TWI442460B - Method of separating two materials - Google Patents

Method of separating two materials Download PDF

Info

Publication number
TWI442460B
TWI442460B TW98100293A TW98100293A TWI442460B TW I442460 B TWI442460 B TW I442460B TW 98100293 A TW98100293 A TW 98100293A TW 98100293 A TW98100293 A TW 98100293A TW I442460 B TWI442460 B TW I442460B
Authority
TW
Taiwan
Prior art keywords
substrate
permeability
separating
permeability metal
metal array
Prior art date
Application number
TW98100293A
Other languages
Chinese (zh)
Other versions
TW201027602A (en
Inventor
Ying Chao Yeh
Shih Cheng Huang
Po Min Tu
Wen Yu Lin
Peng Yi Wu
Shih Hsiung Chan
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Priority to TW98100293A priority Critical patent/TWI442460B/en
Publication of TW201027602A publication Critical patent/TW201027602A/en
Application granted granted Critical
Publication of TWI442460B publication Critical patent/TWI442460B/en

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

分離兩種材料的方法 Method of separating two materials

本發明涉及一種分離方法,尤其係一種用於分離兩個或同一材料方法,並用無線射頻加熱(Radio Frequency Heating),促進兩個材料因受熱而分離。 The present invention relates to a separation method, and more particularly to a method for separating two or the same material, and using Radio Frequency Heating to promote separation of two materials by heat.

發光二極體(Light Emitting Diode)之所以會發光,主要原因係利用半導體在施加電能後轉化為光能的物理特性,當半導體的正負極兩端施加電壓產生電流流經半導體時,會促使半導體內部的電子與電洞相互結合,結合後剩餘能量便以光的形式釋放,依採用半導體材料的不同,其能階高低會使光子能量產生不同波長的光,而釋放出人眼所能接受到各種顏色的光。發光二極體最初在1950年代末期於實驗室被發展出來,到了1968年HP公司開始商業化量產,早期發光二極體只有單調的暗紅色系,應用在電子產品的指示燈,一直到了1992年日本的日亞化(Nichia)公司突破藍光二極體技術障礙後,發光二極體逐漸衍生出多重色彩,亮度也大幅提高,並以顯示器(Display)、表面黏著型(SMD)等各種封裝型態深入生活中各個層面。 The reason why the Light Emitting Diode emits light is mainly due to the physical properties of the semiconductor that is converted into light energy after the application of electrical energy. When a voltage is applied across the positive and negative terminals of the semiconductor to generate a current flowing through the semiconductor, the semiconductor is promoted. The internal electrons and holes are combined with each other. After the combination, the remaining energy is released in the form of light. Depending on the semiconductor material, the energy level of the photons can produce different wavelengths of light, which is released by the human eye. Light of various colors. The light-emitting diode was originally developed in the laboratory in the late 1950s. By 1968, HP began commercial mass production. The early light-emitting diodes had only a monotonous dark red color, which was applied to the indicator lights of electronic products until 1992. After Nichia Corporation of Japan broke through the technical obstacles of blue light diodes, the light-emitting diodes gradually developed multiple colors, and the brightness was also greatly improved. The display was in various packages such as display and surface mount type (SMD). The pattern goes deep into all levels of life.

多數發光二極體被稱為Ⅲ-V族化合物半導體,係由V族元素如氮(N)、磷(P)、砷(As)等,與Ⅲ族元素包括鋁(Al)、鎵(Ga)、銦(In)等結合而成,以與IC半導體所使用之矽(Si) 等IV族元素區別。傳統液相磊晶法(Liquid Phase Epitaxy,LPE)與氣相磊晶法(Vapor Phase Epitaxy,VPE),以磷化鎵(GaP)或砷化鎵(GaAs)為基板,用於生產中低亮度發光二極體及紅外光(IrDa)晶粒,其亮度皆在1燭光(1000mcd)以下。直到1992年,日亞化公司的研究員中村修二(Shuj i Nakamura),在其實驗室發明的特殊有機金屬氣相磊晶法(Metal Organic Vapor Epitaxy,MOCVD)製程,才得以克服藍光二極體在製造上的障礙。拜中村先生發明的有機金屬氣相磊晶製程,半導體相關產業才能製造生產出高亮度發光二極體,其亮度約在6000-8000mcd。 Most of the light-emitting diodes are called III-V compound semiconductors, which are composed of group V elements such as nitrogen (N), phosphorus (P), arsenic (As), etc., and group III elements including aluminum (Al) and gallium (Ga). ), indium (In), etc., combined with silicon (Si) used in IC semiconductors Different from group IV elements. Traditional Liquid Phase Epitaxy (LPE) and Vapor Phase Epitaxy (VPE), based on gallium phosphide (GaP) or gallium arsenide (GaAs), are used to produce low- and medium-brightness Light-emitting diodes and infrared (IrDa) grains have a brightness below 1 candle (1000mcd). Until 1992, Shuj i Nakamura, a researcher at Nichia Corporation, was able to overcome the blue LED in the special organic metal vapor phase epitaxy (MOCVD) process invented in his laboratory. Manufacturing obstacles. In the organic metal vapor phase epitaxy process invented by Mr. Bai Zhongcun, the semiconductor-related industry can produce high-brightness light-emitting diodes with a brightness of about 6000-8000mcd.

發光二極體以鋁、鎵、銦、磷四種元素為發光層材料在砷化鎵(GaAs)基板上磊晶者,發出紅、橙、黃光之琥珀色系,通稱為四元發光二極體;以氮化鎵(GaN)為材料所生產的藍、綠光二極體,則稱為氮化物發光二極體,一般以藍寶石(Sapphire)做為磊晶製程用的基板(substrate)。使用藍寶石材料作為藍、綠光二極體基板的主要原因,係因為發出這些光波長的材料,多半係鎵(Ga)、銦(In)的氮化物晶體如GaN,InGaN等。半導體要形成電路和量子井,係用磊晶(epitaxy)的技術,將發光半導體材料「長」在適合的基板上,然後再用顯影蝕刻或其他技術形成電路構造。因為這些晶體材料有固定的晶格結構,意即結晶分子之間的排列間隔,必需薄膜和基板達到晶格匹配才能順利磊晶。一般半導體所用的材料係矽,所以長在矽質的基板上最適合不過了。但係藍、綠光二極體的這些材料,其晶格常數(lattice constant)和矽基板相差太遠(約17%),如果硬將這些材料的薄膜長在矽基板上,會產生極大的應力和差排(dislocation) ,破壞晶體原來的晶格結構,因此無法用最廉價的矽基板。 The light-emitting diode is made of aluminum, gallium, indium and phosphorus as a light-emitting layer material on a gallium arsenide (GaAs) substrate, and emits amber color of red, orange and yellow light, which is generally called a quaternary light-emitting diode. The blue and green diodes produced by using gallium nitride (GaN) are called nitride light-emitting diodes, and sapphire is generally used as a substrate for epitaxial processing. The reason why a sapphire material is used as a blue or green photodiode substrate is that a material which emits these light wavelengths is mostly a nitride crystal of gallium (Ga) or indium (In) such as GaN, InGaN or the like. Semiconductors are required to form circuits and quantum wells by epitaxial techniques to "light" the luminescent semiconductor material onto a suitable substrate and then use a development etch or other technique to form the circuit structure. Since these crystal materials have a fixed lattice structure, that is, an arrangement interval between crystal molecules, it is necessary to achieve lattice matching between the film and the substrate in order to smoothly epitaxially. Generally, the materials used in semiconductors are germanium, so it is most suitable for substrates that are long on tantalum. However, these materials, which are blue and green diodes, have a lattice constant that is too far apart (about 17%) from the germanium substrate. If the film of these materials is hard on the germanium substrate, great stress will be generated. And dislocation It destroys the original lattice structure of the crystal, so the cheapest substrate is not available.

另外,半導體產業不採用氮化鎵本身作其磊晶用基板,其原因係氮化物材料的晶格結構缺陷很大,長晶過程非常困難,因此價格非常昂貴幾乎和鑽石相當,發光二極體產業不可能用同樣材料做其基板只為了磊晶製程上的需要。其他可替代的材料中,目前以藍寶石(分子構成係Al2O3)的晶格常數和氮化鎵相近,可以人工方式合成,價格上相對比較便宜,所以被選為發光二極體在磊晶製程上使用的基板。但係藍寶石基板在導電性與熱傳導能力都不及傳統的矽基板,影響發光二極體在電路上使用以及發光壽命,因此一般發光二極體在製程上,都會設法將磊晶完成的氮化物晶體,從藍寶石基板置換到矽基板,以達日後發光二極體在實務應用上的便利性,故如何將磊晶完成晶體從藍寶石基板分離,係半導體相關研究人員所關切的議題。 In addition, the semiconductor industry does not use gallium nitride itself as its substrate for epitaxy. The reason is that the lattice structure of the nitride material is very defective, and the crystal growth process is very difficult, so the price is very expensive, almost equivalent to diamond, and the light-emitting diode It is impossible for the industry to use the same material as its substrate only for the needs of the epitaxial process. Among other alternative materials, the sapphire (Molecular Structure Al 2 O 3 ) has a lattice constant similar to that of GaN, which can be synthesized manually, and the price is relatively cheap, so it is selected as a light-emitting diode. The substrate used in the crystal process. However, the sapphire substrate has lower conductivity and thermal conductivity than the conventional germanium substrate, affecting the use of the light-emitting diode on the circuit and the luminescence lifetime. Therefore, in general, the light-emitting diode will try to crystallize the completed nitride crystal. The replacement of the sapphire substrate to the ruthenium substrate to facilitate the practical application of the light-emitting diode in the future, so how to separate the epitaxial crystal from the sapphire substrate is a topic of concern to semiconductor researchers.

美國加州州立大學(The Regents of the University of California)與克裏公司(Cree,Inc)分別在美國專利US 64202425、US 6958093中提出同樣用雷射做基板分離的兩種方法,此兩種切割方法皆利用鎵(Ga)金屬低熔點特性,將氮化鎵晶體從藍寶石基板上分離,主要切割技術係採用雷射光束直接投射到藍寶石基板上,藉藍寶石具透光的物理性質,讓雷射光束發出的能量被基板上的氮化鎵磊晶層吸收並使其晶體產生活化,當氮化鎵磊晶層受熱溫度達到30℃時,晶體結構被破壞並開始崩解,藉此與藍寶石基板分離。該專利雖能以物理方式讓氮化鎵磊晶層從藍寶石基板上分離,但所利用的雷射光束每次只能對藍寶石基板做單點照射,需累積相當多次數的掃瞄割方,才能夠使整個氮 化鎵磊晶層完全從藍寶石基板上分離,這將佔用整個半導體製程上相當的時間比例,影響發光二極體的產能與效率。 The two methods of laser separation of substrates are also proposed by the United States Patent No. 64202425 and US Pat. No. 6,958,093, respectively, to The Regents of the University of California and Cree, Inc., respectively. The gallium nitride crystal is separated from the sapphire substrate by using the low melting point characteristic of gallium (Ga) metal. The main cutting technology is to directly project the laser beam onto the sapphire substrate, and the sapphire has the physical properties of light transmission to make the laser beam. The emitted energy is absorbed by the gallium nitride epitaxial layer on the substrate and activates the crystal. When the gallium nitride epitaxial layer reaches a temperature of 30 ° C, the crystal structure is destroyed and begins to disintegrate, thereby separating from the sapphire substrate. . Although the patent physically separates the gallium nitride epitaxial layer from the sapphire substrate, the laser beam used can only illuminate the sapphire substrate at a single point, and it is necessary to accumulate a considerable number of scans. Able to make the whole nitrogen The gallium epitaxial layer is completely separated from the sapphire substrate, which will occupy a considerable proportion of the time in the entire semiconductor process, affecting the productivity and efficiency of the light-emitting diode.

另外,德國西門子公司(Siemens Aktiengesellschaft)在美國專利US 6740604中提出以輻射能量促使氮化鎵磊晶層從藍寶石基板上分離,與加州州立大學的專利差異在於氮化鎵磊晶層吸收到電磁效應而產生的輻射能量,其範圍大於用雷射光束照射在磊晶層上的能量,並且其輻射能量可以集中在兩者之間的介面上施加,使磊晶層分子因受輻射能量發生裂解而與基板分離。西門子公司所提出的分離方法,確實比用雷射光束做掃瞄切割來得有效率,但係氮化鎵磊晶層本屬於不易傳導電熱性金屬化合材料,因此利用電磁效應而產生的輻射能量,須要花費時間讓磊晶層累積吸收足夠的輻射能量,才能發生分子裂解,對於發光二極體製程時間上的縮短有限,仍待更進一步的分離方法。 In addition, in U.S. Patent No. 6,740,604, the name of Siemens Aktiengesellschaft proposes to separate the gallium nitride epitaxial layer from the sapphire substrate by the radiant energy. The difference from the patent of the California State University is that the gallium nitride epitaxial layer absorbs the electromagnetic effect. The generated radiant energy has a larger range than the energy irradiated by the laser beam on the epitaxial layer, and the radiant energy can be concentrated on the interface between the two, so that the epitaxial layer molecules are lysed by the radiant energy. Separated from the substrate. The separation method proposed by Siemens is indeed more efficient than scanning and cutting with a laser beam. However, the gallium nitride epitaxial layer is a non-conductive electrothermal metal compound, so the radiant energy generated by the electromagnetic effect is It takes time for the epitaxial layer to accumulate and absorb enough radiant energy to cause molecular cleavage. For the limited time reduction of the luminescent bipolar system, further separation methods are still needed.

法國半導體絕緣科技公司(Silicon on Insulator Technologies)在美國專利US 6964914中提出的分離方法,係利用利用藍寶石基板和氮化鎵磊晶層本身熱膨脹係數的差異,藉環境溫度的快速改變,導致磊晶層在與基板的介面上產生極大的應力,該應力促使氮化鎵的磊晶層從藍寶石基板上分離。該種藉應力分離方法有別於氮化鎵吸收外界供應的能量,在介面上破壞原本晶體結構使磊晶層分子發生裂解,而係利用物質熱脹冷縮的物理現象,讓磊晶層因溫度驟降在介面上產生足以分離的內縮應力。此種分離方法因氮化鎵磊晶層因受熱不均勻,產生的內縮應力大小不一使得磊晶層分離後無法形成較平整的平面,甚至發生磊晶層斷裂的問題,使得生產良率控制不易。 The separation method proposed by the French semiconductor insulation technology company (Silicon on Insulator Technologies) in US Pat. No. 6,964,914 utilizes the difference in thermal expansion coefficient of the sapphire substrate and the gallium nitride epitaxial layer itself, and the epitaxy is caused by the rapid change of the ambient temperature. The layer creates an extreme stress on the interface with the substrate that causes the epitaxial layer of gallium nitride to separate from the sapphire substrate. The method of stress separation is different from the absorption of externally supplied energy by gallium nitride. The original crystal structure is destroyed at the interface to cause the epitaxial layer molecules to be cracked, and the physical phenomenon of thermal expansion and contraction of the material is utilized to make the epitaxial layer The temperature dip produces enough shrinkage stress at the interface to separate. Because of the uneven shrinkage stress caused by the uneven heating of the gallium nitride epitaxial layer, the separation method cannot form a flat surface after the epitaxial layer is separated, and even the problem of the epitaxial layer fracture occurs, so that the production yield is good. Control is not easy.

上述專利所提出的材料分離技術,影響材料在半導體製程上的良率頗大,尤其係應用在發光二極體的製程上,有待更好的方法以降低影響材料應有的良率,甚至提升整個半導體製程上最後的良率。 The material separation technology proposed by the above patents has a great influence on the yield of the semiconductor process, especially in the process of the light-emitting diode, and a better method is needed to reduce the yield of the affected material, or even improve The final yield on the entire semiconductor process.

鑒於上述之先前技術的背景中,為了改善上述分離過程中會發生的缺失,並符合產業上某些利益之需求,本發明提供一種新的分離兩個材質半導體的方法,可用以解決上述技術之分離方式未能達成之標的。 In view of the above-mentioned prior art background, in order to improve the defects that may occur in the above separation process and meet the needs of certain interests in the industry, the present invention provides a new method for separating two material semiconductors, which can be used to solve the above-mentioned techniques. The separation method failed to achieve the target.

本發明之目的係提供一種分離兩個或同一半導體材質的方法。以發光二極體製程為例,其方法步驟包含:形成一高磁導金屬陣列於一基板與一半導體層之間;以及用無線射頻(Radio Frequency)加熱該高磁導金屬陣列,使該高磁導金屬陣列產生高溫裂解,以分離該基板與該半導體層。該無線射頻加熱方法係藉由一無線射頻加熱系統之圓柱金屬線圈,產生之無線射頻引發電磁感應,導致材料發生渦流效應(eddy current effect),根據熱能方程式,對該高磁導金屬陣列做加熱。 It is an object of the invention to provide a method of separating two or the same semiconductor material. Taking the light-emitting diode process as an example, the method steps include: forming a high-permeability metal array between a substrate and a semiconductor layer; and heating the high-permeability metal array with a radio frequency (Radio Frequency) to make the high The magnetically permeable metal array is pyrolyzed to separate the substrate from the semiconductor layer. The radio frequency heating method generates electromagnetic induction by a radio frequency generated by a cylindrical metal coil of a radio frequency heating system, causing an eddy current effect of the material, according to The thermal energy equation heats the high permeability metal array.

其中上述之高磁導金屬陣列包含複數個材料區塊,可藉由物理氣相沈積(Physical Vapor Deposition,PVD)、蒸鍍(Evaporation)、濺鍍(Sputtering)等方式形成。而整個該高磁導金屬陣列之材料區塊,因製程緣故被該半導體層所包覆。該高磁導金屬陣列其分佈密度係與陣列半徑成正相關,該高磁導金屬陣列受無線射頻加熱時,可產生均勻向外之溫度梯度,導致該 高磁導金屬陣列由外向內裂解,以避免該高磁導金屬陣列由內部先裂解而破壞該半導體層之結構。 The above-mentioned high-permeability metal array comprises a plurality of material blocks, which can be formed by physical vapor deposition (PVD), evaporation, sputtering or the like. The material block of the entire high-permeability metal array is covered by the semiconductor layer due to the process. The high-permeability metal array has a distribution density that is positively correlated with the array radius. When the high-permeability metal array is heated by the radio frequency, a uniform outward temperature gradient is generated, resulting in the The high-permeability metal array is cracked from the outside to the inside to prevent the high-permeability metal array from being cracked internally to destroy the structure of the semiconductor layer.

101‧‧‧藍寶石基板 101‧‧‧Sapphire substrate

102‧‧‧高磁導性金屬微塊 102‧‧‧High magnetic permeability metal micro-blocks

103‧‧‧氮化鎵磊晶層 103‧‧‧ gallium nitride epitaxial layer

104‧‧‧載板 104‧‧‧ Carrier Board

105‧‧‧無線射頻加熱裝置 105‧‧‧Wireless RF heating device

110-270‧‧‧步驟 110-270‧‧‧Steps

第一A圖係為本發明兩個材料之分離方法一流程示意圖;第一B圖係為本發明兩個材料之分離方法一接續流程示意圖;第一C圖係為本發明兩個材料之分離方法一之高磁導金屬陣列排列密度示意圖;第二A圖係為本發明兩個材料之分離方法二流程示意圖;第二B圖係為本發明兩個材料之分離方法二接續流程示意圖;以及第二C圖係為本發明兩個材料之分離方法二之高磁導金屬陣列排列密度示意圖。 The first A diagram is a schematic flow diagram of the separation method of the two materials of the invention; the first B diagram is a schematic diagram of the separation process of the two materials of the invention; the first C diagram is the separation of the two materials of the invention Method 1 is a schematic diagram of the arrangement density of the high-permeability metal array; the second A diagram is a schematic diagram of the separation process of the two materials of the present invention; the second B diagram is a schematic diagram of the separation process of the two materials of the invention; The second C diagram is a schematic diagram of the arrangement density of the high-permeability metal array according to the separation method 2 of the two materials of the present invention.

本發明在此所解釋說明,係關於一種分離兩個材質半導體的方法與可實施例子。為了能徹底地瞭解本發明,將在下列的描述中提出詳盡的步驟及其組成。很顯然地,本發明的施行並未限定於半導體製程之技藝者所熟習的特殊細節。另一方面,眾所周知的組成或步驟並未描述於細節中,以避免造成本發明不必要之限制。本發明的較佳實施例會詳細描述如下,然而除了這些詳細描述之外,本發明還可以廣泛地施行在其他的實施例中,且本發明的範圍不受限定,其以之後的專利範圍為準。 The invention is explained herein with respect to a method and an implementable example of separating two material semiconductors. In order to thoroughly understand the present invention, detailed steps and compositions thereof will be set forth in the following description. It will be apparent that the practice of the present invention is not limited to the specific details familiar to those skilled in the art of semiconductor fabrication. On the other hand, well-known components or steps are not described in detail to avoid unnecessarily limiting the invention. The preferred embodiments of the present invention are described in detail below, but the present invention may be widely practiced in other embodiments, and the scope of the present invention is not limited by the scope of the following patents. .

本發明係提供關於一種分離兩個材質半導體的方法,可應用於發光二極體(Light Emitting Diode)製程上,將氮化鎵(GaN) 磊晶層從以藍寶石(Sapphire)為磊晶用的基板(substrate)上分離,以致使氮化鎵磊晶層能置換在一載板上。其方法主要特徵在氮化鎵的磊晶過程中,埋入高磁導係數(High Magnetic Permeability)的金屬物質於靠近基板介面的磊晶層中,藉由無線射頻加熱方式(Radio Frequency Heating)以電磁感應原理(Electromagnetic Induction),讓高磁導係數的金屬物質瞬間產生高熱,促使包覆在該金屬物質的磊晶層分子,因吸收熱能而發生裂解,最後使氮化鎵從靠近基板介面上解離,此外,本發明藉由高磁導係數金屬物質的分離方法,同樣適用於同質半導體材料的分離。 The present invention provides a method for separating two material semiconductors, which can be applied to a Light Emitting Diode process, and a gallium nitride (GaN) film. The epitaxial layer is separated from a substrate for sapphire (Sapphire) for epitaxy so that the gallium nitride epitaxial layer can be replaced on a carrier. The main feature of the method is that in the epitaxial process of gallium nitride, a high magnetic permeability metal substance is buried in the epitaxial layer close to the substrate interface by radio frequency heating (Radio Frequency Heating). The principle of electromagnetic induction (Electromagnetic Induction), the high magnetic permeability of the metal material instantaneously generates high heat, promotes the epitaxial layer molecules coated on the metal substance, is lysed by absorption of thermal energy, and finally makes gallium nitride close to the substrate interface. Dissociation, in addition, the present invention is equally applicable to the separation of homogeneous semiconductor materials by a method of separating high magnetic permeability metal species.

本發明使用的高磁導係數金屬物質,因無線射頻加熱方式瞬間產生高熱,其技術為一種以電磁原理產生熱感應的加熱方法,該技術原理係一圓柱型金屬線圈(Coil)並通上直流電源,當電流通過該圓柱型金屬線圈會生成一電磁場(Electromagnetic Field),該電磁場會影響凡位在圓柱型金屬線圈內的金屬物質,使其本身產生一感應電場(Induction Electric Field),隨著圓柱型金屬線圈的電磁場大小改變使該感應電場會發生變動,而金屬物質因該感應電場的變動,其內的電子被激發進行運動並生成一渦電流(Eddy Current),該渦電流因金屬物質本身的電阻關係(Resistance Impedance)而產生熱量。 The high-permeability metal material used in the present invention generates high heat instantaneously due to the wireless radio frequency heating method, and the technology is a heating method for generating thermal induction by electromagnetic principle. The technical principle is a cylindrical metal coil (Coil) and is connected to a direct current. The power source, when the current passes through the cylindrical metal coil, generates an electromagnetic field (Electromagnetic Field), which affects the metal material in the cylindrical metal coil, and generates an induced electric field (Induction Electric Field). The change of the electromagnetic field size of the cylindrical metal coil causes the induced electric field to fluctuate, and the metal material is excited to move and generate an Eddy Current due to the variation of the induced electric field, and the eddy current is caused by the metal substance. Heat is generated by its own resistance relationship (Resistance Impedance).

依據上述之電磁感應原理,設計一無線射頻加熱裝置,將其直流電源供應器搭配一功率電晶體(Power Transistor)以產生一秒鐘變化二萬次左右的高週波電流,快速並有規律地改變流經圓柱型金屬線圈的電流方向,使圓柱型金屬線圈內的金屬物質快速產 生高熱。此外,藉由電磁感應產生熱能方程式,能在升溫過程中控制金屬物質生成熱能大小。其中參數d係為圓柱型金屬線圈之半徑(diameter of the cylinder)、參數h係為金屬圓柱線圈之高度(height of the cylinder)、參數H係為感應磁場強度(magnetic field intensity)、參數ρ係為電阻(resistivity)、參數μ 0係為真空之磁導率(magnetic permeability of vacuum)、參數μ r 係為相對之磁導率(relative permeability)、參數f係為頻率(frequency)、變數C係為耦合係數(coupling factor)、參數F係為能量傳遞係數(power transmission factor)。 According to the above principle of electromagnetic induction, a wireless RF heating device is designed, and its DC power supply is matched with a Power Transistor to generate a high-cycle current of about 20,000 times per second, which changes rapidly and regularly. The direction of current flowing through the cylindrical metal coil causes the metal material in the cylindrical metal coil to rapidly generate high heat. In addition, the thermal energy equation is generated by electromagnetic induction. It can control the amount of thermal energy generated by metal species during the heating process. The parameter d is the diameter of the cylinder, the parameter h is the height of the cylinder, the parameter H is the magnetic field intensity, and the parameter ρ is For the resistance, the parameter μ 0 is the magnetic permeability of vacuum, the parameter μ r is the relative permeability, the parameter f is the frequency, and the variable C is The coupling factor and the parameter F are power transmission factors.

在熱能方程式中μ 0以及μ r為圓柱型金屬線圈內的金屬物質的磁導性相關係數,若μ 0μ r係數值越高其金屬物質被磁導能力越強,經電磁感應產生的熱能也越高,故此,在金屬物質中以鐵(Fe)、鈷(Co)、鎳(Ni)為三種具較高磁導係數的金屬材料,適合做為本發明在無線射頻加熱方式的觸媒,最主要目的讓溫度在短時間內,升溫至使磊晶層分子發生裂解的程度。 In the thermal equation, μ 0 and μ r are the permeability correlation coefficients of the metal species in the cylindrical metal coil. If the μ 0 or μ r coefficient is higher, the metal material is more magnetically conductive and is generated by electromagnetic induction. The higher the thermal energy, the metal material with higher magnetic permeability is made of iron (Fe), cobalt (Co) and nickel (Ni) in the metal material, which is suitable for the touch of the radio frequency heating method of the present invention. The main purpose of the medium is to raise the temperature to a degree that causes the epitaxial layer molecules to be cracked in a short period of time.

本發明為一種分離兩個材質半導體的方法,以發光二極體製程中,將氮化鎵(GaN)磊晶層從藍寶石基板(Sapphire substrate)上分離為例,做為說明本發明主要技術的實施例。製程中使用的基板也可為氧化鋁(Al2O3)基板、碳化矽(SiC)基板、鋁酸鋰基板(LiAlO2)、鎵酸鋰基板(LiGaO2)、矽(Si)基板、氮 化鎵(GaN)基板,氧化鋅(ZnO)基板、氧化鋁鋅基板(AlZnO)、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、銻化鎵基板(GaSb)、磷化銦(InP)基板、砷化銦(InAs)基板、硒化鋅(ZnSe)基板、金屬基板等。 The invention is a method for separating two material semiconductors, and taking a gallium nitride (GaN) epitaxial layer from a sapphire substrate as an example to illustrate the main technology of the present invention in a light emitting diode process. Example. The substrate used in the process may also be an alumina (Al 2 O 3 ) substrate, a tantalum carbide (SiC) substrate, a lithium aluminate substrate (LiAlO 2 ), a lithium gallate substrate (LiGaO 2 ), a germanium (Si) substrate, or a nitrogen. Gallium (GaN) substrate, zinc oxide (ZnO) substrate, aluminum zinc oxide substrate (AlZnO), gallium arsenide (GaAs) substrate, gallium phosphide (GaP) substrate, gallium antimonide substrate (GaSb), indium phosphide ( InP) substrate, indium arsenide (InAs) substrate, zinc selenide (ZnSe) substrate, metal substrate, and the like.

關於發光二極體選用何種材料基板,係依照各種發光二極體原本半導體物理特性來決定。舉例來說,一般II-VI半導體化合物會使用硒化鋅基板或係氧化鋅基板做為磊晶基材;III-砷化物或係磷化物通常係使用砷化鎵基板,磷化鎵基板,磷化銦基板,或係砷化銦基板;而III-氮化物在商業上通常會使用藍寶石基板,或係碳化矽基板,目前實驗階段有使用鋁酸鋰基板,鎵酸鋰基板,矽基板,或係氧化鋁鋅基板等。另外,晶格結構與晶格常數係另一項選擇磊晶基板的重要依據。晶格常數差異過大,往往需要先形成一緩衝層才可以得到較佳的磊晶品質。 Which material substrate is selected for the light-emitting diode is determined according to the physical properties of the semiconductor of the various light-emitting diodes. For example, a general II-VI semiconductor compound uses a zinc selenide substrate or a zinc oxide substrate as an epitaxial substrate; a III-arsenide or a phosphide usually uses a gallium arsenide substrate, a gallium phosphide substrate, and a phosphorus Indium-indium substrate, or indium arsenide substrate; while III-nitride is commonly used in commercial sapphire substrates, or tantalum carbide substrates, the current experimental stage uses lithium aluminate substrates, lithium gallate substrates, germanium substrates, or It is an alumina zinc substrate or the like. In addition, the lattice structure and lattice constant are another important basis for selecting an epitaxial substrate. If the difference in lattice constant is too large, it is often necessary to form a buffer layer first to obtain a better epitaxial quality.

請參考第一A圖,本發明的主要特徵在於半導體的磊晶製程中,於磊晶用的基板(101)參入高磁導性之金屬微塊(102),因無線射頻加熱該高磁導性金屬微塊(102),使得其周圍的氮化鎵磊晶層(103)受熱發生裂解。在本發明的實施例中,使用的磊晶材料為III-氮化物,特別係使用氮化鎵(GaN),而搭配使用的磊晶基板係目前商業上常見的藍寶石(Sapphire)基板或係碳化矽(SiC)基板。然而,任何習知本項技藝者應能理解,本發明的磊晶材料的選擇並不限定於III-氮化物,或甚至係氮化鎵等的材料。任何III-V半導體化合物或係II-VI半導體化合物皆可應用在本發明中。 Referring to FIG. 1A, the main feature of the present invention is that in the epitaxial process of the semiconductor, the substrate (101) for epitaxy is incorporated into the high-permeability metal micro-block (102), and the high-magnetic is heated by the radio frequency. The conductive metal micro-block (102) is such that the gallium nitride epitaxial layer (103) surrounding it is thermally cracked. In an embodiment of the invention, the epitaxial material used is a III-nitride, in particular using gallium nitride (GaN), and the epitaxial substrate used in combination with a commercially available sapphire substrate or carbonization is currently commercially available.矽 (SiC) substrate. However, it will be understood by those skilled in the art that the choice of the epitaxial material of the present invention is not limited to III-nitride, or even a material such as gallium nitride. Any of the III-V semiconductor compounds or the II-VI semiconductor compounds can be used in the present invention.

在第一實施例中,如第一A圖所示步驟(110)中,在半導體磊晶 製程進行之前,先在磊晶用的藍寶石基板(101)上設置一高磁導金屬陣列,其中該高磁導金屬陣列由複數個高磁導性之金屬微塊(102)排列組成,並且該陣列排列方式採由中心往外逐漸增加金屬微塊之間的緊密度,請參看第一C圖示,其排列方式可為規則的矩陣或圓陣,甚至係如第一C圖所示的不規則陣列。該高磁導金屬陣列受到加熱時,可產生均勻向外之溫度梯度,導致該高磁導金屬陣列由外向內裂解,以避免該高磁導金屬陣列由內部先裂解而破壞該氮化鎵磊晶層(103)之結構。該金屬陣列所使用的高磁導性金屬微塊(102),主要為鐵磁性材料、鉬(Mu-metal)、高磁導合金(Permalloy)、電磁鋼體(Electrical steel)、鎳鋅鐵氧磁體(nickel zinc ferrite)、錳鋅鐵氧磁體(manganese zinc ferrite)、鋼(Steel)等材料。 In the first embodiment, in the step (110) shown in the first A diagram, in the semiconductor epitaxy Before the process is performed, a high-permeability metal array is disposed on the sapphire substrate (101) for epitaxy, wherein the high-permeability metal array is composed of a plurality of high-permeability metal micro-blocks (102), and the The array arrangement adopts the gradual increase of the tightness between the metal micro-blocks from the center. Please refer to the first C diagram, which can be arranged in a regular matrix or a circular array, or even irregular as shown in the first C-picture. Array. When the high-permeability metal array is heated, a uniform outward temperature gradient is generated, causing the high-permeability metal array to be cracked from the outside to the inside to prevent the high-permeability metal array from being cracked internally to destroy the gallium nitride. The structure of the crystal layer (103). The high-permeability metal micro-block (102) used in the metal array is mainly a ferromagnetic material, a mo-metal, a high-magnetic alloy (Permalloy), an electromagnetic steel (Electrical steel), a nickel-zinc ferrite. Nickel zinc ferrite, manganese zinc ferrite, steel and other materials.

上述的高磁導金屬陣列設置方式,可藉由物理氣相沈積(Physical Vapor Deposition,PVD)、蒸鍍(Evaporation)、濺鍍(Sputtering)等方式,於磊晶用的藍寶石基板(101)上形成。該金屬陣列設置之後,請參考第一A圖之步驟(120),將具有金屬陣列基板(101),導入有機金屬氣相磊晶製程(Metal Organic Chemistry Vapor Deposition,MOCVD),讓氮化鎵(GaN)從該金屬微塊(102)之間隔,在藍寶石基板(101)往上生成一氮化鎵磊晶層(103)。 The above-mentioned arrangement of the high-permeability metal array can be performed on the sapphire substrate (101) for epitaxial crystal by physical vapor deposition (PVD), evaporation, sputtering or the like. form. After the metal array is disposed, please refer to step (120) of FIG. A to introduce a metal array substrate (101) into a metal organic vapor phase epitaxy (MOCVD) to allow gallium nitride ( GaN) generates a gallium nitride epitaxial layer (103) from the sapphire substrate (101) from the spacing of the metal microblocks (102).

該藍寶石基板(101)經過有機金屬氣相磊晶製程,生成一層的氮化鎵磊晶層(103),該氮化鎵磊晶層(103)厚度淹過該藍寶石基板(101)上金屬陣列,且每一高磁導金屬微塊(102)皆被 氮化鎵磊晶層(103)包覆。請參考第一A圖之步驟(130),在該氮化鎵磊晶層(103)的表面接合一載板(104),該載板(104)用在載乘將來從該藍寶石基板(101)分離的氮化鎵磊晶層(103),該載板(104)材料可為矽(Si)、金矽(Au-Si)、金銀合金(Au-Ag)、碳化矽(SiC)、砷化鎵(GaAs)、銅(Cu)、銅鎢合金(Cu-W)。由於在該氮化鎵磊晶層(103)的表面如何接合該載板(104),並非本發明主要目的,故此,不以文字及圖示詳加說明其接合方式。 The sapphire substrate (101) is subjected to an organometallic vapor phase epitaxial process to form a layer of gallium nitride epitaxial layer (103), and the gallium nitride epitaxial layer (103) is flooded over the metal array on the sapphire substrate (101). And each high-permeability metal micro-block (102) is The gallium nitride epitaxial layer (103) is coated. Referring to step (130) of FIG. A, a carrier (104) is bonded to the surface of the gallium nitride epitaxial layer (103), and the carrier (104) is used for future loading from the sapphire substrate (101). Separating gallium nitride epitaxial layer (103), the carrier (104) material may be bismuth (Si), gold bismuth (Au-Si), gold-silver alloy (Au-Ag), tantalum carbide (SiC), arsenic Gallium (GaAs), copper (Cu), copper-tungsten alloy (Cu-W). Since the carrier (104) is bonded to the surface of the gallium nitride epitaxial layer (103), it is not the main object of the present invention. Therefore, the bonding method will not be described in detail by the characters and the drawings.

請參考第一B圖之步驟(140),將氮化鎵磊晶層(103)連同該藍寶石基板(101)與該載板(104),送至無線射頻加熱(Radio Frequency Heating)裝置(105)做受熱。該加熱裝置(105)主要由一圓柱型金屬線圈以及一直流電源供應器所構成,其中該圓柱型金屬線圈大小足以容納包含該載板(104)、該氮化鎵磊晶層(103)、高磁導金屬微塊(102)以及該藍寶石基板(101)。該無線射頻加熱裝置(105)的直流電源供應器,更包含一功率電晶體(Power Transistor),用以使該直流電源供應器對該圓柱型金屬線圈產生高週波電流。當高週波電流流經該圓柱型金屬線圈,因電磁感應效應(Electromagnetic Induction Effect),讓該氮化鎵磊晶層(103)內金屬陣列之高磁導金屬微塊(102)產生熱能,使該氮化鎵磊晶層(103)因此受熱。 Referring to step (140) of FIG. B, the gallium nitride epitaxial layer (103) together with the sapphire substrate (101) and the carrier (104) are sent to a radio frequency heating (Radio Frequency Heating) device (105). ) Doing heat. The heating device (105) is mainly composed of a cylindrical metal coil and a DC power supply, wherein the cylindrical metal coil is large enough to accommodate the carrier plate (104), the gallium nitride epitaxial layer (103), a high permeability metal micro-block (102) and the sapphire substrate (101). The DC power supply of the radio frequency heating device (105) further includes a power transistor for causing the DC power supply to generate a high-frequency current to the cylindrical metal coil. When a high-frequency current flows through the cylindrical metal coil, the high-permeability metal micro-block (102) of the metal array in the gallium nitride epitaxial layer (103) generates thermal energy due to an Electromagnetic Induction Effect. The gallium nitride epitaxial layer (103) is thus heated.

無線射頻加熱裝置(105)持續在其圓柱型金屬線圈產生高週波電流,使該金屬陣列之高磁導金屬微塊(102)因電磁感應產生熱能,無線射頻加熱裝置(105)依據熱能方程式,控制該高 磁導金屬微塊(102)所產生的熱能。請參考第一B圖之步驟(150),一直到金屬陣列之高磁導金屬微塊(102)產生的熱量足以破壞該氮化鎵磊晶層(103)與該藍寶石基板(101)於介面上的鏈結力量,最後使該氮化鎵磊晶層(102)大範圍發生分子裂解而從該藍寶石基板(101)上解離。 The radio frequency heating device (105) continuously generates a high-frequency current in its cylindrical metal coil, so that the high-permeability metal micro-block (102) of the metal array generates thermal energy due to electromagnetic induction, and the radio frequency heating device (105) is based on the thermal energy equation. Controlling the thermal energy generated by the high permeability metal micro-block (102). Please refer to step (150) of FIG. B until the heat generated by the high-permeability metal micro-block (102) of the metal array is sufficient to destroy the gallium nitride epitaxial layer (103) and the sapphire substrate (101). The above-mentioned chaining force finally causes the gallium nitride epitaxial layer (102) to undergo molecular cracking in a wide range and dissociate from the sapphire substrate (101).

如同第一B圖之步驟(160)所示,最後係由該載板(104)載乘從該藍寶石基板(101)分離的氮化鎵磊晶層(103),也係整個分離過程結束時,最終得到的產物該載板(104)上有該氮化鎵磊晶層(103)。 As shown in step (160) of Figure B, the carrier (104) is finally loaded with the gallium nitride epitaxial layer (103) separated from the sapphire substrate (101), also at the end of the entire separation process. The resulting product has the gallium nitride epitaxial layer (103) on the carrier (104).

除上述實施例,本發明還有第二個實施例,來實現分離兩個半導體材料。請參考第二A圖,其使用到的基板與半導體材料,仍以藍寶石基板(101)與氮化鎵(GaN)材料做為本發明的實例施說明,並非限制本發明應用在其他的基板與半導體材料。在第二A圖的步驟210中,採藍寶石基板(101)做為半導體磊晶製程的媒介,使氮化鎵磊晶層(103)在該藍寶石基板(101)表面形成。其中該半導體磊晶製程採取有機金屬氣相磊晶製程(Metal Organic Chemistry Vapor Deposition,MOCVD),讓氮化鎵(GaN)在藍寶石基板(101)往上生成一氮化鎵磊晶層(103)。 In addition to the above embodiments, the present invention has a second embodiment for achieving separation of two semiconductor materials. Please refer to FIG. 2A, which uses the substrate and the semiconductor material, and still uses the sapphire substrate (101) and the gallium nitride (GaN) material as an example for the present invention, and does not limit the application of the present invention to other substrates. semiconductors. In step 210 of the second A diagram, the sapphire substrate (101) is used as a medium for the semiconductor epitaxial process, and a gallium nitride epitaxial layer (103) is formed on the surface of the sapphire substrate (101). The semiconductor epitaxial process adopts a Metal Organic Chemistry Vapor Deposition (MOCVD) to cause gallium nitride (GaN) to form a gallium nitride epitaxial layer on the sapphire substrate (101) (103). .

此外,假若上述的有機金屬氣相磊晶製程,用以形成其他III-氮化物磊晶層,甚至係III-V半導體化合物或II-VI半導體化合物磊晶層,其磊晶製程所使用的基板(Substrate),須依照該半導體的物理特性來做選定,其基板可為氧化鋁(Al2O3)基板、碳化矽(SiC)基板、鋁酸鋰基板(LiAlO2)、鎵酸鋰基板(LiGaO2)、矽(Si)基板、氮化鎵(GaN)基板,氧化鋅(ZnO)基板、氧 化鋁鋅基板(AlZnO)、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、銻化鎵基板(GaSb)、磷化銦(InP)基板、砷化銦(InAs)基板、硒化鋅(ZnSe)基板、金屬基板等。 In addition, if the above-mentioned organometallic vapor phase epitaxial process is used to form other III-nitride epitaxial layers, or even a III-V semiconductor compound or a II-VI semiconductor compound epitaxial layer, the substrate used in the epitaxial process (Substrate), which must be selected according to the physical properties of the semiconductor, and the substrate may be an alumina (Al 2 O 3 ) substrate, a tantalum carbide (SiC) substrate, a lithium aluminate substrate (LiAlO 2 ), or a lithium gallate substrate ( LiGaO 2 ), ytterbium (Si) substrate, gallium nitride (GaN) substrate, zinc oxide (ZnO) substrate, aluminum zinc oxide substrate (AlZnO), gallium arsenide (GaAs) substrate, gallium phosphide (GaP) substrate, germanium Gallium substrate (GaSb), indium phosphide (InP) substrate, indium arsenide (InAs) substrate, zinc selenide (ZnSe) substrate, metal substrate, and the like.

請參考第二A圖的步驟(220),當該有機金屬氣相磊晶製程進行的前半段,在該藍寶石基板(101)上已生成一層薄薄地氮化鎵磊晶層(103),然後在該氮化鎵磊晶層(103)表面上設置一金屬陣列,其中金屬陣列係由複數個高磁導性之金屬微塊(102)排列組成,其材料主要為鐵磁性材料、鉬(Mu-metal)、高磁導合金(Permalloy)、電磁鋼體(Electrical steel)、鎳鋅鐵氧磁體(nickel zinc ferrite)、錳鋅鐵氧磁體(manganese zinc ferrite)、鋼(Steel)等材料。 Referring to step (220) of FIG. 2A, when the first half of the organometallic vapor phase epitaxial process is performed, a thin layer of gallium nitride epitaxial layer (103) is formed on the sapphire substrate (101), and then A metal array is disposed on the surface of the gallium nitride epitaxial layer (103), wherein the metal array is composed of a plurality of high magnetic permeability metal micro-blocks (102), the material of which is mainly ferromagnetic material, molybdenum (Mu) -metal), Permalloy, Electro Steel, Nickel Zinc Ferrite, Manganese Zinc Ferrite, Steel, etc.

上述的金屬陣列的排列方式,採用以該氮化鎵磊晶層(103)表面中心往外逐漸增加高磁導性金屬微塊(102)之間的緊密度,請參看第二C圖示,其排列方式可為規則的矩陣或圓陣,甚至係如第二C圖所示的不規則陣列。該陣列設置方法理由係,當該高磁導金屬陣列受到加熱時,可產生均勻向外之溫度梯度,導致該高磁導金屬陣列由外向內裂解,以避免該高磁導金屬陣列由內部先裂解而破壞該氮化鎵磊晶層(103)之結構。該金屬陣列藉由物理氣相沈積(Physical Vapor Deposition,PVD)、蒸鍍(Evaporation)、濺鍍(Sputtering)等方式,將該複數個高磁導性金屬微塊(102)於該氮化鎵磊晶層(103)表面上形成。 The metal array is arranged in such a manner that the tightness between the high-permeability metal micro-blocks (102) is gradually increased outward from the surface center of the gallium nitride epitaxial layer (103). Please refer to the second C diagram. The arrangement may be a regular matrix or a circular array, or even an irregular array as shown in the second C diagram. The reason for the array setting method is that when the high-permeability metal array is heated, a uniform outward temperature gradient can be generated, causing the high-permeability metal array to be cracked from the outside to the inside to avoid the high-permeability metal array from being internally first. The structure of the gallium nitride epitaxial layer (103) is destroyed by cracking. The metal array is subjected to physical vapor deposition (PVD), evaporation, sputtering, etc., and the plurality of high-permeability metal micro-blocks (102) are applied to the gallium nitride. The epitaxial layer (103) is formed on the surface.

請參閱第二A圖的步驟(230)中,該金屬陣列於該氮化鎵磊晶層(103)表面上設置之後,如同第二A圖的步驟220中,繼續進行後半段的有機金屬氣相磊晶製程,使每一高磁導性金屬微塊( 102)皆被氮化鎵磊晶層(103)所包覆,直到該氮化鎵磊晶層(103)達到製程上要求的厚度。請參考第二A圖的步驟(240),把完成好有機金屬氣相磊晶製程的整個材料,在該氮化鎵磊晶層(103)的表面接合一載板(104),該載板(104)用在將來取代該藍寶石基板(101)以乘載最後的氮化鎵磊晶層(103),該載板(104)材料可為矽(Si)、金矽(Au-Si)、金銀合金(Au-Ag)、碳化矽(SiC)、砷化鎵(GaAs)、銅(Cu)、銅鎢合金(Cu-W)。由於在該氮化鎵磊晶層(103)的表面如何接合該載板(104),並非本發明主要目的,故此,不以文字及圖示詳加說明其接合方式。 Referring to step (230) of FIG. 2A, after the metal array is disposed on the surface of the gallium nitride epitaxial layer (103), as in step 220 of the second A diagram, the second half of the organometallic gas is continued. Phase epitaxial process to make each high magnetic permeability metal micro block ( 102) is covered by a gallium nitride epitaxial layer (103) until the gallium nitride epitaxial layer (103) reaches a desired thickness in the process. Referring to step (240) of FIG. 2A, the entire material of the organic metal vapor phase epitaxial process is completed, and a carrier (104) is bonded to the surface of the gallium nitride epitaxial layer (103). (104) for replacing the sapphire substrate (101) in the future to carry the last gallium nitride epitaxial layer (103), the carrier (104) material may be bismuth (Si), gold bismuth (Au-Si), Gold-silver alloy (Au-Ag), tantalum carbide (SiC), gallium arsenide (GaAs), copper (Cu), copper-tungsten alloy (Cu-W). Since the carrier (104) is bonded to the surface of the gallium nitride epitaxial layer (103), it is not the main object of the present invention. Therefore, the bonding method will not be described in detail by the characters and the drawings.

請參考第二B圖的步驟(250),將接合在該氮化鎵磊晶層(103)表面的載板(104),包括底部的藍寶石基板(101),整個材料送至無線射頻加熱裝置(Radio Frequency Heating)(105),該加熱裝置(105)也係同樣由一圓柱型金屬線圈以及一直流電源供應器所構成,其中該圓柱型金屬線圈的大小,足以容納包括最上層的載板(104)、中層的氮化鎵磊晶層(103)以及底層的藍寶石基板(101)整個半導體材料。此外,該加熱裝置(105)的直流電源供應器也包含了一功率電晶體(Power Transistor),以對該圓柱型金屬線圈產生高週波電流。整個無線射頻加熱裝置(105)運作原理如同前述的說明解釋,故不再多加贅述。 Referring to step (250) of FIG. B, the carrier (104) bonded to the surface of the gallium nitride epitaxial layer (103), including the bottom sapphire substrate (101), is sent to the radio frequency heating device. (Radio Frequency Heating) (105), the heating device (105) is also composed of a cylindrical metal coil and a DC power supply, wherein the cylindrical metal coil is large enough to accommodate the carrier layer including the uppermost layer. (104), the intermediate layer of gallium nitride epitaxial layer (103) and the underlying sapphire substrate (101) of the entire semiconductor material. In addition, the DC power supply of the heating device (105) also includes a power transistor to generate a high-frequency current to the cylindrical metal coil. The operation principle of the entire radio frequency heating device (105) is explained as explained in the foregoing description, and therefore will not be further described.

誠如第二B圖的步驟(260)所示,當該無線射頻加熱裝置(105)產生的高週波電流流經其中的圓柱型金屬線圈時,因著電磁感應效應(Electromagnetic Induction Effect),讓位在氮化鎵磊晶層(103)內的高磁導性金屬微塊(102)陣列加速升溫,直 到整個金屬陣列產生的熱量足以讓該氮化鎵磊晶層(103)分子發生裂解,最後發生大範圍的分子裂解,從藍寶石基板(101)上解離。 As shown in step (260) of FIG. B, when the high-frequency current generated by the radio frequency heating device (105) flows through the cylindrical metal coil therein, due to the Electromagnetic Induction Effect, The array of high-permeability metal micro-blocks (102) located in the gallium nitride epitaxial layer (103) accelerates temperature rise, straight The heat generated by the entire metal array is sufficient to cause the gallium nitride epitaxial layer (103) molecules to be cleaved, and finally a large range of molecular cleavage occurs, dissociating from the sapphire substrate (101).

整個半導體材料在該氮化鎵磊晶層(103)解離完成後,如同第二B圖之步驟(270)所示,最後係該載板(104)替代該藍寶石基板(101),載乘最後的氮化鎵磊晶層(103),也係整個分離過程結束時,最終得到的產物係該載板(104)上有該氮化鎵磊晶層(103)。 After the dissociation of the gallium nitride epitaxial layer (103) is completed, the entire semiconductor material is replaced by the carrier (104) instead of the sapphire substrate (101), as shown in step (270) of FIG. The gallium nitride epitaxial layer (103), also at the end of the entire separation process, results in a product of the gallium nitride epitaxial layer (103) on the carrier (104).

本發明在第三實施例中,採用除了上述方法的氮化鎵磊晶層以外的半導體材料,例如磊晶材料為III-氮化物,或者係III-V半導體化合物,也可以係II-VI半導體化合物,甚至如同AlxInyGa(1-x-y)N半導體化合物,其中x與y皆≦1。在半導體磊晶製程進行之前,先在磊晶用的基板上設置一金屬陣列,其中該基板可為氧化鋁(Al2O3)基板、碳化矽(SiC)基板、鋁酸鋰基板(LiAlO2)、鎵酸鋰基板(LiGaO2)、矽(Si)基板、氮化鎵(GaN)基板,氧化鋅(ZnO)基板、氧化鋁鋅基板(AlZnO)、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、銻化鎵基板(GaSb)、磷化銦(InP)基板、砷化銦(InAs)基板、硒化鋅(ZnSe)基板、金屬基板等,而基板的選擇係依照各個磊晶材料原本半導體物理特性,來決定何種材質的基板。 In the third embodiment, the semiconductor material other than the gallium nitride epitaxial layer of the above method is used, for example, the epitaxial material is III-nitride, or is a III-V semiconductor compound, and may also be a II-VI semiconductor. a compound, even like an Al x In y Ga (1-xy) N semiconductor compound, wherein x and y are both ≦1. Before the semiconductor epitaxial process is performed, a metal array is disposed on the substrate for epitaxy, wherein the substrate may be an aluminum oxide (Al 2 O 3 ) substrate, a tantalum carbide (SiC) substrate, or a lithium aluminate substrate (LiAlO 2 ). Lithium gallate substrate (LiGaO 2 ), bismuth (Si) substrate, gallium nitride (GaN) substrate, zinc oxide (ZnO) substrate, aluminum zinc oxide substrate (AlZnO), gallium arsenide (GaAs) substrate, phosphating a gallium (GaP) substrate, a gallium antimonide substrate (GaSb), an indium phosphide (InP) substrate, an indium arsenide (InAs) substrate, a zinc selenide (ZnSe) substrate, a metal substrate, or the like, and the substrate is selected according to each The physical properties of the crystalline material originally determined by the semiconductor substrate.

該基板上的金屬陣列係由複數個高磁導性之金屬微塊所排列組成的,藉由物理氣相沈積(Physical Vapor Deposition,PVD)、蒸鍍(Evaporation)、濺鍍(Sputtering)等方式,將該複數個高磁導性金屬微塊能於該半導體磊晶層表面上形成。該高磁導 性之金屬微塊採用如鐵磁性材料、鉬(Mu-metal)、高磁導合金(Permalloy)、電磁鋼體(Electrical steel)、鎳鋅鐵氧磁體(nickel zinc ferrite)、錳鋅鐵氧磁體(manganese zinc ferrite)、鋼(Steel)等材料。該金屬陣列的排列方式採用由中心往外逐漸增加金屬微塊之間的緊密度。該金屬陣列設置之後將具有金屬陣列基板,導入有機金屬氣相磊晶製程,使該半導體磊晶層在該金屬微塊之間隔中生成半導體磊晶層,直到磊晶層厚度達到製程上的要求。 The metal array on the substrate is composed of a plurality of high-permeability metal micro-blocks, and is formed by physical vapor deposition (PVD), evaporation (evaporation), sputtering (Sputtering), and the like. The plurality of high magnetic permeability metal microblocks can be formed on the surface of the semiconductor epitaxial layer. High permeability Metallic micro-blocks such as ferromagnetic materials, molybdenum (Mu-metal), high-permeability alloy (Permalloy), electromagnetic steel (Electrical steel), nickel-zinc ferrite magnet (nickel zinc ferrite), manganese-zinc ferrite magnet (manganese zinc ferrite), steel (Steel) and other materials. The arrangement of the metal arrays is such that the tightness between the metal micro-blocks is gradually increased from the center to the outside. After the metal array is disposed, the metal array substrate is introduced into the organometallic vapor phase epitaxial process, so that the semiconductor epitaxial layer forms a semiconductor epitaxial layer in the interval between the metal microblocks until the thickness of the epitaxial layer reaches the process requirement. .

該基板經過磊晶製程生成一半導體磊晶層,該半導體磊晶層厚度高過基板上金屬陣列,且每一金屬微塊皆被該半導體磊晶層包覆,於該半導體磊晶層之頂部表面接合一半導體材料層,該半導體材料層為替代原先磊晶製程用的基板。將該半導體磊晶層連同原本基板以及其上的該半導體材料層,送至無線射頻加熱裝置(Radio Frequency Heating),該加熱裝置主要由一圓柱型金屬線圈以及一直流電源供應器所構成,其中該圓柱型金屬線圈大小足以容納該整個半導體材料。當該直流電源供應器產生的高週波電流,不斷流經該圓柱型金屬線圈同時,因磁導效應讓該半導體磊晶層內的金屬陣列加速升溫,直到該金屬陣列產生的熱量足以讓該半導體磊晶層的分子發生裂解,最後使該半導體磊晶層大範圍發生分子裂解而從該基板上解離,而接合在該半導體磊晶層表面的半導體材料層,成為該半導體磊晶層新的基板。 The substrate is subjected to an epitaxial process to form a semiconductor epitaxial layer having a thickness higher than a metal array on the substrate, and each metal micro-block is covered by the semiconductor epitaxial layer at the top of the semiconductor epitaxial layer The surface is bonded to a layer of semiconductor material which is a substrate for replacing the original epitaxial process. And sending the semiconductor epitaxial layer together with the original substrate and the semiconductor material layer thereon to a radio frequency heating device (Radio Frequency Heating), the heating device is mainly composed of a cylindrical metal coil and a DC power supply, wherein The cylindrical metal coil is of sufficient size to accommodate the entire semiconductor material. When the high-frequency current generated by the DC power supply continuously flows through the cylindrical metal coil, the metal array in the epitaxial layer of the semiconductor is accelerated by the magnetic permeability effect until the heat generated by the metal array is sufficient for the semiconductor The molecules of the epitaxial layer are cleaved, and finally the semiconductor epitaxial layer is molecularly cleaved and dissociated from the substrate, and the semiconductor material layer bonded to the surface of the epitaxial layer of the semiconductor becomes a new substrate of the epitaxial layer of the semiconductor. .

本發明在第四實施例中,欲從磊晶製程得到的半導體磊晶層,其半導體磊晶層採用的材料包括III-氮化物,也可以係III-V半導體化合物或係II-VI半導體化合物,甚至如AlxInyGa(1-x-y)N半導 體化合物,其中x與y皆≦1。設置一基板並進行有機金屬氣相磊晶製程,以藉生成該半導體磊晶層,其中該基板可為氧化鋁(Al2O3)基板、碳化矽(SiC)基板、鋁酸鋰基板(LiAlO2)、鎵酸鋰基板(LiGaO2)、矽(Si)基板、氮化鎵(GaN)基板,氧化鋅(ZnO)基板、氧化鋁鋅基板(AlZnO)、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、銻化鎵基板(GaSb)、磷化銦(InP)基板、砷化銦(InAs)基板、硒化鋅(ZnSe)基板、金屬基板等,而基板的選擇係依照各個半導體磊晶層材料原本半導體物理特性,來決定何種材質的基板。 In the fourth embodiment of the present invention, the semiconductor epitaxial layer to be obtained from the epitaxial process, the material used for the semiconductor epitaxial layer includes III-nitride, or may be a III-V semiconductor compound or a II-VI semiconductor compound. Even an Al x In y Ga (1-xy) N semiconductor compound in which x and y are both ≦1. Forming a substrate and performing an organometallic vapor phase epitaxial process to form the semiconductor epitaxial layer, wherein the substrate may be an aluminum oxide (Al 2 O 3 ) substrate, a tantalum carbide (SiC) substrate, or a lithium aluminate substrate (LiAlO) 2 ) Lithium gallate substrate (LiGaO 2 ), bismuth (Si) substrate, gallium nitride (GaN) substrate, zinc oxide (ZnO) substrate, aluminum zinc oxide substrate (AlZnO), gallium arsenide (GaAs) substrate, phosphorus Gallium gallium (GaP) substrate, gallium antimonide substrate (GaSb), indium phosphide (InP) substrate, indium arsenide (InAs) substrate, zinc selenide (ZnSe) substrate, metal substrate, etc., and the selection of the substrate is in accordance with each The semiconductor epitaxial layer material is determined by the physical properties of the semiconductor to determine which material is the substrate.

經過有機金屬氣相磊晶製程進行至中段時,在磊晶用的基板已形成一層的半導體磊晶層。在該半導體磊晶層的表面上設置一金屬陣列,該金屬陣列係由複數個高磁導性之金屬微塊所排列組成的,該高磁導性之金屬微塊採用如鐵磁性材料、鉬(Mu-metal)、高磁導合金(Permalloy)、電磁鋼體(Electrical steel)、鎳鋅鐵氧磁體(nickel zinc ferrite)、錳鋅鐵氧磁體(manganese zinc ferrite)、鋼(Steel)等材料。 When the organic metal vapor phase epitaxy process is carried out to the middle stage, a layer of semiconductor epitaxial layer is formed on the substrate for epitaxy. Forming a metal array on the surface of the epitaxial layer of the semiconductor, the metal array being composed of a plurality of high-permeability metal micro-blocks, such as ferromagnetic material, molybdenum (Mu-metal), Permalloy, Electro Steel, Nickel Zinc Ferrite, Manganese Zinc Ferrite, Steel .

其中該金屬陣列的排列方式,採用由中心往外逐漸增加金屬微塊之間的緊密度。當該高磁導金屬陣列加熱時,可產生均勻向外之溫度梯度,導致該高磁導金屬陣列由外向內裂解,以避免該高磁導金屬陣列由內部先裂解而破壞該半導體層之結構。 The metal array is arranged in such a manner that the tightness between the metal micro-blocks is gradually increased from the center to the outside. When the array of high-permeability metal is heated, a uniform outward temperature gradient can be generated, causing the array of high-permeability metal to be cracked from the outside to the inside to avoid the structure of the high-permeability metal array being cracked by internal cracking to destroy the structure of the semiconductor layer. .

待該金屬陣列設置完成之後,將具有金屬陣列的該半導體磊晶層包括底下的基板,繼續導入有機金屬氣相磊晶製程,使該半導體磊晶層在該金屬微塊之間隔中生成半導體磊晶層,直到磊晶層厚度達到製程上的要求。 After the metal array is disposed, the semiconductor epitaxial layer having the metal array includes a substrate underneath, and the organic metal vapor phase epitaxial process is further introduced, so that the semiconductor epitaxial layer generates a semiconductor beam in the interval between the metal microblocks. The crystal layer until the thickness of the epitaxial layer reaches the requirements of the process.

該基板經磊晶製程完成該半導體磊晶層,該半導體磊晶層厚度高過基板上金屬陣列,且每一金屬微塊皆被該半導體磊晶層包覆,之後,於該半導體磊晶層之頂部表面接合一半導體材料層,該半導體材料層主要目的係替代原先磊晶製程用的基板。接合過程完成後,將該半導體磊晶層連同原本基板以及其上的該半導體材料層,送至無線射頻加熱裝置(Radio Frequency Heating),該加熱裝置主要由一大小足以容納該整個半導體材料的圓柱型金屬線圈,以及一直流電源供應器所構成。 The substrate is subjected to an epitaxial process to complete the epitaxial layer of the semiconductor. The thickness of the epitaxial layer of the semiconductor is higher than the metal array on the substrate, and each metal micro-block is covered by the epitaxial layer of the semiconductor, and then the epitaxial layer of the semiconductor The top surface is bonded to a layer of semiconductor material that is primarily intended to replace the substrate for the prior epitaxial process. After the bonding process is completed, the semiconductor epitaxial layer is sent to the radio frequency heating device together with the original substrate and the semiconductor material layer thereon, the heating device is mainly composed of a cylinder of a size large enough to accommodate the entire semiconductor material. A metal coil and a DC power supply.

當該無線射頻加熱裝置啟動時,其中的直流電源供應器產生的高週波電流,不斷流經該圓柱型金屬線圈同時,因磁導效應使得該半導體磊晶層內的金屬陣列加速升溫,直到該金屬陣列之金屬微塊產生的熱量,足以破壞該半導體磊晶層的分子原來鏈結力量,從與金屬陣列的介面上發生裂解,逐漸使該半導體磊晶層大範圍發生分子裂解,最後與底下的基板上解離。而接合在該半導體磊晶層表面的半導體材料層,就替代原本的基板成為該半導體磊晶層新的基板。 When the radio frequency heating device is activated, a high-frequency current generated by the DC power supply continuously flows through the cylindrical metal coil, and the metal array in the epitaxial layer of the semiconductor is accelerated by the magnetic permeability effect until the The heat generated by the metal micro-block of the metal array is sufficient to destroy the original chain strength of the semiconductor epitaxial layer, and the cleavage from the interface with the metal array gradually causes molecular cracking of the semiconductor epitaxial layer to a large extent, and finally Dissociation on the substrate. The semiconductor material layer bonded to the surface of the semiconductor epitaxial layer replaces the original substrate to become a new substrate of the semiconductor epitaxial layer.

顯然地,依照上面實施例中的描述,本發明可能有許多的修正與差異。因此需要在其附加的權利要求項之範圍內加以理解,除了上述詳細的描述外,本發明還可以廣泛地在其他的實施例中施行。上述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其他未脫離本發明所揭示之精神下所完成的等效改變或修飾,均應包含在下述申請專利範圍內。 Obviously, many modifications and differences may be made to the invention in light of the above description. It is therefore to be understood that within the scope of the appended claims, the invention may be The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the claims of the present invention; all other equivalent changes or modifications which are not departing from the spirit of the present invention should be included in the following patents. Within the scope.

101‧‧‧藍寶石基板 101‧‧‧Sapphire substrate

102‧‧‧高磁導性金屬微塊 102‧‧‧High magnetic permeability metal micro-blocks

103‧‧‧氮化鎵磊晶層 103‧‧‧ gallium nitride epitaxial layer

104‧‧‧載板 104‧‧‧ Carrier Board

105‧‧‧無線射頻加熱裝置 105‧‧‧Wireless RF heating device

140~160‧‧‧步驟 140~160‧‧‧Steps

Claims (11)

一種分離兩種材料的方法,包含:形成一高磁導金屬陣列於一基板與一半導體層之間,該高磁導金屬陣列包括複數個間隔設置的高磁導性金屬微塊,該複數個高磁導性金屬微塊的密度由該高磁導金屬陣列的中心向外逐漸增加;以及以無線射頻(Radio Frequency)加熱該高磁導金屬陣列,使該高磁導金屬陣列產生高溫,以使該基板及該高磁導金屬陣列與該半導體層分離。 A method of separating two materials, comprising: forming a high-permeability metal array between a substrate and a semiconductor layer, the high-permeability metal array comprising a plurality of spaced apart high-permeability metal micro-blocks, the plurality of The density of the high-permeability metal micro-blocks is gradually increased from the center of the high-permeability metal array; and the high-permeability metal array is heated by a radio frequency to cause the high-magnetic metal array to generate a high temperature to The substrate and the high permeability metal array are separated from the semiconductor layer. 根據申請專利範圍第1項之分離兩種材料的方法,其中形成該高磁導金屬陣列於該基板與該半導體層之間包含下列步驟:形成該高磁導金屬陣列於該基板上;以及藉由該些高磁導性金屬微塊間之該基板生長該半導體層,以使該半導體層包覆該高磁導金屬陣列。 The method for separating two materials according to claim 1, wherein the forming the high-permeability metal array between the substrate and the semiconductor layer comprises the steps of: forming the high-permeability metal array on the substrate; The semiconductor layer is grown from the substrate between the high permeability metal microblocks such that the semiconductor layer encapsulates the high permeability metal array. 根據申請專利範圍第1項之分離兩種材料的方法,其中形成該高磁導金屬陣列於該基板與該半導體層之間包含下列步驟:形成該半導體層於該基板上;形成該高磁導金屬陣列於該半導體層上;以及藉由該些高磁導性金屬微塊間之該半導體層持續磊晶該半導體層,以使該半導體層包覆該高磁導金屬陣列。 The method of separating two materials according to claim 1, wherein forming the high-permeability metal array between the substrate and the semiconductor layer comprises the steps of: forming the semiconductor layer on the substrate; forming the high magnetic permeability A metal array is on the semiconductor layer; and the semiconductor layer is continuously epitaxially grown by the semiconductor layer between the high permeability metal micro-blocks such that the semiconductor layer encapsulates the high-permeability metal array. 根據申請專利範圍第1項之分離兩種材料的方法,在以無線射頻加熱該高磁導金屬陣列之前,可先形成一材料層於該半導體上。 According to the method of separating two materials according to claim 1, the material layer may be formed on the semiconductor prior to heating the high-permeability metal array by radio frequency. 根據申請專利範圍第4項之分離兩種材料的方法,其中上述之材料層可為矽(Si)、金矽(Au-Si)、金銀合金(Au-Ag)、碳化矽(SiC)、砷 化鎵(GaAs)、銅(Cu)、銅鎢合金(Cu-W)。 The method for separating two materials according to claim 4, wherein the material layer may be bismuth (Si), gold lanthanum (Au-Si), gold-silver alloy (Au-Ag), tantalum carbide (SiC), arsenic. Gallium (GaAs), copper (Cu), copper-tungsten alloy (Cu-W). 根據申請專利範圍第1項之分離兩種材料的方法,其中上述之高磁導金屬陣列包含:鐵磁性材料、鉬(Mu-metal)、高磁導合金(Permalloy)、電磁鋼體(Electrical steel)、鎳鋅鐵氧磁體(nickel zinc ferrite)、錳鋅鐵氧磁體(manganese zinc ferrite)、鋼(Steel)。 The method for separating two materials according to claim 1, wherein the high magnetic permeability metal array comprises: a ferromagnetic material, a mo-metal, a permalloy, and an electromagnetic steel. ), nickel zinc ferrite, manganese zinc ferrite, steel. 根據申請專利範圍第6項之分離兩種材料的方法,其中上述之鐵磁性材料包含鐵(Fe)、鈷(Co)、鎳(Ni)及其合金。 A method of separating two materials according to the scope of claim 6 wherein the ferromagnetic material comprises iron (Fe), cobalt (Co), nickel (Ni), and alloys thereof. 根據申請專利範圍第1項之分離兩種材料的方法,其中上述之半導體層可為AlxInyGa(1-x-y)N,其中,x與y皆1。 A method of separating two materials according to the first aspect of the patent application, wherein the semiconductor layer may be Al x In y Ga (1-xy) N, wherein x and y are both 1. 根據申請專利範圍第1項之分離兩種材料的方法,其中上述之基板可為藍寶石(Al2O3)基板、碳化矽(SiC)基板、鋁酸鋰基板(LiAlO2)、鎵酸鋰基板(LiGaO2)、矽(Si)基板、氮化鎵(GaN)基板,氧化鋅(ZnO)基板、氧化鋁鋅基板(AlZnO)、砷化鎵(GaAs)基板、磷化鎵(GaP)基板、銻化鎵基板(GaSb)、磷化銦(InP)基板、砷化銦(InAs)基板、硒化鋅(ZnSe)基板、金屬基板。 The method for separating two materials according to claim 1, wherein the substrate may be a sapphire (Al 2 O 3 ) substrate, a tantalum carbide (SiC) substrate, a lithium aluminate substrate (LiAlO 2 ), or a lithium gallate substrate. (LiGaO 2 ), ytterbium (Si) substrate, gallium nitride (GaN) substrate, zinc oxide (ZnO) substrate, aluminum zinc oxide substrate (AlZnO), gallium arsenide (GaAs) substrate, gallium phosphide (GaP) substrate, A gallium antimonide substrate (GaSb), an indium phosphide (InP) substrate, an indium arsenide (InAs) substrate, a zinc selenide (ZnSe) substrate, and a metal substrate. 根據申請專利範圍第1項之分離兩種材料的方法,其中上述之高磁導金屬陣列係藉由一無線射頻加熱系統之圓柱線圈所產生之無線射頻引發渦流效應(eddy current effect),藉此以根據加熱,其中d係為圓柱線圈之半徑(diameter of the cylinder)、h係為圓柱線圈之高度(height of the cylinder)、H係為磁場強度(magnetic field intensity)、ρ係為電阻(resistivity)、μ 0係為真空 之磁導率(magnetic permeability of vacuum)、μ r 係為相對之磁導率(relative permeability)、f係為頻率(frequency)、C係為耦合係數(coupling factor)、F係為能量傳遞係數(power transmission factor)。 The method of separating two materials according to claim 1, wherein the high-permeability metal array is caused by a radio frequency eddy current effect generated by a cylindrical coil of a radio frequency heating system. Based on Heating, where d is the diameter of the cylinder, h is the height of the cylinder, H is the magnetic field intensity, ρ is the resistance, μ 0 is the magnetic permeability of vacuum, μ r is the relative permeability, f is the frequency, C is the coupling factor, F system For the power transmission factor. 根據申請專利範圍第1項之分離分離兩種材料的方法,上述之高磁導金屬陣列可藉由物理氣相沈積(Physical Vapor Deposition,PVD)、蒸鍍(Evaporation)、濺鍍(Sputtering)等方式形成。 According to the method for separating and separating two materials according to the first aspect of the patent application, the above-mentioned high-permeability metal array can be subjected to physical vapor deposition (PVD), evaporation (evaporation), sputtering (Sputtering), etc. The way is formed.
TW98100293A 2009-01-07 2009-01-07 Method of separating two materials TWI442460B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98100293A TWI442460B (en) 2009-01-07 2009-01-07 Method of separating two materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100293A TWI442460B (en) 2009-01-07 2009-01-07 Method of separating two materials

Publications (2)

Publication Number Publication Date
TW201027602A TW201027602A (en) 2010-07-16
TWI442460B true TWI442460B (en) 2014-06-21

Family

ID=44853265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100293A TWI442460B (en) 2009-01-07 2009-01-07 Method of separating two materials

Country Status (1)

Country Link
TW (1) TWI442460B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201237963A (en) 2011-03-08 2012-09-16 Univ Nat Chiao Tung Method of semiconductor manufacturing process

Also Published As

Publication number Publication date
TW201027602A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
Fan et al. Monolithically integrating III‐nitride quantum structure for full‐spectrum white LED via bandgap engineering heteroepitaxial growth
Crawford LEDs for solid-state lighting: performance challenges and recent advances
US8420426B2 (en) Method of manufacturing a light-emitting device
JP4989978B2 (en) Nitride-based light emitting device and manufacturing method thereof
KR101662202B1 (en) Light emitting device
US20090001409A1 (en) Semiconductor Light Emitting Device And Illuminating Device Using It
KR20040012754A (en) Gan based led formed on a sic substrate
JP4852755B2 (en) Method for manufacturing compound semiconductor device
CN100386890C (en) Method of mfg. GaN-base LED
KR20090055607A (en) Gallium nitride compound semiconductor light-emitting device and method for manufacturing the same
CN103633200A (en) Method for manufacturing gallium-nitride-based light emitting diode devices with vertical structures by aid of silicon substrates
JP2003218391A (en) Iii-nitride light emitting diode
CN103633199A (en) Method for producing vertical-structured GaN-based light emitting diode by adopting sapphire substrate
CN101783279B (en) Method for spearing two materials
CN101599418B (en) Laser-stripping method
TWI442460B (en) Method of separating two materials
CN102255015A (en) Method for emitting circularly polarized light using LED (light-emitting diode) chip, and product and preparation method thereof
US20100170936A1 (en) Method for bonding two materials
Xiong et al. Different properties of GaN-based LED grown on Si (111) and transferred onto new substrate
US8080433B2 (en) Method for detaching layers with low magnetic permeability
WO2008056632A1 (en) GaN SEMICONDUCTOR LIGHT EMITTING ELEMENT
CN104465897B (en) The manufacture method of LED crystal particle
US9373747B2 (en) Method for producing an optoelectronic component
TWI484659B (en) Light emitting devices with efficient wavelength conversion and methods of forming the same
Jeon et al. Vertical‐Type Blue Light Emitting Diode by Mixed‐Source Hydride Vapor Phase Epitaxy Method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees