TWI442672B - Motor with lift capability and reduced cogging characteristics - Google Patents

Motor with lift capability and reduced cogging characteristics Download PDF

Info

Publication number
TWI442672B
TWI442672B TW97124039A TW97124039A TWI442672B TW I442672 B TWI442672 B TW I442672B TW 97124039 A TW97124039 A TW 97124039A TW 97124039 A TW97124039 A TW 97124039A TW I442672 B TWI442672 B TW I442672B
Authority
TW
Taiwan
Prior art keywords
transition
motor
stator
rotor
distance
Prior art date
Application number
TW97124039A
Other languages
Chinese (zh)
Other versions
TW200922075A (en
Inventor
Terra Moura Jairo
Krishnasamy Jay
Hosek Martin
Original Assignee
Brooks Automation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brooks Automation Inc filed Critical Brooks Automation Inc
Publication of TW200922075A publication Critical patent/TW200922075A/en
Application granted granted Critical
Publication of TWI442672B publication Critical patent/TWI442672B/en

Links

Landscapes

  • Linear Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

具有提升能力及降低頓轉特性的馬達 Motor with lifting capacity and reduced turning characteristics

本發明是關於馬達定子,特別是關於具有降低頓轉特性的降低複雜性馬達定子。 This invention relates to motor stators, and more particularly to reduced complexity motor stators having reduced on-rotation characteristics.

目前鐵芯馬達被廣泛應用。鐵磁芯提供永磁轉子和定子間氣隙的磁通密度中的增益。因此,馬達常數實質上高於非鐵芯設計的馬達常數。另一方面,由於傳統定子是建構成槽狀,轉子永磁和定子槽齒(slot teeth)間的引力會產生高頓轉力矩或頓轉力,因此對旋轉馬達或線性馬達的精確運動控制造成高度不欲的干擾。 At present, iron core motors are widely used. The ferromagnetic core provides a gain in the magnetic flux density of the air gap between the permanent magnet rotor and the stator. Therefore, the motor constant is substantially higher than the motor constant of the non-core design. On the other hand, since the conventional stator is constructed as a trough, the gravitational force between the permanent magnet of the rotor and the slot teeth of the stator generates a high torque or a counter-rotation force, thus causing precise motion control of the rotary motor or the linear motor. Highly unwanted interference.

在範例應用中,基板加工設備通常能在一個基板上執行多項操作。美國專利4,951,601揭示具有多個處理室(processing chamber)和一個基板傳輸設備的基板加工設備。在進行不同操作,如噴射、蝕刻、塗層、浸濕等時,基板傳輸設備會在處理室之間移動基板。半導體設備製造商和材料生產商使用的生產工序通常需要在基板加工設備中精確定位基板。傳輸設備可包括大量的活動組件,如多個馬達。頓轉可以影響傳輸應用的準確度。頓轉也可能對馬達的其它使用功能帶來不利影響。 In an exemplary application, substrate processing equipment typically performs multiple operations on a single substrate. U.S. Patent 4,951,601 discloses a substrate processing apparatus having a plurality of processing chambers and a substrate transfer apparatus. The substrate transfer apparatus moves the substrate between the process chambers when performing different operations such as spraying, etching, coating, wetting, and the like. Production processes used by semiconductor equipment manufacturers and material manufacturers often require precise positioning of substrates in substrate processing equipment. The transmission device can include a large number of moving components, such as multiple motors. The transition can affect the accuracy of the transmission application. Turning around may also adversely affect other functions of the motor.

在某些應用中,必須在可控、乾淨的環境中處理材料,因為細微的污染可能會造成嚴重的問題。在這些應用中,清潔直接與收益相關,並影響成本。其它應用可包括 在高度腐蝕性氣體和高溫等惡劣環境下的處理步驟。具有接觸軸承的馬達會磨損,造成微粒子污染,並最終因環境惡劣而不能使用。失效之前軸承也會不停地振動和跳動。自軸承馬達(self bearing motor)針對這些應用可提供其它可行方案。為了將力矩最大化並產生中心力,自軸承馬達通常可包括具有在定子周圍部件中纏繞的分段繞線組的齒型定子。 In some applications, materials must be handled in a controlled, clean environment, as subtle contamination can cause serious problems. In these applications, cleaning is directly related to revenue and affects costs. Other applications can include Process steps in harsh environments such as highly corrosive gases and high temperatures. Motors with contact bearings can wear out, cause particulate contamination, and eventually cannot be used due to harsh environments. The bearing will also vibrate and beat continuously until it fails. Self-bearing motors provide other possibilities for these applications. To maximize torque and generate a center force, a self-bearing motor can typically include a toothed stator having a segmented winding set wound in a component around the stator.

自軸承馬達在切線、徑向和軸向方向上均可能受到頓轉力(cogging force)的干擾。可提供不同元件和技術來最大限度地使這些方向上的頓轉干擾降到最低。 The bearing motor may be disturbed by cogging forces in the tangential, radial and axial directions. Different components and techniques are available to minimize distortion in these directions.

參照圖式說明本發明的若干實施例,但應瞭解它們可採用許多其它形式實施。此外亦應瞭解可使用任何合適尺寸、形狀或類型的元件或材料實施本發明。 Several embodiments of the invention are described with reference to the drawings, but it should be understood that they can be implemented in many other forms. It should also be understood that the invention may be practiced using any suitable size, shape or type of elements or materials.

圖1A和1B所示為可實行此處揭示的實施例的馬達10的示意圖。雖然目前揭示的實施例是參照圖式描述,但應瞭解它們還可採用許多其它形式實施。同時又可使用任何合適尺寸、形狀或類型的元件或材料實施。 1A and 1B are schematic illustrations of a motor 10 that can implement the embodiments disclosed herein. Although the presently disclosed embodiments are described with reference to the drawings, it should be understood that they can be implemented in many other forms. At the same time, it can be implemented using any suitable size, shape or type of elements or materials.

在圖1A的實施例中,馬達10包括一個稱為轉子11的驅動元件、繞線組12、15及一個定子14。對於揭示的實施例,應瞭解驅動元件包括執行移動或施加力以回應此 處所描述的繞線組裝置所產生的作用力的設備。驅動元件包括揭示的實施例中的轉子和壓板。 In the embodiment of FIG. 1A, motor 10 includes a drive element, such as rotor 11, winding sets 12, 15, and a stator 14. For the disclosed embodiments, it should be understood that the drive element includes performing a movement or applying a force in response to this Equipment for the force generated by the winding set device described in the premises. The drive elements include the rotor and platen in the disclosed embodiments.

圖1A描述的範例馬達10的實施例具有旋轉配置,儘管其它實施例可以包括下文所述的線性配置。繞線組、12、15可包括一個或多個線圈並可通過電流放大器25來驅動。放大器25可包括軟體、硬體或適合驅動繞線組的軟、硬體組合。放大器25還可包括一個處理器27,換向功能(commutation function)30以及驅動繞線組的電流環功能35。換向功能30可通過一組特定的功能為每個繞線組的一個或多個線圈提供電流。而電流環功能35可提供回饋和驅動能力,以便對線圈供電時保持電流通過線圈。處理器27,換向功能30以及電流環功能35還可包含用來接收來自一個或多個提供位置資訊的感測器或感測器系統的回饋的電路。在此揭示的每個電流放大器都包括電路、硬體、軟體或根據要求對揭示的實施例執行功能和計算的軟硬體組合。 The embodiment of the example motor 10 depicted in FIG. 1A has a rotational configuration, although other embodiments may include the linear configuration described below. The winding sets, 12, 15 may include one or more coils and may be driven by a current amplifier 25. Amplifier 25 may comprise a combination of software, hardware or a combination of soft and hard suitable for driving a winding set. Amplifier 25 may also include a processor 27, a commutation function 30, and a current loop function 35 that drives the winding set. The commutation function 30 can provide current to one or more coils of each winding set through a specific set of functions. The current loop function 35 provides feedback and drive capability to maintain current through the coil when powering the coil. Processor 27, commutation function 30, and current loop function 35 may also include circuitry for receiving feedback from one or more sensors or sensor systems that provide positional information. Each current amplifier disclosed herein includes circuitry, hardware, software, or a combination of hardware and software that performs functions and calculations on the disclosed embodiments as desired.

圖2所示為具有線性配置的其它示範實施例。馬達20包括一個驅動元件21,在本實施例中,驅動元件21由一個壓板、繞線組22,24和一個定子45構成。與圖1實施例類似,轉子21可以任何適合方式製成,且繞線組22、24可包括一個或多個線圈。 Figure 2 shows another exemplary embodiment with a linear configuration. The motor 20 includes a drive member 21 which, in the present embodiment, is comprised of a pressure plate, a winding assembly 22, 24 and a stator 45. Similar to the embodiment of Figure 1, the rotor 21 can be made in any suitable manner, and the winding sets 22, 24 can include one or more coils.

馬達10、20均可利用最小的氣隙和鐵磁材料來提高氣隙間的磁通密度,以產生理想的被動軸向和傾斜勁度(stiffness)。馬達10、20可表現為同步無刷馬達。馬 達10、20還可表現為其它類型的馬達。 Both motors 10, 20 can utilize a minimum air gap and ferromagnetic material to increase the flux density between the air gaps to produce the desired passive axial and tilt stiffness. The motors 10, 20 can be embodied as synchronous brushless motors. horse Up to 10, 20 can also be represented by other types of motors.

圖1B所示為示範實施例中的定子和轉子(如驅動元件)配置以及由所示的配置所產生的可能造成頓轉的軸向作用力的截面示意圖。在所示的示範實施例中,馬達排列能夠使驅動元件產生被動軸向提升力。如圖1B所示,驅動元件1405沿Z軸移置,且通量線穿過與間隙1430垂直的定子1432的表面延伸到間隙1430外部,從而產生提升力。圖1C所示為本實施例的定子和轉子配置的示意圖,此配置可產生被動徑向力和可造成頓轉的合成徑向力。例如,轉子1435的磁鐵N,S和定子1440間的間隙不同會產生徑向合力FR。圖1D所示為本實施例的定子和轉子配置的示意圖,該配置可提供被動傾斜和縱向穩定性以及可造成頓轉的相應傾斜力。例如,作用於轉子1450的被動傾斜力,從而在瞬間抵消軸向和徑向合力矩,以產生所需的傾斜和縱向勁度。 Figure 1B is a schematic cross-sectional view of the stator and rotor (e.g., drive element) configuration and the resulting axial force generated by the illustrated configuration in the exemplary embodiment. In the exemplary embodiment shown, the motor arrangement enables the drive element to generate a passive axial lift. As shown in FIG. 1B, the drive element 1405 is displaced along the Z-axis, and the flux line extends through the surface of the stator 1432 perpendicular to the gap 1430 to the outside of the gap 1430, thereby creating a lifting force. Figure 1C is a schematic illustration of the stator and rotor configuration of the present embodiment, which produces a passive radial force and a resultant radial force that can cause a tumbling. For example, a difference in the gap between the magnets N, S of the rotor 1435 and the stator 1440 produces a radial resultant force F R . Figure 1D is a schematic illustration of the stator and rotor configuration of the present embodiment, which provides passive tilt and longitudinal stability and corresponding tilting forces that can cause clicks. For example, a passive tilting force acts on the rotor 1450 to momentarily cancel the axial and radial resultant moments to produce the desired tilt and longitudinal stiffness.

所需的軸向和傾斜勁度以及其它功能參數可導致定子輪廓不均勻。然而,在傳統馬達中,磁通密度的增加以及不均勻的定子輪廓還會在氣隙間的距離突然變化時造成極大的頓轉力。揭示的實施例是針對將頓轉降到最低的不同範例元件。 The required axial and tilt stiffness as well as other functional parameters can result in uneven stator profile. However, in conventional motors, an increase in magnetic flux density and a non-uniform stator profile also cause a large rotational force when the distance between the air gaps suddenly changes. The disclosed embodiments are directed to different example components that minimize the transition.

圖3和4所示為用於揭示實施例的範例元件的示意圖。圖3和4的範例元件可分別表現為旋轉馬達和線性馬達中的定子100、200的一部分。一些實施例還可包括磁鐵150、180、190、195、250、280、290和295的排列方 向。 3 and 4 are schematic views of exemplary components used to reveal embodiments. The example elements of Figures 3 and 4 can be represented as part of a stator 100, 200 in a rotary motor and a linear motor, respectively. Some embodiments may also include an arrangement of magnets 150, 180, 190, 195, 250, 280, 290, and 295 to.

目前揭示的實施例包括一個或多個範例元件和技術,這些元件和技術在產生許多理想的軸向和傾斜勁度時,可將一些軸線上的頓轉干擾降到最低。一個和多個範例元件還會在氣隙間產生所需的力,包括旋轉馬達應用的定心力和線性馬達應用的定位或導向力。至少有一些揭示的實施例,其使用元件的方式能使每個元件元件造成的頓轉力疊加,從而將沿推進、間距和軸向方向上的總頓轉干擾降到最低。 The presently disclosed embodiments include one or more example components and techniques that minimize torsional disturbances on some axes when producing many desired axial and tilt stiffnesses. One or more of the example components also create the required forces between the air gaps, including the centering force of the rotary motor application and the positioning or guiding force of the linear motor application. At least some of the disclosed embodiments utilize elements in such a way as to superimpose the resulting rotational forces of each of the component elements to minimize total tumbling interference along the propulsion, spacing and axial directions.

圖3所示為旋轉馬達的定子100所展示的範例元件。定子100可包括多個從定子100的第一表面110向內延伸的凹陷105、175。圖3中顯示的4個凹陷105、175、197、198僅為範例,但在其它實施例中,定子凹陷部分可多於或少於4個。在示範實施例中,所示的凹陷彼此大致相同,且均勻地分佈在定子週邊。在其它實施例中,凹陷可以任何合適方式定位,凹陷的配置特別是凹陷的過渡區域可有所不同,後文會做進一步闡述。每個凹陷可包含兩個從第一表面到凹陷的過渡區域。例如,凹陷105可分別包含在第一表面110和凹陷105間的第一和第二過渡區域域115、120。第一過渡區域115可包含第一過渡部分125和第二過渡部分130,第二過渡區域120可包含第三過渡部分135和第四過渡部分140。同樣地,凹陷175可分別包含第一表面110和凹陷175間的第一和第二過渡區域域127、137。第一過渡區域域127可包含第一過渡部 分147和第二過渡部分153,第二過渡區域域137可包含第三過渡部分157和第四過渡部分163。 Figure 3 shows an example component shown by the stator 100 of a rotary motor. The stator 100 can include a plurality of recesses 105, 175 that extend inwardly from the first surface 110 of the stator 100. The four depressions 105, 175, 197, 198 shown in Figure 3 are merely examples, but in other embodiments, the stator depressions may be more or less than four. In the exemplary embodiment, the depressions shown are substantially identical to each other and are evenly distributed around the periphery of the stator. In other embodiments, the recesses may be positioned in any suitable manner, and the configuration of the recesses, particularly the recessed transition regions, may vary, as will be further described below. Each recess may include two transition regions from the first surface to the recess. For example, the recesses 105 can include first and second transition regions 115, 120 between the first surface 110 and the recesses 105, respectively. The first transition region 115 can include a first transition portion 125 and a second transition portion 130, and the second transition region 120 can include a third transition portion 135 and a fourth transition portion 140. Likewise, the recesses 175 can include first and second transition region 127, 137 between the first surface 110 and the recess 175, respectively. The first transition region 127 can include a first transition portion The minute transition region 137 may include a third transition portion 157 and a fourth transition portion 163.

與定子100一起運作的轉子145可包含多個永磁體,且相鄰磁體的磁性相反。圖示的磁體150、180、190和195僅為範例。應瞭解在所示的磁體中可分佈其它的磁體。 The rotor 145 that operates with the stator 100 can include a plurality of permanent magnets, and the magnetic properties of adjacent magnets are opposite. The illustrated magnets 150, 180, 190, and 195 are merely examples. It will be appreciated that other magnets may be distributed in the magnets shown.

定子100的範例配置將在此予以進一步詳細描述。應瞭解針對揭示的實施例可採用任何合適的尺寸規格。至少在一個示範實施例中,第一過渡部分125和第三過渡部分135間的距離155約為nP/2+(ε),其中n為任意整數,P是具有相同磁極的磁體間的距離,ε為調整因數,後文會對此作進一步闡述。在一個實施例中,協同操作的凹陷105、175(如圖3所示相鄰部分)在其第一和第三過渡部分間可有相同的距離。在示範實施例中,凹陷105的第一過渡部分125和相鄰槽175(在行進方向上)的第一過渡部分147的間距約為nP/2+mP/4,其中mP/4為相應磁鐵間沿相鄰凹陷的偏移(如m可為奇整數1、3、5...)。 An example configuration of stator 100 will be described in further detail herein. It should be understood that any suitable size specification can be employed for the disclosed embodiments. In at least one exemplary embodiment, the distance 155 between the first transition portion 125 and the third transition portion 135 is approximately nP/2+(ε), where n is an arbitrary integer and P is the distance between magnets having the same magnetic pole, ε is the adjustment factor, which will be further elaborated later. In one embodiment, the cooperating depressions 105, 175 (adjacent portions as shown in Figure 3) may have the same distance between their first and third transition portions. In the exemplary embodiment, the pitch of the first transition portion 125 of the recess 105 and the first transition portion 147 of the adjacent slot 175 (in the direction of travel) is approximately nP/2+mP/4, where mP/4 is the corresponding magnet The offset between adjacent recesses (e.g., m can be an odd integer 1, 3, 5...).

第一和第二過渡部分125、130間的距離165可為任何合適的距離。在示範實施例中,同一凹陷的第三和第四過渡部分135、140間的距離170與距離165類似。而在其它實施例中,第一和第二過渡區域的各自距離、斜度,或形狀可有所不同,後文將對此作進一步描述。在示範實施例中,部件的第一過渡部分125和第四過渡部分140(如初始過渡和最後過渡間的總距離)間的距離157約為 nP/2+L,其中L是過渡區域120的距離170。在示範實施例中,協同作用的凹陷175的總距離161(相應初始過渡和最後過渡間的距離)與距離157相似。但在其它實施例中,協同作用的凹陷的總距離可以是符合nP/2+L的任意值。 The distance 165 between the first and second transition portions 125, 130 can be any suitable distance. In the exemplary embodiment, the distance 170 between the third and fourth transition portions 135, 140 of the same recess is similar to the distance 165. In other embodiments, the respective distances, slopes, or shapes of the first and second transition regions may vary, as will be further described below. In the exemplary embodiment, the distance 157 between the first transition portion 125 of the component and the fourth transition portion 140 (e.g., the total distance between the initial transition and the final transition) is approximately nP/2+L, where L is the distance 170 of the transition region 120. In the exemplary embodiment, the total distance 161 of the cooperating depressions 175 (the distance between the respective initial transitions and the final transition) is similar to the distance 157. However, in other embodiments, the total distance of the synergistic depressions may be any value that conforms to nP/2+L.

圖4還展示了配置為降低頓轉的一個或多個範例元件。例如,線性馬達定子200中的元件。與定子100類似,定子200可包含兩個或多個可從定子200的第一表面210向內延伸的凹陷205。每個凹陷205可分別包含在第一表面210和凹陷205間的第一和第二過渡區域域215、220。第一過渡區域域215可包含第一過渡部分225和第二過渡部分230,第二過渡區域域220可包含第三過渡部分235和第四過渡部分240。 Figure 4 also shows one or more example components configured to reduce the revolution. For example, the components in the linear motor stator 200. Similar to the stator 100, the stator 200 can include two or more recesses 205 that can extend inwardly from the first surface 210 of the stator 200. Each recess 205 can include first and second transition regions 215, 220 between the first surface 210 and the recess 205, respectively. The first transition region 215 can include a first transition portion 225 and a second transition portion 230, and the second transition region domain 220 can include a third transition portion 235 and a fourth transition portion 240.

現在介紹線性實施例的定子200的範例尺寸。應瞭解針對揭示的實施例可採用任何合適的尺寸。至少在一個示範實施例中,從第一過渡部分225到第三過渡部分235間(沿行進方向)的線性距離255可近似表達為nP/2+(ε),其中n為整數。P是具有相同磁極的磁體間的距離,ε是類似於圖3範例中的調整因數。相鄰凹陷205、275的第一過渡部分225間的線性距離260約為nP/2+mP/4。距離265和270可以相等,但在其它實施例中也可不相等。 An example size of the stator 200 of the linear embodiment will now be described. It should be understood that any suitable size may be employed for the disclosed embodiments. In at least one exemplary embodiment, the linear distance 255 from the first transition portion 225 to the third transition portion 235 (in the direction of travel) may be approximated as nP/2+(ε), where n is an integer. P is the distance between magnets having the same magnetic pole, and ε is an adjustment factor similar to that in the example of FIG. The linear distance 260 between the first transition portions 225 of adjacent recesses 205, 275 is approximately nP / 2 + mP / 4. Distances 265 and 270 may be equal, but may not be equal in other embodiments.

與定子200一起運作的壓板245可包含多塊磁性相反的永磁體。圖示的磁鐵250、280、290和295僅為範例。應瞭解到在所顯示磁鐵間可分佈其它磁鐵。 The platen 245 that operates with the stator 200 can include a plurality of magnetically opposite permanent magnets. The illustrated magnets 250, 280, 290, and 295 are merely examples. It should be understood that other magnets may be distributed between the displayed magnets.

現在對圖3和4中的實施例操作進行描述。 The operation of the embodiment in Figures 3 and 4 will now be described.

如前述,在本發明實施例中,可選擇馬達之抗頓轉系統可同時在推進、間隙和徑向力方向上將頓轉極小化。現在將介紹圖3中的實施例在推進方向的操作,例如,轉子的順時針運動。應瞭解本實施例在其它推進方向也起作用,比如轉子的逆時針運動。因上述距離155,磁鐵150、180(應瞭解在示範實施例中,磁鐵150、180的彼此間隔距離為nP/2,按順時針運動)將大約在同一時間分別接近第一和第三過渡區域125和135,且隨下文所述的調整因數的變化作各種調整。 As described above, in the embodiment of the present invention, the anti-rotation system of the selectable motor can simultaneously minimize the turn in the advancement, clearance, and radial force directions. The operation of the embodiment of Figure 3 in the advancement direction, e.g., the clockwise movement of the rotor, will now be described. It will be appreciated that this embodiment also functions in other directions of advancement, such as counterclockwise movement of the rotor. Due to the above distance 155, the magnets 150, 180 (it will be appreciated that in the exemplary embodiment, the magnets 150, 180 are spaced apart from each other by a distance of nP/2, moving clockwise) will approach the first and third transition regions, respectively, at approximately the same time. 125 and 135, and various adjustments are made as a function of the adjustment factor described below.

當經過第一過渡部分125時,磁鐵150會受到與推進力相反的逆時針切線力的作用,稱為頓轉(cogging),由與第一過渡115相關的定子表面上的步進(step)產生(一般面向切線方向)。磁鐵180會受到推進力方向上的順時針切線力的作用,也稱為頓轉,是由磁鐵180在經過第三過渡部分135時因與相關的第2過渡區域域120的步進所產生。因此,作用在磁鐵150上的逆時針切線力和作用在磁鐵180上的順時針切線力為反向並相互抵消。因此,可施加反向頓轉力盡可能減小或消除轉子145的頓轉。在本範例中,如果距離155約為nP/2,則磁鐵180可由於第二過渡區域域120的方向在磁鐵150前受到頓轉。可選擇調整因數ε來調整距離155以在此方向上進行補償,以產生大致上同相的頓轉力獲得最佳抵消效果。調整因數ε還可包括磁鐵150、180間的其它頓轉差的調 整。例如,ε可包括用以補償製造定子100、轉子145的容差,磁鐵150、180的形狀差異或任何其它合適的補償元件。在其它實施例中,第一和第三過渡部分間的距離可能沒有調整因數,抵消頓轉力的相位補償可受到第一和第二過渡區域域中的形狀、範圍或其它差值的影響。在其它實施例中,調整因數ε可與不同形狀的過渡區域域一起使用。 When passing through the first transition portion 125, the magnet 150 is subjected to a counterclockwise tangential force opposite to the propulsive force, referred to as cogging, by the step on the stator surface associated with the first transition 115. Generated (generally oriented to the tangential direction). The magnet 180 is subjected to a clockwise tangential force in the direction of the propulsive force, also referred to as a tumbling, which is caused by the stepping of the associated second transition region 120 by the magnet 180 as it passes through the third transition portion 135. Therefore, the counterclockwise tangential force acting on the magnet 150 and the clockwise tangential force acting on the magnet 180 are reversed and cancel each other out. Therefore, the reverse rotation force can be applied to minimize or eliminate the tumbling of the rotor 145. In the present example, if the distance 155 is approximately nP/2, the magnet 180 may be swung forward in front of the magnet 150 due to the direction of the second transition region 120. The adjustment factor ε can be selected to adjust the distance 155 to compensate in this direction to produce a substantially in-phase rotatory force for optimal cancellation. The adjustment factor ε may also include other adjustments of the difference between the magnets 150, 180 whole. For example, ε may include tolerances to compensate for the fabrication of stator 100, rotor 145, differences in shape of magnets 150, 180, or any other suitable compensating element. In other embodiments, the distance between the first and third transition portions may have no adjustment factor, and the phase compensation that counteracts the torsional force may be affected by shapes, ranges, or other differences in the first and second transition region domains. In other embodiments, the adjustment factor ε can be used with differently shaped transition regions.

圖5A所示為作用在磁鐵150上的切線頓轉力、磁鐵180上的切線頓轉力315和切向頓轉力310和315疊加後產生的切向頓轉合力320的示意圖。因為磁鐵150和180分別以大約相同的時間,達到和經過第一和第三過渡部分125和135,產生的切向頓轉力320小於它們以不同時間到達時的力。如圖5A所示,在前導過渡區域和尾隨過渡區域的作用力抵消可視為第一級抗頓轉。 FIG. 5A is a schematic diagram showing the tangential force acting on the magnet 150, the tangential force 315 on the magnet 180, and the tangential turning force 320 generated by superimposing the tangential forces 310 and 315. Because the magnets 150 and 180 reach and pass through the first and third transition portions 125 and 135, respectively, at approximately the same time, the resulting tangential counterforces 320 are less than the forces they arrive at different times. As shown in FIG. 5A, the force cancellation in the leading transition region and the trailing transition region can be regarded as the first level of anti-rotation.

要進一步降低頓轉力,如二級抗頓轉,可由上述距離160和作用在附加磁鐵190和195上的作用力而實現。如上所述,在槽105的第一過渡部分125和相鄰槽175的第一過渡部分147間的距離160約為nP/2+mP/4。在圖3的範例尺寸中,m可為1。因此在磁鐵195與磁鐵180有相同的電子偏移時,磁鐵190可與磁鐵150產生約±90電角度的偏移。當磁鐵190到達第一過渡區域147,磁鐵195到達第三過渡區域157時,它們受到類似於上述作用在磁鐵150、180上的作用力產生90電角度偏移。 Further reduction of the rotational force, such as secondary resistance, can be achieved by the above-described distance 160 and the forces acting on the additional magnets 190 and 195. As noted above, the distance 160 between the first transition portion 125 of the slot 105 and the first transition portion 147 of the adjacent slot 175 is approximately nP/2+mP/4. In the example dimensions of Figure 3, m can be one. Thus, when magnet 195 has the same electronic offset as magnet 180, magnet 190 can produce an offset of about ±90 electrical degrees from magnet 150. When the magnets 190 reach the first transition region 147 and the magnets 195 reach the third transition region 157, they are subjected to an electrical angular offset similar to that described above for the magnets 150, 180.

圖5B所示為針對範例定子100尺寸的磁鐵190上的 切向頓轉力330、磁鐵195上的切向頓轉力335以及切向力330和335疊加產生的切向頓轉合力340的示意圖。與磁鐵150和180相似,磁鐵190和195以大致相同的時間到達第一過渡部分和第三過渡部分147和157,而產生的切向頓轉力340比它們以不同時間到達所產生的力要小。 Figure 5B shows the magnet 190 on the size of the example stator 100. A tangential thrust force 330, a tangential thrust force 335 on the magnet 195, and a tangential turn-to-turn force 340 resulting from the superposition of the tangential forces 330 and 335. Similar to the magnets 150 and 180, the magnets 190 and 195 reach the first transition portion and the third transition portions 147 and 157 at approximately the same time, and the resulting tangential thrust force 340 is greater than the force they generate at different times. small.

圖5C所示為由產生的作用力320和340合力而產生的範例切向頓轉力345(如二級抗頓轉合力)。如上所述,在圖5C中可以看到,凹陷間距和定子100相鄰凹陷160中的第一過渡部分間的距離進一步了減小切向頓轉力。 Figure 5C shows an exemplary tangential thrust force 345 (e.g., secondary anti-rotation force) produced by the resultant forces 320 and 340. As described above, it can be seen in FIG. 5C that the distance between the recess pitch and the first transition portion of the adjacent recess 160 of the stator 100 further reduces the tangential thrust.

揭示的實施例還減小了軸向方向(Z方向)上的頓轉,即與轉子平面垂直的方向。圖6A所示為針對定子100的範例尺寸的磁鐵150上的軸向作用力410、磁鐵180的軸向作用力415以及軸向作用力410和415疊加產生的軸向作用力420的示意圖。與上述實施例相似,產生的軸向頓轉力420因磁鐵150和180分別以大約相同時間到達和經過第一和第三過渡區域125和135而減小。 The disclosed embodiment also reduces the tumbling in the axial direction (Z direction), ie the direction perpendicular to the plane of the rotor. 6A is a schematic illustration of the axial force 410 on the magnet 150 of the exemplary size of the stator 100, the axial force 415 of the magnet 180, and the axial force 420 resulting from the superposition of the axial forces 410 and 415. Similar to the above embodiment, the resulting axial tumbling force 420 is reduced by the magnets 150 and 180 reaching at about the same time and passing through the first and third transition regions 125 and 135, respectively.

上述距離160將共同運轉區域域分開(如凹陷105、175)以使作用在磁鐵190和195上的力也可以與磁鐵150和180上產生的抗頓轉力一起降低軸向頓轉力。如前所述,凹陷105的第一過渡部分125和相鄰凹陷175的第一過渡部分147間的距離160約為nP/2+mP/4。因此,當磁鐵190到達第一過渡部分147,磁鐵195到達第三過渡部分157時,它們都產生類似於上述磁鐵150、180的軸 向作用力,產生電子偏移。 The distance 160 described above separates the common operating regions (e.g., recesses 105, 175) such that the forces acting on the magnets 190 and 195 can also reduce the axial thrust with the anti-rotation forces generated on the magnets 150 and 180. As previously mentioned, the distance 160 between the first transition portion 125 of the recess 105 and the first transition portion 147 of the adjacent recess 175 is approximately nP/2+mP/4. Therefore, when the magnet 190 reaches the first transition portion 147 and the magnet 195 reaches the third transition portion 157, they both generate an axis similar to the above-described magnets 150, 180. To the force, an electronic offset is generated.

圖6B所示為針對定子100範例尺寸的磁鐵190上的軸向頓轉力430、磁鐵95上的軸向頓轉力435和軸向作用力430和435疊加所產生的軸向頓轉力440。因磁鐵190和195分別以大約相同的時間到達第一過渡部分147和第三過渡部分157,因此可產生更小的軸向頓轉力440。圖6C所示為軸向320和340的合力所產生的軸向頓轉力445。 6B shows the axial thrust force 430 on the magnet 190 of the exemplary size of the stator 100, the axial thrust force 435 on the magnet 95, and the axial thrust force 440 produced by the superposition of the axial forces 430 and 435. . Since the magnets 190 and 195 reach the first transition portion 147 and the third transition portion 157, respectively, at about the same time, a smaller axial thrust force 440 can be produced. Figure 6C shows the axial thrust force 445 produced by the resultant forces of the axial directions 320 and 340.

如上所述,各個頓轉力(抗頓轉力也是一樣)的輪廓可因過渡區域表面的形狀和尺寸不同而不同。因此,過渡區域115、120、127和137可根據需要具有不同的形狀和尺寸。在圖3所示的示範實施例,如上所述,各個過渡區域的距離可相似。例如,每個過渡區域的距離可等於或大於P/2。在其它實施例中,前導過渡區域及尾隨過渡區域的距離和形狀可以不同,例如尾隨過渡區域(類似于區域120)比前面的過渡區域(類似於距離165)的距離更長(類似於距離170)。因此,尾隨過渡區域對移動的磁鐵來說比前導過渡區域啟動略晚,但比前導過渡區域的距離更長。在示範實施例中,過渡區域的形狀應使一個或多個作用力310、315、330、335、410、415、430、435產生更平穩的過渡區域或有更均勻的輪廓。 As described above, the contours of the respective rotational forces (the same anti-rotational forces) may differ depending on the shape and size of the surface of the transition region. Thus, the transition regions 115, 120, 127, and 137 can have different shapes and sizes as desired. In the exemplary embodiment shown in FIG. 3, as described above, the distances of the various transition regions may be similar. For example, the distance of each transition zone may be equal to or greater than P/2. In other embodiments, the distance and shape of the leading transition region and the trailing transition region may be different, for example, the trailing transition region (similar to region 120) is longer than the previous transition region (similar to distance 165) (similar to distance 170) ). Therefore, the trailing transition region is activated slightly later for the moving magnet than the leading transition region, but longer than the leading transition region. In the exemplary embodiment, the transition region is shaped such that one or more of the forces 310, 315, 330, 335, 410, 415, 430, 435 produce a smoother transition region or a more uniform profile.

圖3所示為具有角度形狀的範例過渡區域115、120。轉到圖7A,範例過渡區域510、515相對於第一表面520為凹形,其曲線從第一表面520向內朝向凹陷 525。應瞭解表面形狀可以不對稱。圖7B所示為另一個實施例,其中範例過渡區域530、535相對於內表面520形成凹形。在圖7C所示的實施例中,過渡區域540、545從第一表面520和凹陷525回退。圖7D所示為一個橫截面,圖7E所示為定子部件550的側面圖,其中一個範例過渡區域的形狀複雜,包括從過渡部分560到過渡部分565的複合角。應瞭解在本示範實施例,部件550大致上與永磁和定子間的Z軸重疊部分相稱。在圖7D-7E所示的示範實施例,可將複合角過渡表面555A、555B前導到軸向(Z)上,以抵消頓轉力(如提供所需的抗頓轉)作用。 Figure 3 shows example transition regions 115, 120 having angular shapes. Turning to FIG. 7A, the example transition regions 510, 515 are concave relative to the first surface 520, the curves of which are inwardly directed from the first surface 520. 525. It should be understood that the surface shape can be asymmetrical. Another embodiment is shown in FIG. 7B in which the example transition regions 530, 535 are concave relative to the inner surface 520. In the embodiment shown in FIG. 7C, the transition regions 540, 545 are retracted from the first surface 520 and the recess 525. Figure 7D shows a cross section, and Figure 7E shows a side view of the stator component 550, wherein the shape of one exemplary transition region is complex, including the composite angle from the transition portion 560 to the transition portion 565. It will be appreciated that in the exemplary embodiment, component 550 is generally commensurate with the Z-axis overlap between the permanent magnet and the stator. In the exemplary embodiment illustrated in Figures 7D-7E, the composite angular transition surfaces 555A, 555B can be advanced to the axial direction (Z) to counteract the counterforce (e.g., provide the desired anti-rotation) effect.

也可採用其它合適的過渡區域域配置,如線性、非線性、複合和其它形狀。應瞭解過渡區域域可以不對稱,也可有不同的形狀和尺寸。在揭示的實施例中,過渡區域域可包括不同的材料,例如,有的部分所用的材料與定子其它部分不同。在一些實施例中,可為過渡區域選擇不同材料獲得可變的阻抗。 Other suitable transition area configurations, such as linear, non-linear, composite, and other shapes, may also be employed. It should be understood that the transition regions may be asymmetrical or may have different shapes and sizes. In the disclosed embodiment, the transition region may comprise a different material, for example, some of the materials used are different from the rest of the stator. In some embodiments, different materials can be selected for the transition region to achieve a variable impedance.

本示範實施例還可降低徑向頓轉力,即讓頓轉力分別與定子100、200和轉子145或壓板245間的間距保持平行。圖8所示為圖3的定子100的示意圖,包括磁鐵150、凹陷105、以及第一125、第二130、第三135和第四140過渡部分。完全與磁鐵150相反的磁鐵605可為圖3所示的任一磁鐵或其它磁鐵。圖3中的其它元件未明確顯示。所示的定子100至少有兩個沿第一表面110的凹陷 105、610。凹陷610可為凹陷175(圖3)或其它凹陷。凹陷610包括第一630、第二635、第三640和第四645過渡部分。至少有一種降低徑向頓轉力的方法包括沿定子100的第一表面110放置凹陷105、610,以使轉子100上二個截然相反的磁鐵105、605能在大致相同的時間分別到達第一、第二、第三和第四過渡部分。 The exemplary embodiment can also reduce the radial counterforce, i.e., keep the rotational force parallel to the spacing between the stator 100, 200 and the rotor 145 or platen 245, respectively. 8 is a schematic illustration of the stator 100 of FIG. 3 including a magnet 150, a recess 105, and first, second, third, third, and fourth 140 transition portions. The magnet 605, which is completely opposite the magnet 150, can be any of the magnets or other magnets shown in FIG. Other elements in Figure 3 are not explicitly shown. The illustrated stator 100 has at least two depressions along the first surface 110 105, 610. The recess 610 can be a recess 175 (Fig. 3) or other recess. The recess 610 includes a first 630, a second 635, a third 640, and a fourth 645 transition portion. At least one method of reducing the radial counterforce includes placing recesses 105, 610 along the first surface 110 of the stator 100 such that the two oppositely opposite magnets 105, 605 on the rotor 100 can reach the first at substantially the same time. Second, third and fourth transitions.

圖9A所示為磁鐵150穿過第一125和第二130過渡部分時轉子145上產生的徑向作用力710,圖9B所示為磁鐵605穿過第一630和第二635過渡部分時轉子145上產生的徑向作用力720。作用力710和720本質上彼此相反,因此只要轉子保持在中心位置,它們就可相互抵消。 Figure 9A shows the radial force 710 generated on the rotor 145 as the magnet 150 passes through the first 125 and second 130 transition portions, and Figure 9B shows the rotor when the magnet 605 passes through the first 630 and second 635 transition portions. Radial force 720 generated on 145. The forces 710 and 720 are essentially opposite each other, so they can cancel each other as long as the rotor remains in the center position.

再次參考圖8,只有二個繞線組685、690可用來驅動本揭示的實施例。繞線組685、690可包含一個或多個線圈。應瞭解用於本揭示的實施例各部件的繞線組可包含一個或多個位於一個或多個凹陷中的線圈,且可包含任何適合於本揭示的實施例中使用的線圈類型。揭示的實施例可包含分段繞線組,例如,繞線組在選定的定子凹陷中被分成一個或多個子繞線組。每個子繞線組可包含一個或多個線圈,且可被驅動產生針對揭示實施例的馬達力。在一個或多個實施例中,可將繞線組排列為三相繞線組,但也可使用任何其它合適的排列方式。 Referring again to Figure 8, only two winding sets 685, 690 can be used to drive the embodiments of the present disclosure. The winding sets 685, 690 can include one or more coils. It will be appreciated that the winding set for the various components of the embodiments of the present disclosure may include one or more coils in one or more recesses, and may include any type of coil suitable for use in embodiments of the present disclosure. Embodiments disclosed may include a segmented winding set, for example, a winding set is divided into one or more sub-winding groups in a selected stator recess. Each sub-wound group can include one or more coils and can be driven to produce a motor force for the disclosed embodiments. In one or more embodiments, the winding sets can be arranged as a three-phase winding set, although any other suitable arrangement can be used.

圖10和11所示為其它範例抗頓轉元件800、900的示意圖,這些元件配置為降低揭示實施例的頓轉。可使用鐵磁材料製造抗頓轉元件800、900。 Figures 10 and 11 are schematic illustrations of other example anti-rotation elements 800, 900 that are configured to reduce the revolution of the disclosed embodiment. The anti-rotation elements 800, 900 can be fabricated using ferromagnetic materials.

抗頓轉元件800、900可分別用於旋轉和線性應用。將抗頓轉元件800、900排列成幾何形狀可使元件元件產生的頓轉作用力的疊加在推進和間隙方向上產生的總頓轉干擾為最小。例如,可通過選擇繞線組槽距來減小定子繞線組齒產生的頓轉,而通過選擇適當的過渡區域形狀和尺寸可降低因定子中斷所產生的頓轉。 The anti-rotation elements 800, 900 can be used for both rotary and linear applications. Arranging the anti-rotation elements 800, 900 in a geometric shape allows the superposition of the tumbling forces generated by the element elements to minimize the total tumbling disturbances in the advancement and gap directions. For example, the winding of the stator winding set can be reduced by selecting the winding pitch of the winding group, and the rotation caused by the interruption of the stator can be reduced by selecting an appropriate transition region shape and size.

圖10所示的抗頓轉元件800元件包含一個內弧段805、一個外弧段810、第一和第二過渡區域815、820,線圈插槽序列825和一個跨度角830。通過排列內弧段805,可實現與永磁轉子相互作用,例如1035(圖12)。線圈插槽825可包括一個繞線組,如三相繞線組。可使用正弦換向方案來驅動繞線組。設置跨度角830使角830=n(P/2),其中n為任意整數,P是具有極性相同的轉子的兩個磁鐵間的節距。 The anti-rotation element 800 element shown in FIG. 10 includes an inner arc segment 805, an outer arc segment 810, first and second transition regions 815, 820, a coil slot sequence 825, and a span angle 830. By arranging the inner arc segments 805, interaction with the permanent magnet rotor can be achieved, such as 1035 (Fig. 12). The coil slot 825 can include a winding set, such as a three-phase winding set. A sinusoidal commutation scheme can be used to drive the winding set. The span angle 830 is set such that the angle 830 = n (P/2), where n is an arbitrary integer and P is the pitch between the two magnets of the rotor having the same polarity.

圖11中的元件900包含一個內分段905、一個外分段910、第一和第二過渡區域915、920、線圈插槽序列925、跨度角930。通過設置內分段905可實現與永磁壓板935相互作用。線圈插槽925可包括一個繞線組,如三相繞線組。可通過正弦換向方案來驅動繞線組。可設置跨度距離930,使跨度角930=n(P/2),其中n為任意整數,P為具有相同極性的壓板的磁鐵間的節距。 Element 900 in FIG. 11 includes an inner segment 905, an outer segment 910, first and second transition regions 915, 920, a coil slot sequence 925, and a span angle 930. Interaction with the permanent magnet platen 935 can be achieved by providing the inner segment 905. The coil slot 925 can include a winding set, such as a three-phase winding set. The winding group can be driven by a sinusoidal commutation scheme. The span distance 930 can be set such that the span angle 930 = n (P/2), where n is an arbitrary integer and P is the pitch between the magnets of the platen having the same polarity.

對於圖10和圖11,線圈插槽825、925在使用奇數個抗頓轉元件800、900的應用中槽距可為分數,或在使用偶數個抗頓轉元件800、900的應用中槽距可為整數。 因此可通過選擇槽距減小或基本消除由定子繞線組齒產生的頓轉。應瞭解到可使用任意個數抗頓轉元件800、900。 For Figures 10 and 11, the slot slots 825, 925 may be fractional in applications where an odd number of anti-rotation elements 800, 900 are used, or in applications where an even number of anti-rotation elements 800, 900 are used. Can be an integer. It is thus possible to reduce or substantially eliminate the tumbling caused by the teeth of the stator windings by selecting the slot pitch. It should be understood that any number of anti-rotation elements 800, 900 can be used.

圖12中所示的示範實施例採用單一抗頓轉元件1000。該實施例中的線圈插槽1025的槽距為分數,因此由線圈插槽1025產生的頓轉力可通過相消性干擾來相互抵消。圖13所示為包含兩個配置為降低頓轉的元件1105、1110的示範實施例。本實施例可採用不同的技術使頓轉降到最低。例如,1105和1110可以大致相同並定位,以使參考角度1115和1190的間隔為90度電角。在其它範例中,定位1105和1110可使參考角度1115和1190的間隔為180度機械角,線圈槽1125和1130與一個虛擬的360度分數槽距對齊。此方法中的線圈槽1125和1130不一樣。 The exemplary embodiment shown in Figure 12 employs a single anti-rotation element 1000. The slot pitch of the coil slot 1025 in this embodiment is a fraction, and thus the rotational force generated by the coil slot 1025 can cancel each other by destructive interference. Figure 13 shows an exemplary embodiment comprising two elements 1105, 1110 configured to reduce rotation. This embodiment can adopt different techniques to minimize the turn. For example, 1105 and 1110 can be substantially identical and positioned such that the spacing of reference angles 1115 and 1190 is an electrical angle of 90 degrees. In other examples, the positioning 1105 and 1110 can cause the reference angles 1115 and 1190 to be at a 180 degree mechanical angle, and the coil slots 1125 and 1130 are aligned with a virtual 360 degree fractional slot. The coil slots 1125 and 1130 in this method are different.

圖14所示為配置為降低頓轉的4個元件1205、1210、1215和1220的示範實施例。在一個或多個實施例中,元件可一樣,且彼此位置間隔可為90度的機械角和電角。在其它實施例中,元件1205、1210、1215、1220的間隔可為90度的機械角,而對應的各個線圈槽1225、1230、1235、1240與虛擬的360度分數槽距對齊。在一些實施例中,只有子線圈槽才會用線圈填充,因為僅考慮轉子或壓板磁鐵和配置為降低頓轉的元件間的被動相互作用。 Figure 14 shows an exemplary embodiment of four elements 1205, 1210, 1215, and 1220 configured to reduce revolutions. In one or more embodiments, the elements can be the same and can be separated from each other by a mechanical angle and an electrical angle of 90 degrees. In other embodiments, the spacing of elements 1205, 1210, 1215, 1220 can be a 90 degree mechanical angle, while corresponding respective coil slots 1225, 1230, 1235, 1240 are aligned with a virtual 360 degree fractional slot. In some embodiments, only the sub-coil slots are filled with coils because only the passive interaction between the rotor or platen magnets and the components configured to reduce the revolution is considered.

圖15所示為包括轉子1815和至少兩個芯的馬達 1800,其中至少第一個芯1805有繞線組,至少第2個芯1810沒有繞線組。芯1810與芯1805的偏移量為90度,從而為其它實施例提供機械裝置來降低頓轉。 Figure 15 shows a motor including a rotor 1815 and at least two cores 1800, wherein at least the first core 1805 has a winding set, and at least the second core 1810 has no winding set. The offset of the core 1810 from the core 1805 is 90 degrees, thereby providing mechanical means for other embodiments to reduce the tumbling.

美國專利申請號11/769,651,申請日期2007年6月27日,作為引用文獻,它展示了可通過降低繞線組數來實現自軸承馬達功能。美國專利申請號11/769,688,申請日期2007年6月27日,作為引用文獻,它說明了去掉每個繞線組徑向及切向力的耦合裝置的範例換向結構。因此,可採用更為簡單的線圈實施法通過獨立控制來產生任意轉子力矩和定心力。例如,只有兩個馬達繞線組。目前揭示的實施例可用來降低一些軸線的頓轉干擾,並為上述涉及的美國專利申請號11/769,651和11/769,688中說明的實施例提供定心力。 U.S. Patent Application Serial No. 11/769,651, filed on Jun. 27, 2007, which is incorporated herein by reference in its entirety, it is incorporated herein by reference in its entirety in the in the in the in the U.S. Patent Application Serial No. 11/769,688, filed on Jun. 27, 2007, which is incorporated herein by reference in its entirety, is incorporated herein by reference in its entirety in the the the the the the the Therefore, a simpler coil implementation can be used to generate arbitrary rotor torque and centering force by independent control. For example, there are only two motor winding groups. The presently disclosed embodiments can be used to reduce some of the axis's tumbling interference and provide centering forces for the embodiments described in the above-referenced U.S. Patent Application Serial Nos. 11/769,651 and 11/769,688.

在一個或多個揭示的實施例配置中,配置為降低頓轉的元件可以包括一種或多種鐵磁材料、多個電氣絕緣鐵磁層、或在其結構中含有的金屬粉末。 In one or more disclosed embodiment configurations, the elements configured to reduce the rotation may include one or more ferromagnetic materials, a plurality of electrically insulating ferromagnetic layers, or metal powders contained in the structure.

圖16所示為含有揭示實施例功能的範例基板加工設備1300的頂視圖。基板加工設備1300通常有一個暴露於大氣的氣體部件1350,一個裝備為真空室的相鄰真空部件1305。氣體部件1350可有一個或多個基板支援磁帶1310和一個氣體基板運輸設備1315。真空部件1305可有一個或多個處理模組1320以及一個真空基板傳輸設備1325。圖13所示的實施例有支持基板在大氣部件1350和真空部件1305間穿過的負載鎖1340、1345,而不會破壞 真空部件1305中包括的任何真空的完整性。 Figure 16 is a top plan view of an exemplary substrate processing apparatus 1300 incorporating the functionality of the disclosed embodiments. Substrate processing apparatus 1300 typically has a gas component 1350 that is exposed to the atmosphere, an adjacent vacuum component 1305 that is equipped as a vacuum chamber. The gas component 1350 can have one or more substrate support tapes 1310 and a gas substrate transport device 1315. The vacuum component 1305 can have one or more processing modules 1320 and a vacuum substrate transport device 1325. The embodiment shown in Figure 13 has load locks 1340, 1345 that support the substrate passing between the atmospheric component 1350 and the vacuum component 1305 without damaging. The integrity of any vacuum included in vacuum component 1305.

基板加工設備1300還包括一個控制基板加工設備1300操作的控制器1355。控制器1355可包括一個處理器1360和一個記憶體1365。控制器1355可通過鏈路1370與基板加工系統1300相連。對於揭示的實施例,基板可為半導體晶片(如一個200毫米或300毫米的晶片)、平板顯示器基板、任何其它適合基板加工設備1300處理的基板、空白基板或和基板特性相似的設備,比如特定尺寸或特殊板塊。 The substrate processing apparatus 1300 also includes a controller 1355 that controls the operation of the substrate processing apparatus 1300. The controller 1355 can include a processor 1360 and a memory 1365. Controller 1355 can be coupled to substrate processing system 1300 via link 1370. For the disclosed embodiments, the substrate can be a semiconductor wafer (such as a 200 mm or 300 mm wafer), a flat panel display substrate, any other substrate suitable for substrate processing apparatus 1300 processing, a blank substrate, or a device having similar substrate characteristics, such as a specific Size or special section.

大氣基板傳輸設備1315可包括一個或多個元件配置為降低揭示實施例中的頓轉的馬達,如1375、1380。馬達1375、1380可方便地利用一個或多個與此處揭示的元件相類似的範例元件,如定子100、200、550、625或抗頓轉元件800、900,以將多個方向上的頓轉干擾降到最低。這些方向可包括切線、軸向和間隙方向等。 The atmospheric substrate transport device 1315 can include one or more components configured to reduce the motoring of the disclosed embodiments, such as 1375, 1380. The motors 1375, 1380 can conveniently utilize one or more of the example elements similar to those disclosed herein, such as the stator 100, 200, 550, 625 or anti-rotation elements 800, 900, to The interference is reduced to a minimum. These directions may include tangent, axial and gap directions, and the like.

同樣的,真空基板傳輸設備1325可包括一個或多個含有配置為降低揭示實施例中的頓轉的元件的馬達,如1900、1950。馬達1900、1950可使用一個或多個元件,例如,定子100、200、550、625或抗頓轉元件800、900。運行一個或多個元件可使多個方向上的頓轉干擾降到最低,例如,切線、軸向和間隙方向等。 Likewise, vacuum substrate transfer device 1325 can include one or more motors, such as 1900, 1950, that are configured to reduce the components of the disclosed embodiments. Motors 1900, 1950 may use one or more components, such as stators 100, 200, 550, 625 or anti-rotation elements 800, 900. Running one or more components minimizes undome interference in multiple directions, such as tangent, axial, and gap directions.

因此,一個或多個元件在產生所需的軸向和傾斜勁度時,可使多個軸向上的頓轉干擾降到最低,並通過基板加工設備提供更精確的基板位置。 Thus, one or more of the components can minimize the effects of multiple axial runouts when producing the desired axial and tilt stiffness and provide a more accurate substrate position through the substrate processing equipment.

目前揭示的實施例描述了可使推進、間隙和軸向方向上的頓轉干擾降到最低的各種元件。可配置為將頓轉降到最低的元件包括設置的元件,因為每個元件所產生的頓轉力的疊加在推進、間隙和軸向方向上可使總頓轉干擾降到最低。一個或多個元件還會產生所需的氣隙間的作用力,包括旋轉馬達應用的定心力和線性馬達應用的定位和導向力。至少有一部分揭示的實施例使用元件的方式可使每個元件元件所產生的頓轉力的疊加在推進、間隙和軸向方向上使總頓轉干擾降到最低。 The presently disclosed embodiments describe various components that minimize torsional disturbances in propulsion, clearance, and axial directions. The components that can be configured to minimize the rollover include the components that are placed, because the superposition of the counterforce generated by each component minimizes the total disturbance in the thrust, clearance, and axial directions. One or more components also produce the required force between the air gaps, including the centering force of the rotary motor application and the positioning and guiding forces of the linear motor application. At least some of the disclosed embodiments use elements in such a way that the superposition of the counterforce generated by each element element minimizes the total tumbling interference in the advancement, clearance and axial directions.

應當瞭解上述說明僅針對當前實施例。本技術領域中具有通常知識者可在不脫離實施例的前提下進行各種替代方案和修飾。因此,這些實施例旨在涵蓋所有落在申請專利範圍內的替代方案、修飾及變化。 It should be understood that the above description is directed only to the current embodiment. Various alternatives and modifications can be made by those skilled in the art without departing from the embodiments. Accordingly, the examples are intended to cover all alternatives, modifications, and variations that fall within the scope of the application.

10‧‧‧馬達 10‧‧‧ motor

11‧‧‧轉子 11‧‧‧Rotor

12、15、22、24‧‧‧繞線組 12, 15, 22, 24‧‧‧ Winding Group

14‧‧‧定子 14‧‧‧ Stator

21‧‧‧驅動元件 21‧‧‧ Drive components

25‧‧‧放大器 25‧‧‧Amplifier

27‧‧‧處理器 27‧‧‧ Processor

30‧‧‧換向功能 30‧‧‧Reversing function

35‧‧‧電流環功能 35‧‧‧ Current loop function

105‧‧‧凹陷 105‧‧‧ dent

圖1A所示為可實行本發明的實施例的馬達示意圖;圖1B所示為實施例中所配置之定子和轉子的截面示意圖;圖1C所示為可造成頓轉的合成徑向力的示意圖。 1A is a schematic view of a motor in which an embodiment of the present invention can be implemented; FIG. 1B is a schematic cross-sectional view of a stator and a rotor configured in the embodiment; and FIG. 1C is a schematic view showing a synthetic radial force that can cause a turn-around; .

圖1D所示為造成頓轉的側傾力的示意圖。 Figure 1D is a schematic illustration of the roll force causing the tumbling.

圖2所示為可實行本發明的實施例的其它馬達的示意圖。 2 is a schematic illustration of other motors in which embodiments of the present invention may be practiced.

圖3和圖4所示為基於本發明的實施例的抗頓轉元件的示意圖。 3 and 4 are schematic views of an anti-rotation element based on an embodiment of the present invention.

圖5A至5C所示為由實施例產生的切線頓轉作用力的範例圖。 5A to 5C are diagrams showing an example of the tangential rotation force generated by the embodiment.

圖6A至6C所示為由實施例產生的軸向頓轉作用力的範例圖。 6A to 6C are diagrams showing an example of the axial tumbling force generated by the embodiment.

圖7A至7E所示為實施例揭示的過渡區域的範例圖。 7A to 7E are diagrams showing an example of a transition region disclosed in the embodiment.

圖8所示為可減小徑向頓轉作用力的實施例。 Figure 8 shows an embodiment in which the radial tumbling force can be reduced.

圖9A和9B為由實施例提供的徑向頓轉作用力的範例圖。 9A and 9B are exemplary views of the radial tumbling force provided by the embodiment.

圖10和圖11為本發明之其它抗頓轉元件的示意圖。 10 and 11 are schematic views of other anti-rotation elements of the present invention.

圖12至14所示為不同於圖10和11所示之抗頓轉元件的構造。 12 to 14 show the configuration of the anti-rotation element different from those shown in Figs.

圖15所示為至少具有兩芯的一馬達;圖16所示為用以實行本發明實施例的基板設備的平面圖。 Fig. 15 shows a motor having at least two cores; and Fig. 16 is a plan view showing a substrate apparatus for carrying out an embodiment of the present invention.

10‧‧‧馬達 10‧‧‧ motor

12、15‧‧‧繞線組 12, 15‧‧‧ Winding Group

14‧‧‧定子 14‧‧‧ Stator

25‧‧‧放大器 25‧‧‧Amplifier

27‧‧‧處理器 27‧‧‧ Processor

30‧‧‧換向功能 30‧‧‧Reversing function

35‧‧‧電流環功能 35‧‧‧ Current loop function

Claims (10)

一種馬達,包括:定子,包含一表面;轉子,配備成可至少在相對於定子的第一方向上活動,轉子在操作上可與定子形成介面,以在第一方向上產生馬達力,轉子包含永久磁鐵;定子包括複數元件,設置於該表面並建構成與永久磁鐵形成介面連接,使得永久磁鐵的間距和至少一該元件建構成使得一對永久磁鐵之個別磁鐵的前導邊緣趨近介於該表面和一該元件之間的第一過渡區域並大致上同時趨近介於一該元件和該表面之間的第二過渡區域,以至少在第一方向和相對於第一方向形成夾角的第二方向上對轉子產生抗頓轉力;其中第一過渡區域和第二過渡區域每一者皆包括第一過渡部分和第二過渡部分,其中第一過渡部分位在距轉子的徑向中心第一距離處,第二過渡部分位在距轉子的徑向中心第二距離處,第一距離不同於第二距離;其中介於第一過渡區域的第一過渡部分和第二過渡區域的第二過渡部分之第三距離大致上為相同極性的永久磁鐵之節距除以2;且其中相鄰的該元件之節距是相同極性的永久磁鐵之節距的整數倍數。 A motor comprising: a stator including a surface; a rotor configured to move at least in a first direction relative to the stator, the rotor operatively forming an interface with the stator to generate a motor force in a first direction, the rotor comprising a permanent magnet; the stator includes a plurality of components disposed on the surface and configured to form an interface with the permanent magnet such that a pitch of the permanent magnets and at least one of the components are configured such that a leading edge of the individual magnets of the pair of permanent magnets is adjacent to the a first transition region between the surface and a component and substantially simultaneously approaching a second transition region between the component and the surface to form an angle at least in the first direction and relative to the first direction The second direction is opposite to the rotor; wherein the first transition region and the second transition region each include a first transition portion and a second transition portion, wherein the first transition portion is located at a radial center from the rotor At a distance, the second transition portion is located at a second distance from the radial center of the rotor, the first distance being different from the second distance; wherein the first transition region is The third distance of the first transition portion and the second transition portion of the second transition region is substantially the pitch of the permanent magnets of the same polarity divided by 2; and wherein the pitch of the adjacent elements is a permanent magnet of the same polarity An integer multiple of the pitch. 如申請專利範圍第1項的馬達,包括同步無刷馬達。 A motor as claimed in claim 1 includes a synchronous brushless motor. 如申請專利範圍第1項的馬達,其中至少一該元件建構成至少在與第一方向和第二方向形成夾角的第三方向上對轉子產生抗頓轉力。 A motor according to claim 1, wherein at least one of the elements is configured to generate an anti-rotation force to the rotor at least in a third direction that forms an angle with the first direction and the second direction. 如申請專利範圍第1項的馬達,其中該至少一元件包括:至少一第一凹陷,從定子的內表面向內延伸;至少二過渡區域,從該內表面延伸至第一凹陷,其中至少該二過渡區域之間的距離約為nP/2,其中n為任意整數,P是與定子介面連接的相同極性的磁鐵之間的節距。 The motor of claim 1, wherein the at least one component comprises: at least one first recess extending inwardly from an inner surface of the stator; at least two transition regions extending from the inner surface to the first recess, wherein at least The distance between the two transition regions is approximately nP/2, where n is an arbitrary integer and P is the pitch between magnets of the same polarity connected to the stator interface. 如申請專利範圍第4項的馬達,其中該至少一元件包括至少一第二凹陷,從定子的內表面向內延伸,其中第一和第二凹陷之間的距離約為nP/2+mP/4,其中n為任意整數,m為奇數。 The motor of claim 4, wherein the at least one component comprises at least one second recess extending inwardly from an inner surface of the stator, wherein a distance between the first and second recesses is approximately nP/2+mP/ 4, where n is an arbitrary integer and m is an odd number. 如申請專利範圍第4項的馬達,其中該過渡區域之至少一者與該內表面形成一角度。 A motor of claim 4, wherein at least one of the transition regions forms an angle with the inner surface. 如申請專利範圍第4項的馬達,其中該過渡區域之至少一者具有相對於該內表面的表面凹入。 A motor of claim 4, wherein at least one of the transition regions has a surface recess relative to the inner surface. 如申請專利範圍第4項的馬達,其中該過渡區域之至少一者具有相對該內表面的表面凸起。 A motor of claim 4, wherein at least one of the transition regions has a surface projection relative to the inner surface. 如申請專利範圍第4項的馬達,其中該過渡區域之至少一者從該內表面和該第一凹陷向後退縮。 The motor of claim 4, wherein at least one of the transition regions is retracted rearwardly from the inner surface and the first recess. 如申請專利範圍第4項的馬達,其中該過渡區域之至少一者在該內表面和該第一凹陷之間界定出一複合 角度。 The motor of claim 4, wherein at least one of the transition regions defines a composite between the inner surface and the first recess angle.
TW97124039A 2007-06-27 2008-06-27 Motor with lift capability and reduced cogging characteristics TWI442672B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US94669307P 2007-06-27 2007-06-27

Publications (2)

Publication Number Publication Date
TW200922075A TW200922075A (en) 2009-05-16
TWI442672B true TWI442672B (en) 2014-06-21

Family

ID=44728078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97124039A TWI442672B (en) 2007-06-27 2008-06-27 Motor with lift capability and reduced cogging characteristics

Country Status (1)

Country Link
TW (1) TWI442672B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619331B (en) * 2015-09-23 2018-03-21 奈美電子股份有限公司 Flux switching permanent magnet motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578650A (en) * 2013-10-15 2015-04-29 台达电子企业管理(上海)有限公司 Motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI619331B (en) * 2015-09-23 2018-03-21 奈美電子股份有限公司 Flux switching permanent magnet motor

Also Published As

Publication number Publication date
TW200922075A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
JP5421255B2 (en) Motor stator with lifting function and low cogging characteristics
JP5517928B2 (en) Self-bearing brushless DC motor with reduced complexity
JP7546362B2 (en) Sealed robot drive unit
JP6130987B2 (en) Robot drive with magnetic spindle bearing
JP3712073B2 (en) Spiral linear motor
TWI442672B (en) Motor with lift capability and reduced cogging characteristics
JP2001112223A (en) Vacuum motor and carrier device
WO2002067407A1 (en) Self-bearing step motor and its control method
JPH11287880A (en) Stage device, aligner using the device and device production method
TWI492826B (en) Robot drive with magnetic spindle bearings
JP5545053B2 (en) Bearingless motor
KR102424177B1 (en) Magnetic levitation rotating apparatus and aparatus for vacuum processing
JP6017506B2 (en) Robot drive with magnetic spindle bearing
TWI688457B (en) Transport apparatus
JP2006296060A (en) Motor system
JP2005326955A (en) XYtheta POSITIONING DEVICE
Higuchi Magnetically suspended stepping motors for clean room and vacuum environments
JP2004197137A (en) Film deposition apparatus
JPS62135255A (en) Rotor-nipped type actuator