TWI443835B - Semiconductor structure and method for manufacturing and manipulating the same - Google Patents

Semiconductor structure and method for manufacturing and manipulating the same Download PDF

Info

Publication number
TWI443835B
TWI443835B TW101131441A TW101131441A TWI443835B TW I443835 B TWI443835 B TW I443835B TW 101131441 A TW101131441 A TW 101131441A TW 101131441 A TW101131441 A TW 101131441A TW I443835 B TWI443835 B TW I443835B
Authority
TW
Taiwan
Prior art keywords
doped region
region
conductivity type
structures
polysilicon resistor
Prior art date
Application number
TW101131441A
Other languages
Chinese (zh)
Other versions
TW201409694A (en
Inventor
Wing Chor Chan
li fan Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101131441A priority Critical patent/TWI443835B/en
Publication of TW201409694A publication Critical patent/TW201409694A/en
Application granted granted Critical
Publication of TWI443835B publication Critical patent/TWI443835B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

半導體結構及其製造方法與操作方法Semiconductor structure, manufacturing method and operating method thereof

本發明是有關於一種 半導體結構及其製造方法與操作方法,且特別是有關於一種結合主動元件及多晶矽電阻之半導體結構及其製造方法與操作方法。The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of fabricating the same, and more particularly to a semiconductor structure incorporating an active device and a polysilicon resistor, and a method of fabricating the same.

近年來,綠能產業受到矚目,綠能產業需要高轉換效率以及低待機功率耗損。高壓製程已經廣泛地應用於電源管理(Power Management, PM)積體電路(Integrated Circuit, IC)以及切換模式功率供應器(Switch Mode Power Supplies, SMPS)。SMPS具有啟動電路,啟動電路具有一個廣範圍的高輸入電壓(例如40伏特(V)至750V)。In recent years, the green energy industry has attracted attention, and the green energy industry needs high conversion efficiency and low standby power consumption. The high press range has been widely used in Power Management (PM) Integrated Circuits (ICs) and Switch Mode Power Supplies (SMPS). The SMPS has a start-up circuit with a wide range of high input voltages (eg, 40 volts (V) to 750V).

切換模式功率IC需要結合啟動電路以及脈衝寬度調變(Pulse Width Modulation, PWM)電路。一般而言,使用在高壓裝置的啟動電路係使用電阻來提供充電電流至電容,直到電容上的電壓達到PWM電路的啟動電壓後,啟動電路停止作用。然而,傳統的高壓啟動電路使用功率電阻(Power Resistor),使得啟動電路停止作用後,功率仍持續地被功率電阻消耗,無法達到省電效果。The switching mode power IC needs to be combined with a startup circuit and a Pulse Width Modulation (PWM) circuit. In general, the startup circuit used in the high voltage device uses a resistor to provide a charging current to the capacitor until the voltage on the capacitor reaches the startup voltage of the PWM circuit, and the startup circuit stops functioning. However, the conventional high-voltage starting circuit uses a power resistor (Power Resistor), so that after the starting circuit stops, the power is still continuously consumed by the power resistor, and the power saving effect cannot be achieved.

本發明係有關於一種半導體結構 及其製造方法與操作方法,此半導體結構結合主動元件及多晶矽電阻,可以節省元件體積,並在不需要增加製程複雜度的情況下生產製造。The present invention relates to a semiconductor structure, a method of fabricating the same, and a method of fabricating the same, which combines an active device and a polysilicon resistor to save component volume and to be manufactured without increasing process complexity.

根據本發明之第一方面,提出一種半導體結構,包括一基底、一主動元件、一場氧化層及一多晶矽電阻。主動元件形成於基底之一表面區域中,主動元件具有一第一摻雜區、一第二摻雜區及一第三摻雜區,第二摻雜區設於第一摻雜區上,第一摻雜區介於第二及第三摻雜區之間,第一摻雜區具有一第一導電型,第三摻雜區具有一第二導電型,第一導電型與第二導電型不同。場氧化層,設置在第三摻雜區的一部分上。多晶矽電阻設置於場氧化層上,且電性連接於第三摻雜區。According to a first aspect of the invention, a semiconductor structure is provided comprising a substrate, an active device, a field oxide layer and a polysilicon resistor. The active device is formed in a surface region of the substrate, the active device has a first doped region, a second doped region and a third doped region, and the second doped region is disposed on the first doped region, a doped region is interposed between the second and third doped regions, the first doped region has a first conductivity type, and the third doped region has a second conductivity type, a first conductivity type and a second conductivity type different. A field oxide layer is disposed on a portion of the third doped region. The polysilicon resistor is disposed on the field oxide layer and electrically connected to the third doping region.

根據本發明之第二方面,提出一種半導體結構的製造方法,方法包括以下步驟。提供一基底。形成一主動元件於基底之一表面區域中,主動元件具有一第一摻雜區、一第二摻雜區及一第三摻雜區,第二摻雜區設於第一摻雜區上,第一摻雜區介於第二及第三摻雜區之間,第一摻雜區具有一第一導電型,第三摻雜區具有一第二導電型,第一導電型與第二導電型不同。形成一場氧化層於第三摻雜區的一部分上。形成一多晶矽電阻於場氧化層上,且電性連接於第三摻雜區。According to a second aspect of the present invention, a method of fabricating a semiconductor structure is provided, the method comprising the following steps. A substrate is provided. Forming an active component in a surface region of the substrate, the active component has a first doped region, a second doped region, and a third doped region, and the second doped region is disposed on the first doped region The first doped region is between the second and third doped regions, the first doped region has a first conductivity type, and the third doped region has a second conductivity type, the first conductivity type and the second conductivity type Different types. A field oxide layer is formed on a portion of the third doped region. A polysilicon resistor is formed on the field oxide layer and electrically connected to the third doped region.

根據本發明之第三方面,提出一種半導體結構的操作方法,半導體結構包括一基底、一主動元件、一場氧化層及一多晶矽電阻,主動元件具有一閘極、一汲極及一源極,場氧化層設置在主動元件的一部分上,多晶矽電阻設置於場氧化層的一部分上,且多晶矽電阻包括複數個電性接點,操作方法包括以下步驟。施加一閘極電壓至閘極,施加一汲極電壓至汲極,且施加一源極電壓至源極。電性連接源極與一電性接點。耦接另一電性接點與一參考電壓。耦接又另一電性接點與一接地電壓,其中另一電性接點與又另一電性接點之間具有一電位差。According to a third aspect of the present invention, a method for operating a semiconductor structure is provided. The semiconductor structure includes a substrate, an active device, a field oxide layer, and a polysilicon resistor. The active device has a gate, a drain, and a source. The oxide layer is disposed on a portion of the active device, the polysilicon resistor is disposed on a portion of the field oxide layer, and the polysilicon resistor includes a plurality of electrical contacts, and the method of operation includes the following steps. A gate voltage is applied to the gate, a drain voltage is applied to the drain, and a source voltage is applied to the source. The source is electrically connected to an electrical contact. The other electrical contact is coupled to a reference voltage. The other electrical contact is coupled to a ground voltage, and a potential difference is formed between the other electrical contact and the other electrical contact.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

第一實施例First embodiment

第1圖繪示依照本發明一實施例之半導體結構的示意圖。如第1圖所示,半導體結構10包括一基底100、一主動元件103形成於基底100之一表面區域中。基底100例如係一矽基底,並具有第一導電型,例如係P型導電型。主動元件103具有摻雜區106a、摻雜區106b、摻雜區107、摻雜區108a、摻雜區108b、摻雜區110、摻雜區112、摻雜區114、摻雜區116、摻雜區118及摻雜區120。摻雜區116設於摻雜區106a上,摻雜區106a介於摻雜區107及摻雜區116之間。1 is a schematic view of a semiconductor structure in accordance with an embodiment of the present invention. As shown in FIG. 1, the semiconductor structure 10 includes a substrate 100, and an active device 103 is formed in a surface region of the substrate 100. The substrate 100 is, for example, a substrate and has a first conductivity type, for example, a P-type conductivity type. The active device 103 has a doped region 106a, a doped region 106b, a doped region 107, a doped region 108a, a doped region 108b, a doped region 110, a doped region 112, a doped region 114, a doped region 116, and a doped region The impurity region 118 and the doping region 120. The doped region 116 is disposed on the doped region 106a, and the doped region 106a is interposed between the doped region 107 and the doped region 116.

摻雜區106a、摻雜區106b、摻雜區112、摻雜區116及摻雜區120具有一第一導電型,摻雜區107、摻雜區108a、摻雜區108b、摻雜區110、摻雜區114及摻雜區118具有一第二導電型,第一導電型與第二導電型不同。舉例來說,第一導電型之摻雜區例如係摻雜硼 (Boron)之P型導電型離子,第二導電型之摻雜區例如係摻雜砷(Arsenic)或磷(Phosphorus)之N型導電型離子。The doped region 106a, the doped region 106b, the doped region 112, the doped region 116, and the doped region 120 have a first conductivity type, a doped region 107, a doped region 108a, a doped region 108b, and a doped region 110 The doped region 114 and the doped region 118 have a second conductivity type, and the first conductivity type is different from the second conductivity type. For example, the doped region of the first conductivity type is, for example, a boron-doped P-type conductivity type ion, and the doped region of the second conductivity type is, for example, doped with Arsenic or Phosphorus. Type conductivity type ions.

於一實施例中,摻雜區114、摻雜區116、摻雜區118及摻雜區120例如係具有較高濃度之離子摻雜之重摻雜區,摻雜區106a、摻雜區106b、摻雜區107及摻雜區108a、摻雜區108b例如係具有較低濃度之離子摻雜之輕摻雜區。於一實施例中,摻雜區106a及摻雜區106b例如係具有第一導電型之井區,摻雜區107例如係高壓 (High Voltage,HV)井區,摻雜區108a及摻雜區108b例如係深井區(Deep Well)。摻雜區108a及摻雜區108b係鄰設於摻雜區106a之側,例如係分別設於摻雜區106a之底側及鄰側,摻雜區108a及摻雜區108b具有第二導電型,且摻雜區108b之間的間距及間隔數目係與主動元件103的一夾止電壓有關,且兩相鄰之摻雜區108a之間的間距及摻雜區108b與摻雜區108a之間的間距,係與主動元件103的一夾止電壓有關。In one embodiment, the doping region 114, the doping region 116, the doping region 118, and the doping region 120 are, for example, heavily doped regions having a relatively high concentration of ion doping, doped regions 106a, doped regions 106b The doped region 107 and the doped region 108a and the doped region 108b are, for example, lightly doped regions having a lower concentration of ion doping. In one embodiment, the doped region 106a and the doped region 106b have, for example, a well region of a first conductivity type, and the doped region 107 is, for example, a high voltage (HV) well region, a doped region 108a, and a doped region. 108b is, for example, Deep Well. The doped region 108a and the doped region 108b are disposed adjacent to the side of the doped region 106a, for example, respectively disposed on the bottom side and the adjacent side of the doped region 106a, and the doped region 108a and the doped region 108b have a second conductivity type. The spacing and spacing between the doped regions 108b are related to a clamping voltage of the active device 103, and the spacing between the two adjacent doping regions 108a and between the doping region 108b and the doping region 108a. The spacing is related to a clamping voltage of the active component 103.

於摻雜區107中形成摻雜區110例如係一第一頂摻雜區,且形成摻雜區112例如係一第二頂摻雜區。摻雜區110與摻雜區112之導電型相反。於一實施例中,摻雜區110具有第二導電型且摻雜區112具有第一導電型。於另一實施例中,摻雜區110具有第一導電型且摻雜區112具有第二導電型。The doped region 110 is formed in the doped region 107, for example, as a first top doped region, and the doped region 112 is formed, for example, as a second top doped region. The doped region 110 is opposite to the conductive type of the doped region 112. In one embodiment, the doped region 110 has a second conductivity type and the doped region 112 has a first conductivity type. In another embodiment, the doped region 110 has a first conductivity type and the doped region 112 has a second conductivity type.

於一實施例中,第1圖之摻雜區114例如係為一汲極(Drain Region),摻雜區116例如係一閘極(Gate),摻雜區118例如係一源極(Source Region),摻雜區120例如係一基極(Bulk Region)。場氧化(Field Oxide,FOX)結構104包括場氧化層104a、場氧化層104b及場氧化層104c,場氧化層104a及場氧化層104b例如係形成並設置於摻雜區107的一部分上。多晶矽電阻102例如係形成並設置於場氧化層104a及場氧化層104b上。In one embodiment, the doping region 114 of FIG. 1 is, for example, a drain region, the doping region 116 is, for example, a gate, and the doping region 118 is, for example, a source (Source Region). The doped region 120 is, for example, a Bulk Region. The Field Oxide (FOX) structure 104 includes a field oxide layer 104a, a field oxide layer 104b, and a field oxide layer 104c. The field oxide layer 104a and the field oxide layer 104b are formed, for example, and disposed on a portion of the doped region 107. The polysilicon resistor 102 is formed, for example, and disposed on the field oxide layer 104a and the field oxide layer 104b.

多晶矽電阻102包括複數個區段,此些區段可以對應至複數個電性接點,例如係電性接點102a、電性接點102b及電性接點102c,電性接點102a用以電性連接於摻雜區114(例如係汲極區),電性接點102b用以電性連接於一內部電路(具有一參考電壓),電性接點102c用以電性連接於一接地端,電性接點102b及電性接點102c之間存在一分壓電阻。因此,在操作半導體結構10時,可以施加一閘極電壓至閘極,施加一汲極電壓至汲極,且施加一源極電壓至源極。並且,耦接電性接點102b與一參考電壓,耦接又另一電性接點102c與一接地電壓,由於電性接點與102b與電性接點102c之間存在分壓電阻,使得電性接點與102b與電性接點102c之間具有一電位差。The polysilicon resistor 102 includes a plurality of segments, which may correspond to a plurality of electrical contacts, such as electrical contacts 102a, electrical contacts 102b, and electrical contacts 102c. The electrical contacts 102a are used. The electrical contact 102b is electrically connected to an internal circuit (having a reference voltage), and the electrical contact 102c is electrically connected to a ground. There is a voltage dividing resistor between the electrical contact 102b and the electrical contact 102c. Therefore, when operating the semiconductor structure 10, a gate voltage can be applied to the gate, a drain voltage is applied to the drain, and a source voltage is applied to the source. Moreover, the coupling of the electrical contact 102b and a reference voltage, coupled to the other electrical contact 102c and a ground voltage, due to the presence of a voltage dividing resistor between the electrical contact 102b and the electrical contact 102c, There is a potential difference between the electrical contacts 102b and the electrical contacts 102c.

於一實施例中,主動元件103例如係一高壓元件。進一步來說,主動元件103例如係一N型接面場效電晶體( NJFET)。當然,主動元件103亦可以係其他可能的半導體元件,並不作限制。於一實施例中,主動元件103可以係利用局部矽氧化製程(Local Oxidation of Silicon,LOCOS)、磊晶矽(EPI)製程、非磊晶矽(non-EPI)製程、場氧化(FOX)製程、淺凹溝絕緣(Shallow Trench Isolation,STI)、深溝絕緣(Deep Trench Isolation, DTI)製程及/或絕緣層覆矽(Silicon-on-Insulator,SOI)製程來製造。主動元件103之輪廓可以係圓形(Circle Structure)、橢圓形(Ellipse Structure)或八角形(Octagon Structure),或其他可能的形狀。於一實施例中,係以第二導電型之埋藏層(例如係N型埋藏層)作為NJFET的通道。於一實施例中,N型通道可以藉由N型井、N型漂移區、N型緩衝層及/或N型深井來形成。藉由N型埋藏層的間距可以調變NJFET的夾止電壓。In one embodiment, the active component 103 is, for example, a high voltage component. Further, the active device 103 is, for example, an N-type junction field effect transistor (NJFET). Of course, the active component 103 can also be other possible semiconductor components without limitation. In one embodiment, the active device 103 can utilize a local Oxidation of Silicon (LOCOS), an epitaxial germanium (EPI) process, a non-epi process (non-EPI) process, or a field oxide (FOX) process. , Shallow Trench Isolation (STI), Deep Trench Isolation (DTI) process and / or Silicon-on-Insulator (SOI) process. The contour of the active element 103 may be a Circle Structure, an Ellipse Structure or an Octagon Structure, or other possible shapes. In one embodiment, a buried layer of a second conductivity type (eg, an N-type buried layer) is used as a channel for the NJFET. In an embodiment, the N-type channel can be formed by an N-type well, an N-type drift region, an N-type buffer layer, and/or an N-type deep well. The clamping voltage of the NJFET can be modulated by the spacing of the N-type buried layers.

半導體結構結合多晶矽電阻102與主動元件103,例如係將多晶矽電阻102嵌於摻雜層107(例如係一漂移區)的場氧化層(FOX),不但可以節省體積,而且,使用高壓製程即可以製造,不需要額外的光罩及製程。此外,內嵌的多晶矽電阻102可以係高阻值的電阻,可以應用於分壓電路(Voltage Division Circuit)及降壓電路(Voltage Reduce Circuit)。The semiconductor structure is combined with the polysilicon resistor 102 and the active device 103. For example, the polysilicon resistor 102 is embedded in the field oxide layer (FOX) of the doped layer 107 (for example, a drift region), which not only saves volume, but also uses a high voltage process. Manufactured without the need for additional masks and processes. In addition, the embedded polysilicon resistor 102 can be a high resistance resistor and can be applied to a Voltage Division Circuit and a Voltage Reduce Circuit.

第2A圖繪示如第1圖之半導體結構之一實施態樣的俯視圖。請參考第2A圖,多晶矽電阻102-1係第1圖之多晶矽電阻102的一種實施態樣,多晶矽電阻102-1例如係包括複數個曲率半徑不同之同心環結構。於其他實施例中,多晶矽電阻102-1也可以係複數個八角形結構(例如係八角環形結構)、複數個半環形結構、複數個橢圓環形結構或非規則的 半圓結構,並不作限制。多晶矽電阻102-1的形成方法例如係先形成一多晶矽材料層於場氧化層104(繪示於第1圖)上。接著圖案化多晶矽材料層,以形成具有複數個半環形結構、複數個橢圓環形結構、非規則的半圓結構、複數個同心環結構或複數個八角形結構。Fig. 2A is a plan view showing an embodiment of the semiconductor structure as shown in Fig. 1. Referring to FIG. 2A, the polysilicon resistor 102-1 is an embodiment of the polysilicon resistor 102 of FIG. 1. The polysilicon resistor 102-1 includes, for example, a plurality of concentric ring structures having different radii of curvature. In other embodiments, the polysilicon resistor 102-1 may also be a plurality of octagonal structures (for example, an octagonal ring structure), a plurality of semi-annular structures, a plurality of elliptical ring structures, or an irregular semicircular structure, without limitation. The method of forming the polysilicon resistor 102-1 is, for example, first forming a polysilicon material layer on the field oxide layer 104 (shown in FIG. 1). The polycrystalline germanium material layer is then patterned to form a plurality of semi-annular structures, a plurality of elliptical ring structures, an irregular semi-circular structure, a plurality of concentric ring structures, or a plurality of octagonal structures.

請同時參照第1及2A圖,第1圖之摻雜區114例如係對應至第2A圖的區域1022(例如係汲極),區域1022可以包括一接點(Contact),摻雜區116例如係對應至第2A圖的區域1036(例如係閘極),摻雜區118例如係對應至第2A圖的區域1034(例如係源極),摻雜區120例如係對應至第2A圖的區域1032(例如係基極)。Referring to FIGS. 1 and 2A simultaneously, the doped region 114 of FIG. 1 corresponds to the region 1022 of FIG. 2A (eg, a drain), and the region 1022 may include a contact, such as a doped region 116. Corresponding to the region 1036 of FIG. 2A (eg, a gate), the doped region 118 corresponds to, for example, the region 1034 of FIG. 2A (eg, source), and the doped region 120 corresponds to, for example, the region of FIG. 2A. 1032 (for example, the base).

於此實施例中,多晶矽電阻102-1可以具有多個半環形結構、橢圓環形結構、非規則的 半圓結構、同心環結構或八角形結構,以汲極為中心環繞而設。多晶矽電阻102-1具有一開口區域1028,開口區域1028包括複數段金屬材質或多晶矽材質的導電層,可以藉以連接各圈至下一圈之多晶矽電阻102-1。In this embodiment, the polysilicon resistor 102-1 may have a plurality of semi-annular structures, an elliptical ring structure, an irregular semicircular structure, a concentric ring structure or an octagonal structure, and is disposed substantially in a center. The polysilicon resistor 102-1 has an open region 1028. The open region 1028 includes a plurality of conductive layers of a metal material or a polysilicon material, thereby connecting the turns to the next turn of the polysilicon resistor 102-1.

多晶矽電阻102-1可以藉由導電層1024及導電層1026作電性連接,導電層1024可以連接至接地端,導電層1026可以連接至一內部電路(例如係具有一參考電壓),導電層1024及導電層1026例如係包括一金屬材質、一多晶矽材質或其他之導電材質。導電層1024及導電層1026之間的多晶矽電阻102-1可以係一分壓電阻,此分壓電阻與分壓電阻以外的最外圈之多晶矽電阻102-1可以具有一比例關係。舉例來說,分壓電阻的阻值是R,而分壓電阻以外的最外圈之多晶矽電阻102-1的阻值是100R,兩者呈現100倍的比例關係。The polysilicon resistor 102-1 can be electrically connected by a conductive layer 1024 and a conductive layer 1026. The conductive layer 1024 can be connected to the ground. The conductive layer 1026 can be connected to an internal circuit (for example, having a reference voltage), and the conductive layer 1024. The conductive layer 1026 includes, for example, a metal material, a polysilicon material, or other conductive materials. The polysilicon resistor 102-1 between the conductive layer 1024 and the conductive layer 1026 may be a voltage dividing resistor, and the voltage dividing resistor and the polysilicon resistor 102-1 of the outermost ring other than the voltage dividing resistor may have a proportional relationship. For example, the resistance of the voltage dividing resistor is R, and the resistance of the outermost polysilicon resistor 102-1 other than the voltage dividing resistor is 100R, and the two exhibit a 100-fold proportional relationship.

第2B圖繪示如第1圖之半導體結構之另一實施態樣的俯視圖。請參考第2B圖,多晶矽電阻102-2係第1圖之多晶矽電阻102的另一種實施態樣。多晶矽電阻102-2的結構、材質、形狀、形成方法及實施方式,可以與多晶矽電阻102-1的各結構、材質、形狀及實施方式相同或相近,於此不多贅述,差異在於多晶矽電阻102-2的區域1022(例如係汲極)可以包括較大的金屬場盤(Metal Field Plate),此金屬場盤可以降低汲極區的電場效應。2B is a top plan view showing another embodiment of the semiconductor structure as shown in FIG. 1. Referring to FIG. 2B, the polysilicon resistor 102-2 is another embodiment of the polysilicon resistor 102 of FIG. The structure, material, shape, forming method and embodiment of the polysilicon resistor 102-2 may be the same as or similar to the respective structures, materials, shapes and embodiments of the polysilicon resistor 102-1, and will not be described here. The difference lies in the polysilicon resistor 102. The region 1022 of -2 (eg, a bungee pole) may include a larger metal field plate that reduces the electric field effect of the drain region.

第2C圖繪示如第1圖之半導體結構之又一實施態樣的俯視圖。請參考第2C圖,多晶矽電阻102-3係第1圖之多晶矽電阻102的又另一種實施態樣。如第2C圖所示,多晶矽電阻102-3可以包括複數個曲率半徑不同之半環形(Half-Circle)結構,此些半環形結構係以區域1022(例如係一汲極)為中心,鏡像或對稱地設置,以拼湊出複數個近似於圓環的結構。多晶矽電阻102-3的形成方法可以與第2A圖之多晶矽電阻102-1的形成方法相同,不再贅述。位於區域1022同側之同心半環中,相鄰的兩個同心半環係藉由金屬或多晶矽等導電材質製成的導電層作電性連接。2C is a plan view showing still another embodiment of the semiconductor structure as shown in FIG. 1. Referring to FIG. 2C, the polysilicon resistor 102-3 is another embodiment of the polysilicon resistor 102 of FIG. As shown in FIG. 2C, the polysilicon resistor 102-3 may include a plurality of half-circle structures having different radii of curvature, the semi-annular structures being centered on the region 1022 (eg, a bungee pole), mirrored or Symmetrically set to piece together a plurality of structures that approximate the ring. The method of forming the polysilicon resistor 102-3 may be the same as the method of forming the polysilicon resistor 102-1 of FIG. 2A, and will not be described again. In the concentric half-rings on the same side of the region 1022, the adjacent two concentric semi-rings are electrically connected by a conductive layer made of a conductive material such as metal or polysilicon.

於此實施例中,多晶矽電阻102-3之各圈多晶矽層結構中,同一圈之多晶矽層可以係等電壓。並且,多晶矽電阻102-3之最外圈的多晶矽層可以連接一導電層1024a,導電層1024a的另一端可以連接至另一段多晶矽電阻1020,再以導電層1024b連接多晶矽電阻1020至一接地端。如此一來,更精確控制多晶矽電阻102-3的阻值特性。In this embodiment, in the polysilicon layer structure of each turn of the polysilicon resistor 102-3, the polysilicon layer of the same ring may be equal in voltage. Moreover, the outermost polysilicon layer of the polysilicon resistor 102-3 may be connected to a conductive layer 1024a, the other end of the conductive layer 1024a may be connected to another polysilicon resistor 1020, and the polysilicon resistor 1020 is connected to the ground via the conductive layer 1024b. In this way, the resistance characteristic of the polysilicon resistor 102-3 is more precisely controlled.

第2C圖中,多晶矽電阻102-3的結構係包括複數個曲率半徑不同之半環形結構所拼湊成的同心環結構以汲極為中心環繞而設為例作說明。當然,於其他實施例中,亦可以使用橢圓環形結構、同心環結構或八角形結構以汲極為中心環繞而設,並不作限制。In Fig. 2C, the structure of the polysilicon resistor 102-3 includes a plurality of concentric ring structures in which a plurality of semi-annular structures having different radii of curvature are arranged to be substantially center-circumscribed. Of course, in other embodiments, an elliptical ring structure, a concentric ring structure, or an octagonal structure may also be used to surround the crucible, which is not limited.

第2D圖繪示如第1圖之半導體結構之又另一實施態樣的俯視圖。請參考第2D圖,多晶矽電阻102-4係第1圖之多晶矽電阻102的又另一種實施態樣。如第2D圖所示,多晶矽電阻102-4可以包括以汲極為中心環繞之非規則的 半圓結構。此非規則的半圓結構類係於彎繞時,每半圈形成一偏移,如此可以更有利於佈線(Layout)製程的簡便。若汲極為中心,此些同心半環係非鏡像而設。形成的非規則半圓結構之每一圈多晶矽電阻層之電位不相等。並且,可以藉由調控各圈多晶矽電阻層的間距改變電位。舉例來說,可以藉由將各圈多晶矽電阻層的間距拉遠,以防止電位的壓降太劇烈,使得元件的耐壓能力較佳。此外,導電層1024a、另一段多晶矽電阻1020及導電層1024b的作用方式與第2C圖相同,係用以更精確控制多晶矽電阻102-4的特性,於此不再贅述。2D is a plan view showing still another embodiment of the semiconductor structure as shown in FIG. 1. Referring to FIG. 2D, the polysilicon resistor 102-4 is another embodiment of the polysilicon resistor 102 of FIG. As shown in Fig. 2D, the polysilicon resistor 102-4 may include an irregular semicircular structure surrounded by a crucible. This irregular semi-circular structure is formed by an offset every half turn when it is bent, which is more convenient for the layout process. If the 汲 is extremely central, these concentric semi-rings are not mirrored. The potential of each of the polysilicon resistive layers of the irregular semicircular structure formed is not equal. Also, the potential can be changed by adjusting the pitch of the polysilicon resistive layers of each turn. For example, the distance between the polysilicon resistor layers can be extended to prevent the voltage drop of the potential from being too severe, so that the withstand voltage capability of the component is better. In addition, the conductive layer 1024a, the other polysilicon resistor 1020 and the conductive layer 1024b function in the same manner as in FIG. 2C, and are used to more precisely control the characteristics of the polysilicon resistor 102-4, and details are not described herein again.

第2E圖繪示如第1圖之半導體結構之又另一實施態樣的俯視圖。請參考第2E圖,多晶矽電阻102-5係第1圖之多晶矽電阻102的又另一種實施態樣。如第2E圖所示,多晶矽電阻102-5可以包括彎繞而成之複數個同心環結構,以區域1022(例如係汲極)為中心環繞而設。導電層1024a、另一段多晶矽電阻1020及導電層1024b的作用方式與第2C圖相同,係用以更精確控制多晶矽電阻102-5的特性,於此不再贅述。2E is a plan view showing still another embodiment of the semiconductor structure as shown in FIG. 1. Referring to FIG. 2E, the polysilicon resistor 102-5 is another embodiment of the polysilicon resistor 102 of FIG. As shown in FIG. 2E, the polysilicon resistor 102-5 may include a plurality of concentric ring structures that are bent and surrounded by a region 1022 (eg, a drain). The conductive layer 1024a, the other polysilicon resistor 1020 and the conductive layer 1024b function in the same manner as in FIG. 2C, and are used to more precisely control the characteristics of the polysilicon resistor 102-5, which will not be described herein.

第2E圖中,多晶矽電阻102-5的結構係以圓環狀之同心環結構環繞汲極為例作說明。當然,於其他實施例中,亦可以使用橢圓之環狀結構或八角型之環狀結構以汲極為中心環繞而設,並不作限制。In Fig. 2E, the structure of the polysilicon resistor 102-5 is described by way of an annular concentric ring structure. Of course, in other embodiments, an elliptical ring structure or an octagonal ring structure may be used to surround the crucible, which is not limited.

第二實施例Second embodiment

第3圖繪示依照本發明另一實施例之半導體結構之剖面示意圖。如第3圖所示,半導體結構20包括一基底200、一主動元件203形成於基底200之一表面區域中。基底200例如係一矽基底,並具有第一導電型,例如係P型導電型。主動元件203具有摻雜區206a、摻雜區206b、摻雜區207、摻雜區208、摻雜區209a、摻雜區209b、摻雜區210、摻雜區212、摻雜區214、摻雜區216、摻雜區218及摻雜區220。摻雜區216設於摻雜區206a上,摻雜區206a介於摻雜區207及摻雜區216之間。3 is a cross-sectional view showing a semiconductor structure in accordance with another embodiment of the present invention. As shown in FIG. 3, the semiconductor structure 20 includes a substrate 200, and an active device 203 is formed in a surface region of the substrate 200. The substrate 200 is, for example, a substrate and has a first conductivity type, for example, a P-type conductivity type. The active device 203 has a doped region 206a, a doped region 206b, a doped region 207, a doped region 208, a doped region 209a, a doped region 209b, a doped region 210, a doped region 212, a doped region 214, and a doped region The impurity region 216, the doping region 218, and the doping region 220. The doped region 216 is disposed on the doped region 206a, and the doped region 206a is interposed between the doped region 207 and the doped region 216.

摻雜區206a、摻雜區206b、摻雜區212、摻雜區216及摻雜區220具有一第一導電型,摻雜區207、摻雜區208、摻雜區210、摻雜區214及摻雜區218具有一第二導電型,第一導電型與第二導電型不同,第一導電型例如係P型導電型,第二導電型例如係N型導電型。The doped region 206a, the doped region 206b, the doped region 212, the doped region 216, and the doped region 220 have a first conductivity type, a doped region 207, a doped region 208, a doped region 210, and a doped region 214. The doped region 218 has a second conductivity type, the first conductivity type is different from the second conductivity type, the first conductivity type is, for example, a P-type conductivity type, and the second conductivity type is, for example, an N-type conductivity type.

於一實施例中,摻雜區214、摻雜區216、摻雜區218及摻雜區220例如係具有較高濃度之離子摻雜之重摻雜區,摻雜區206a、摻雜區206b、摻雜區207及摻雜區208例如係具有較低濃度之離子摻雜之輕摻雜區。於一實施例中,摻雜區206a及摻雜區206b例如係一具有第一導電型之高壓深井區(例如係一高壓P型深井區),摻雜區207例如係具有第二導電型之高壓井區 (例如係一高壓N型井區)。摻雜區208係鄰設於摻雜區206a之側,摻雜區209a及摻雜區209b例如係設於摻雜區206a之底側。摻雜區209a及摻雜區209b例如係一第二導電型埋藏層(N-Buried Layer,NBL)。摻雜區209a及摻雜區209b之間的距離係與主動元件203的一夾止電壓有關。摻雜區207中形成之摻雜區210及摻雜區212可以係與第1圖之摻雜區110及摻雜區112相同或相近,於此不再贅述。In one embodiment, the doping region 214, the doping region 216, the doping region 218, and the doping region 220 are, for example, heavily doped regions having a higher concentration of ion doping, doped regions 206a, doped regions 206b. The doped region 207 and the doped region 208 are, for example, lightly doped regions having a lower concentration of ion doping. In one embodiment, the doping region 206a and the doping region 206b are, for example, a high-voltage deep well region having a first conductivity type (for example, a high-voltage P-type deep well region), and the doping region 207 has, for example, a second conductivity type. High pressure well zone (for example, a high pressure N-type well zone). The doped region 208 is disposed adjacent to the side of the doped region 206a, and the doped region 209a and the doped region 209b are disposed, for example, on the bottom side of the doped region 206a. The doped region 209a and the doped region 209b are, for example, a second conductivity type buried layer (NBL). The distance between the doped region 209a and the doped region 209b is related to a clamping voltage of the active device 203. The doped region 210 and the doped region 212 formed in the doped region 207 may be the same as or similar to the doped region 110 and the doped region 112 of FIG. 1 and will not be further described herein.

場氧化(Field Oxide,FOX)結構204包括場氧化層204a、場氧化層204b及場氧化層204c,場氧化層204a及場氧化層204b例如係形成並設置在摻雜區207的一部分上。多晶矽電阻202例如係形成並設置於場氧化層204a及場氧化層204b上,且可以包括第2A~2E的不同實施態樣。多晶矽電阻202包括複數個區段,此些區段可以對應至複數個電性接點,例如係電性接點202a、電性接點202b及電性接點202c,電性接點202a~電性接點202c的連接方式與第1圖之電性接點102a~電性接點102c相同或相近,於此不再贅述。The Field Oxide (FOX) structure 204 includes a field oxide layer 204a, a field oxide layer 204b, and a field oxide layer 204c. The field oxide layer 204a and the field oxide layer 204b are formed, for example, and disposed on a portion of the doped region 207. The polysilicon resistor 202 is formed, for example, on the field oxide layer 204a and the field oxide layer 204b, and may include different embodiments of the second to second embodiments. The polysilicon resistor 202 includes a plurality of segments, which may correspond to a plurality of electrical contacts, such as electrical contacts 202a, electrical contacts 202b, and electrical contacts 202c, electrical contacts 202a-electric The connection manner of the contact 202c is the same as or similar to that of the electrical contact 102a to the electrical contact 102c of FIG. 1 and will not be described again.

於一實施例中,主動元件203例如係一高壓元件。進一步來說,主動元件203例如係一N型接面場效電晶體(NJFET),主動元件203所使用的製程方式可以與第1圖之主動元件103所使用的製程方式相同。當然,主動元件203亦可以係其他可能的半導體元件,並不作限制。於一實施例中,係以第二導電型之埋藏層209a及埋藏層209b(例如係N型埋藏層)作為NJFET的通道。藉由N型埋藏層的間距可以調變NJFET的夾止電壓。In one embodiment, the active component 203 is, for example, a high voltage component. Further, the active device 203 is, for example, an N-type junction field effect transistor (NJFET), and the active device 203 can be used in the same manner as the active device 103 in FIG. Of course, the active component 203 can also be other possible semiconductor components, and is not limited. In one embodiment, the buried layer 209a of the second conductivity type and the buried layer 209b (for example, an N-type buried layer) are used as the channels of the NJFET. The clamping voltage of the NJFET can be modulated by the spacing of the N-type buried layers.

半導體結構結合多晶矽電阻202與主動元件203,例如係將多晶矽電阻202嵌於摻雜層207(例如係一漂移區)的場氧化層(FOX)上,不但可以節省體積,而且,使用一般的高壓製程即可以製造,不需要額外的光罩及製程。此外,內嵌的多晶矽電阻202可以係高阻值的電阻,可以應用於分壓電路(Voltage Division Circuit)及降壓電路(Voltage Reduce Circuit)。The semiconductor structure combines the polysilicon resistor 202 with the active device 203, for example, by embedding the polysilicon resistor 202 on the field oxide layer (FOX) of the doped layer 207 (eg, a drift region), which not only saves volume, but also uses a general high voltage. The process can be manufactured without the need for additional masks and processes. In addition, the embedded polysilicon resistor 202 can be a high resistance resistor and can be applied to a Voltage Division Circuit and a Voltage Reduce Circuit.

第三實施例Third embodiment

第4圖繪示依照本發明另一實施例之半導體結構之剖面示意圖。如第4圖所示,半導體結構30包括一基底300、一主動元件303形成於基底300之一表面區域中。基底300例如係一矽基底,並具有第一導電型,例如係P型導電型。主動元件303具有摻雜區306a、摻雜區306b、摻雜區307、摻雜區310、摻雜區312、摻雜區314、摻雜區318a、摻雜區318b及摻雜區320。摻雜區318a、摻雜區318b設於摻雜區306a上,摻雜區306a介於摻雜區307及摻雜區318a與摻雜區318b之間。4 is a cross-sectional view showing a semiconductor structure in accordance with another embodiment of the present invention. As shown in FIG. 4, the semiconductor structure 30 includes a substrate 300, and an active device 303 is formed in a surface region of the substrate 300. The substrate 300 is, for example, a substrate and has a first conductivity type, for example, a P-type conductivity type. The active device 303 has a doped region 306a, a doped region 306b, a doped region 307, a doped region 310, a doped region 312, a doped region 314, a doped region 318a, a doped region 318b, and a doped region 320. The doped region 318a and the doped region 318b are disposed on the doped region 306a, and the doped region 306a is interposed between the doped region 307 and the doped region 318a and the doped region 318b.

摻雜區306a、摻雜區306b、摻雜區312、摻雜區318b及摻雜區320具有一第一導電型,摻雜區307、摻雜區310、摻雜區314及摻雜區318a具有一第二導電型,第一導電型與第二導電型不同,第一導電型例如係P型導電型,第二導電型例如係N型導電型。The doped region 306a, the doped region 306b, the doped region 312, the doped region 318b, and the doped region 320 have a first conductivity type, a doped region 307, a doped region 310, a doped region 314, and a doped region 318a There is a second conductivity type, the first conductivity type is different from the second conductivity type, the first conductivity type is, for example, a P-type conductivity type, and the second conductivity type is, for example, an N-type conductivity type.

於一實施例中,摻雜區314、摻雜區318a、摻雜區318b及摻雜區320例如係具有較高濃度之離子摻雜之重摻雜區。摻雜區306a、摻雜區306b及摻雜區307例如係具有較低濃度之離子摻雜之輕摻雜區。於一實施例中,摻雜區306a及摻雜區306b例如係具有第一導電型之井區(例如係P型井區),摻雜區307例如係具有第二導電型之高壓井區 (例如係高壓N型井區)。摻雜區307中形成之摻雜區310及摻雜區312可以係與第1圖之摻雜區110及摻雜區112相同或相近,於此不再贅述。In one embodiment, the doped region 314, the doped region 318a, the doped region 318b, and the doped region 320 are, for example, heavily doped regions having a higher concentration of ion doping. The doped region 306a, the doped region 306b, and the doped region 307 are, for example, lightly doped regions having a lower concentration of ion doping. In one embodiment, the doped region 306a and the doped region 306b have, for example, a well region of a first conductivity type (eg, a P-type well region), and the doped region 307 is, for example, a high-voltage well region of a second conductivity type ( For example, it is a high pressure N-type well area). The doped region 310 and the doped region 312 formed in the doped region 307 may be the same as or similar to the doped region 110 and the doped region 112 of FIG. 1 and will not be described herein.

場氧化(Field Oxide,FOX)結構304包括場氧化層304a、場氧化層304b及場氧化層304c,場氧化層304a、場氧化層304b及場氧化層304c例如係形成並設置在摻雜區307的一部分上。多晶矽電阻302例如係形成並設置於場氧化層304a及場氧化層304b上,且可以包括第2A~2E的不同實施態樣。多晶矽電阻302包括複數個區段,此些區段可以對應至複數個電性接點,例如係電性接點302a、電性接點302b及電性接點302c,電性接點302a~電性接點302c的連接方式與第1圖之電性接點102a~電性接點102c相同或相近,於此不再贅述。The Field Oxide (FOX) structure 304 includes a field oxide layer 304a, a field oxide layer 304b, and a field oxide layer 304c. The field oxide layer 304a, the field oxide layer 304b, and the field oxide layer 304c are formed, for example, and disposed in the doped region 307. Part of it. The polysilicon resistor 302 is formed, for example, on the field oxide layer 304a and the field oxide layer 304b, and may include different embodiments of the second to second embodiments. The polysilicon resistor 302 includes a plurality of segments, which may correspond to a plurality of electrical contacts, such as electrical contacts 302a, electrical contacts 302b, and electrical contacts 302c, electrical contacts 302a-electric The connection manner of the contact 302c is the same as or similar to that of the electrical contact 102a to the electrical contact 102c of FIG. 1 and will not be described again.

於一實施例中,主動元件303例如係一高壓元件。進一步來說,主動元件303例如係一N型側向擴散金屬氧化半導體( Laterally Diffused Metal Oxide Semiconductor,LDMOS),側向擴散金屬氧化半導體可以利用例如係超高壓(Ultra HighVoltage,UHV)製程來製造。摻雜區314例如係為一汲極,閘極結構區316係一閘極區,例如係包括閘極層與閘氧化層。摻雜區318a及摻雜區318b例如係電性連接之源極與基極。當然,主動元件303亦可以係其他可能的半導體元件,並不作限制。In one embodiment, the active component 303 is, for example, a high voltage component. Further, the active device 303 is, for example, an N-type Laterally Diffused Metal Oxide Semiconductor (LDMOS), and the laterally diffused metal oxide semiconductor can be fabricated by, for example, an Ultra High Voltage (UHV) process. The doped region 314 is, for example, a drain, and the gate structure region 316 is a gate region, for example, including a gate layer and a gate oxide layer. The doped region 318a and the doped region 318b are, for example, a source and a base electrically connected. Of course, the active component 303 can also be other possible semiconductor components without limitation.

半導體結構結合多晶矽電阻302與主動元件303,例如係將多晶矽電阻302嵌於摻雜層307(例如係一漂移區)的場氧化層(FOX)上,不但可以節省體積,而且,使用一般的高壓製程即可以製造,不需要額外的光罩及製程。此外,內嵌的多晶矽電阻302可以係高阻值的電阻,可以應用於分壓電路(Voltage Division Circuit)及降壓電路(Voltage Reduce Circuit)。The semiconductor structure combines the polysilicon resistor 302 with the active device 303, for example, by embedding the polysilicon resistor 302 on the field oxide layer (FOX) of the doped layer 307 (eg, a drift region), which not only saves volume, but also uses a general high voltage. The process can be manufactured without the need for additional masks and processes. In addition, the embedded polysilicon resistor 302 can be a high resistance resistor and can be applied to a Voltage Division Circuit and a Voltage Reduce Circuit.

綜上所述,本發明上述實施例之半導體結構,可以結合多晶矽電阻與主動元件,可以應用於高壓半導體結構,不但可以節省半導體結構的整體體積,而且,使用高壓製程即可以製造,不需要額外的光罩及製程。此外,多晶矽電阻可以係高阻值的電阻,可以應用於分壓電路及降壓電路。於本發明一些實施例中之半導體結構,更可以取代傳統的功率電阻,以達到節能的功效。In summary, the semiconductor structure of the above embodiment of the present invention can be combined with a polysilicon resistor and an active component, and can be applied to a high voltage semiconductor structure, which not only saves the overall volume of the semiconductor structure, but also can be manufactured using a high voltage process without additional Photomask and process. In addition, the polysilicon resistor can be a high resistance resistor and can be applied to a voltage divider circuit and a step-down circuit. The semiconductor structure in some embodiments of the present invention can replace the conventional power resistor to achieve energy saving effect.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10、20、30...半導體結構10, 20, 30. . . Semiconductor structure

100、200、300...基底100, 200, 300. . . Base

102、202、302、102-1、102-2、102-3、102-4、102-4、1020...多晶矽電阻102, 202, 302, 102-1, 102-2, 102-3, 102-4, 102-4, 1020. . . Polysilicon resistor

102a、102b、102c、202a、202b、202c、302a、302b、302c...電性接點102a, 102b, 102c, 202a, 202b, 202c, 302a, 302b, 302c. . . Electrical contact

103、203、303...主動元件103, 203, 303. . . Active component

104、204、304...場氧化結構104, 204, 304. . . Field oxidation structure

104a、104b、104c、204a、204b、204c、304a、304b、304c...場氧化層104a, 104b, 104c, 204a, 204b, 204c, 304a, 304b, 304c. . . Field oxide layer

106a、106b、206a、206b、306a、306b、107、207、307、108、108a、108b、208、110、210、310、112、212、312、114、214、314、116、216、118、218、318a、318b、120、220、320...摻雜層106a, 106b, 206a, 206b, 306a, 306b, 107, 207, 307, 108, 108a, 108b, 208, 110, 210, 310, 112, 212, 312, 114, 214, 314, 116, 216, 118, 218, 318a, 318b, 120, 220, 320. . . Doped layer

316...閘極結構316. . . Gate structure

1024、1026...導電層1024, 1026. . . Conductive layer

1024a、1024b...導電層1024a, 1024b. . . Conductive layer

1028...開口區域1028. . . Open area

1032、1034、1036...區域1032, 1034, 1036. . . region

第1圖繪示依照本發明一實施例之半導體結構的示意圖。1 is a schematic view of a semiconductor structure in accordance with an embodiment of the present invention.

第2A~2E圖繪示如第1圖之半導體結構之不同實施態樣的俯視圖。2A-2E are top views showing different embodiments of the semiconductor structure as shown in FIG. 1.

第3圖繪示依照本發明另一實施例之半導體結構的示意圖。3 is a schematic view of a semiconductor structure in accordance with another embodiment of the present invention.

第4圖繪示依照本發明又另一實施例之半導體結構的示意圖。4 is a schematic view of a semiconductor structure in accordance with yet another embodiment of the present invention.

10...半導體結構10. . . Semiconductor structure

100...基底100. . . Base

102...多晶矽電阻102. . . Polysilicon resistor

102a、102b、102c...電性接點102a, 102b, 102c. . . Electrical contact

103...主動元件103. . . Active component

104...場氧化結構104. . . Field oxidation structure

104a、104b、104c...場氧化層104a, 104b, 104c. . . Field oxide layer

106a、106b、107、108、108a、108b、110、112、114、116、118、120...摻雜層106a, 106b, 107, 108, 108a, 108b, 110, 112, 114, 116, 118, 120. . . Doped layer

Claims (10)

一種半導體結構,包括:一基底;一主動元件,形成於該基底之一表面區域中,該主動元件具有一第一摻雜區、一第二摻雜區及一第三摻雜區,該第二摻雜區設於該第一摻雜區上,該第一摻雜區介於該第二及該第三摻雜區之間,該第一摻雜區具有一第一導電型,該第三摻雜區具有一第二導電型以及一汲極,該第一導電型與該第二導電型不同;一場氧化層,設置在該第三摻雜區的一部分上;以及一多晶矽電阻,設置於該場氧化層上,該多晶矽電阻包括至少三個電性接點,分別耦接至該汲極、一內部電路以及一接地端,且該多晶矽電阻電性連接於該第三摻雜區。 A semiconductor structure includes: a substrate; an active device formed in a surface region of the substrate, the active device having a first doped region, a second doped region, and a third doped region, the first a second doped region is disposed on the first doped region, the first doped region is between the second doped region and the third doped region, the first doped region has a first conductivity type, the first doped region The three doped region has a second conductivity type and a drain, the first conductivity type is different from the second conductivity type; a field oxide layer is disposed on a portion of the third doping region; and a polysilicon resistor is disposed The polysilicon resistor includes at least three electrical contacts coupled to the drain, an internal circuit, and a ground, and the polysilicon resistor is electrically connected to the third doped region. 如申請專利範圍第1項所述之半導體結構,其中該第一摻雜區包括一第一輕摻雜區,具有該第一導電型,該第二摻雜區係一第一重摻雜區,具有該第一及該第二導電型至少其中之一,且該第三摻雜區包括一第二輕摻雜區以及一第二重摻雜區,該第二輕摻雜區之導電型及該第二重摻雜區之導電型具有該第二導電型。 The semiconductor structure of claim 1, wherein the first doped region comprises a first lightly doped region having the first conductivity type, and the second doped region is a first heavily doped region Having at least one of the first and second conductivity types, and the third doped region includes a second lightly doped region and a second heavily doped region, and the conductive type of the second lightly doped region And the conductivity type of the second heavily doped region has the second conductivity type. 如申請專利範圍第1項所述之半導體結構,其中該多晶矽電阻具有複數個半環形結構、複數個橢圓環形結構、複數個非規則的半圓結構、複數個同心環結構或複數 個八角形結構。 The semiconductor structure of claim 1, wherein the polysilicon resistor has a plurality of semi-annular structures, a plurality of elliptical ring structures, a plurality of irregular semicircular structures, a plurality of concentric ring structures or a plurality An octagonal structure. 如申請專利範圍第3所述之半導體結構,其中該第二重摻雜區係為該汲極,該些半環形結構、該些橢圓環形結構、該些非規則的半圓結構、該些同心環結構或該些八角形結構以該汲極為中心環繞而設。 The semiconductor structure of claim 3, wherein the second heavily doped region is the drain, the semi-annular structures, the elliptical annular structures, the irregular semicircular structures, and the concentric rings. The structure or the octagonal structures are arranged with the crucible extremely centered. 如申請專利範圍第4項所述之半導體結構,其中該些半環形結構、該些橢圓環形結構或該些同心環結構包括複數個曲率半徑不同的環狀結構。 The semiconductor structure of claim 4, wherein the semi-annular structures, the elliptical annular structures or the concentric ring structures comprise a plurality of annular structures having different radii of curvature. 一種半導體結構的製造方法,包括:提供一基底;形成一主動元件於該基底之一表面區域中,該主動元件具有一第一摻雜區、一第二摻雜區及一第三摻雜區,該第二摻雜區設於該第一摻雜區上,該第一摻雜區介於該第二及該第三摻雜區之間,該第一摻雜區具有一第一導電型,該第三摻雜區具有一第二導電型以及一汲極,該第一導電型與該第二導電型不同;形成一場氧化層於該第三摻雜區的一部分上;以及形成一多晶矽電阻於該場氧化層上,且電性連接該多晶矽電阻於該第三摻雜區,其中該多晶矽電阻包括至少三個電性接點,分別耦接至該汲極、一內部電路以及一接地端。 A method of fabricating a semiconductor structure, comprising: providing a substrate; forming an active device in a surface region of the substrate, the active device having a first doped region, a second doped region, and a third doped region The second doped region is disposed on the first doped region, the first doped region is between the second and third doped regions, and the first doped region has a first conductivity type The third doped region has a second conductivity type and a drain, the first conductivity type being different from the second conductivity type; forming a field oxide layer on a portion of the third doping region; and forming a polysilicon Resisting the field oxide layer and electrically connecting the polysilicon resistor to the third doping region, wherein the polysilicon resistor comprises at least three electrical contacts respectively coupled to the drain, an internal circuit, and a ground end. 如申請專利範圍第6項所述之半導體結構的製造方法,其中形成該多晶矽電阻的步驟包括:形成一多晶矽材料層於該場氧化層上;以及圖案化該多晶矽材料層,以形成複數個半環形結構、複數個橢圓環形結構、複數個非規則的半圓結構、複數個同心環結構或複數個八角形結構。 The method of fabricating a semiconductor structure according to claim 6, wherein the step of forming the polysilicon resistor comprises: forming a polysilicon material layer on the field oxide layer; and patterning the polysilicon material layer to form a plurality of layers a ring structure, a plurality of elliptical ring structures, a plurality of irregular semicircular structures, a plurality of concentric ring structures or a plurality of octagon structures. 如申請專利範圍第7項所述之半導體結構的製造方法,其中該第三摻雜區包括一第二輕摻雜區以及一第二重摻雜區,該第二重摻雜區係為該汲極,該多晶矽電阻的形成包括以該汲極為中心,形成該些半環形結構、該些橢圓環形結構、該些非規則的半圓結構、該些同心環結構或該些八角形結構環繞該汲極設置。 The method of fabricating a semiconductor structure according to claim 7 , wherein the third doped region comprises a second lightly doped region and a second heavily doped region, wherein the second heavily doped region is a drain, the formation of the polysilicon resistor includes forming the semi-annular structures, the elliptical annular structures, the irregular semicircular structures, the concentric ring structures or the octagonal structures surrounding the crucible Extreme setting. 如申請專利範圍第8項所述之半導體結構的製造方法,其中,該多晶矽電阻的形成包括以該汲極為中心,形成曲率半徑不同的該些半環形結構、該些橢圓環形結構或該些同心環結構。 The method of fabricating a semiconductor structure according to claim 8, wherein the forming of the polysilicon resistor comprises forming the semi-annular structures having different radii of curvature, the elliptical ring structures or the concentrics at a center of the crucible. Ring structure. 一種半導體結構的操作方法,該半導體結構包括一基底、一主動元件、一場氧化層及一多晶矽電阻,該主動元件具有一閘極、一汲極及一源極,該場氧化層設置在該主動元件的一部分上,該多晶矽電阻設置於該場氧化層的一部分上,且該多晶矽電阻包括至少三個電性接點,分別耦接至該汲極、一內部電路以及一接地端,該操作方法包 括:施加一閘極電壓至該閘極,施加一汲極電壓至該汲極,且施加一源極電壓至該源極;電性連接該源極與該些電性接點之一電性接點;耦接該些電性接點之另一電性接點與一參考電壓;以及耦接該些電性接點之又另一電性接點與該接地端,其中該另一電性接點與該又另一電性接點之間具有一電位差。 A semiconductor structure operating method, the semiconductor structure comprising a substrate, an active device, a field oxide layer and a polysilicon resistor, the active device having a gate, a drain and a source, the field oxide layer being disposed on the active a portion of the device, the polysilicon resistor is disposed on a portion of the field oxide layer, and the polysilicon resistor includes at least three electrical contacts coupled to the drain, an internal circuit, and a ground terminal, respectively. package And applying a gate voltage to the gate, applying a drain voltage to the drain, and applying a source voltage to the source; electrically connecting the source and one of the electrical contacts a further electrical contact coupled to the electrical contacts and a reference voltage; and another electrical contact coupled to the electrical contacts and the ground, wherein the other electrical There is a potential difference between the sexual contact and the other electrical contact.
TW101131441A 2012-08-30 2012-08-30 Semiconductor structure and method for manufacturing and manipulating the same TWI443835B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101131441A TWI443835B (en) 2012-08-30 2012-08-30 Semiconductor structure and method for manufacturing and manipulating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101131441A TWI443835B (en) 2012-08-30 2012-08-30 Semiconductor structure and method for manufacturing and manipulating the same

Publications (2)

Publication Number Publication Date
TW201409694A TW201409694A (en) 2014-03-01
TWI443835B true TWI443835B (en) 2014-07-01

Family

ID=50820492

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101131441A TWI443835B (en) 2012-08-30 2012-08-30 Semiconductor structure and method for manufacturing and manipulating the same

Country Status (1)

Country Link
TW (1) TWI443835B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559546B (en) * 2014-05-06 2016-11-21 旺宏電子股份有限公司 Semiconductor device, method of manufacturing the same and method of operating the same
US9343568B2 (en) 2014-05-12 2016-05-17 Macronix International Co., Ltd. Semiconductor device having high-resistance conductor structure, method of manufacturing the same and method of operating the same
CN105097801B (en) * 2014-05-19 2018-03-23 旺宏电子股份有限公司 Semiconductor element, its manufacture method and its operating method
CN106328686B (en) * 2015-06-23 2019-07-30 旺宏电子股份有限公司 Semiconductor element
TWI569442B (en) * 2015-06-24 2017-02-01 旺宏電子股份有限公司 Semiconductor device
US9543452B1 (en) 2015-07-01 2017-01-10 Macronix International Co., Ltd. High voltage junction field effect transistor
TWI641132B (en) * 2017-08-29 2018-11-11 新唐科技股份有限公司 Semiconductor devices and methods for manufacturing the same

Also Published As

Publication number Publication date
TW201409694A (en) 2014-03-01

Similar Documents

Publication Publication Date Title
TWI443835B (en) Semiconductor structure and method for manufacturing and manipulating the same
US9054026B2 (en) Methods for manufacturing and manipulating semiconductor structure having active device
TWI462186B (en) Heavily doped region in double-diffused source mosfet (ldmos) transistor and a method of fabricating the same
US20080006875A1 (en) Semiconductor device used in step-up DC-DC converter, and step-up DC-DC converter
US9059008B2 (en) Resurf high voltage diode
TW201715700A (en) Semiconductor element integrated with Zener diodes and afield effect transistor and manufacturing method thereof
JP2012124207A (en) Semiconductor device
WO2014079381A1 (en) Junction field-effect transistor and preparation method therefor
TW201203548A (en) Semiconductor device having depression type mos transistor
US9153574B2 (en) Semiconductor device and method of fabricating the same
JP2011018764A (en) Semiconductor device
TWI615968B (en) Semiconductor device and method of manufacturing the same
CN103681662B (en) Semiconductor structure and its manufacture method and operating method
US10158028B2 (en) Semiconductor device and method of manufacturing the same
US9543452B1 (en) High voltage junction field effect transistor
TWI559546B (en) Semiconductor device, method of manufacturing the same and method of operating the same
TWI478240B (en) Triple well isolated diode and manufacturing method thereof and semiconductor device
TWI517414B (en) Schokkty diode with enhanced breakdown voltage
US9299857B2 (en) Semiconductor device
TWI569442B (en) Semiconductor device
CN116705849B (en) Semiconductor structure and preparation method thereof
CN111403293B (en) Preparation method of JFET device and JFET device
US8581339B2 (en) Structure of NPN-BJT for improving punch through between collector and emitter
TWI557878B (en) Semiconductor device and method of fabricating the same
TWI559530B (en) Semiconductor device