TWI442035B - Pressure sensor and sensing array - Google Patents

Pressure sensor and sensing array Download PDF

Info

Publication number
TWI442035B
TWI442035B TW100126042A TW100126042A TWI442035B TW I442035 B TWI442035 B TW I442035B TW 100126042 A TW100126042 A TW 100126042A TW 100126042 A TW100126042 A TW 100126042A TW I442035 B TWI442035 B TW I442035B
Authority
TW
Taiwan
Prior art keywords
control electrode
thickness
substrate
protective film
layer
Prior art date
Application number
TW100126042A
Other languages
Chinese (zh)
Other versions
TW201305543A (en
Inventor
Yu Tse Lai
Yao Joe Yang
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100126042A priority Critical patent/TWI442035B/en
Publication of TW201305543A publication Critical patent/TW201305543A/en
Application granted granted Critical
Publication of TWI442035B publication Critical patent/TWI442035B/en

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

壓力感測器及感測陣列Pressure sensor and sensing array

本發明係關於一種壓力感測器及感測陣列,更特別的是關於一種可調變感測範圍之壓力感測器及感測陣列。The present invention relates to a pressure sensor and a sensing array, and more particularly to a pressure sensor and sensing array with a variable sensing range.

一般壓力感測器係將作用於感測元件上之壓力源轉為電壓信號,該電壓信號再經由一類比/數位轉換放大器放大信號並轉換成數位信號,使該數位信號再經由一處理器作判斷以感測出壓力值。Generally, the pressure sensor converts a pressure source acting on the sensing element into a voltage signal, and the voltage signal is further amplified by a analog/digital conversion amplifier and converted into a digital signal, and the digital signal is further processed by a processor. Judging to sense the pressure value.

傳統的壓力感測器由於僅適用於單一感測範圍,當所欲量測的壓力值超出壓力感測器可承受的範圍時,就必須再換另一個可承受較大壓力範圍的壓力感測器,這使得目前的壓力感測器之使用範圍受到侷限。Since the traditional pressure sensor is only suitable for a single sensing range, when the pressure value to be measured exceeds the range that the pressure sensor can withstand, it must be replaced with another pressure sensing that can withstand a large pressure range. This makes the current range of pressure sensors limited.

本發明之一目的在於提出一種可控制或調整壓力感測器之壓力感測範圍。It is an object of the present invention to provide a pressure sensing range that can control or adjust the pressure sensor.

本發明之另一目的在於提出一種可被應用於各種不同場合的壓力感測器或壓力感測陣列。Another object of the present invention is to provide a pressure sensor or pressure sensing array that can be applied to a variety of different applications.

為達上述目的及其他目的,本發明之壓力感測器包含:一感測範圍調變結構,其係包含由一上控制電極、一奈米碳管-液晶複合材料層、及一下控制電極所組成的夾擠結構,以根據該上控制電極及該下控制電極的電性控制,調整該奈米碳管-液晶複合材料的方向角度;一保護膜層,係覆蓋該感測範圍調變結構並接觸該上控制電極;一基底,係位於該感測範圍調變結構下方,以將該感測範圍調變結構夾擠於該保護膜層與該基底間,該基底並接觸該下控制電極,其中,藉由該下控制電極之電性量測結果以供一壓力感測值的取得;及一間隔物層,係夾擠於該保護膜層與該基底間,以間隔出該感測範圍調變結構於該保護膜層與該基底間的容置空間。To achieve the above and other objects, the pressure sensor of the present invention comprises: a sensing range modulation structure comprising an upper control electrode, a carbon nanotube-liquid crystal composite layer, and a lower control electrode. a clamping structure for adjusting a direction angle of the carbon nanotube-liquid crystal composite material according to electrical control of the upper control electrode and the lower control electrode; a protective film layer covering the sensing range modulation structure And contacting the upper control electrode; a substrate is disposed under the sensing range modulation structure to clamp the sensing range modulation structure between the protective film layer and the substrate, and the substrate contacts the lower control electrode Wherein, the electrical measurement result of the lower control electrode is used for obtaining a pressure sensing value; and a spacer layer is interposed between the protective film layer and the substrate to space the sensing The range modulation structure is an accommodation space between the protective film layer and the substrate.

為達上述目的及其他目的,本發明提出之壓力感測陣列包含:複數個感測範圍調變結構,其每一者係包含由一上控制電極、一奈米碳管-液晶複合材料層、及一下控制電極所組成的夾擠結構,以根據該上控制電極及該下控制電極的電性控制,調整該奈米碳管-液晶複合材料的方向角度;一保護膜層,係覆蓋該等感測範圍調變結構並接觸該等上控制電極;一基底,係位於該等感測範圍調變結構下方,以將該等感測範圍調變結構夾擠於該保護膜層與該基底間,該基底並接觸該等下控制電極,其中,藉由每一下控制電極之電性量測結果供一壓力感測結果的取得;及一間隔物層,係夾擠於該保護膜層與該基底間,以間隔出該等感測範圍調變結構於該保護膜層與該基底間的複數容置空間。To achieve the above and other objects, the pressure sensing array of the present invention comprises: a plurality of sensing range modulation structures, each of which comprises an upper control electrode, a carbon nanotube-liquid crystal composite layer, And a pinch structure composed of the control electrode to adjust the direction angle of the carbon nanotube-liquid crystal composite material according to the electrical control of the upper control electrode and the lower control electrode; a protective film layer covering the same Sensing the range modulation structure and contacting the upper control electrodes; a substrate is disposed under the sensing range modulation structures to clamp the sensing range modulation structures between the protective film layer and the substrate The substrate is in contact with the lower control electrodes, wherein a pressure sensing result is obtained by electrical measurement results of each lower control electrode; and a spacer layer is clamped to the protective film layer and the Between the substrates, the plurality of accommodation spaces between the protective film layer and the substrate are modulated by spacing the sensing ranges.

於一實施例中,該間隔物層係可由高分子材料所製成,例如:聚二甲基矽氧烷。In one embodiment, the spacer layer can be made of a polymer material, such as polydimethyl siloxane.

於一實施例中,該保護膜層係可為軟性的一導電塑膠薄膜,而該導電塑膠薄膜更可為一聚酯薄膜。In one embodiment, the protective film layer may be a soft conductive plastic film, and the conductive plastic film may be a polyester film.

於一實施例中,該保護膜層之厚度係可為90~110微米,該基底之厚度係可為630~770微米,該間隔物層之厚度係可為450~550微米,每一該上控制電極及每一該下控制電極之厚度各別係可為108~132奈米。In one embodiment, the thickness of the protective film layer may be 90-110 micrometers, the thickness of the substrate may be 630-770 micrometers, and the thickness of the spacer layer may be 450-550 micrometers, each of which may be The thickness of the control electrode and each of the lower control electrodes may each be 108 to 132 nm.

於一實施例中,該保護膜層之厚度係為100微米,該基底之厚度係為700微米,該間隔物層之厚度係為500微米,每一該上控制電極及每一該下控制電極之厚度各別係為120奈米。In one embodiment, the protective film layer has a thickness of 100 μm, the substrate has a thickness of 700 μm, and the spacer layer has a thickness of 500 μm, each of the upper control electrode and each of the lower control electrodes. The thickness is 120 nm each.

藉此,本發明之壓力感測器及壓力感測陣列利用奈米碳管與液晶分子混合之複合材料作為感測材料,進而透過進一步地角度旋轉控制達成各種阻值的調變,使得本發明之感測器可藉由電性上的控制來調變壓力感測器的感測範圍,而不同於習知技術之固定感測範圍的壓力感測器,本發明可廣泛地被應用於各種壓力感測場合。Thereby, the pressure sensor and the pressure sensing array of the present invention utilize a composite material in which a carbon nanotube and a liquid crystal molecule are mixed as a sensing material, thereby achieving various resistance values by further angular rotation control, so that the present invention The sensor can adjust the sensing range of the pressure sensor by electrical control, and the pressure sensor different from the fixed sensing range of the prior art can be widely applied to various sensors. Pressure sensing occasions.

為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做一詳細說明,說明如後:本發明各圖中所繪示之結構的各層厚度僅為一種示例,於圖式上,各層間的厚度比例並非為實際比例。In order to fully understand the objects, features and advantages of the present invention, the present invention will be described in detail by the accompanying drawings. The thickness of each layer of the structure is only an example. In the drawings, the thickness ratio between the layers is not an actual ratio.

首先請參閱第1圖,係本發明實施例中之壓力感測器的剖面示圖。壓力感測器包含:感測範圍調變結構200、保護膜層110、基底120、及間隔物層130。First, please refer to Fig. 1, which is a cross-sectional view of a pressure sensor in an embodiment of the present invention. The pressure sensor includes: a sensing range modulation structure 200, a protective film layer 110, a substrate 120, and a spacer layer 130.

感測範圍調變結構200包含一夾擠結構,該夾擠結構係由上控制電極210、奈米碳管-液晶複合材料層220、及下控制電極230所組成的,該夾擠結構可根據上控制電極210及下控制電極230的電性控制,例如:於該夾擠結構間產生電場或磁場,即能控制液晶分子的轉向角度進而可調整該奈米碳管-液晶複合材料的方向角度。隨著該奈米碳管-液晶複合材料方向角度的不同將可對應地產生不同的電阻值,於後將有更詳細的描述。The sensing range modulation structure 200 includes a squeezing structure composed of an upper control electrode 210, a carbon nanotube-liquid crystal composite material layer 220, and a lower control electrode 230, and the squeezing structure can be Electrical control of the upper control electrode 210 and the lower control electrode 230, for example, generating an electric field or a magnetic field between the squeezing structures, that is, controlling the steering angle of the liquid crystal molecules and adjusting the direction angle of the carbon nanotube-liquid crystal composite material . Different resistance values will be correspondingly produced as the orientation angle of the carbon nanotube-liquid crystal composite is different, as will be described in more detail later.

保護膜層110係覆蓋於感測範圍調變結構200上,該保護膜層110並接觸該上控制電極210。基底120則是位於該感測範圍調變結構200的下方,以將該感測範圍調變結構200夾擠於保護膜層110與基底120間,基底120並接觸該下控制電極230,藉由該下控制電極230進行電性量測將可利用此電性量測結果取得壓力感測值。舉例來說:隨著作用於保護膜層110上外力的增加,該感測範圍調變結構200將被壓縮進而減低其內部電阻值,藉由上控制電極210、下控制電極230及導線的配置將可取得其間變化的電阻值,進而可供壓力感測值的換算。其中,該基底120可為一導電玻璃。The protective film layer 110 covers the sensing range modulation structure 200, and the protective film layer 110 contacts the upper control electrode 210. The substrate 120 is located below the sensing range modulation structure 200 to sandwich the sensing range modulation structure 200 between the protective film layer 110 and the substrate 120, and the substrate 120 contacts the lower control electrode 230. The electrical measurement of the lower control electrode 230 can utilize the electrical measurement result to obtain a pressure sensing value. For example, as the external force applied to the protective film layer 110 increases, the sensing range modulation structure 200 will be compressed to reduce its internal resistance value, by the configuration of the upper control electrode 210, the lower control electrode 230, and the wires. The resistance value that can be changed between them can be obtained, and the pressure sensing value can be converted. The substrate 120 can be a conductive glass.

間隔物層130係夾擠於保護膜層110與基底120間,以間隔出感測範圍調變結構200的容置空間,並使該奈米碳管-液晶複合材料可被保存於該容置空間內。The spacer layer 130 is interposed between the protective film layer 110 and the substrate 120 to space the accommodation space of the sensing range modulation structure 200, and the carbon nanotube-liquid crystal composite material can be stored in the receiving space. Within the space.

本發明之實施例中,間隔物層130較佳可由高分子材料所製成,例如:由聚二甲基矽氧烷所製成。保護膜層110較佳為一導電塑膠薄膜,例如為一聚酯薄膜。In the embodiment of the present invention, the spacer layer 130 is preferably made of a polymer material, for example, made of polydimethyl siloxane. The protective film layer 110 is preferably a conductive plastic film, such as a polyester film.

接著請參閱第2A至2C圖,係本發明實施例中之感測範圍的調變示意圖。目前已知的奈米碳管-液晶複合材料係將奈米碳管分散於液晶材料中,由其間之原子引力所致,碳管與液晶分子間會具有牽引吸附力,因而造成碳管的平均指向方向將受到液晶分子方向的控制而被間接地控制著。本發明實施例中即將此特性應用於壓力感測上,而利用電場或磁場來控制奈米碳管的方向角度進而調變不同感測範圍的電阻值。2A to 2C are diagrams showing the modulation of the sensing range in the embodiment of the present invention. The currently known carbon nanotube-liquid crystal composite material disperses the carbon nanotubes in the liquid crystal material, and the atomic attraction between them is caused by the attraction between the carbon tubes and the liquid crystal molecules, thereby causing the average of the carbon tubes. The pointing direction will be indirectly controlled by the control of the direction of the liquid crystal molecules. In the embodiment of the present invention, this characteristic is applied to pressure sensing, and an electric field or a magnetic field is used to control the direction angle of the carbon nanotubes to adjust the resistance values of different sensing ranges.

如第2A至2C圖所示,感測範圍調變結構200間被施加的驅動電壓越大,液晶分子旋轉的角度就越大,進而使得碳管的角度也越大。由於碳管方向會影響導電的路徑,因此第2A至2C圖中的導電路徑皆不相同,這將使得感測範圍調變結構200間的電阻值取決於碳管的角度。第2A圖中所施加的驅動電壓係為0,第2B圖係施加小量電壓,第2C圖中則是施加較大的電壓。因此,感測範圍調變結構200的阻值將隨著碳管角度的增大而降低。As shown in FIGS. 2A to 2C, the larger the driving voltage applied between the sensing range modulation structures 200, the larger the angle at which the liquid crystal molecules rotate, and the larger the angle of the carbon tubes. Since the direction of the carbon tube affects the conductive path, the conductive paths in FIGS. 2A to 2C are all different, which will cause the resistance value between the sensing range modulation structures 200 to depend on the angle of the carbon tube. The driving voltage applied in Fig. 2A is 0. In Fig. 2B, a small amount of voltage is applied, and in Fig. 2C, a large voltage is applied. Therefore, the resistance of the sensing range modulation structure 200 will decrease as the angle of the carbon tube increases.

當感測範圍調變結構200受外力F作用時,碳管會互相靠近而導致電阻值下降,因此本發明之壓力感測即是以此方式進行。此外,當感測範圍調變結構200未受外力作用時的初始電阻值越高,所能承受的壓力就越大,亦即可感測的壓力範圍即會因感測範圍調變結構200初始電阻值的不同而不同。由於電路上對量測訊號的截取具有固定的範圍,因此第2A至2C圖中的a區域係為對應之感測範圍調變結構200的驅動電壓下可感測的壓力範圍。When the sensing range modulation structure 200 is subjected to the external force F, the carbon tubes will approach each other to cause a decrease in the resistance value, and thus the pressure sensing of the present invention is performed in this manner. In addition, the higher the initial resistance value when the sensing range modulation structure 200 is not subjected to an external force, the greater the pressure that can be withstood, and the sensed pressure range may be initially determined by the sensing range modulation structure 200. The resistance values vary. Since the interception of the measurement signal on the circuit has a fixed range, the area a in the 2A to 2C diagram is a pressure range sensible under the driving voltage of the sensing range modulation structure 200.

接著請參閱第3圖,係本發明實施例中之壓力感測器的壓力-電阻關係圖。由圖中可知,在三種不同的驅動電壓下,即:0.5V、1V、3V,電阻皆隨著外來壓力的增加而下降,並且隨著驅動電壓的不同而具有不同的初始電阻值,因此,本發明實施例之提出的壓力感測器係可藉由驅動電壓的控制來調變壓力的感測範圍。例如:當驅動電壓較低時(0.5V),碳管的旋轉角度較小電阻較大,可量測的壓力範圍上限可達80(kPa)以上。Next, please refer to FIG. 3, which is a pressure-resistance diagram of the pressure sensor in the embodiment of the present invention. As can be seen from the figure, under three different driving voltages, namely: 0.5V, 1V, 3V, the resistance decreases with the increase of external pressure, and has different initial resistance values with different driving voltages. The pressure sensor proposed by the embodiment of the invention can adjust the sensing range of the pressure by the control of the driving voltage. For example, when the driving voltage is low (0.5V), the rotation angle of the carbon tube is small and the resistance is large, and the upper limit of the pressure range that can be measured can reach 80 (kPa) or more.

接著請參閱第4圖,係本發明實施例中之壓力感測陣列的立體示意圖。其係基於第1圖所示之結構所延伸擴展的壓力感測陣列300,藉由複數個感測範圍調變結構200的配置完成整個感測陣列。第4圖中係以結構相互錯開的方式來描繪整體結構,上控制電極210與下控制電極230並連接有導線,以供控制。Next, please refer to FIG. 4, which is a perspective view of a pressure sensing array in an embodiment of the present invention. The pressure sensing array 300 is extended based on the structure shown in FIG. 1 , and the entire sensing array is completed by the configuration of the plurality of sensing range modulation structures 200 . In Fig. 4, the overall structure is depicted in such a manner that the structures are offset from each other, and the upper control electrode 210 and the lower control electrode 230 are connected with wires for control.

本發明實施例之壓力感測器或壓力感測陣列皆可由微機電技術來製作。上、下控制電極210、230係可被分別形成於保護膜層110及基底120上,接著於定義有下控制電極230及導線的基底120上形成間隔物層130,並於該間隔物層130中定義出容置空間以供奈米碳管-液晶複合材料的充填,最後覆蓋上定義有上控制電極210及導線的保護膜層110,以完成壓力感測器或壓力感測陣列的製作。The pressure sensor or pressure sensing array of the embodiments of the present invention can be fabricated by microelectromechanical technology. The upper and lower control electrodes 210 and 230 are respectively formed on the protective film layer 110 and the substrate 120, and then the spacer layer 130 is formed on the substrate 120 defining the lower control electrode 230 and the wires, and the spacer layer 130 is formed on the spacer layer 130. The accommodating space is defined for the filling of the carbon nanotube-liquid crystal composite material, and finally the protective film layer 110 defining the upper control electrode 210 and the wire is covered to complete the fabrication of the pressure sensor or the pressure sensing array.

上述之製作中,保護膜層110之厚度係可為90~110微米,基底120之厚度係可為630~770微米,間隔物層130之厚度係可為450~550微米,上控制電極210及下控制電極230之厚度各別係可為108~132奈米。而於一較佳實施例中,保護膜層110之厚度係為100微米,基底120之厚度係為700微米,間隔物層130之厚度係為500微米,上控制電極210及下控制電極230之厚度各別係為120奈米。In the above fabrication, the thickness of the protective film layer 110 may be 90-110 micrometers, the thickness of the substrate 120 may be 630-770 micrometers, and the thickness of the spacer layer 130 may be 450-550 micrometers, and the upper control electrode 210 and The thickness of the lower control electrode 230 may each be 108 to 132 nm. In a preferred embodiment, the thickness of the protective film layer 110 is 100 micrometers, the thickness of the substrate 120 is 700 micrometers, and the thickness of the spacer layer 130 is 500 micrometers. The upper control electrode 210 and the lower control electrode 230 are The thickness is 120 nm each.

綜上所述,本發明之實施例係提供了一種有別於單純性之固定量測範圍的壓力感測器及感測陣列,使得本發明可藉由驅動液晶分子旋轉角度的方式讓感測器具有不同範圍的感測能力,而可大幅增加壓力感測器的應用範圍。In summary, the embodiments of the present invention provide a pressure sensor and a sensing array that are different from the simple fixed measurement range, so that the present invention can sense the driving angle of the liquid crystal molecules. The sensor has a wide range of sensing capabilities, which can greatly increase the range of applications of the pressure sensor.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。The invention has been described above in terms of the preferred embodiments, and it should be understood by those skilled in the art that the present invention is not intended to limit the scope of the invention. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application.

110...保護膜層110. . . Protective film

120...基底120. . . Base

130...間隔物層130. . . Spacer layer

200...感測範圍調變結構200. . . Sensing range modulation structure

210...上控制電極210. . . Upper control electrode

220...奈米碳管-液晶複合材料層220. . . Nano carbon tube - liquid crystal composite layer

230...下控制電極230. . . Lower control electrode

300...壓力感測陣列300. . . Pressure sensing array

a...可感測範圍a. . . Sensible range

F...外力F. . . external force

R...電阻R. . . resistance

第1圖為本發明實施例中之壓力感測器的剖面示圖。Fig. 1 is a cross-sectional view showing a pressure sensor in an embodiment of the invention.

第2A至2C圖為本發明實施例中之感測範圍的調變示意圖。2A to 2C are schematic diagrams showing modulation of the sensing range in the embodiment of the present invention.

第3圖為本發明實施例中之壓力感測器的壓力-電阻關係圖。Figure 3 is a graph showing the pressure-resistance relationship of the pressure sensor in the embodiment of the present invention.

第4圖為本發明實施例中之壓力感測陣列的立體示意圖。4 is a perspective view of a pressure sensing array in an embodiment of the present invention.

110...保護膜層110. . . Protective film

120...基底120. . . Base

130...間隔物層130. . . Spacer layer

200...感測範圍調變結構200. . . Sensing range modulation structure

210...上控制電極210. . . Upper control electrode

220...奈米碳管-液晶複合材料層220. . . Nano carbon tube - liquid crystal composite layer

230...下控制電極230. . . Lower control electrode

Claims (15)

一種壓力感測器,其包含:一感測範圍調變結構,其係包含由一上控制電極、一奈米碳管-液晶複合材料層、及一下控制電極所組成的夾擠結構,以根據該上控制電極及該下控制電極的電性控制,調整該奈米碳管-液晶複合材料的方向角度;一保護膜層,係覆蓋該感測範圍調變結構並接觸該上控制電極;一基底,係位於該感測範圍調變結構下方,以將該感測範圍調變結構夾擠於該保護膜層與該基底間,該基底並接觸該下控制電極,其中,藉由該下控制電極之電性量測結果以供一壓力感測值的取得;及一間隔物層,係夾擠於該保護膜層與該基底間,以間隔出該感測範圍調變結構於該保護膜層與該基底間的容置空間。A pressure sensor comprising: a sensing range modulation structure comprising a pinch structure consisting of an upper control electrode, a carbon nanotube-liquid crystal composite layer, and a lower control electrode, according to Electrically controlling the upper control electrode and the lower control electrode to adjust a direction angle of the carbon nanotube-liquid crystal composite material; a protective film layer covering the sensing range modulation structure and contacting the upper control electrode; a substrate disposed under the sensing range modulation structure to clamp the sensing range modulation structure between the protective film layer and the substrate, the substrate contacting the lower control electrode, wherein the lower control The electrical measurement result of the electrode is used for obtaining a pressure sensing value; and a spacer layer is interposed between the protective film layer and the substrate to space the sensing range modulation structure on the protective film The space between the layer and the substrate. 如申請專利範圍第1項所述之壓力感測器,其中該保護膜層係為一導電塑膠薄膜。The pressure sensor of claim 1, wherein the protective film layer is a conductive plastic film. 如申請專利範圍第2項所述之壓力感測器,其中該導電塑膠薄膜係為一聚酯薄膜。The pressure sensor of claim 2, wherein the conductive plastic film is a polyester film. 如申請專利範圍第1項所述之壓力感測器,其中該間隔物層係由高分子材料所製成。The pressure sensor of claim 1, wherein the spacer layer is made of a polymer material. 如申請專利範圍第1項所述之壓力感測器,其中該間隔物層係由聚二甲基矽氧烷所製成。The pressure sensor of claim 1, wherein the spacer layer is made of polydimethyl siloxane. 如申請專利範圍第1項所述之壓力感測器,其中該上控制電極及該下控制電極之厚度各別係為108~132奈米。The pressure sensor of claim 1, wherein the upper control electrode and the lower control electrode each have a thickness of 108 to 132 nm. 如申請專利範圍第1項所述之壓力感測器,其中該保護膜層之厚度係為90~110微米,該基底之厚度係為630~770微米,該間隔物層之厚度係為450~550微米。The pressure sensor according to claim 1, wherein the thickness of the protective film layer is 90 to 110 μm, the thickness of the substrate is 630 to 770 μm, and the thickness of the spacer layer is 450~ 550 microns. 如申請專利範圍第1項所述之壓力感測器,其中該保護膜層之厚度係為100微米,該基底之厚度係為700微米,該間隔物層之厚度係為500微米,該上控制電極及該下控制電極之厚度各別係為120奈米。The pressure sensor of claim 1, wherein the protective film layer has a thickness of 100 μm, the substrate has a thickness of 700 μm, and the spacer layer has a thickness of 500 μm. The thickness of the electrode and the lower control electrode are each 120 nm. 一種壓力感測陣列,其包含:複數個感測範圍調變結構,其每一者係包含由一上控制電極、一奈米碳管-液晶複合材料層、及一下控制電極所組成的夾擠結構,以根據該上控制電極及該下控制電極的電性控制,調整該奈米碳管-液晶複合材料的方向角度;一保護膜層,係覆蓋該等感測範圍調變結構並接觸該等上控制電極;一基底,係位於該等感測範圍調變結構下方,以將該等感測範圍調變結構夾擠於該保護膜層與該基底間,該基底並接觸該等下控制電極,其中,藉由每一下控制電極之電性量測結果供一壓力感測結果的取得;及一間隔物層,係夾擠於該保護膜層與該基底間,以間隔出該等感測範圍調變結構於該保護膜層與該基底間的複數容置空間。A pressure sensing array comprising: a plurality of sensing range modulation structures, each of which comprises a pinch of an upper control electrode, a carbon nanotube-liquid crystal composite layer, and a lower control electrode a structure for adjusting a direction angle of the carbon nanotube-liquid crystal composite material according to electrical control of the upper control electrode and the lower control electrode; a protective film layer covering the sensing range modulation structure and contacting the Waiting for the control electrode; a substrate is located under the sensing range modulation structure to clamp the sensing range modulation structure between the protective film layer and the substrate, and the substrate is in contact with the lower control An electrode, wherein a pressure sensing result is obtained by an electrical measurement result of each lower control electrode; and a spacer layer is interposed between the protective film layer and the substrate to space the sense The measuring range modulation structure is a plurality of accommodating spaces between the protective film layer and the substrate. 如申請專利範圍第9項所述之壓力感測陣列,其中該保護膜層係為一導電塑膠薄膜。The pressure sensing array of claim 9, wherein the protective film layer is a conductive plastic film. 如申請專利範圍第10項所述之壓力感測陣列,其中該導電塑膠薄膜係為一聚酯薄膜。The pressure sensing array of claim 10, wherein the conductive plastic film is a polyester film. 如申請專利範圍第9項所述之壓力感測陣列,其中該間隔物層係由高分子材料所製成。The pressure sensing array of claim 9, wherein the spacer layer is made of a polymer material. 如申請專利範圍第9項所述之壓力感測陣列,其中該間隔物層係由聚二甲基矽氧烷所製成。The pressure sensing array of claim 9, wherein the spacer layer is made of polydimethyl siloxane. 如申請專利範圍第9項所述之壓力感測陣列,其中該保護膜層之厚度係為90~110微米,該基底之厚度係為630~770微米,該間隔物層之厚度係為450~550微米,每一該上控制電極及每一該下控制電極之厚度各別係為108~132奈米。The pressure sensing array according to claim 9, wherein the protective film layer has a thickness of 90 to 110 μm, the thickness of the substrate is 630 to 770 μm, and the thickness of the spacer layer is 450~ At 550 microns, the thickness of each of the upper control electrode and each of the lower control electrodes is 108 to 132 nm. 如申請專利範圍第9項所述之壓力感測陣列,其中該保護膜層之厚度係為100微米,該基底之厚度係為700微米,該間隔物層之厚度係為500微米,每一該上控制電極及每一該下控制電極之厚度各別係為120奈米。The pressure sensing array of claim 9, wherein the protective film layer has a thickness of 100 μm, the substrate has a thickness of 700 μm, and the spacer layer has a thickness of 500 μm, each of which The thickness of the upper control electrode and each of the lower control electrodes are each 120 nm.
TW100126042A 2011-07-22 2011-07-22 Pressure sensor and sensing array TWI442035B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100126042A TWI442035B (en) 2011-07-22 2011-07-22 Pressure sensor and sensing array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100126042A TWI442035B (en) 2011-07-22 2011-07-22 Pressure sensor and sensing array

Publications (2)

Publication Number Publication Date
TW201305543A TW201305543A (en) 2013-02-01
TWI442035B true TWI442035B (en) 2014-06-21

Family

ID=48169113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126042A TWI442035B (en) 2011-07-22 2011-07-22 Pressure sensor and sensing array

Country Status (1)

Country Link
TW (1) TWI442035B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125958B (en) * 2013-05-10 2016-04-29 Murata Manufacturing Co Improved pressure sensor
KR102254942B1 (en) 2014-02-06 2021-05-24 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
CN106325581B (en) * 2015-07-10 2023-10-17 宸鸿科技(厦门)有限公司 Pressure sensing input device and manufacturing method thereof
LU102155B1 (en) 2020-10-21 2022-04-25 Univ Luxembourg Carbon nanotube pressure sensor

Also Published As

Publication number Publication date
TW201305543A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
CN110068404B (en) Resistance-type flexible pressure sensing device, preparation method thereof and sensor array
WO2020155193A1 (en) Novel tactile sensor
US6848320B2 (en) Mechanical deformation amount sensor
JP6353535B2 (en) Single electrode touch sensor
TWI442035B (en) Pressure sensor and sensing array
US8210994B2 (en) Pressure sensor and boxing machine using the same
JP2010540009A (en) Sensor for measurement in the blood vessels of living body
WO2019148726A1 (en) Resistive strain sensor
CN109883315B (en) Double-sided resistance type strain sensor and strain measurement method
US9841339B2 (en) Double-acting pressure sensor
CN105990513B (en) Piezoelectric device, piezoelectric sensor, and wearable apparatus
US9618403B2 (en) Strain sensors and methods of manufacture and use
CN110375895A (en) Multi-functional Grazing condition finger print touch sensor
Ma et al. A flexible tactile and shear sensing array fabricated using a novel buckypaper patterning technique
WO2014136337A1 (en) Capacitance type pressure sensor and input apparatus
CN109883316B (en) Resistance type strain sensor and strain measurement method
CN113340480B (en) Flexible pressure sensor and preparation method thereof
TWI334404B (en) Micro-electro-mechanical sensor
CN208223387U (en) A kind of resistance strain
US11959819B2 (en) Multi-axis strain sensor
TW201114678A (en) Radio frequency identification based thermal bubble type accelerometer
CN108473301A (en) Device and the method for manufacturing the device
WO2014121516A1 (en) Touch key
CN103210703A (en) Assembling and packaging a discrete electronic component
Wang et al. A solution to reduce the time dependence of the output resistance of a viscoelastic and piezoresistive element