例中,可提供一個解能信號,給該等三態反相器63、65、和67。上述三態反相器63之資料輸入,係耦合至上述反相器62之輸出,上述三態反相器65之資料輸入,係耦合至上述反相器64之輸出,以及上述三態反相器67之資料輸入,係耦合至上述反相器66之輸出。該等反相器62、64、和66,可依據一個時鐘信號之狀態,來分別緩衝儲存上述接收自該等三態反相器63、65、和67之狀態。The three-state inverters 63, 65, and 67 each have a clock input which, in the embodiment of Fig. 6, provides a dissolvable signal to the three-state inverters 63, 65, and 67. The data input of the tristate inverter 63 is coupled to the output of the inverter 62. The data input of the tristate inverter 65 is coupled to the output of the inverter 64, and the three-state inversion. The data input of the device 67 is coupled to the output of the inverter 66 described above. The inverters 62, 64, and 66 buffer the states received from the three-state inverters 63, 65, and 67, respectively, depending on the state of a clock signal.
在一個實施例中,一個三態反相器68,係耦合在該等資料輸入D與反相器64之間,一個三態反相器69,係耦合在該等資料輸入D與反相器62之間,以及一個三態反相器601,係耦合在該等資料輸入D與反相器66之間。該等三態反相器68、69、和601,各係具有一個時鐘輸入,其在第6圖之實施例中,可提供一個致能信號,給該等三態反相器68、69、和601。In one embodiment, a tri-state inverter 68 is coupled between the data input D and the inverter 64, and a tri-state inverter 69 is coupled to the data input D and the inverter. Between 62, and a tri-state inverter 601 are coupled between the data input D and the inverter 66. The three-state inverters 68, 69, and 601 each have a clock input. In the embodiment of FIG. 6, an enable signal can be provided to the three-state inverters 68, 69, And 601.
依據本發明之當前實施例,該資料輸入D,係在被標記為A、B、和C之多重點處,而非僅在一個點處,使平行地寫入該回授迴路61內。上述回授迴路61之剩餘部分的更新,便會自每個點A、B、和C之多重點處平行地前進。因此,與第5圖中之迴路51相類似,該回授迴路61,係在兩次反向中被更新,縱使上述回授迴路61相對於回授迴路51,係具有加長之長度。In accordance with the current embodiment of the present invention, the data input D is written in parallel to the feedback loop 61 at points that are labeled A, B, and C, rather than at only one point. The update of the remainder of the feedback loop 61 described above proceeds in parallel from the focus of each of points A, B, and C. Therefore, similar to the circuit 51 in Fig. 5, the feedback loop 61 is updated in two inversions, even though the feedback loop 61 has an extended length relative to the feedback loop 51.
在第7圖中,一個記憶體電路80之狀態儲存回授迴路81,係包含有一個串聯耦合之反相器82、三態反相器83、反相器84、三態反相器85、反相器86、和三態反相器87。該等反相器84、三態反相器85、反相器86、和三態反相器87,構成了一個可降低上述電路80之最小保持電壓的冗餘元件。該電路80可能被稱作一個多重寫入串聯六聯Vmin邏輯閂。In FIG. 7, a state of the memory circuit 80 stores a feedback loop 81, which includes a series coupled inverter 82, a tristate inverter 83, an inverter 84, and a tristate inverter 85. An inverter 86, and a tri-state inverter 87. The inverter 84, the tristate inverter 85, the inverter 86, and the tristate inverter 87 constitute a redundant element that reduces the minimum holding voltage of the circuit 80 described above. This circuit 80 may be referred to as a multiple write series six-connected Vmin logic latch.
該等三態反相器83、85、和87,各係具有一個時鐘輸入,其在第7圖之實施例中,可提供一個解能信號,給該等三態反相器83、85、和87。上述三態反相器83之資料輸入,係耦合至上述反相器82之輸出,上述三態反相器85之資料輸入,係耦合至上述反相器84之輸出,以及上述三態反相器87之資料輸入,係耦合至上述反相器86之輸出。該等反相器82、84、和86,可依據一個時鐘信號之狀態,來分別緩衝儲存上述接收自該等三態反相器83、85、和87之狀態。The three-state inverters 83, 85, and 87 each have a clock input. In the embodiment of FIG. 7, a de-energizing signal can be provided to the three-state inverters 83, 85, And 87. The data input of the tristate inverter 83 is coupled to the output of the inverter 82. The data input of the tristate inverter 85 is coupled to the output of the inverter 84, and the three-state inversion. The data input of the device 87 is coupled to the output of the inverter 86 described above. The inverters 82, 84, and 86 buffer the states received from the three-state inverters 83, 85, and 87, respectively, depending on the state of a clock signal.
在一個實施例中,一個三態反相器88,係耦合在該等資料輸入D與反相器84之間,一個三態反相器89,係耦合在該等資料輸入D與反相器82之間,以及一個三態反相器801,係耦合在該等資料輸入D與反相器86之間。該等三態反相器88、89、和801,各係具有一個時鐘輸入,其在第7圖之實施例中,可提供一個致能信號,給該等三態反相器88、89、和801。In one embodiment, a tri-state inverter 88 is coupled between the data input D and the inverter 84. A tri-state inverter 89 is coupled to the data input D and the inverter. Between 82, and a tri-state inverter 801 are coupled between the data input D and the inverter 86. The three-state inverters 88, 89, and 801 each have a clock input. In the embodiment of FIG. 7, an enable signal can be provided to the three-state inverters 88, 89, And 801.
依據本發明之當前實施例,該資料輸入D,係在被標記為A、B、和C之多重點處,而非僅在一個點處,使平行地寫入該回授迴路81內。上述回授迴路81之剩餘部分的更新,便會自每個點A、B、和C之多重點處平行地前進。因此,如同在上文之範例中,該回授迴路81,係在兩次反向中被更新,縱使上述回授迴路81相對於某些此等範例,係具有加長之長度。In accordance with the current embodiment of the present invention, the data input D is written in parallel to the feedback loop 81 at points that are labeled A, B, and C, rather than at only one point. The update of the remainder of the feedback loop 81 described above proceeds in parallel from the focus of each of points A, B, and C. Thus, as in the above example, the feedback loop 81 is updated in two inversions, even though the feedback loop 81 has an extended length relative to some of these examples.
在第8圖中,一個記憶體電路100之狀態儲存回授迴路101,係包含有一個串聯耦合之反相器102、三態反相器103、反相器104、和三態反相器105。該等反相器104、和三態反相器105,構成了一個可降低上述電路100之最小保持電壓的冗餘元件。該電路100可能被稱作一個多重寫入串聯反相Vmin邏輯閂。In Fig. 8, a state of the memory circuit 100 stores the feedback loop 101, which includes a series coupled inverter 102, a tristate inverter 103, an inverter 104, and a tristate inverter 105. . The inverters 104 and the tri-state inverters 105 constitute a redundant component that reduces the minimum holding voltage of the circuit 100 described above. This circuit 100 may be referred to as a multiple write series inverting Vmin logic latch.
該等三態反相器103和105,各係具有一個時鐘輸入,其在第8圖之實施例中,可提供一個解能信號,給該等三態反相器103和105。上述三態反相器103之資料輸入,係耦合至上述反相器102之輸出,以及上述三態反相器105之資料輸入,係耦合至上述反相器104之輸出。該等三態反相器103和105,可依據一個時鐘信號之狀態,分別緩衝儲存上述接收自該等三態反相器102和104之狀態。The tristate inverters 103 and 105 each have a clock input which, in the embodiment of Fig. 8, provides a dissolving signal to the tristate inverters 103 and 105. The data input of the tristate inverter 103 is coupled to the output of the inverter 102, and the data input of the tristate inverter 105 is coupled to the output of the inverter 104. The three-state inverters 103 and 105 buffer the states received from the three-state inverters 102 and 104, respectively, according to the state of a clock signal.
在一個實施例中,一個三態反相器106,係耦合在該等資料輸入D與反相器102之間,以及一個三態反相器107,係耦合在該等資料輸入D與反相器104之間。該等三態反相器106和107,各係具有一個時鐘輸入,其在第8圖之實施例中,可提供一個致能信號,給該等三態反相器106和107。In one embodiment, a tri-state inverter 106 is coupled between the data input D and the inverter 102, and a tri-state inverter 107 coupled to the data input D and inverted. Between the devices 104. The three-state inverters 106 and 107, each having a clock input, in the embodiment of Figure 8, provide an enable signal to the three-state inverters 106 and 107.
依據本發明之當前實施例,該資料輸入D,係在被標記為A和B之多重點處,而非僅在一個點處,使平行地寫入該回授迴路101內。上述回授迴路101之剩餘部分的更新,便會自每個寫入點A和B處平行地前進。因此,與上文之範例相類似,該回授迴路101,係在兩次反向中被更新。In accordance with the current embodiment of the present invention, the data input D is written in parallel to the feedback loop 101 at points that are labeled A and B, rather than at only one point. The update of the remainder of the feedback loop 101 described above proceeds in parallel from each of the write points A and B. Therefore, similar to the above example, the feedback loop 101 is updated in two reversals.
一些依據本發明之實施例,並非受限於上文藉由第5-8圖所說明之範例。大體而言,一些依據本發明之實施例,可將一個資料輸入導進一個狀態儲存回授迴路上之多重點內。因此,一個任意長度之回授迴路,依據該等寫入點之數目,可在少至兩次之反向中被更新。Some embodiments in accordance with the present invention are not limited to the examples illustrated above by Figures 5-8. In general, in accordance with embodiments of the present invention, a data input can be directed into a multi-point of focus storage loop. Therefore, a feedback loop of any length can be updated in as few as two inversions depending on the number of such write points.
在一個實施例中,該回授迴路係包含有偶數個串聯耦合之電路元件(例如,反相器和三態反相器)。在一個此種實施例中,該回授迴路係包含有數目相同之交替串聯耦合的反相器和三態反相器。使用第5圖之電路50作為範例,該回授迴路51,係依次包含有一個反相器52、一個三態反相器53、一個反相器54、和一個三態反相器55。該資料輸入係在該等反相器52和54之輸入端處,被導入該回授迴路51內。該等反相器52和54,在該回授迴路51內,係與該等三態反相器53和55交替排列,以及該等三態反相器53和55,可依據一個時鐘信號elk,緩衝儲存該等反相器52和54所輸出之狀態。In one embodiment, the feedback loop includes an even number of circuit elements coupled in series (eg, an inverter and a tri-state inverter). In one such embodiment, the feedback loop includes an equal number of alternating series coupled inverters and tristate inverters. Using the circuit 50 of FIG. 5 as an example, the feedback loop 51 includes, in order, an inverter 52, a tristate inverter 53, an inverter 54, and a tristate inverter 55. The data input is introduced into the feedback loop 51 at the inputs of the inverters 52 and 54. The inverters 52 and 54 are alternately arranged in the feedback loop 51 with the three-state inverters 53 and 55, and the three-state inverters 53 and 55 can be based on a clock signal elk. The buffer stores the states output by the inverters 52 and 54.
自另一觀點言之,該狀態儲存回授迴路,可被視為具有許多級段。其中,在一個實施例中,每個級段係包含有一個串聯耦合之第一元件(例如,一個反相器)和第二元件(例如,一個三態反相器)。在一個此種實施例中,每個級段係具有一個時鐘輸入和一個資料輸入,其中,該資料輸入上之狀態,係平行地寫入每個級段內。From another point of view, this state stores the feedback loop and can be considered to have many stages. Wherein, in one embodiment, each stage includes a first component (eg, an inverter) and a second component (eg, a tri-state inverter) coupled in series. In one such embodiment, each stage has a clock input and a data input, wherein the status on the data input is written in parallel for each stage.
第5-8圖之多重寫入減低Vmin式電路,其可配合第1-2圖之減低Vmin式電路一起使用。由於一個多重寫入Vmin電路,比起一個減低Vmin式電路,可能具有較大之資料和時鐘輸入電容,以及因而可能會使該回授迴路內之功率耗散略微增加,則在重要路徑(速度有關)中,使用多重寫入減低Vmin式電路,以及在非重要路徑(為節省電力)中,使用減低Vmin式電路,可能是適當的。The multiple write reduction Vmin circuit of Figures 5-8 can be used in conjunction with the reduced Vmin circuit of Figures 1-2. Since a multiple write Vmin circuit may have a larger data and clock input capacitance than a reduced Vmin circuit, and thus may cause a slight increase in power dissipation within the feedback loop, then at an important path (speed) In related), it may be appropriate to use a multiple write to reduce the Vmin type circuit and a non-critical path (to save power) using a reduced Vmin type circuit.
第9圖係一個依據本發明之實施例的記憶體電路110之示意圖,其係具有一個第一資料輸入反相設定(SET-BAR)、一個第二資料輸入反相重置(RESET-BAR)、一個第一輸出Q、和一個第二輸出Q-bar。與一個傳統式記憶體電路相比較,該電路110之狀態儲存回授迴路111,係包含有一些附加之元件(其可能集體地被稱作一種冗餘元件)。特言之,除NAND(反及)邏輯閘112和113之外,該回授迴路111,係包含有反相器114和115。該等反相器114和115,會影響到上述電路在統計上和電氣上之行為,以及特別是在統計上可降低上述電路110之Vmin。誠如本說明書先前所提及,降低Vmin亦可能使待命電壓降低,以及結果可能降低待命漏電流和待命電壓。此外,降低Vmin可能降低上述電路110對製造期間可能發生之電晶體失配的靈敏度。而且,與一個傳統式記憶體電路相比較,該電路110有利的是具有一個較大之SNM。Figure 9 is a schematic diagram of a memory circuit 110 having a first data input inversion setting (SET-BAR) and a second data input inversion reset (RESET-BAR) in accordance with an embodiment of the present invention. , a first output Q, and a second output Q-bar. The state of the circuit 110 stores the feedback loop 111 as compared to a conventional memory circuit, which includes additional components (which may collectively be referred to as a redundant component). In particular, in addition to NAND (reverse) logic gates 112 and 113, the feedback loop 111 includes inverters 114 and 115. The inverters 114 and 115 affect the statistical and electrical behavior of the above-described circuits and, in particular, statistically reduce the Vmin of the above-described circuit 110. As mentioned earlier in this specification, lowering Vmin can also reduce the standby voltage and, as a result, reduce standby leakage current and standby voltage. Moreover, lowering Vmin may reduce the sensitivity of the above described circuit 110 to transistor mismatch that may occur during fabrication. Moreover, the circuit 110 advantageously has a larger SNM than a conventional memory circuit.
第10圖係一個依據本發明之另一個實施例的記憶體電路120之示意圖,其係具有一個第一資料輸入設定(SET)、一個第二資料輸入重置(RESET)、一個第一輸出Q、和一個第二輸出Q-bar。與第9圖之回授迴路111相比較,該電路120之狀態回授迴路121,係包含有一些附加之元件。特言之,除NAND(反及)邏輯閘122和123之外,該回授迴路121,係包含有反相器124、125、126、和126。上述回授迴路121相對於回授迴路111之加長長度,可強化上文所提及之優點。Figure 10 is a schematic diagram of a memory circuit 120 in accordance with another embodiment of the present invention having a first data input setting (SET), a second data input reset (RESET), and a first output Q. And a second output Q-bar. In contrast to the feedback loop 111 of Figure 9, the state of the circuit 120 is fed back to the circuit 121 and includes additional components. In particular, in addition to NAND (reverse) logic gates 122 and 123, the feedback loop 121 includes inverters 124, 125, 126, and 126. The lengthening of the feedback loop 121 described above relative to the feedback loop 111 enhances the advantages mentioned above.
第11圖係一個依據本發明之另一個實施例的多重寫入記憶體電路130之示意圖,其係具有一個第一資料輸入反相設定(SET-bar)、一個第二資料輸入反相重置(RESET-bar)、一個第一輸出Q、和一個第二輸出Q-bar。該電路130可能被稱為一個多重寫入減低Vmin設定-重置邏輯閂。Figure 11 is a schematic diagram of a multiple write memory circuit 130 having a first data input inversion setting (SET-bar) and a second data input inversion reset in accordance with another embodiment of the present invention. (RESET-bar), a first output Q, and a second output Q-bar. This circuit 130 may be referred to as a multiple write reduction Vmin setting-reset logic latch.
該電路130之狀態儲存回授迴路131,係包含有一些串聯耦合之NAND(反及)邏輯閘132、133、134、和135。該等NAND(反及)邏輯閘134和135,構成了一個可降低上述電路130之最小保持電壓的冗餘元件。The state of the circuit 130 stores the feedback loop 131 and includes a number of NAND (reverse) logic gates 132, 133, 134, and 135 coupled in series. The NAND (reverse) logic gates 134 and 135 form a redundant component that reduces the minimum holding voltage of the circuit 130 described above.
特言之,依據本發明之當前實施例,該資料輸入信號(SET-bar,係平行地由NAND(反及)邏輯閘133和NAND(反及)邏輯閘135來感測,以及該資料輸入信號RESET-bar(反相重置),係平行地由NAND(反及)邏輯閘132和NAND(反及)邏輯閘134來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A和B之多重點處,而非僅在一個點處,使平行地寫入回授迴路131內,以及該RESET-bar(反相重置)信號,係在被標記為C和D之多重點處,而非僅在一個點處,使平行地寫入回授迴路131內。信號係自每個寫入點A、B、C、和D處,平行地前進通過該回授迴路131。In particular, in accordance with the current embodiment of the present invention, the data input signal (SET-bar is sensed in parallel by NAND (reverse) logic gate 133 and NAND (reverse) logic gate 135, and the data input Signal RESET-bar (inverted reset) is sensed in parallel by NAND (reverse) logic gate 132 and NAND (reverse) logic gate 134. That is, in accordance with the current embodiment of the present invention, the SET- The bar (inverted set) signal is written at multiple points marked A and B, not just at one point, written in parallel to the feedback loop 131, and the RESET-bar (inverted reset) The signal, in the multiple points marked C and D, rather than at only one point, is written in parallel to the feedback loop 131. The signal is from each of the write points A, B, C, and At D, it proceeds in parallel through the feedback loop 131.
因此,上述更新回授迴路131所需要之時間,係少於上述環繞一個傳統式回授迴路(亦即,一個僅具有單一寫入點之回授迴路)傳播所需要之時間。該回授迴路131,係在兩次反向中被更新;若其中僅有一個單一寫入點,則更新該回授迴路,將會進行四次反向。Therefore, the time required to update the feedback loop 131 is less than the time required to propagate around a conventional feedback loop (i.e., a feedback loop having only a single write point). The feedback loop 131 is updated in two reversals; if there is only one single write point, the feedback loop is updated and four reversals will occur.
大體而言,依據本發明之實施例中,一個減低Vmin式記憶體電路之狀態儲存回授迴路,係在少於傳播環繞該回授迴路之時間內被更新。因此,依據本發明之實施例,上述確保記憶體電路內之一個新狀態所需要的時間(例如,保持時間、建置時間、或某種其他度量)會被降低,藉以就此點而論,提昇該等減低Vmin式記憶體電路之性能。In general, in accordance with an embodiment of the present invention, a state-return feedback loop of a reduced Vmin-type memory circuit is updated less than the time spent propagating around the feedback loop. Thus, in accordance with an embodiment of the present invention, the time required to ensure a new state within the memory circuit (e.g., hold time, build time, or some other measure) is reduced, thereby promoting These reduce the performance of the Vmin-type memory circuit.
第12、13、14、15、和16圖係一個依據本發明之多重寫入記憶體電路的其他實施例之示意圖,其係具有第一和第二資料輸入,以及具有減低之最小保持電壓。在第12圖中,該電路140之狀態儲存回授迴路141,係包含有串聯耦合之反相器142、一個內含OR(或)邏輯閘143和NAND(反及)邏輯閘144之OR-AND反相器(OAI)級段、一個反相器145、和另一個內含OR(或)邏輯閘146和NAND(反及)邏輯閘147之OAI級段。該等反相器145、邏輯或閘146和NAND(反及)邏輯閘147,構成了一個可降低上述電路140之最小保持電壓的冗餘元件。該電路140可能被稱為一個四聯反向OAI多重寫入Vmin設定-重置邏輯閂。Figures 12, 13, 14, 15, and 16 are schematic illustrations of other embodiments of a multiple write memory circuit in accordance with the present invention having first and second data inputs and having a reduced minimum hold voltage. In Fig. 12, the state of the circuit 140 stores the feedback loop 141, which includes an inverter 142 coupled in series, an OR containing an OR (or) logic gate 143 and a NAND (reverse) logic gate 144. An AND inverter (OAI) stage, an inverter 145, and another OAI stage containing an OR (or) logic gate 146 and a NAND (reverse) logic gate 147. The inverters 145, logic or gates 146 and NAND (reverse) logic gates 147 form a redundant component that reduces the minimum holding voltage of the circuitry 140 described above. This circuit 140 may be referred to as a quad-reverse OAI multiple write Vmin set-reset logic latch.
依據本發明之當前實施例,該資料輸入信號SET-bar(反相設定),係平行地由NAND(反及)邏輯閘144和NAND(反及)邏輯閘147兩者來感測,以及該資料輸入信號RESET(重置),係平行地由OR(或)邏輯閘143和OR(或)邏輯閘146兩者來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A和B之多重點處,而非僅在一個點處,使平行地寫入回授迴路141內,以及該RESET(重置)信號,係在被標記為C和D之多重點處,而非僅在一個點處,使平行地寫入回授迴路141內。信號係自每個寫入點A、B、C、和D處,平行地前進通過該回授迴路141。因此,該回授迴路141,縱然有冗餘元件存在,係在兩次反向中被更新。According to the current embodiment of the present invention, the data input signal SET-bar (inverted setting) is sensed in parallel by both the NAND (reverse) logic gate 144 and the NAND (reverse) logic gate 147, and The data input signal RESET is sensed in parallel by both the OR logic gate 143 and the OR logic gate 146. That is, in accordance with the current embodiment of the present invention, the SET-bar (inverted setting) signal is written at multiple points in the points A and B, rather than at one point, so that the writes are fed back in parallel. The loop 141, and the RESET signal, are written in the feedback loop 141 in parallel, at the point of being marked C and D, rather than at only one point. The signal is passed through the feedback loop 141 in parallel from each of the write points A, B, C, and D. Therefore, the feedback loop 141 is updated in two inversions even though redundant elements are present.
在第13圖中,該電路150之狀態儲存回授迴路151,係包含有串聯耦合之反相器152、一個內含AND(和)邏輯閘153和NOR(反或)邏輯閘154之AND-OR反相器(AOI)級段、一個反相器155、和另一個內含AND(和)邏輯閘156和NOR(反或)邏輯閘157之AOI級段。該等反相器155、AND(和)邏輯閘156和和NOR(反或)邏輯閘157,構成了一個可降低上述電路150之最小保持電壓的冗餘元件。該電路150可能被稱為一個四聯反向AOI多重寫入Vmin設定-重置邏輯閂。In Fig. 13, the state of the circuit 150 stores the feedback loop 151, which includes an inverter 152 coupled in series, an AND with an AND gate 153 and a NOR logic gate 154. An OR inverter stage (AOI) stage, an inverter 155, and another AOI stage segment containing an AND logic gate 156 and a NOR logic gate 157. The inverters 155, AND logic gates 156 and NOR logic gates 157 form a redundant component that reduces the minimum holding voltage of the circuit 150 described above. This circuit 150 may be referred to as a quad-reverse AOI multiple write Vmin set-reset logic latch.
依據本發明之當前實施例,該資料輸入信號SET-bar(反相設定),係平行地由AND(和)邏輯閘153和AND(和)邏輯閘156兩者來感測,以及該資料輸入信號RESET(重置),係平行地由NOR(反或)邏輯閘154和NOR(反或)邏輯閘157兩者來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A和B之多重點處,而非僅在一個點處,使平行地寫入回授迴路151內,以及該RESET(重置)信號,係在被標記為C和D之多重點處,而非僅在一個點處,使平行地寫入回授迴路151內。信號係自每個寫入點A、B、C、和D處,平行地前進通過該回授迴路151。因此,該回授迴路151,縱然有冗餘元件存在,係在兩次反向中被更新。According to the current embodiment of the present invention, the data input signal SET-bar (inverted setting) is sensed in parallel by both the AND logic gate 153 and the AND logic gate 156, and the data input Signal RESET is sensed in parallel by both NOR (reverse) logic gate 154 and NOR (reverse) logic gate 157. That is, in accordance with the current embodiment of the present invention, the SET-bar (inverted setting) signal is written at multiple points in the points A and B, rather than at one point, so that the writes are fed back in parallel. The loop 151, and the RESET signal, are written in the feedback loop 151 in parallel, at the point indicated by C and D, rather than at only one point. The signal is passed through the feedback loop 151 in parallel from each of the write points A, B, C, and D. Therefore, the feedback loop 151 is updated in two inversions even though redundant elements exist.
在第14圖中,該電路160之狀態儲存回授迴路161,係包含有串聯耦合之NAND(反及)邏輯閘162、163、164、165、166、和167。該等NAND(反及)邏輯閘164、165、166、和167,構成了一個可降低上述電路160之最小保持電壓的冗餘元件。該電路160可能被稱為一個六聯NAND(反及)多重寫入Vmin set-reset(設定-重置)邏輯閂。In Fig. 14, the state of the circuit 160 stores the feedback loop 161, which includes NAND (reverse) logic gates 162, 163, 164, 165, 166, and 167 coupled in series. The NAND (reverse) logic gates 164, 165, 166, and 167 constitute a redundant component that reduces the minimum holding voltage of the circuit 160 described above. This circuit 160 may be referred to as a six-join NAND (reverse) multiple write Vmin set-reset logic latch.
依據本發明之當前實施例,該資料輸入信號SET-bar(反相設定),係平行地由NAND(反及)邏輯閘163、165、和167來感測,以及該資料輸入信號RESET-bar(反相重置),係平行地由NAND(反及)邏輯閘162、164、和166來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A、B、和C之多重點處,而非僅在一個點處,使平行地寫入回授迴路161內,以及該RESET-bar(反相重置)信號,係在被標記為D、E、和F之多重點處,而非僅在一個點處,使平行地寫入回授迴路161內。信號係自每個寫入點A、B、C、D、E、和F處,平行地前進通過該回授迴路161。因此,該回授迴路161,縱然有冗餘元件存在,係在兩次反向中被更新。According to the current embodiment of the present invention, the data input signal SET-bar (inverted setting) is sensed in parallel by NAND (reverse) logic gates 163, 165, and 167, and the data input signal RESET-bar (Inverted reset) is sensed in parallel by NAND (reverse) logic gates 162, 164, and 166. That is, in accordance with the current embodiment of the present invention, the SET-bar (inverted setting) signal is written in parallel at multiple points marked A, B, and C, rather than at only one point. Into the feedback loop 161, and the RESET-bar (inverted reset) signal, at the multiple points marked as D, E, and F, rather than at only one point, writes back in parallel In the loop 161. The signal is advanced through the feedback loop 161 in parallel from each of the write points A, B, C, D, E, and F. Therefore, the feedback loop 161 is updated in two inversions even though redundant elements exist.
在第15圖中,該電路170之狀態儲存回授迴路171,係包含有串聯耦合之反相器172、一個內含OR(或)邏輯閘173和NAND(反及)邏輯閘174之OAI級段、一個反相器175、一個內含OR(或)邏輯閘176和NAND(反及)邏輯閘177之OAI級段、一個反相器178、和一個內含OR(或)邏輯閘179和NAND(反及)邏輯閘1701之OAI級段。該等反相器175和178、OR(或)邏輯閘176和179、和NAND(反及)邏輯閘177和1701,構成了一個可降低上述電路170之最小保持電壓的冗餘元件。該電路170可能被稱為一個六聯反向OAI多重寫入Vmin set-reset(設定-重置)邏輯閂。In Fig. 15, the state of the circuit 170 stores the feedback loop 171, which includes an inverter 172 coupled in series, an OAI stage including an OR (or) logic gate 173 and a NAND (reverse) logic gate 174. A segment, an inverter 175, an OAI stage including an OR (or) logic gate 176 and a NAND (reverse) logic gate 177, an inverter 178, and an internal OR gate 179 and NAND (reverse) logic gate 1701 OAI stage. The inverters 175 and 178, the OR logic gates 176 and 179, and the NAND logic gates 177 and 1701 constitute a redundant component that reduces the minimum holding voltage of the circuit 170 described above. This circuit 170 may be referred to as a six-inverted OAI multiple write Vmin set-reset logic latch.
依據本發明之當前實施例,該資料輸入信號SET-bar(反相設定),係平行地由NAND(反及)邏輯閘174、177、和1701來感測,以及該資料輸入信號RESET(重置),係平行地由OR(或)邏輯閘173、176、和179來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A、B、和C之多重點處,而非僅在一個點處,使平行地寫入回授迴路171內,以及該RESET(重置)信號,係在被標記為D、E、和F之多重點處,而非僅在一個點處,使平行地寫入回授迴路171內。信號係自每個寫入點A、B、C、D、E、和F處,平行地前進通過該回授迴路171。因此,該回授迴路171,縱然有冗餘元件存在,係在兩次反向中被更新。According to the current embodiment of the present invention, the data input signal SET-bar (inverted setting) is sensed in parallel by NAND (reverse) logic gates 174, 177, and 1701, and the data input signal RESET (heavy) It is sensed in parallel by OR logic gates 173, 176, and 179. That is, in accordance with the current embodiment of the present invention, the SET-bar (inverted setting) signal is written in parallel at multiple points marked A, B, and C, rather than at only one point. Into the feedback loop 171, and the RESET signal is written in the feedback loop 171 in parallel at multiple points marked D, E, and F, rather than at only one point. . The signal is passed through the feedback loop 171 in parallel from each of the write points A, B, C, D, E, and F. Therefore, the feedback loop 171 is updated in two inversions even though redundant elements exist.
在第16圖中,該電路180之狀態儲存回授迴路181,係包含有串聯耦合之反相器182、一個內含AND(和)邏輯閘183和NOR(反或)邏輯閘184之AOI級段、一個反相器185、一個內含AND(和)邏輯閘186和NOR(反或)邏輯閘187之AOI級段、一個反相器188、和一個內含AND(和)邏輯閘189和NOR(反或)邏輯閘1801之AOI級段。該等反相器185和188、AND(和)邏輯閘186和189、和NOR(反或)邏輯閘187和1801,構成了一個可降低上述電路180之最小保持電壓的冗餘元件。該電路180可能被稱為一個六聯反向OAI多重寫入Vmin set-reset(設定-重置)邏輯閂。In Fig. 16, the state of the circuit 180 stores the feedback loop 181, which includes an inverter 182 coupled in series, an AOI stage including an AND gate 183 and a NOR logic gate 184. A segment, an inverter 185, an AOI stage including an AND gate 186 and a NOR logic gate 187, an inverter 188, and an AND gate 189 and NOR (reverse) logic gate 1801 AOI stage. The inverters 185 and 188, the AND logic gates 186 and 189, and the NOR logic gates 187 and 1801 form a redundant component that reduces the minimum holding voltage of the circuit 180 described above. This circuit 180 may be referred to as a six-inverted OAI multiple write Vmin set-reset logic latch.
依據本發明之當前實施例,該資料輸入信號SET-bar(反相設定),係平行地由NAND(反及)邏輯閘183、186、和189來感測,以及該資料輸入信號RESET(重置),係平行地由NOR(反或)邏輯閘184、187、和1801來感測。亦即,依據本發明之當前實施例,該SET-bar(反相設定)信號,係在被標記為A、B、和C之多重點處,而非僅在一個點處,使平行地寫入回授迴路181內,以及該RESET(重置)信號,係在被標記為D、E、和F之多重點處,而非僅在一個點處,使平行地寫入回授迴路181內。信號係自每個寫入點A、B、C、D、E、和F處,平行地前進通過該回授迴路181。因此,該回授迴路181,縱然有冗餘元件存在,係在兩次反向中被更新。According to the current embodiment of the present invention, the data input signal SET-bar (inverted setting) is sensed in parallel by NAND (reverse) logic gates 183, 186, and 189, and the data input signal RESET (heavy) Set), sensed in parallel by NOR (reverse OR) logic gates 184, 187, and 1801. That is, in accordance with the current embodiment of the present invention, the SET-bar (inverted setting) signal is written in parallel at multiple points marked A, B, and C, rather than at only one point. Into the feedback loop 181, and the RESET signal is written in the feedback loop 181 in parallel at multiple points marked D, E, and F, rather than at only one point. . The signal is passed through the feedback loop 181 in parallel from each of the write points A, B, C, D, E, and F. Therefore, the feedback loop 181 is updated in two inversions even though redundant elements are present.
彼等依據本發明之實施例,並非受限於第11-16圖所說明之範例。大體而言,彼等依據本發明之實施例,係將第一和第二資料輸入,導入一個狀態儲存回授迴路上之多重點內。因此,一個任意長度之回授迴路,依據該等寫入點之數目,可在少至兩次之反向中被更新。They are not limited by the examples illustrated in Figures 11-16 in accordance with embodiments of the present invention. In general, in accordance with an embodiment of the present invention, the first and second data are entered into a multi-focus on a state storage feedback loop. Therefore, a feedback loop of any length can be updated in as few as two inversions depending on the number of such write points.
在一個實施例中,該回授迴路係包含有偶數個串聯耦合之電路元件(例如,邏輯閘)。在一個實施例中,有一個第一資料輸入,係在交替之電路元件的輸入端(例如,該回授迴路中之每隔一個邏輯閘的輸入端)處,被導入該回授迴路內,以及有一個第二資料輸入,係在該等交替電路元件之間的電路元件處,被導入該回授迴路內。In one embodiment, the feedback loop includes an even number of circuit elements (eg, logic gates) coupled in series. In one embodiment, there is a first data input that is introduced into the feedback loop at an input of an alternating circuit component (eg, an input of every other logic gate in the feedback loop). And a second data input is introduced into the feedback loop at the circuit component between the alternate circuit components.
就另一觀點而言,該狀態儲存回授迴路,可被視為具有若干之級段,其中,該第一資料輸入,係平行地使寫入每個級段內,以及該第二資料輸入,亦係平行地使寫入每個級段內。In another aspect, the state stores a feedback loop that can be considered to have a number of stages, wherein the first data input is written in parallel for each stage, and the second data input , also written in parallel for each stage.
第11-16圖之多重寫入減低Vmin式電路,可配合第9-10圖之減低Vmin式電路一起使用。由於一個多重寫入Vmin電路,比起一個減低Vmin式電路,可能具有較大之資料和時鐘輸入電容,以及因而可能會使該回授迴路內之功率耗散略微增加,則在重要路徑(速度有關)中,使用多重寫入減低Vmin式電路,以及在非重要路徑(為節省電力)中,使用減低Vmin式電路,可能是適當的。The multiple write reduction Vmin circuit of Figures 11-16 can be used with the reduced Vmin circuit of Figure 9-10. Since a multiple write Vmin circuit may have a larger data and clock input capacitance than a reduced Vmin circuit, and thus may cause a slight increase in power dissipation within the feedback loop, then at an important path (speed) In related), it may be appropriate to use a multiple write to reduce the Vmin type circuit and a non-critical path (to save power) using a reduced Vmin type circuit.
第17圖係一種依據本發明之一個實施例用以將狀態寫至一個具有一個資料輸入和一個時鐘輸入且具有減低之最小保持電壓的記憶體電路(例如,第5-8圖之電路)之方法的流程圖1900。雖然在流程圖1900中,揭示了一些特定之步驟,此等步驟係屬範例性。亦即,一些依據本發明之實施例,係特別適合來執行各種其他步驟或流程圖1900中所列舉之步驟的變更形式。理應瞭解的是,流程圖1900中之步驟,可能在一種不同於所呈現之順序中被執行,以及流程表1900中之步驟,在執行上並非必然要依所例示之順序。Figure 17 is a diagram of an embodiment of the present invention for writing a state to a memory circuit having a data input and a clock input and having a reduced minimum holding voltage (e.g., circuits of Figures 5-8). Flowchart of the method 1900. Although in flowchart 1900, some specific steps are disclosed, such steps are exemplary. That is, some embodiments in accordance with the present invention are particularly suitable for performing various other steps or variations of the steps recited in flowchart 1900. It should be understood that the steps in flowchart 1900 may be performed in a different order than that presented, and the steps in flow table 1900 are not necessarily in the order illustrated.
在第17圖之步驟1910中,一個時鐘輸入,係在一個記憶體電路之狀態儲存回授迴路內的第一組多重點處被接收。In step 1910 of Figure 17, a clock input is received at a first set of multi-emphasis locations within a state stored in a memory circuit.
在步驟1920中,一個資料輸入,係在該回授迴路內之第二組多重點處被接收。在一個實施例中,該資料輸入係在該回授迴路之交替電路元件處被接收。舉例而言,該回授迴路可能包含有數目相同之交替串聯耦合的反相器和三態反相器。該資料輸入係在該等反相器之輸入端處被接收。In step 1920, a data entry is received at a second set of multiple points within the feedback loop. In one embodiment, the data input is received at alternating circuit elements of the feedback loop. For example, the feedback loop may include an equal number of alternating series coupled inverters and tristate inverters. The data input is received at the input of the inverters.
在步驟1930中,該資料輸入,係自該第二組多重點,傳播至該回授迴路內之其他點。In step 1930, the data entry is propagated from the second set of multiple priorities to other points within the feedback loop.
第18圖係一種依據本發明之一個實施例用以將狀態寫入一個具有第一和第二資料輸入且具有減低之最小保持電壓的記憶體電路(例如,第11-16圖之電路)之方法的流程圖2000。雖然在流程圖2000中,揭示了一些特定之步驟,此等步驟係屬範例性。亦即,一些依據本發明之實施例,係特別適合來執行各種其他步驟或流程圖2000中所列舉之步驟的變更形式。理應瞭解的是,流程圖2000中之步驟,可能在一種不同於所呈現之順序中被執行,以及流程表2000中之步驟,在執行上並非必然要依所例示之順序。Figure 18 is a diagram of an embodiment of the present invention for writing a state to a memory circuit having first and second data inputs and having a reduced minimum holding voltage (e.g., circuits of Figures 11-16). Method flow chart 2000. Although in Flowchart 2000, some specific steps are disclosed, such steps are exemplary. That is, some embodiments in accordance with the present invention are particularly suitable for performing various other steps or variations of the steps recited in flowchart 2000. It should be understood that the steps in flowchart 2000 may be performed in a different order than that presented, and the steps in flow table 2000 are not necessarily in the order illustrated.
在第18圖之步驟2010中,一個第一資料輸入,係在一個記憶體電路之狀態儲存回授迴路內的第一組多重點處被接收。In step 2010 of Fig. 18, a first data input is received at a first set of multiple points in a state store feedback loop of a memory circuit.
在步驟2020中,一個第二資料輸入,係在該回授迴路內之第二組多重點處被接收。In step 2020, a second data input is received at a second set of multiple points within the feedback loop.
在步驟2030中,該等第一和第二資料輸入,係自該等第一和第二組多重點,傳播至該回授迴路內之其他點。In step 2030, the first and second data inputs are propagated from the first and second sets of multi-points to other points within the feedback loop.
總結上文,一些依據本發明之實施例,可降低上述確保記憶體電路內之一個新狀態所需要的時間。In summary, some embodiments in accordance with the present invention may reduce the time required to ensure a new state within the memory circuit.
一些依據本發明之實施例已做了如此之說明。雖然本發明已在一些特定之實施例中說明,理應瞭解的是,本發明不應被詮釋為受限於此等實施例,而應依以下之申請專利範圍來加以詮釋。Some of the embodiments have been described in accordance with the present invention. While the present invention has been described in terms of specific embodiments, it is understood that the invention should not be construed as being limited to the embodiments.
10...記憶體電路10. . . Memory circuit
30...三態反相器30. . . Tristate inverter
14...狀態儲存回授迴路14. . . State storage feedback loop
31...反相器31. . . inverter
15...反相器15. . . inverter
32,33...p-型裝置32,33. . . P-type device
16,17...反相器16,17. . . inverter
34,35...n-型裝置34,35. . . N-type device
18...三態反相器18. . . Tristate inverter
40...三態反相器40. . . Tristate inverter
20...記憶體電路20. . . Memory circuit
41...反相器41. . . inverter
21,22,23,24...反相器21,22,23,24. . . inverter
42,43...p-型裝置42,43. . . P-type device
26...三態反相器26. . . Tristate inverter
44,45...n-型裝置44,45. . . N-type device
27...狀態儲存回授迴路27. . . State storage feedback loop
50...多重寫入記憶體電路50. . . Multiple write memory circuit
51...狀態儲存回授迴路51. . . State storage feedback loop
86...反相器86. . . inverter
52...反相器52. . . inverter
87...三態反相器87. . . Tristate inverter
53...三態反相器53. . . Tristate inverter
88...三態反相器88. . . Tristate inverter
54...反相器54. . . inverter
89...三態反相器89. . . Tristate inverter
55...三態反相器55. . . Tristate inverter
801...三態反相器801. . . Tristate inverter
56...三態反相器56. . . Tristate inverter
100...記憶體電路100. . . Memory circuit
57...三態反相器57. . . Tristate inverter
101...狀態儲存回授迴路101. . . State storage feedback loop
60...記憶體電路60. . . Memory circuit
102...反相器102. . . inverter
61...狀態儲存回授迴路61. . . State storage feedback loop
103...三態反相器103. . . Tristate inverter
62...反相器62. . . inverter
104...反相器104. . . inverter
63...三態反相器63. . . Tristate inverter
105...三態反相器105. . . Tristate inverter
64...反相器64. . . inverter
106...三態反相器106. . . Tristate inverter
65...三態反相器65. . . Tristate inverter
107...三態反相器107. . . Tristate inverter
66...反相器66. . . inverter
110...記憶體電路110. . . Memory circuit
67...三態反相器67. . . Tristate inverter
111...狀態儲存回授迴路111. . . State storage feedback loop
68...三態反相器68. . . Tristate inverter
112,113...NAND(反及)邏輯閘112,113. . . NAND (reverse) logic gate
69...三態反相器69. . . Tristate inverter
114,115...反相器114,115. . . inverter
601...三態反相器601. . . Tristate inverter
120...記憶體電路120. . . Memory circuit
80...記憶體電路80. . . Memory circuit
121...狀態回授迴路121. . . State feedback loop
81...狀態儲存回授迴路81. . . State storage feedback loop
122,123...NAND(反及)邏輯閘122,123. . . NAND (reverse) logic gate
82...反相器82. . . inverter
124,125,126,126...反相器124,125,126,126. . . inverter
83...三態反相器83. . . Tristate inverter
130...多重寫入記憶體電路130. . . Multiple write memory circuit
84...反相器84. . . inverter
131...狀態儲存回授迴路131. . . State storage feedback loop
85...三態反相器85. . . Tristate inverter
132,133,134,135...NAND(反及)邏輯閘132,133,134,135. . . NAND (reverse) logic gate
173...OR(或)邏輯閘173. . . OR (or) logic gate
140...電路140. . . Circuit
174...NAND(反及)邏輯閘174. . . NAND (reverse) logic gate
141...狀態儲存回授迴路141. . . State storage feedback loop
175...反相器175. . . inverter
142...反相器142. . . inverter
176...OR(或)邏輯閘176. . . OR (or) logic gate
143...OR(或)邏輯閘143. . . OR (or) logic gate
177...NAND(反及)邏輯閘177. . . NAND (reverse) logic gate
144...NAND(反及)邏輯閘144. . . NAND (reverse) logic gate
178...反相器178. . . inverter
145...反相器145. . . inverter
179...OR(或)邏輯閘179. . . OR (or) logic gate
146...OR(或)邏輯閘146. . . OR (or) logic gate
1701...NAND(反及)邏輯閘1701. . . NAND (reverse) logic gate
147...NAND(反及)邏輯閘147. . . NAND (reverse) logic gate
180...電路180. . . Circuit
150...電路150. . . Circuit
181...狀態儲存回授迴路181. . . State storage feedback loop
151...狀態儲存回授迴路151. . . State storage feedback loop
182...反相器182. . . inverter
152...反相器152. . . inverter
183...AND(和)邏輯閘183. . . AND logic gate
153...AND(和)邏輯閘153. . . AND logic gate
184...NOR(反或)邏輯閘184. . . NOR (reverse OR) logic gate
154...NOR(反或)邏輯閘154. . . NOR (reverse OR) logic gate
185...反相器185. . . inverter
155...反相器155. . . inverter
186...AND(和)邏輯閘186. . . AND logic gate
156...AND(和)邏輯閘156. . . AND logic gate
187...NOR(反或)邏輯閘187. . . NOR (reverse OR) logic gate
157...NOR(反或)邏輯閘157. . . NOR (reverse OR) logic gate
188...反相器188. . . inverter
160...電路160. . . Circuit
189...AND(和)邏輯閘189. . . AND logic gate
161...狀態儲存回授迴路161. . . State storage feedback loop
1801...NOR(反或)邏輯閘1801. . . NOR (reverse OR) logic gate
162,163,164,165,166,167...NAND(反及)邏輯閘162,163,164,165,166,167. . . NAND (reverse) logic gate
1900...流程圖1900. . . flow chart
1910,1920,1930...步驟1910, 1920, 1930. . . step
170...電路170. . . Circuit
2000...流程圖2000. . . flow chart
171...狀態儲存回授迴路171. . . State storage feedback loop
2010,2020,2030...步驟2010, 2020, 2030. . . step
172...反相器172. . . inverter
第1和2圖係例示一個依據本發明之記憶電路的實施例,其係具有一個資料輸入和一個時鐘輸入,以及具有減低之最小保持電壓;第3和4圖係例示一個依據本發明之三態反相器的實施例;第5、6、7、和8圖係例示一個依據本發明之多重寫入記憶體電路的實施例,其係具有一個資料輸入和一個時鐘輸入,以及具有減低之最小保持電壓;第9和10圖係例示一個依據本發明之記憶體電路的實施例,其係具有第一和第二資料輸入,以及具有減低之最小保持電壓;第11、12、13、14、15、和16圖係例示一個依據本發明之多重寫入記憶體電路的實施例,其係具有第一和第二資料輸入,以及具有減低之最小保持電壓;第17圖係一種依據本發明之一個實施例用以將狀態寫至一個具有一個資料輸入和一個時鐘輸入且具有減低之最小保持電壓的記憶體電路之方法的流程圖;而第18圖則係一種依據本發明之一個實施例用以將狀態寫入一個具有第一和第二資料輸入且具有減低之最小保持電壓的記憶體電路之方法的流程圖。1 and 2 illustrate an embodiment of a memory circuit in accordance with the present invention having a data input and a clock input, and having a reduced minimum holding voltage; FIGS. 3 and 4 illustrate a third embodiment in accordance with the present invention. Embodiments of the state inverter; Figures 5, 6, 7, and 8 illustrate an embodiment of a multiple write memory circuit in accordance with the present invention having a data input and a clock input, and having a reduced Minimum holding voltage; Figures 9 and 10 illustrate an embodiment of a memory circuit in accordance with the present invention having first and second data inputs and having a reduced minimum holding voltage; 11, 12, 13, 14 15, and 16 are diagrams illustrating an embodiment of a multiple write memory circuit in accordance with the present invention having first and second data inputs and having a reduced minimum holding voltage; FIG. 17 is a diagram in accordance with the present invention A flowchart of a method for writing a state to a memory circuit having a data input and a clock input and having a reduced minimum hold voltage; and Figure 18 Department of one embodiment for writing a state having a first and a second input and having minimum data flowchart of a method of reducing the memory circuit in accordance with one of the holding voltage of the present invention.
14...狀態儲存回授迴路14. . . State storage feedback loop
15...反相器15. . . inverter
16,17...反相器16,17. . . inverter
18...三態反相器18. . . Tristate inverter
Claims (25)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/395,017 US8067970B2 (en) | 2006-03-31 | 2006-03-31 | Multi-write memory circuit with a data input and a clock input |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200746170A TW200746170A (en) | 2007-12-16 |
TWI445012B true TWI445012B (en) | 2014-07-11 |
Family
ID=38372303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096111335A TWI445012B (en) | 2006-03-31 | 2007-03-30 | Memory circuit |
Country Status (2)
Country | Link |
---|---|
US (1) | US8067970B2 (en) |
TW (1) | TWI445012B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110001536A1 (en) * | 2009-07-02 | 2011-01-06 | Macronix International Co., Ltd. | Static latch |
US8674739B2 (en) * | 2011-02-18 | 2014-03-18 | Oracle International Corporation | Single-inversion pulse flop |
US20130229858A1 (en) * | 2012-03-02 | 2013-09-05 | Maxwell Consulting | Fault Tolerant Static Random-Access Memory |
KR20190063876A (en) * | 2017-11-30 | 2019-06-10 | 에스케이하이닉스 주식회사 | Signal driver circuit and semiconductor apparatus using the same |
US20200106424A1 (en) | 2018-09-27 | 2020-04-02 | Apple Inc. | Semi dynamic flop and single stage pulse flop with shadow latch and transparency on both input data edges |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3916223A (en) * | 1974-01-02 | 1975-10-28 | Motorola Inc | MOS squaring synchronizer-amplifier circuit |
US4035663A (en) * | 1976-09-01 | 1977-07-12 | Rockwell International Corporation | Two phase clock synchronizing method and apparatus |
US4544851A (en) * | 1981-08-31 | 1985-10-01 | Texas Instruments Incorporated | Synchronizer circuit with dual input |
JPS59121697A (en) | 1982-12-27 | 1984-07-13 | Toshiba Corp | Shift register |
JPS60154709A (en) | 1984-01-25 | 1985-08-14 | Toshiba Corp | Clock signal generating circuit |
US4706216A (en) * | 1985-02-27 | 1987-11-10 | Xilinx, Inc. | Configurable logic element |
US4745302A (en) * | 1985-12-23 | 1988-05-17 | Hitachi, Ltd. | Asynchronous signal synchronizing circuit |
JPH01149516A (en) | 1987-12-04 | 1989-06-12 | Mitsubishi Electric Corp | Clock generating circuit |
JPH01214993A (en) * | 1988-02-23 | 1989-08-29 | Nissan Motor Co Ltd | Data storage device |
US5101127A (en) * | 1989-03-23 | 1992-03-31 | Texas Instruments Incorporated | Digital integrated frequency discriminator of external clock and internally generated signal backup |
US4999528A (en) * | 1989-11-14 | 1991-03-12 | Keech Eugene E | Metastable-proof flip-flop |
US5087841A (en) * | 1990-04-09 | 1992-02-11 | National Semiconductor Corporation | TTL to CMOS translating circuits without static current |
US5227674A (en) * | 1990-09-12 | 1993-07-13 | Hitachi, Ltd. | Semiconductor integrated circuit device |
US5138189A (en) * | 1990-09-27 | 1992-08-11 | National Semiconductor | Asynchronous state machine synchronization circuit and method |
US5115150A (en) * | 1990-11-19 | 1992-05-19 | Hewlett-Packard Co. | Low power CMOS bus receiver with small setup time |
TW198159B (en) * | 1991-05-31 | 1993-01-11 | Philips Gloeicampenfabrieken Nv | |
US5404151A (en) * | 1991-07-30 | 1995-04-04 | Nec Corporation | Scanning circuit |
US5179295A (en) * | 1992-03-20 | 1993-01-12 | Vlsi Technology, Inc. | Dual edge-triggered digital storage element and method therefor |
JP2764360B2 (en) * | 1992-05-18 | 1998-06-11 | 三菱電機株式会社 | Parallel / serial conversion circuit, serial / parallel conversion circuit, and system including them |
US5357153A (en) * | 1993-01-28 | 1994-10-18 | Xilinx, Inc. | Macrocell with product-term cascade and improved flip flop utilization |
DE4321315C1 (en) * | 1993-06-26 | 1995-01-05 | Itt Ind Gmbh Deutsche | Clock generating circuit for clock-controlled logic circuits |
US5406143A (en) * | 1993-12-21 | 1995-04-11 | Vertex Semiconductor Corporation | GTL to CMOS level signal converter, method and apparatus |
AU2204695A (en) * | 1994-04-28 | 1995-11-29 | Apple Computer, Inc. | Scannable d-flip-flop with system independent clocking |
US5670899A (en) * | 1994-11-21 | 1997-09-23 | Yamaha Corporation | Logic circuit controlled by a plurality of clock signals |
US5502403A (en) * | 1994-12-20 | 1996-03-26 | Cypress Semiconductor Corp. | High speed configuration independent programmable macrocell |
US5552738A (en) * | 1995-04-21 | 1996-09-03 | Texas Instruments Incorporated | High performance energy efficient push pull D flip flop circuits |
US5789956A (en) * | 1995-05-26 | 1998-08-04 | Texas Instruments Incorporated | Low power flip-flop |
EP0786170A1 (en) * | 1995-08-14 | 1997-07-30 | Koninklijke Philips Electronics N.V. | Mos master-slave flip-flop with reduced number of pass gates |
US5767716A (en) * | 1995-09-26 | 1998-06-16 | Texas Instruments Incorporated | Noise insensitive high performance energy efficient push pull isolation flip-flop circuits |
JP3016354B2 (en) * | 1996-01-31 | 2000-03-06 | 日本電気株式会社 | Multiplexer circuit |
JPH09244585A (en) | 1996-03-04 | 1997-09-19 | Toppan Printing Co Ltd | Level shifter circuit with latch function |
US5712826A (en) * | 1996-03-26 | 1998-01-27 | Intel Corporation | Apparatus and a method for embedding dynamic state machines in a static environment |
JPH10117127A (en) * | 1996-10-11 | 1998-05-06 | Toshiba Corp | Logic storage circuit and logic circuit |
US5982211A (en) * | 1997-03-31 | 1999-11-09 | Texas Instruments Incorporated | Hybrid dual threshold transistor registers |
US5864244A (en) * | 1997-05-09 | 1999-01-26 | Kaplinsky; Cecil H. | Tristate buffer circuit with transparent latching capability |
US5844844A (en) * | 1997-07-09 | 1998-12-01 | Xilinx, Inc. | FPGA memory element programmably triggered on both clock edges |
JPH11112297A (en) * | 1997-10-06 | 1999-04-23 | Nec Corp | Latch circuit and semiconductor integrated circuit having the same |
JPH11272353A (en) * | 1998-03-19 | 1999-10-08 | Toshiba Corp | Clock supply circuit and data transfer circuit |
US6060909A (en) * | 1998-04-21 | 2000-05-09 | International Business Machines Corporation | Compound domino logic circuit including an output driver section with a latch |
US6064247A (en) | 1998-05-04 | 2000-05-16 | Adaptec, Inc. | Multiple frequency clock generation and synchronization |
JPH11317656A (en) * | 1998-05-06 | 1999-11-16 | Oki Electric Ind Co Ltd | Input circuit |
JPH11330918A (en) * | 1998-05-20 | 1999-11-30 | Nec Corp | Sequential circuit |
JP3499748B2 (en) * | 1998-06-12 | 2004-02-23 | Necエレクトロニクス株式会社 | Sequential circuit |
US6188262B1 (en) | 1998-09-04 | 2001-02-13 | Sun Microsystems, Inc. | Synchronous polyphase clock distribution system |
US6026011A (en) * | 1998-09-23 | 2000-02-15 | Intel Corporation | CMOS latch design with soft error immunity |
TW420452U (en) * | 1999-02-23 | 2001-01-21 | Silicon Integrated Sys Corp | Bi-directional edge triggered flip-flop |
JP4035923B2 (en) * | 1999-07-06 | 2008-01-23 | 富士通株式会社 | Latch circuit |
US6563356B2 (en) * | 1999-10-19 | 2003-05-13 | Honeywell International Inc. | Flip-flop with transmission gate in master latch |
US6417711B2 (en) * | 1999-10-19 | 2002-07-09 | Honeywell Inc. | High speed latch and flip-flop |
US6380781B1 (en) * | 1999-11-01 | 2002-04-30 | Intel Corporation | Soft error rate tolerant latch |
TWI267049B (en) * | 2000-05-09 | 2006-11-21 | Sharp Kk | Image display device, and electronic apparatus using the same |
US6462596B1 (en) * | 2000-06-23 | 2002-10-08 | International Business Machines Corporation | Reduced-transistor, double-edged-triggered, static flip flop |
US6310500B1 (en) * | 2000-06-23 | 2001-10-30 | International Business Machines Corporation | Race removal or reduction in latches and loops using phase skew |
US6433603B1 (en) * | 2000-08-14 | 2002-08-13 | Sun Microsystems, Inc. | Pulse-based high speed flop circuit |
JP3614125B2 (en) * | 2000-10-23 | 2005-01-26 | 三星電子株式会社 | CP flip-flop |
US6501327B1 (en) | 2000-11-10 | 2002-12-31 | Analog Devices, Inc. | Input bias current reduction circuit for multiple input stages having a common input |
US6586979B2 (en) * | 2001-03-23 | 2003-07-01 | Micron Technology, Inc. | Method for noise and power reduction for digital delay lines |
US6396428B1 (en) * | 2001-06-04 | 2002-05-28 | Raytheon Company | Continuous time bandpass delta sigma modulator ADC architecture with feedforward signal compensation |
US6492854B1 (en) * | 2001-08-30 | 2002-12-10 | Hewlett Packard Company | Power efficient and high performance flip-flop |
US6489825B1 (en) * | 2001-09-07 | 2002-12-03 | National Semiconductor Corporation | High speed, low power, minimal area double edge triggered flip flop |
US6919875B2 (en) * | 2001-10-02 | 2005-07-19 | Rohm Co., Ltd. | Flip-flop circuit, shift register and scan driving circuit for display device |
US6538471B1 (en) * | 2001-10-10 | 2003-03-25 | International Business Machines Corporation | Multi-threshold flip-flop circuit having an outside feedback |
US6501315B1 (en) * | 2001-12-12 | 2002-12-31 | Xilinx, Inc. | High-speed flip-flop operable at very low voltage levels with set and reset capability |
US20030188241A1 (en) * | 2002-03-29 | 2003-10-02 | International Business Machines Corporation | CMOS low leakage power-down data retention mechanism |
US6686775B2 (en) * | 2002-04-22 | 2004-02-03 | Broadcom Corp | Dynamic scan circuitry for B-phase |
US6864732B2 (en) * | 2002-11-18 | 2005-03-08 | Procket Networks, Inc. | Flip-flop circuit with reduced power consumption |
US7091742B2 (en) * | 2002-12-19 | 2006-08-15 | Tellabs Operations, Inc. | Fast ring-out digital storage circuit |
US6720813B1 (en) * | 2003-03-17 | 2004-04-13 | Sun Microsystems, Inc. | Dual edge-triggered flip-flop design with asynchronous programmable reset |
US7256633B1 (en) * | 2003-05-01 | 2007-08-14 | Ample Communications, Inc. | Systems for implementing high speed and high integration chips |
US6864733B2 (en) * | 2003-05-29 | 2005-03-08 | Intel Corporation | Data-enabled static flip-flop circuit with no extra forward-path delay penalty |
US6794916B1 (en) * | 2003-05-30 | 2004-09-21 | International Business Machines Corporation | Double edge-triggered flip-flops |
JP3900126B2 (en) * | 2003-08-18 | 2007-04-04 | ソニー株式会社 | Logic processing circuit, semiconductor device, and logic processing apparatus |
TWI221294B (en) * | 2003-09-26 | 2004-09-21 | Via Tech Inc | Output device for static random access memory |
US6922082B2 (en) * | 2003-09-30 | 2005-07-26 | Intel Corporation | Select logic for low voltage swing circuits |
US6927614B2 (en) * | 2003-10-23 | 2005-08-09 | International Business Machines Corporation | High performance state saving circuit |
US7602359B2 (en) * | 2004-02-02 | 2009-10-13 | Seiko Epson Corporation | Image signal correcting method, correcting circuit, electro-optical device, and electronic apparatus |
US7425940B2 (en) * | 2004-02-09 | 2008-09-16 | Advanced Lcd Technologies Development Center Co., Ltd. | Liquid crystal pixel memory, liquid crystal display, and methods of driving the same |
US20050206597A1 (en) * | 2004-02-10 | 2005-09-22 | Seiko Epson Corporation | Electro-optical device, method for driving electro-optical device, driving circuit, and electronic apparatus |
EP1564715A3 (en) * | 2004-02-12 | 2006-11-08 | Seiko Epson Corporation | Driving circuit and driving method for electro-optical device |
US7348949B2 (en) * | 2004-03-11 | 2008-03-25 | Avago Technologies Ecbu Ip Pte Ltd | Method and apparatus for controlling an LED based light system |
JP2005283702A (en) * | 2004-03-29 | 2005-10-13 | Sony Corp | Display panel, display apparatus, semiconductor integrated circuit and electronic equipment |
US7132870B2 (en) * | 2004-04-02 | 2006-11-07 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Differential register slave structure |
JP4241487B2 (en) * | 2004-04-20 | 2009-03-18 | ソニー株式会社 | LED driving device, backlight light source device, and color liquid crystal display device |
US6980018B2 (en) * | 2004-04-29 | 2005-12-27 | Internatiional Business Machines Corporation | Self limiting gate leakage driver |
JP2006005661A (en) * | 2004-06-17 | 2006-01-05 | Matsushita Electric Ind Co Ltd | Flip-flop circuit |
US7161403B2 (en) * | 2004-06-18 | 2007-01-09 | Nantero, Inc. | Storage elements using nanotube switching elements |
JP4141988B2 (en) * | 2004-06-29 | 2008-08-27 | セイコーエプソン株式会社 | Electro-optical device driving circuit, driving method, electro-optical device, and electronic apparatus |
JP4551731B2 (en) * | 2004-10-15 | 2010-09-29 | 株式会社東芝 | Semiconductor integrated circuit |
US20060103442A1 (en) * | 2004-11-18 | 2006-05-18 | Krueger Daniel W | Memory element with improved soft-error rate |
JP4539492B2 (en) * | 2004-11-19 | 2010-09-08 | ソニー株式会社 | Backlight device, backlight driving method, and liquid crystal display device |
JP2006189661A (en) * | 2005-01-06 | 2006-07-20 | Toshiba Corp | Image display apparatus and method thereof |
US7154317B2 (en) * | 2005-01-11 | 2006-12-26 | Arm Limited | Latch circuit including a data retention latch |
JP2006220851A (en) * | 2005-02-09 | 2006-08-24 | Tohoku Pioneer Corp | Driving mechanism of light emitting display panel and driving method |
KR100630740B1 (en) * | 2005-03-03 | 2006-10-02 | 삼성전자주식회사 | High speed pulse based retention flip flop with SCAN function |
US7138842B2 (en) * | 2005-04-01 | 2006-11-21 | Freescale Semiconductor, Inc. | Flip-flop circuit having low power data retention |
US7282960B2 (en) * | 2005-06-28 | 2007-10-16 | International Business Machines Corporation | Dynamic logical circuit having a pre-charge element separately controlled by a voltage-asymmetric clock |
KR20070052378A (en) * | 2005-11-17 | 2007-05-22 | 삼성전자주식회사 | Driving apparatus of back-light, method of driving the same and display device having the same |
-
2006
- 2006-03-31 US US11/395,017 patent/US8067970B2/en active Active
-
2007
- 2007-03-30 TW TW096111335A patent/TWI445012B/en active
Also Published As
Publication number | Publication date |
---|---|
US20070247197A1 (en) | 2007-10-25 |
US8067970B2 (en) | 2011-11-29 |
TW200746170A (en) | 2007-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5058503B2 (en) | Electronic circuit provided with scan test circuit, integrated circuit, and power consumption reduction method used in integrated circuit | |
US8456214B2 (en) | State retention circuit and method of operation of such a circuit | |
US9077329B2 (en) | Latch circuit with a bridging device | |
US8578224B2 (en) | High density flip-flop with asynchronous reset | |
TWI445012B (en) | Memory circuit | |
CN106796813B (en) | Clock gating flip-flop | |
US9692419B2 (en) | Compact logic evaluation gates using null convention | |
US9667230B1 (en) | Latch and flip-flop circuits with shared clock-enabled supply nodes | |
US10033356B2 (en) | Reduced power set-reset latch based flip-flop | |
US7958418B2 (en) | Circuit arrangement, electronic mechanism, electrical turn out and procedures for the operation of one circuit arrangement | |
US11990909B2 (en) | Low power retention flip-flop | |
CN109154855A (en) | Unified holding trigger framework and control | |
US20200044631A1 (en) | D flip-flops with low clock dissipation power | |
US20080054975A1 (en) | Circuitry for latching | |
US9013218B2 (en) | Dual-port negative level sensitive reset data retention latch | |
US7962681B2 (en) | System and method of conditional control of latch circuit devices | |
US9018976B2 (en) | Dual-port positive level sensitive reset preset data retention latch | |
US20040130370A1 (en) | D-type flip-flop with a reduced number of transistors | |
US9270257B2 (en) | Dual-port positive level sensitive reset data retention latch | |
US9088271B2 (en) | Dual-port positive level sensitive data retention latch | |
US9007091B2 (en) | Dual-port positive level sensitive preset data retention latch | |
US9520862B2 (en) | Dual-port negative level sensitive reset preset data retention latch | |
US7592836B1 (en) | Multi-write memory circuit with multiple data inputs | |
US20090108875A1 (en) | Structure for a Limited Switch Dynamic Logic Cell Based Register | |
US9013217B2 (en) | Dual-port negative level sensitive data retention latch |